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Abstract

Accurate outlier detection is not only a necessary
preprocessing step, but can itself give important
insights into the data. However, especially, for
non-linear regression the detection of outliers is
non-trivial, and actually ambiguous. We propose
a new method that identifies outliers by finding
a subset of data points T such that the marginal
likelihood of all remaining data points S is maxi-
mized. Though the idea is more general, it is partic-
ular appealing for Gaussian processes regression,
where the marginal likelihood has an analytic so-
lution. While maximizing the marginal likelihood
for hyper-parameter optimization is a well estab-
lished non-convex optimization problem, optimiz-
ing the set of data points S is not. Indeed, even a
greedy approximation is computationally challeng-
ing due to the high cost of evaluating the marginal
likelihood. As a remedy, we propose an efficient
projected gradient descent method with provable
convergence guarantees. Moreover, we also estab-
lish the breakdown point when jointly optimizing
hyper-parameters and S. For various datasets and
types of outliers, our experiments demonstrate that
the proposed method can improve outlier detec-
tion and robustness when compared with several
popular alternatives like the student-t likelihood.

1 INTRODUCTION

Many real world data sets contain outliers, i.e. data points
that are not representative of the majority of samples. For ex-
ample, the output of a broken sensor might lead to an outlier
observation. It is well known that estimating the parameters
of a statistical model from data which contains outliers, can
often lead to arbitrarily bad estimates, and therefore various
robust learning techniques have been proposed [Rousseeuw

and Leroy, 2005, Basu et al., 1998, Fujisawa and Eguchi,
2008].

Once the model has been robustly trained, we can detect
outliers by ranking them according to the absolute value
of the residuals, or remove some of the outliers in order
to improve predictive performance. However, the success
hinges on choosing the correct hyper-parameters for the
robust training procedure.

Here in this work, we address the issue by proposing the use
of the trimmed marginal likelihood. Let M be some prob-
abilistic model, and denote by p(yS |M) the marginal like-
lihood of data samples index by S. Let Ω = {1, 2, . . . , n}
denote the index set of all training samples. Given some
trimming factor ν, we propose to find the set T , such that
p(yS |M) is maximized, with S = Ω \ T , and subject to
|T | = bνnc.

The trimmed marginal likelihood is particularly attractive
for Gaussian process (GP) regression where the marginal
likelihood has an analytic solution. In particular, we focus
here on non-parametric regression model:

y = f(x) + ε ,

where y and x are the response and covariates, respectively;
f is sampled from a GP, and ε is some random noise, for
example, ε ∼ N(0, σ2).

For GP regression, ν can be easily specified, since, as we
prove in Section 3.1, ν corresponds to the breakdown point
of our proposed method. In case where knowledge about
the upper bound on the ratio of outliers is not available, we
propose an iterative procedure for estimating ν (see Section
5).

However, the optimization over the set of data points S is NP
hard and even a greedy approximation is computationally
challenging. As a remedy, we propose an efficient projected
gradient descent method with provable convergence guaran-
tees (see Section 4.1).

Our experiments on various datasets and types of
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outliers demonstrate that the proposed method im-
proves outlier detection and robustness when com-
pared to several popular alternatives. Building on GPy-
Torch [Gardner et al., 2018], we also provide a com-
putationally efficient implementation of our proposed
method: https://github.com/andrade-stats/
TrimmedMarginalLikelihoodGP

2 RELATED WORK

Using the marginal likelihood for outlier detection has been
proposed in Shotwell and Slate [2011]. However, different
from their works, we use the trimmed marginal likelihood,
which has the advantage that we do not require any proba-
bilistic model for the outliers.

Our proposed method is related to the trimmed likeli-
hood approach for linear regression [Rousseeuw and Leroy,
2005, Rousseeuw and Van Driessen, 2006] (also known
as trimmed least squares). Extending the trimmed likeli-
hood approach beyond linear regression, was explored in
Müller and Neykov [2003], though, they did not consider
non-parametric models.

It is well known that the trimmed least squares method tends
to underestimate the true variance, and therefore asymptotic
correction factors [Rousseeuw and Leroy, 2005] and correc-
tion factors based on simulations [Pison et al., 2002] were
previously proposed.

Another general approach for robust parameter estimation
is to replace the Kullback-Leibler-divergence, underlying
the maximum likelihood estimate, by the β or γ-distribution
[Basu et al., 1998, Fujisawa and Eguchi, 2008]. This ap-
proach has also been extended to Bayesian inference in
general [Nakagawa and Hashimoto, 2020, Futami et al.,
2018], and Gaussian processes [Knoblauch et al., 2019] in
particular. However, how to specify the hyper-parameters
of these methods is less clear [Nakagawa and Hashimoto,
2020].

The most popular method for robust GP regression is to
replace the Gaussian likelihood function by a student-t dis-
tribution [Jylänki et al., 2011]. However, the student-t dis-
tribution assumes that outliers are symmetric, i.e. an ap-
proximate even number of unusual large and small values.
Furthermore, when combined with a GP prior, the marginal
likelihood is not analytically tractable anymore.

Recently, also several other methods for robust GP regres-
sion have been proposed, which can roughly be categorized
into likelihood robustification methods and residual-based
methods.

Likelihood Robustification Methods The methods in
[Daemi et al., 2019a,b] propose to use a mixture of two
normal distributions for noise: one for modeling inliers
and one for modeling outliers. [Lindfors et al., 2020] pro-

poses to use a G-confluent distribution which generalizes
the t-distribution, but still assumes symmetric outliers. In
contrast, the work in [Alodat and Shakhatreh, 2020] and
[Benavoli et al., 2021] propose to use the skew-normal distri-
bution instead of the normal likelihood. However, all of the
above methods make a particular assumption on the type of
noise/outliers through the choice of the likelihood function.

Residual-based Methods The method in [Li et al., 2021]
proposes to first train an ordinary GP regression model
and then remove the data points with the largest residuals.
Afterwards the GP regression model is trained again on the
smaller set of data points, and the procedure of removing
and retraining is repeated after a pre-defined number of steps.
However, it is not difficult to see that their proposed method
has a break down point of 1, meaning that one data can
have an arbitrarily large impact on the posterior distribution:
consider one outlier with yi∗ →∞, then the residual to the
outlier i∗ will always be smaller than the residual of all other
data points, which will lead to i∗ being never removed.
Similarly, [Ramirez-Padron et al., 2021] proposes to assign
weights to each observation, based on the distance of the
response to other neighboring data points. However, the
method is sensitive to the choice of the neighborhood.
The method in [Park et al., 2021] introduces a bias vector
δ ∈ Rn, where n is the number of samples. If and only if
δi 6= 0, then sample i is considered an outlier. They propose
to learn δ using the `1-penalty. However, it can be shown
that if there is even only one outlier with yi∗ → ∞, then
∀i : δi 6= 0, meaning all samples are considered as outliers
(see supplement material for details).

3 PROPOSED METHOD

Let Ω := {1, ..., n} denote the indices of all observations.
Let M denote some probabilistic model (likelihood + prior),
and log p(yS |M) the log-marginal likelihood of a given
subset S ⊆ Ω of observations. For detecting a set of outliers
T ⊆ Ω, with |T | = bνnc, we propose to use the ν-trimmed
marginal likelihood given as follows

Ŝ := arg max
S⊆Ω

log p(yS |M), subject to |S| = d(1− ν)ne ,

where T̂ := Ω \ Ŝ is the set of potential outliers. This is a
natural way to define the set of outliers and inliers, since
the set Ŝ contains the samples that are best explained given
model M .

In particular, for our model, we assume a zero mean GP
process prior with covariance function k, and a Gaussian
likelihood, that is

f ∼ GP (0, k) ,

y ∼ N(f(x), σ2) .

For our analysis and experiments we consider the scaled
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squared exponential covariance function, i.e.

kη,l(xi1 ,xi2) = ηe
−

∑d
j=1

1
2lj

(xi1
(j)−xi2

(j))2

, (1)

where η is the variance of the signal, and lj are the length-
scale parameters which control the change in correlation
when the data points differ in dimension j. We assume that
l = (l1, . . . , ld) ∈ D, where D is a compact subset of Rd+.1

Furthermore, we assume σ2 ∈ R+ and η ∈ R+.

Let Kη,l ∈ Rn×n denote the covariance matrix of all train-
ing data points, when using the covariance function from
Equation (1). We assume that Kη,l is a positive definite
matrix for all l ∈ D.

The log marginal likelihood log p(y|X, η, l, σ2) is therefore
given by

−1

2
yT (Kη,l + σ2I)−1y − 1

2
log |Kη,l + σ2I| − n

2
log 2π .

Since a fully Bayesian approach, i.e. integrating out the
hyper-parameters θ := (η, l, σ2), is computationally too
expensive, we use empirical Bayes. For S ⊆ Ω, let (yS , XS)
denote the corresponding subset of the data. We define the
v-trimmed marginal likelihood GP by

maximize
S,θ

log p(yS |XS ,θ) , subject to |S| = d(1− ν)ne .

(2)

3.1 ASYMPTOTICALLY CORRECT OUTLIER
REJECTION

Similar in spirit to the definition of an outlier-prone model
[O’Hagan, 1979], we define an outlier rejection method as
asymptotically correct, if the set of observations with yi →
∞, or yi → −∞ are detected as outliers.2 The following
proposition ensures asymptotic correctness.

Proposition 1. Assume the covariance function from Equa-
tion (1). Let V denote the true set of outliers, with yi →∞,
or yi → −∞, for i ∈ V . Let U denote the true set of inliers,
with yi being bounded, for i ∈ U . Then, eventually (i.e. for
i ∈ V , |yi| being large enough), we have

S ⊆ U ,

where S is the set of observations selected by the ν-trimmed
marginal likelihood GP, with bνnc ≥ |V |.

We defer the proof to the supplement material. Note that
the proof were trivial, if the hyper-parameters θ were fixed.
However, since S and θ are jointly optimized, a careful,
non-trivial proof is required.

1We denote by R+ the set of positive reals which excludes 0
and∞.

2The original definition of outlier-prone is only applicable to
parametric models.

Also note that Proposition 1 expresses that the ν-trimmed
marginal likelihood GP has a breakdown point of ν, in the
sense that ν is the minimal ratio of data points that need to be
contaminated in order to lead to an arbitrary bad posterior.3

4 OPTIMIZATION

Though conceptually easy, the ν-trimmed marginal likeli-
hood GP, as defined in Equation (2), is a computationally
difficult optimization problem. Even if the hyper-parameters
θ were fixed, the remaining discrete optimization problem
over S ⊆ Ω is still NP-hard.

In the following let m := d(1− ν)ne. After initializing all
hyper-parameters θ, we iterate between the optimization of
θ and S, as follows:

1. For fixed θ, find the set S that approximately maxi-
mizes the marginal likelihood, subject to the constraint
|S| = m.

2. For fixed S, optimize θ using one gradient descent
step.

We repeat Step 1 and Step 2 till the marginal likelihood
is not improved anymore. Step 2 is equal to the typical
hyper-parameter optimization for GPs.

The complete algorithm is shown in Algorithm 1. When
the step size ξ(t) is set small enough to ensure that `(t)

decreases, Algorithm 1 is guaranteed to converge. In our
implementation, we set step size ξ(t) and search direction
∆θ(t) using Adam [Kingma and Ba, 2015] as Optimizer O.

The optimization problem in Step 1 can be expressed as
follows. Find the set of samples S ⊆ {1, 2, . . . , n}, with
|S| = m, that maximize the marginal likelihood

−1

2
yTS (KS + σ2I)−1yS −

1

2
log |KS + σ2I| − m

2
log 2π ,

(3)

where KS ∈ Rm×m is a sub-matrix of the positive-definite
matrix K ∈ Rn×n, such that KS contains the rows and
columns of K indexed by S. Step 1 is challenging, since
even a greedy search algorithm is computationally expensive
due to the need for the repeated evaluation of the marginal
likelihood.

4.1 PROJECTED GRADIENT DESCENT (PGD)

For finding a computationally feasible solution to Step 1,
we proceed as follows. Assuming that the outliers are in
the responses y, and not in the covariates, we can ignore

3For a more formal definition of the classical concept of break-
down point see [Rousseeuw and Leroy, 2005], which should be
read by replacing "parameters" with "hyper-parameters".



Algorithm 1: Trimmed-GP (Joint Optimization)
Input: X,y, ν
Output: set of inliers S(t), hyperparameters θ(t)

1 m := d(1− ν)ne
2 t := 1; `(t) :=∞
3 initialize θ(t).
4 initialize optimizer O with global learning rate ξ0.
5 repeat

// Step 1: Optimize S with PGD or
Greedy

6 S′ := arg min
S⊆Ω, |S| = m.

log p(yS |XS ,θ
(t))

7 if log p(yS′ |XS′ ,θ
(t)) > log p(yS(t) |XS(t) ,θ(t)) then

8 S(t+1) := S′

9 reset history of optimizer O.
10 else
11 S(t+1) := S(t)

12 end
// Step 2: increase

log p(yS(t+1) |XS(t+1) ,θ) by updating θ

13 find step size ξ(t) and direction ∆θ(t) with O.
14 θ(t+1) := θ(t) + ξ(t)∆θ(t)

15 `(t+1) := − 1
m log p(yS(t+1) |XS(t+1) ,θ(t+1))

16 t := t+ 1

17 until `(t−1) < `(t)

the term log |KS + σ2I| in Equation (3). This reduces the
problem to the maximization of

−1

2
yTS (KS + σ2I)−1yS , (4)

subject to the constrain that |S| = m.

Since, we assume, that there are no outliers in the covariates,
we can re-express this as

minimize
b

f(b) , subject to ‖b‖0 = n−m, (P1)

where we defined f(b) := (y + b)T (K + σ2I)−1(y + b),
and ‖ · ‖0 counts the number of non-zero entries.

The auxiliary variables (b1, . . . , bn) = bT can be inter-
preted as corrections to the original responses y such that
Equation (4) is maximized. In particular, if bi = 0, then this
means that no correction for sample i is needed, suggesting
that yi is no outlier. Therefore, the constraint ||b||0 = n−m
says that we assume that there are m inliers, which corre-
sponds to the constraint |S| = m.

Problem P1 can be solved (approximately) with the follow-
ing projected gradient descent algorithm. Denote by c a
Lipschitz constant of∇f(b), i.e.

∀b1,b2 : ‖∇f(b1)−∇f(b2)‖2 ≤ c‖b1 − b2‖2 .

Here, the smallest Lipschitz constant of f is given by

max
x,‖x‖2=1

‖2(K + σ2I)−1x‖2 = 2
1

λmin(K + σ2I)
.

A local minima can then be found by iterating

bk+1 = projC
[
bk −

1

c
∇f(bk)

]
,

where

∇f(b) = 2(K + σ2I)−1(y + b) ,

and projC denotes the projection onto the set C := {x ∈
Rn | ‖x‖0 ≤ n−m}, which is given by

projC
[
b
]

= arg min
x,‖x‖0≤n−m

‖b− x‖22 .

Note that, though the constraint ||b||0 = n − m is not
convex, we can prove that the proposed projected gradient
algorithm is guaranteed to converge to a stationary point:

Theorem 1. Any sequence {bk} generated by the projected
gradient descent algorithm for Problem (P1) globally con-
verges to a stationary point with locally linear convergence
rate.

The proof is in the supplement material. We note that since
(K + σ2I)−1 is fixed, each iteration involves only one
matrix-vector multiplication which is in O(n2) and can
be efficiently computed with GPUs.

4.2 GREEDY METHODS

Recall that our goal is to maximize the marginal likeli-
hood, Equation (3). However, the projected gradient descent
method described in the previous section optimizes the sim-
plified objective in (P1). Therefore, we also compare to a
greedy method that directly optimizes Equation (3).

The greedy method starts with the index set of all data points
S := {1, 2, . . . , n}, and then removes the data point i∗ that
leads to the largest marginal likelihood, i.e.

i∗ := arg max
i∈S

(
log p(yS\{i}|XS\{i},θ)

)
. (5)

This is repeated until |S| = d(1− ν)ne. Naively solving the
optimization in Equation (5) is in O(n4), since we need to
repeat n-times the calculation of the determinant and inverse
of KS\{i}, where KS\{i} denotes the covariance matrix
(plus σ2I) of the data points in S \ {i}. However, using the
block matrix inversion lemma (together with the Woodbury
formula) and the cofactor representation of the determinant,
we can solve it in O(n3) (details in supplement material).
Since the computation needs to be repeated bνnc times, the



greedy algorithm can still be too computationally expensive.
Therefore, we also propose a batched version: first evaluate
the leave-one-out (loo) estimate log p(yS\{i}|XS\{i},θ) for
all i ∈ {1, 2, . . . , n}, and, second, remove at once the bνnc
samples with the highest loo estimate. We call the original
greedy method Greedy (1-by-1), and the batched version
Greedy (batch).

5 IMPROVED ν ESTIMATE

The upper bound ν on the ratio of the number of outliers
might be too conservative, and as a consequence can lead to
statistical inefficiency. Therefore, we propose the following
procedure to improve upon the initial upper bound ν:

1. Using k-fold cross-validation, we estimate the residu-
als r of all data points.

2. Based on the residuals r, we calculate a robust estimate
of the noise variance σ2.

3. We count the number of data points which residuals
r are within two standard deviations σ, and use this
number to get a new estimate for ν.

In Step 3, if the new estimate is smaller than the original ν,
we repeat the above procedure. The details of the algorithm
are show in Algorithm 2, where k denotes the number of
folds, and (train, test) denotes the training and test indices
of one fold. For our experiments we use k = 10, i.e. 10-fold
cross-validation. Furthermore, note that within the cross-
validation, we use ν∗ (defined in line 5) instead of ν(t) due
to a possibly uneven split of outliers in (train, test). In line
7, E[ŷtest|Xtest, XS ,yS ,θ] denotes the predicted mean re-
sponse at data points Xtest using the GP with training data
points (XS ,yS) and covariance function hyperparameters
θ. Note that in line 9, r2

(w) denotes thew-th smallest squared
residual, and Qχ2(1) denotes the quantile function for the
χ2 distribution with 1 degree of freedom. The robust vari-
ance estimator, in line 9, is a generalization of the estimator
proposed in [Rousseeuw, 1984] and is explained in more
detail in the supplement material.

Algorithm 2 is inspired by the iterative procedure for least
trimmed squares described in the book [Rousseeuw and
Leroy, 2005] (pages 132ff). However, the difference is that,
since [Rousseeuw and Leroy, 2005] only use a linear model,
they ignore possible over-fitting and estimate the residuals
without any cross-validation procedure.

6 EXPERIMENTS

In this section, we evaluate the proposed method and several
baselines on the task of correctly identifying outliers and in
terms of predictive performance.

Algorithm 2: Improved ν estimate
Input: X,y, ν
Output: new upper bound on outlier ratio ν(t)

1 t := 1

2 ν(t) := ν // set to initial estimate of
number of outliers

3 repeat
4 for (train, test) in k-Fold(n) do

// use ν∗ instead of ν(t) due to
possibly uneven split of
outliers

5 ν∗ := ν(t)/(1− 1
k )

6 S,θ = Trimmed-GP(Xtrain,ytrain, ν∗)
// residuals at test points

7 rtest := ytest − E[ŷtest|Xtest, XS ,yS ,θ]

8 end
9 σ2 := r2

(b(1−ν(t))nc)/Qχ2(1)(1− ν(t))

10 ν(t+1) := #(|r| > 2σ)/n // count samples
not within two std

11 t := t+ 1

12 until ν(t) ≥ ν(t−1)

Baselines and Implementations We compare to a GP
with student-t likelihood for estimating E[y|x], denoted as
t-GP. Note that the student-t likelihood does not explic-
itly distinguish between inliers and outliers. Therefore it is
essentially a noise model for both the inliers and outliers.
We also compare our method to a standard GP trained by
minimizing the KL-divergence (GP), and one trained by
minimizing the γ-divergence (γ-GP). All hyper-parameters
are estimated with empirical Bayes using the complete data
set (X,y).

All methods were implemented using GPyTorch [Gardner
et al., 2018], and the full dataset (no inducing points) was
used. For the proposed method (ν-GP) we set ν = 0.5 and
use Algorithm 2. Note that 0.5 is also the breakdown point
of the student-t distribution. In Algorithm 1 (line 6) we use
the proposed projected gradient descent (PGD) method (if
not mentioned otherwise).

We released the source code of the pro-
posed method and all baselines here
https://github.com/andrade-stats/
TrimmedMarginalLikelihoodGP.

Synthetic Datasets For illustration of the differences be-
tween each method, we created a simple one-dimensional
bow-shaped data, shown in Figure 1 with n = 400 (bow).
Furthermore, we use the Friedman data set as in [Friedman,
1991, Naish-Guzman and Holden, 2007] with d = 10, and
n = 100 (F100), and n = 400 (F400).

https://github.com/andrade-stats/TrimmedMarginalLikelihoodGP
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Figure 1: Blue dots show the samples from the synthetic
bow-shaped data (σ2 = 0.01). Black line shows true func-
tion.

Real Datasets We also evaluated all methods on three
commonly used regression datasets: bodyfat (d = 14, n =
252), housing (d = 13, n = 506) and spacega (d = 6, n =
3107) that are available from the LIBSVM archive.4

Outlier Types A random subset of data points is replaced
by the following three types of outliers.

• uniform The position (=covariates) of the outliers is
unchanged, but the response is changed by randomly
adding or subtracting a value which is uniformly drawn
between 3 and 9 standard deviations of the original
response.

• focused The position of the outliers is the median of
each dimension plus some jitter. The response is set
to the original response minus 3 times the standard
deviation of the original response plus some jitter.

• asymmetric Same as uniform, but the responses, corre-
sponding to the outliers, are changed by either always
adding or always subtracting a uniformly drawn posi-
tive number.

In all cases, we change 10% of the existing data points to
outliers. For all experiments we report the average over
10 times randomly adding outliers (and standard deviation
in brackets). Additional details on data preprocessing and
hyper-parameter initialization are provided in the supple-
ment material.

6.1 RESULTS

The results for the bow-shaped data are shown in Figure 2.
First, looking at the results for uniform outliers, we observe
that all methods approximately infer the true underlying
function, while only the standard GP shows a few deviations.
As a consequence, all methods correctly identify all outliers.
However, for the focused outliers, the situation is quite

4https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/regression.html

different: t-GP and γ-GP assume that the focused outliers
are part of the true function, and the top of the bow are
the outliers, while our proposed method ν-GP infers the
opposite. Both results are plausible, and show that ν-GP
can detect different types of outliers than the popular t-GP.
Finally, for the asymmetric outliers all robust GP methods
are able to infer the correct function, while only the standard
GP is influenced by the outliers.

While we used the bow-shaped data to show the qualita-
tive differences between the GP methods, we next evaluate
all methods also quantitatively on the more challenging
datasets F100, F400, and the three real datasets (bodyfat,
housing, spacega). We investigate each method’s perfor-
mance in terms of ranking the set of outliers correctly using
the residuals. Since we know the total number of outliers,
we use R-precision for evaluation.5 Let r be the total num-
ber of outliers, then R-precision is defined as the number of
true outliers within the top-r largest residuals divided by r.

The results, summarized in Table 1, show that the proposed
method is better in identifying outliers than other robust
GP methods. As can be seen in Table 2 this also leads to
better prediction performance at test time. Notably, for all
real datasets we achieve considerable improvements in root
mean squared error (RMSE) when compared to other robust
GP methods. In terms of runtime, our proposed method is
slower, but still in the same order as other robust methods
for the largest dataset (details in supplement material).

7 ANALYSIS

Here we investigate several aspects of the proposed ν-GP.

7.1 ESTIMATION OF ν

The values of ν estimated with Algorithm 2 were around 2%
for the datasets without added outliers, and around 8% for
the datasets with added outliers. That means, the estimated
ν were considerably smaller than the initial value of 50%,
but slightly lower than the true ratio of outliers (which is
10%). This might be because, some of the outliers do not
conflict with the smoothness properties of the covariance
function and thus cannot be distinguished from inliers.

7.2 MARGINAL LIKELIHOOD OPTIMIZATION

In order to optimize the marginal likelihood in Equation 2,
we proposed Algorithm 1 either with a projected gradient
descent (PGD) method (Section 4.1) or a greedy method
(Section 4.2). Here, we compare the solutions of these dif-
ferent optimization methods with respect to the marginal

5At least for the synthetic data, bow, F100 and F400; for the
real data the true number of outliers is unknown, but assumed to
be at least the number of extra added outliers.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
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Figure 2: Shows uniform (top), focused (middle) and asym-
metric (bottom) outliers for the synthetic bow-shaped data.
Note that here focused outliers (middle) are at around po-
sition (0, -2). Red shows the predicted function of each
method. Pink and blue dots are the true outliers and inliers,
respectively. Black line shows true function.

Table 1: Evaluation of all methods in terms of outlier ranking
performance (R-precision). 10% of data points are outliers.

uniform outliers

GP γ-GP t-GP ν-GP

bow 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
F100 0.92 (0.17) 0.86 (0.22) 1.0 (0.0) 1.0 (0.0)
F400 1.0 (0.0) 0.97 (0.02) 0.98 (0.02) 1.0 (0.0)
body 0.84 (0.05) 0.86 (0.05) 0.86 (0.05) 0.86 (0.06)

house 0.85 (0.06) 0.84 (0.04) 0.84 (0.04) 0.85 (0.06)
spacega 0.99 (0.0) 0.87 (0.07) 0.95 (0.01) 0.98 (0.0)

focused outliers

bow 0.57 (0.06) 0.18 (0.1) 0.2 (0.06) 0.97 (0.1)
F100 0.59 (0.16) 0.44 (0.21) 0.39 (0.14) 0.72 (0.43)
F400 0.41 (0.08) 0.47 (0.17) 0.64 (0.34) 1.0 (0.0)
body 0.54 (0.13) 0.54 (0.09) 0.56 (0.18) 0.78 (0.24)

house 0.34 (0.26) 0.46 (0.12) 0.46 (0.13) 0.64 (0.28)
spacega 0.23 (0.02) 0.18 (0.02) 0.17 (0.01) 0.97 (0.01)

asymmetric outliers

bow 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
F100 0.8 (0.17) 0.75 (0.21) 1.0 (0.0) 1.0 (0.0)
F400 0.96 (0.03) 0.95 (0.03) 0.95 (0.02) 1.0 (0.0)
body 0.81 (0.07) 0.86 (0.05) 0.86 (0.05) 0.86 (0.06)

house 0.82 (0.05) 0.85 (0.04) 0.85 (0.03) 0.87 (0.05)
spacega 0.96 (0.01) 0.85 (0.02) 0.94 (0.01) 0.98 (0.0)

likelihood, outlier detection, and prediction on test data.6

For conciseness, we report here the average results over all
outlier types, detailed results for each outlier type (no, uni-
form, focused, asymmetric) can be found in the supplement
material. As we can see in Table 3, expect for spacega, the
PGD method often provides better solutions to the combina-
torial optimization problem than greedy (batch), but worse
than greedy (1-by-1). However, as can be seen in Table 6,
the runtime of PGD is considerably faster than all greedy
methods, and, for the larger dataset spacega, Greedy (1-by-
1) was actually infeasible. Comparing Table 3 and 4, we see
that in most cases better marginal likelihood translates into
better outlier detection. However, the relation between the
marginal likelihood and prediction on test data, Table 5, is
slightly mixed - a result that is in line with recent discus-
sions about the optimization of the marginal likelihood for
improving test performance [Lotfi et al., 2022].

7.3 HIGHER NUMBER OF OUTLIERS

Finally, we compare the performance of all methods un-
der higher contamination, setting the ratio of outliers to
{0.2, 0.3, 0.4}. For these experiments, we fixed ν to 0.5,
meaning that we expect up to 50% of all data points to be
outlier. The average outlier detection performance is shown

6Due to the long runtime of the greedy methods, here, we fix
ν to 0.2 for all methods.



Table 2: Root mean squared error (RMSE) of predictions on
test data.

no extra added outliers

GP γ-GP t-GP ν-GP

bow 0.06 (0.0) 0.06 (0.0) 0.06 (0.0) 0.06 (0.0)
F100 0.23 (0.04) 0.25 (0.05) 0.22 (0.04) 0.31 (0.07)
F400 0.15 (0.01) 0.61 (0.2) 0.61 (0.19) 0.27 (0.01)
body 0.11 (0.09) 0.22 (0.11) 0.56 (0.23) 0.06 (0.08)

house 0.35 (0.07) 0.83 (0.39) 0.99 (0.29) 0.48 (0.13)
spacega 0.41 (0.03) 0.48 (0.04) 0.49 (0.03) 0.39 (0.02)

uniform outliers

bow 0.12 (0.04) 0.06 (0.0) 0.06 (0.0) 0.06 (0.0)
F100 0.66 (0.18) 0.47 (0.25) 0.29 (0.1) 0.32 (0.06)
F400 0.38 (0.05) 0.64 (0.05) 0.64 (0.05) 0.26 (0.02)
body 0.27 (0.15) 0.57 (0.1) 0.58 (0.08) 0.1 (0.06)

house 0.65 (0.22) 0.85 (0.15) 0.86 (0.14) 0.38 (0.11)
spacega 0.4 (0.02) 0.68 (0.05) 0.53 (0.04) 0.41 (0.02)

focused outliers

bow 0.2 (0.01) 0.26 (0.03) 0.27 (0.03) 0.07 (0.07)
F100 0.44 (0.05) 0.46 (0.05) 0.44 (0.05) 0.28 (0.05)
F400 0.3 (0.04) 0.4 (0.14) 0.46 (0.15) 0.2 (0.05)
body 0.41 (0.08) 0.5 (0.06) 0.46 (0.08) 0.1 (0.09)

house 0.34 (0.05) 0.44 (0.11) 0.51 (0.12) 0.37 (0.12)
spacega 0.44 (0.09) 0.51 (0.09) 0.51 (0.09) 0.41 (0.06)

asymmetric outliers

bow 0.34 (0.04) 0.06 (0.01) 0.06 (0.0) 0.07 (0.01)
F100 0.74 (0.13) 0.61 (0.2) 0.23 (0.02) 0.34 (0.02)
F400 0.54 (0.04) 0.57 (0.14) 0.63 (0.04) 0.26 (0.02)
body 0.42 (0.05) 0.57 (0.15) 0.64 (0.06) 0.16 (0.08)

house 0.65 (0.07) 0.76 (0.17) 0.81 (0.15) 0.31 (0.08)
spacega 0.56 (0.02) 0.73 (0.05) 0.55 (0.02) 0.42 (0.02)

Table 3: Average marginal likelihood of solution found by
different optimization methods.

PGD Greedy (batch) Greedy (1-by-1)

bow 1.73 (0.09) 1.59 (0.13) 1.73 (0.09)
F100 0.09 (0.15) -0.09 (0.22) 0.12 (0.31)
F400 0.21 (0.14) 0.11 (0.22) 0.27 (0.19)
body 0.39 (2.56) 0.13 (2.33) 0.37 (2.53)

house -0.71 (1.2) -0.77 (1.17) -0.67 (1.23)
spacega -0.27 (0.03) 0.08 (0.2) -

Table 4: Average outlier ranking performance (R-precision)
of different optimization methods.

PGD Greedy (batch) Greedy (1-by-1)

bow 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
F100 1.0 (0.0) 1.0 (0.02) 1.0 (0.0)
F400 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
body 0.91 (0.08) 0.89 (0.09) 0.9 (0.08)

house 0.87 (0.11) 0.75 (0.21) 0.81 (0.2)
spacega 0.97 (0.0) 0.76 (0.36) -

Table 5: Average root mean squared error (RMSE) on test
data of different optimization methods.

PGD Greedy (batch) Greedy (1-by-1)

bow 0.05 (0.01) 0.06 (0.01) 0.05 (0.01)
F100 0.29 (0.06) 0.32 (0.1) 0.32 (0.14)
F400 0.25 (0.03) 0.24 (0.04) 0.24 (0.04)
body 0.08 (0.1) 0.09 (0.1) 0.08 (0.09)

house 0.42 (0.14) 0.38 (0.11) 0.42 (0.14)
spacega 0.43 (0.05) 0.38 (0.04) -

Table 6: Average runtime in minutes of each optimization
method.

PGD Greedy (batch) Greedy (1-by-1)

bow 0.15 (0.05) 4.61 (4.9) 137.21 (55.65)
F100 0.13 (0.15) 3.64 (5.38) 6.53 (4.64)
F400 0.13 (0.04) 4.64 (6.13) 99.66 (64.59)
body 0.72 (0.67) 3.44 (3.08) 42.06 (42.27)

house 0.34 (0.65) 4.38 (4.76) 132.08 (138.23)
spacega 0.71 (0.17) 12.47 (6.59) -

in Table 7, suggesting that the proposed ν-GP is also suited
for outlier detection with higher number of outliers.

8 CONCLUSIONS

The ν-trimmed marginal likelihood (ν-GP) approach is a nat-
ural extension of the empirical Bayes framework to robust
Gaussian Process (GP) regression. While for GP regression
it is common to optimize the covariance function parameters
by maximizing the marginal likelihood, here, we addition-
ally proposed to optimize (= select) the subset of data points
that maximize the marginal likelihood. We showed that the
trimming ratio ν is an intuitive hyper-parameter since it cor-
responds to an upper bound on the outlier ratio and has the
theoretic guarantee of controlling the breakdown point. Note
that this is in contrast to the hyper-parameters of commonly
used robust methods like the student-t likelihood and the
γ-divergence, which are difficult to interpret. In case where
prior knowledge about an upper bound on the outlier ratio
is unknown, we proposed to iteratively refine a conservative
estimate of ν = 0.5, which is the same break-down point as
the student-t likelihood.

In practice, the success of ν-GP hinges on an efficient
method for optimizing the subset of inliers. For that purpose,
we proposed a projected gradient descent (PGD) method,
proved its theoretic convergence guarantees, and showed
empirically that the quality of the optimization is at par with
greedy methods, while being computationally much more
efficient. Finally, the resulting ν-GP with PGD compared
favorable against common robust GP methods in terms of
outlier detection and test prediction.



Table 7: Evaluation in terms of outlier ranking performance
(R-precision) with different ratio of outliers; average over
the outlier types "uniform", "focused", and "asymmetric".

20% outliers

GP γ-GP t-GP ν-GP

bow 0.87 (0.17) 0.72 (0.4) 0.73 (0.38) 0.99 (0.02)
F100 0.78 (0.12) 0.66 (0.16) 0.81 (0.21) 0.96 (0.05)
F400 0.8 (0.2) 0.87 (0.15) 0.77 (0.35) 0.99 (0.02)
body 0.8 (0.23) 0.76 (0.17) 0.77 (0.26) 0.99 (0.01)

house 0.67 (0.39) 0.74 (0.24) 0.83 (0.17) 0.94 (0.03)
spacega 0.7 (0.34) 0.7 (0.23) 0.69 (0.3) 0.97 (0.01)

30% outliers

bow 0.77 (0.19) 0.66 (0.39) 0.72 (0.34) 0.8 (0.37)
F100 0.75 (0.11) 0.6 (0.15) 0.65 (0.18) 0.98 (0.03)
F400 0.77 (0.17) 0.72 (0.28) 0.86 (0.12) 1.0 (0.01)
body 0.76 (0.18) 0.71 (0.18) 0.72 (0.27) 1.0 (0.01)

house 0.67 (0.32) 0.85 (0.08) 0.86 (0.1) 0.96 (0.02)
spacega 0.7 (0.28) 0.61 (0.22) 0.58 (0.26) 0.98 (0.01)

40% outliers

bow 0.71 (0.2) 0.61 (0.35) 0.6 (0.35) 0.66 (0.46)
F100 0.75 (0.12) 0.6 (0.15) 0.66 (0.14) 0.93 (0.22)
F400 0.76 (0.15) 0.69 (0.2) 0.77 (0.16) 0.93 (0.24)
body 0.74 (0.16) 0.67 (0.12) 0.66 (0.2) 1.0 (0.0)

house 0.68 (0.25) 0.83 (0.13) 0.84 (0.08) 0.98 (0.01)
spacega 0.73 (0.19) 0.55 (0.25) 0.57 (0.24) 0.98 (0.01)

9 LIMITATIONS AND FUTURE WORK

Due to the cross-validation, the computational costs of Al-
gorithm 2 can be too high for large datasets. Moreover, for
non-parametric regression there is an inherent ambiguity in
whether a group of samples should be considered as outliers
or as samples from the inlier distribution. Therefore, our fu-
ture work aims to identify not only one partition of outliers
and inliers, but different plausible partitions, similar in spirit
to the works in [Riani et al., 2014].
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