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ABSTRACT

There is a large variety of machine learning methodologies that are based on the
extraction of spectral geometric information from data. However, the implemen-
tations of many of these methods often depend on traditional eigensolvers, which
present limitations when applied in practical online big data scenarios. To ad-
dress some of these challenges, researchers have proposed different strategies for
training neural networks as alternatives to traditional eigensolvers, with one such
approach known as Spectral Neural Network (SNN). In this paper, we investi-
gate key theoretical aspects of SNN. First, we present quantitative insights into
the tradeoff between the number of neurons and the amount of spectral geometric
information a neural network learns. Second, we initiate a theoretical exploration
of the optimization landscape of SNN’s objective to shed light on the training dy-
namics of SNN. Unlike typical studies of convergence to global solutions of NN
training dynamics, SNN presents an additional complexity due to its non-convex
ambient loss function.

1 INTRODUCTION

In the past decades, researchers from a variety of disciplines have studied the use of spectral geomet-
ric methods to process, analyze, and learn from data. These methods have been used in supervised
learning (Ando & Zhang, 2006; Belkin et al., 2006; Smola & Kondor, 2003), clustering (Ng et al.,
2001; Von Luxburg, 2007), dimensionality reduction (Belkin & Niyogi, 2001; Coifman et al., 2005),
and contrastive learning (HaoChen et al., 2021). While the aforementioned methods have strong
theoretical foundations, their algorithmic implementations often depend on traditional eigensolvers.
These eigensolvers tend to underperform in practical big data scenarios due to high computational
demands and memory constraints. Moreover, they are particularly vulnerable in online settings since
the introduction of new data typically necessitates a full computation from scratch.

To overcome some of the drawbacks of traditional eigensolvers, new frameworks for learning from
spectral geometric information that are based on the training of neural networks have emerged. A
few examples are Eigensolver net (See in Appendix A.2), Spectralnet (Shaham et al., 2018), and
Spectral Neural Network (SNN) (HaoChen et al., 2021). In the aforementioned approaches, the
goal is to find neural networks that can approximate the spectrum of a large target matrix, and the
differences among these approaches lie mostly in the specific loss functions used for training; here
we focus on SNN, and provide some details on Eigensolver net and Spectralnet in Appendix A.2
for completeness. To explain the training process in SNN, consider a data set X = {x1, . . . , xn} in
Rd and a n× n adjacency matrix An describing similarity among points in Xn. A NN is trained by
minimizing the spectral constrastive loss function:

min
θ∈Θ

L(θ)
def
= ℓ(Yθ), where ℓ(Y)

def
=
∥∥YY⊤ −An

∥∥2
F
, Y ∈ Rn×r, (1.1)

through first-order optimization methods; see more details in Appendix A.1. In the above and in the
sequel, θ represents the vector of parameters of the neural network fθ : Rd → Rr, here a multi-
layer ReLU neural network –see a detailed definition in Appendix C–, which can be interpreted as a
feature or representation map for the input data; the matrix Yθ is the n × r matrix whose rows are
the outputs fθ(x1), . . . , fθ(xn); ∥·∥F is the Frobenius norm.

Compared with plain eigensolver approaches, SNN has the following advantages:
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1. Training: the spectral contrastive loss ℓ lends itself to minibatch training. Moreover, each it-
eration in the mini-batch training is cheap and only requires knowing the local structure of the
adjacency matrix around a given point, making this approach suitable for online settings; see
Appendix A.1 for more details.

2. Memory: when the number data points is large, storing an eigenvector of An may be costly,
while SNN can trade-off between accuracy and memory by selecting the dimension of the space
of parameters of the neural network.

3. Out-of-sample extensions: A natural out-of-sample extension is built by simple evaluation of
the trained neural network at an arbitrary input point.

Motivated by these algorithmic advantages, in this paper we investigate some of SNN’s theoretical
underpinnings. In concrete terms, we explore the following three questions:

Q1 Are there theoretical guarantees that a neural network can approximate the eigenvectors
of large adjacency matrices? How large does the neural network need to be to achieve a
certain degree of approximation?

Q2 Is it possible to use Equation 1.1 to build an approximating neural network?
Q3 What can be said about the landscape of the objective function in 1.1?

Contributions We provide answers to the above three questions in a specific setting to be de-
scribed shortly. We also formulate and discuss open problems that, while motivated by our current
investigation, we believe are of interest in their own right.

To make our setting more precise, through our discussion we adopt the manifold hypothesis and
assume the data set X = {x1, . . . , xn} to be supported on a low dimensional manifold M embedded
in Rd; see precise assumptions in Assumptions 2.1. We also assume that X is endowed with a
similarity matrix Gε with entries

Gε
ij = η

(
∥xi − xj∥

ε

)
, (1.2)

where ∥x− y∥ denotes the Euclidean distance between x and y, ε is a proximity parameter, and η is
a decreasing, non-negative function. In short, Gε measures the similarity between points according
to their proximity. From Gε we define the adjacency matrix An appearing in Equation 1.1 by

An
def
= D

− 1
2

G GD
− 1

2

G + aI, (1.3)

where DG is the degree matrix associated to G as in Equation A.6 and a > 1 is a fixed quantity.
Here we distance ourselves slightly from the choice made in the original SNN paper (HaoChen et al.,
2021), where An is taken to be G itself, and instead consider a normalized version. This is due to
the following key properties satisfied by our choice of An (see also Remark D.1 in Appendix D)
that make it more suitable for theoretical analysis.
Proposition 1. The matrix An defined in Equation 1.1 satisfies the following properties:

1. An is symmetric positive definite.

2. An’s r top eigenvectors (the ones corresponding to the r largest eigenvalues) coincide with
the eigenvectors of the r smallest eigenvalues of the symmetric normalized graph Laplacian
matrix (see (Von Luxburg, 2007)):

∆n
def
= I−D

−1/2
G GD

−1/2
G . (1.4)

The above two properties, proved in Appendix D, are useful when combined with recent results
on the regularity of graph Laplacian eigenvectors over proximity graphs (Calder et al., 2022) (see
Appendix E.1) and some results on the approximation of Lipschitz functions on manifolds using
neural networks (Chen et al., 2022) (see Appendix E.2). In particular, we answer question Q1,
which belongs to the realm of approximation theory, by providing a concrete bound on the number of
neurons in a multi-layer ReLU NN that are necessary to approximate the r smallest eigenvectors of
the normalized graph Laplacian matrix ∆n (as defined in 1.4) and thus also the r largest eigenvectors
of An; this is the content of Theorem 2.1.
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Figure 1: (A) Figure 2: (B)

(B) shows the first eigenvector for the Laplacian of a proximity graph from data points sampled from
S2 obtained using an eigensolver. (A) shows the same eigenvector but obtained using SNN. The
difference between the two figures is minor, showing that the neural network learns the eigenvector
of the graph Laplacian well. See details in Appendix B.1.

(a) Initialized Near Optimal (b) Initialized Near Saddle (c) Initialized Near Saddle

Figure 3: (a) and (b) Sum of the norms of the gradients for a two-layer ReLU Neural Network. In
(a), the network is initialized near the global optimal solution and in (b) the network is initialized
near a saddle point. (c) shows the distance between the current outputs of the neural network and the
optimal solution for the case when it was initialized near a saddle point. More details are presented
in Appendix B.2.

(a) Initialized Near Optimal (b) Initialized Near Saddle (c) Initialized Near Saddle

Figure 4: Norms of the gradients for the ambient problem and the distance to the optimal solution.
In (a), Y is initialized near the global optimal solution, and in (b) Y is initialized near a saddle point.
c) shows the distance between Y and the optimal solution for the case when it was initialized near a
saddle point.
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While our answer to question Q1 addresses the existence of a neural network approximating the
spectrum of An, it does not provide a constructive way to find one such approximation. We thus
address question Q2 and prove that an approximating NN can be constructed by solving the opti-
mization problem 1.1, i.e., by finding a global minimizer of SNN’s objective function. A precise
statement can be found in Theorem 2.2. To prove this theorem, we rely on our estimates in Theo-
rem 2.1 and on some auxiliary computations involving a global optimizer Y∗ of the “ambient space
problem”:

min
Y∈Rn×r

ℓ(Y). (1.5)

For that we also make use of property 1 in Proposition 1, which allows us to guarantee, thanks to
the Eckart–Young–Mirsky theorem (see (Eckart & Young, 1936) ), that solutions Y to Equation 1.5
coincide, up to multiplication on the right by a r × r orthogonal matrix, with a n × r matrix Y∗

whose columns are scaled versions of the top r normalized eigenvectors of the matrix An; see a
detailed description of Y∗ in Appendix D.2.

After discussing our spectral approximation results, we move on to discussing question Q3, which
is related to the hardness of optimization problem 1.1. Notice that, while Yθ∗ is a good approxi-
mator for An’s spectrum according to our theory, it is unclear whether θ∗ can be reached through
a standard training scheme. In fact, question Q3, as stated, is a challenging problem. This is not
only due to the non-linearities in the neural network, but also because, in contrast to more standard
theoretical studies of training dynamics of over-parameterized NNs (e.g., (Chizat & Bach, 2018;
Wojtowytsch, 2020)), the spectral contrastive loss function ℓ is non-convex in the “ambient space”
variable Y. Specifically, ℓ(Y) = ℓ(YO) when O is an orthogonal matrix. Despite this additional
difficulty, numerical experiments —see Figure 3 for an illustration— suggest that first order opti-
mization methods can find global solutions to Equation 1.1, and our goal here is to take a first step
in the objective of understanding this behavior mathematically.

To begin, we present some numerical experiments where we consider different initializations for the
training of SNN. Here we take 100 data points from MNIST and let An be the n × n gram matrix
for the data points for simplicity. We remark that while we care about a An with a specific form for
our approximation theory results, our analysis of the loss landscape described below holds for an
arbitrary positive semi-definite matrix. In Figure 3, we plot the norm of the gradient during training
when initialized in two different regions of parameter space. Concretely, in a region of parameters
for which Yθ is close to a solution Y∗ to problem 1.5 and a region of parameters for which Yθ is
close to a saddle point of the ambient loss ℓ. We compare these plots to the ones we produce from
the gradient descent dynamics for the ambient problem 1.5, which are shown in Figure 4. We notice
a similar qualitative behavior with the training dynamics of the NN, suggesting that the landscape
of problem 1.1, if the NN is properly overparameterized, inherits properties of the landscape of ℓ.

Motivated by the previous observation, in section 3 we provide a careful landscape analysis of the
loss function ℓ introduced in Equation 1.1. We deem this landscape to be “benign”, in the sense that
it can be fully covered by the union of three regions described as follows: 1) the region of points
close to global optimizers of Equation 1.5, where one can prove (Riemannian) strong convexity
under a suitable quotient geometry; 2) the region of points close to saddle points, where one can find
escape directions; and, finally, 3) the region where the gradient of ℓ is large. Points in these regions
are illustrated in Figures 4b and 4c. The relevance of this global landscape characterization is that
it implies convergence of most first-order optimization methods, or slight modifications thereof,
toward global minimizers of the ambient space problem 1.5. This characterization is suggestive
of analogous properties for the NN training problem in an overparameterized regime, but a full
theoretical analysis of this is left as an open problem.

In summary, the main contributions of our work are the following:

• We show that we can approximate the eigenvectors of a large adjacency matrix with a NN,
provided that the NN has sufficiently many neurons; see Theorem 2.1. Moreover, we show
that by solving 1.1 one can construct such approximation provided the parameter space of
the NN is rich enough; see Theorem 2.2.

• We provide precise error bounds for the approximation of eigenfunctions of a Laplace-
Beltrami operator with NNs; see Corollary 1. In this way, we present an example of a
setting where we can rigorously quantify the error of approximation of a solution to a PDE
on a manifold with NNs.
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• Motivated by numerical evidence, we begin an exploration of the optimization landscape
of SNN and in particular provide a full description of SNN’s associated ambient space
optimization landscape. This landscape is shown to be benign; see discussion in Section 3.

1.1 RELATED WORK

Spectral clustering and manifold learning Several works have attempted to establish precise
mathematical connections between the spectra of graph Laplacian operators over proximity graphs
and the spectrum of weighted Laplace-Beltrami operators over manifolds. Some examples include
(Tao & Shi, 2020; Burago et al., 2014; Garcı́a Trillos et al., 2020; Lu, 2022; Calder & Garcı́a Trillos,
2022; Calder et al., 2022; Dunson et al., 2021; Wormell & Reich, 2021). In this paper we use adap-
tations of the results in (Calder et al., 2022) to infer that, with very high probability, the eigenvectors
of the normalized graph Laplacian matrix ∆n defined in Equation 1.4 are essentially Lipschitz con-
tinuous functions. These regularity estimates are one of the crucial tools for proving our Theorem
2.1.

Contrastive Learning Contrastive learning is a self-supervised learning technique that has gained
considerable attention in recent years due to its success in computer vision, natural language pro-
cessing, and speech recognition (Chen et al., 2020a;b;c; He et al., 2020). Theoretical properties
of contrastive representation learning were first studied by (Arora et al., 2019; Tosh et al., 2021;
Lee et al., 2021) where they assumed conditional independence. (HaoChen et al., 2021) relaxes
the conditional independence assumption by imposing the manifold assumption. With the spectral
contrastive loss Equation 1.1 crucially in use, (HaoChen et al., 2021) provides an error bound for
downstream tasks. In this work, we analyze how the neural network can approximate and optimize
the spectral loss function Equation 1.1, which is the pertaining step of (HaoChen et al., 2021).

Neural Network Approximations. Given a function f with certain amount of regularity, many
works have studied the tradeoff between width, depth, and total number of neurons needed and the
approximation (Petersen, 2020; Lu et al., 2021). Specifically, (Shen et al., 2019) looks at the prob-
lem Holder continuous functions on the unit cube, (Yarotsky, 2018; Shen et al., 2020) for continuous
functions on the unit cube, and (Petersen, 2020; Schmidt-Hieber, 2019; HaoChen et al., 2021) con-
sider the case when the function is defined on a manifold. A related area is that of neural network
memorization of a finite number of data points (Yun et al., 2019). In this paper, we use these results
to show that for our specific type of regularity, we can prove similar results.

Neural Networks and Partial Differential Equations (Raissi et al., 2019) introduced Physics In-
spired Neural Networks as a method for solving PDEs using neural networks. Specifically, (Weinan
& Yu, 2017; Bhatnagar et al., 2019; Raissi et al., 2019) use neural networks to parameterize the
solution as use the PDE as the loss function. Other works such as (Guo et al., 2016; Zhu & Zabaras,
2018; Adler & Öktem, 2017; Bhatnagar et al., 2019) use neural networks to parameterize the so-
lution operator on a given mesh on the domain. Finally, we have that eigenfunctions of operators
on function spaces have a deep connection to PDEs. Recent works such as (Kovachki et al., 2021;
Li et al., 2020a;b) demonstrate how to learn these operators. In this work we show that we can
approximate eigenfunctions to a weighted Laplace-Beltrami operator using neural networks.

Shallow Linear Networks and Non-convex Optimization in Linear Algebra Problems One of
the main objects of study is the ambient problem 1.1. This formulation of the problem is related
to linear networks. Linear networks are neural networks with identity activation. A variety of prior
works have studied many different aspects of shallow linear networks such as the loss landscape
and optimization dynamics (Baldi & Hornik, 1989; Tarmoun et al., 2021; Min et al., 2021; Bréchet
et al., 2023), and generalization for one layer networks (Dobriban & Wager, 2018; Hastie et al.,
2022; Bartlett et al., 2020; Kausik et al., 2023). Of relevance are also other works in the literature
studying optimization problems very closely related to 1.5. For example, in Section 3 in (Li &
Tang, 2017), there is a landscape analysis for 1.5 when the matrix An is assumed to have rank
smaller than or equal to r. That setting is typically referred to as overparameterized or exactly
parameterized, whereas here our focus is on the underparameterized setting. On the other hand, the
case studied in section 3 in (Chi et al., 2019) is the simplest case we could consider for our problem
and corresponds to r = 1. In this simpler case, the non-convexity of the objective is completely
due to a sign ambiguity, which makes the analysis more straightforward and the need to introduce
quotient geometries less pressing. Luo & Garcı́a Trillos (2022) describes the global optimization
landscape of 1.5 under the assumption that An is rank r; see a comparison in Remark 3.1.
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2 SPECTRAL APPROXIMATION WITH NEURAL NETWORKS

Through this section we make the following assumption on the generation process of the data Xn.
Assumption 2.1. The points x1, . . . , xn are assumed to be sampled from a distribution supported on
an m-dimensional manifold M that is assumed to be smooth, compact, orientable, connected, and
without a boundary. We assume that this sampling distribution has a smooth density ρ : M → R+

with respect to M′s volume form, and assume that ρ is bounded away from zero and also bounded
above by a constant.

2.1 SPECTRAL APPROXIMATION WITH MULTILAYER RELU NNS

Theorem 2.1 (Spectral approximation of normalized Laplacians with neural networks). Let r ∈ N
be fixed. Under Assumptions 2.1, there are constants c, C that depend on M, ρ, and the embedding
dimension r, such that, with probability at least

1− Cε−6m exp
(
−cnεm+4

)
for every δ ∈ (0, 1) there are κ, L, p,N and a ReLU neural network fθ ∈ F(r, κ, L, p,N) (defined
in Equation C.2), such that:

1.
√
n∥Yθ −Y∗∥∞,∞ ≤ C(δ + ε2), and thus also ∥Yθ −Y∗∥F ≤ C

√
r(δ + ε2) .

2. The depth of the network, L, satisfies: L ≤ C
(
log 1

δ + log d
)
, and its width, p, satisfies p ≤

C (δ−m + d).
3. The number of neurons of the network, N , satisfies: N ≤ Cr

(
δ−m log 1

δ + d log 1
δ + d log d

)
,

and the range of weights, κ, satisfies κ ≤ C
n1/(2L) .

Theorem 2.1 uses regularity properties of graph Laplacian eigenvectors and a NN approximation
theory result for functions on manifolds. A summary of important auxiliary results needed to prove
Theorem 2.1 is presented in Appendix E and the proof of the theorem itself is presented in Appendix
F.
Remark 2.1. We prove Theorem 2.1 by combining, in a non-trivial way, results from Chen et al.
(2022) and Calder et al. (2022). More details are presented in the appendix. From our proof it
follows that improvements in those works could be used to improve our estimates in Theorem 2.1.

So far we have discussed approximations of the eigenvectors of An (and thus also of ∆n) with
neural networks, but more can be said about generalization of these NNs. In particular, the NN in
our proof of Theorem 2.1 can be shown to approximate eigenfunctions of the weighted Laplace-
Beltrami operator ∆ρ defined in Appendix E.1. Precisely, we have the following result.
Corollary 1. Under the same setting, notation, and assumptions as in Theorem 2.1, the neural
network fθ : Rd → Rr can be chosen to satisfy∥∥∥∥√ n

1 + a
f i
θ − fi

∥∥∥∥
L∞(M)

≤ C(δ + ε), ∀i = 1, . . . , r.

In the above, f1
θ , . . . , f

r
θ are the coordinate functions of the vector-valued neural network fθ, and

the functions f1, . . . , fr are the normalized eigenfunctions of the Laplace-Beltrami operator ∆ρ that
are associated to ∆ρ’s r smallest eigenvalues.

Remark 2.2. The ε2 term that appears in the bound for ∥Yθ − Y∗∥F in Theorem 2.1 cannot be
obtained simply from convergence of eigenvectors of ∆n toward eigenfunctions of ∆ρ in L∞. It
turns out that we need to use a stronger notion of convergence (almost C0,1) that in particular
implies sharper regularity estimates for eigenvectors of ∆n (see Corollary 2 in Appendix E.1 and
Remark E.2 below it). In turn, the sharper ε2 term is essential for our proof of Theorem 2.2 below
to work; see the discussion starting in Remark E.2.

2.2 SPECTRAL APPROXIMATION WITH GLOBAL MINIMIZERS OF SNN’S OBJECTIVE

After discussing the existence of approximating NNs, we turn our attention to constructive ways to
approximate Y∗ using neural networks. We give a precise answer to question Q2.
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Theorem 2.2 (Optimizing SNN approximates eigenvectors up to rotation). Let r ∈ N be fixed and
suppose that ∆ρ is such that ∆ρ has a spectral gap between its r and r + 1 smallest eigenvalues,
i.e., in the notation in Appendix E.1, assume that λM

r < λM
r+1. For given κ, L, p,N (to be chosen

below), let fθ∗ be such that

fθ∗ ∈ argmin
fθ∈F(r,κ,L,p,N)

∥YθY
⊤
θ −An∥2F. (2.1)

Under Assumptions 2.1, there are constants c, C that depend on M, ρ, and the embedding dimen-
sion r, such that, with probability at least 1 − Cε−6m exp

(
−cnεm+4

)
, for every δ̃ ∈ (0, c) (i.e.,

δ̃ sufficiently small) and for κ = C
n1/(2L) , L = C

(
log 1

δ̃ε
+ log d

)
, p = C

(
(δ̃ε)−m + d

)
and

N = ∞, we have

min
O∈Or

∥Yθ∗ −Y∗O∥F ≤ Cε(δ̃ + ε). (2.2)

Remark 2.3. Equation 2.2 says that Yθ∗ approximates a minimizer of the ambient problem 1.5 and
that Yθ∗ can be recovered but only up to rotation. This is unavoidable, since the loss function ℓ
is invariant under multiplication on the right by a r × r orthogonal matrix. On the other hand, to
set N = ∞ means we do not enforce sparsity constraints in the optimization of the NN parame-
ters. This is convenient in practical settings and this is the reason why we state the theorem in this
way. However, we can also set N = r

(
(δ̃ε)−m log 1

δ̃ε
+ d log 1

δ̃ε
+ d log d

)
without affecting the

conclusion of the theorem.

3 LANDSCAPE OF SNN’S AMBIENT OPTIMIZATION PROBLEM

While in prior sections we considered a specific An, the analysis in this section only relies on An

being positive definite with an eigengap between its r-th and (r+ 1)th top eigenvalues. We analyze
the global optimization landscape of the non-convex Problem 1.5 under a suitable Riemannian quo-
tient geometry (Absil et al., 2009; Boumal, 2023). The need for a quotient geometry comes from the
fact that if Y is a stationary point of 1.5, then YO is also a stationary point for any r× r orthogonal
matrix O ∈ Or. This implies that the loss function ℓ is non-convex in any neighborhood of a sta-
tionary point (Li et al., 2019, Proposition 2). Despite the non-convexity of ℓ, we show that under this
geometry, Equation 1.5 is geodesically convex in a local neighborhood around the optimal solution.

Let Nn

r+ be the space of n× r matrices with full column rank. To define the quotient manifold, we
encode the invariance mapping, i.e., Y → YO, by defining the equivalence classes [Y] = {YO :

O ∈ Or}. From (Lee, 2018), we have Nn
r+

def
= Nn

r+/Or is a quotient manifold of Nn

r+. See a
detailed introduction to Riemannian optimization in (Boumal, 2023). Since the loss function in 1.5
is invariant along the equivalence classes of Nn

r+ , ℓ induces the following optimization problem on
the quotient manifold Nn

r+ :

min
[Y]∈Nn

r+

H([Y])
def
=

1

2

∥∥YY⊤ −An

∥∥2
F

(3.1)

To analyze the landscape for Equation 3.1, we need expressions for the Riemannian gradient, the
Riemannian Hessian, as well as the geodesic distance d on this quotient manifold. By Lemma 2
from (Luo & Garcı́a Trillos, 2022), we have that

d ([Y1] , [Y2]) = min
Q∈Or

∥Y2Q−Y1∥F

and from Lemma 3 from (Luo & Garcı́a Trillos, 2022), we have that

gradH([Y]) = 2
(
YY⊤ −An

)
Y,

HessH([Y]) [θY, θY] =
∥∥Yθ⊤Y + θYY⊤∥∥2

F
+ 2

〈
YY⊤ −An, θYθ⊤Y

〉
.

(3.2)

Finally, by the classical theory on low-rank approximation (Eckart–Young–Mirsky theorem (Eckart
& Young, 1936)), [Y∗] is the unique global minimizer of Equation 3.1. Let κ∗ = σ1 (Y

∗) /σr (Y
∗)

be the condition number of Y∗. Here, σi(A) is the ith largest singular value of A, and ∥A∥ = σ1(A)
is its spectral norm. Our precise assumption on the matrix An for this section is as follows.
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Assumption 3.1 (Eigengap). σr+1(An) is strictly smaller than σr(An).

See Remark H.1 for a discussion of the potential relaxation of the Eigengap assumption.

Let µ, α, β, γ ⩾ 0. We then split the landscape of H([Y]) into the following five regions (not
necessarily non-overlapping).

R1
def
=
{
Y ∈ Rn×r

∗
∣∣d ([Y], [Y∗]) ⩽ µσr (Y

∗) /κ∗} ,
R2

def
=

{
Y ∈ Rn×r

∗

∣∣∣∣ d ([Y], [Y∗]) > µσr (Y
∗) /κ∗, ∥gradH([Y])∥F ⩽ αµσ3

r (Y
∗) / (4κ∗) ,

∥Y∥ ⩽ β ∥Y∗∥ ,
∥∥YY⊤

∥∥
F
⩽ γ

∥∥Y∗Y∗⊤
∥∥
F

}
,

R′
3

def
=

{
Y ∈ Rn×r

∗

∣∣∣∣ ∥gradH([Y])∥F > αµσ3
r (Y

∗) / (4κ∗) , ∥Y∥ ⩽ β ∥Y∗∥ ,∥∥YY⊤
∥∥
F
⩽ γ

∥∥Y∗Y∗⊤
∥∥
F

}
,

R′′
3

def
=
{
Y ∈ Rn×r

∗
∣∣∥Y∥ > β∥Y∗∥, ∥YY⊤ ∥F ⩽ γ∥Y∗Y∗⊤∥F

}
,

R′′′
3

def
=
{
Y ∈ Rn×r

∗
∣∣∥YY⊤∥∥

F
> γ

∥∥Y∗Y∗⊤∥∥
F
},

(3.3)

We show that for small values of µ, the loss function is geodesically convex in R1. R2 is then
defined as the region outside of R1 such that the Riemannian gradient is small relative to µ. Hence
this is the region in which we are close to the saddle points. We show that for this region there is
always an escape direction (i.e., directions where the Hessian is strictly negative). R′

3, R′′
3 , and R′′′

3
are the remaining regions. We show that the Riemannian gradient is large (relative to µ) in these
regions. Finally, it is easy to see that R1

⋃
R2

⋃
R′

3 ∪R′′
3

⋃
R′′′

3 = Rn×r
∗ .

We are now ready to state the first of our main results from this section.
Theorem 3.1 (Local Geodesic Strong Convexity and Smoothness of Equation 3.1). Suppose 0 ⩽
µ ⩽ κ∗/3. Given that Assumption 3.1 holds, for any Y ∈ R1 defined in Equation 3.3.

σmin(HessH([Y])) ⩾
(
2 (1− µ/κ∗)

2 − (14/3)µ
)
σr (An)− 2σr+1(An),

σmax(HessH([Y])) ⩽ 4 (σ1 (Y
∗) + µσr (Y

∗) /κ∗)
2
+ 14µσ2

r (Y
∗) /3

In particular, if µ is further chosen such that
(
2 (1− µ/κ∗)

2 − (14/3)µ
)
σr (An)− 2σr+1(An) >

0, we have H([Y]) is geodesically strongly convex and smooth in R1.

Theorem 3.1 guarantees that the optimization problem Equation 3.1 is geodesically strongly convex
and smooth in a neighborhood of [Y∗]. It also shows that if Y is close to the global minimizer, then
Riemannian gradient descent converges to the global minimizer of the quotient space linearly.

Next, to analyze R2, we need to understand the other first-order stationary points (FOSP).

Theorem 3.2 (FOSP of Equation 3.1). Let UΣU
⊤

be An’s SVD factorization, and let Λ = Σ1/2.
Then for any S subset of [n], we have that

[
USΛS

]
is a Riemannian FOSPs of Equation 3.1.

Further, these are the only Riemannian FOSPs.

Theorem 3.2 shows that the linear combinations of eigenvectors can be used to construct Riemannian
first-order stationary points (FOSP) of Equation 3.1. This theorem also shows that there are many
FOSPs of Equation 3.2. This is quite different from the regime studied in (Luo & Garcı́a Trillos,
2022). In general, gradient descent is known to converge to a FOSP. Hence one might expect that if
we initialized near one of the saddle points, then we might converge to that saddle point. However,
our next main result of the section shows that even if we initialize near the saddle, there always exist
escape directions.
Theorem 3.3 (Escape Directions). Assume that Assumption 3.1 holds. Then for sufficiently small α
and any Y ∈ R2 that is not an FOSP, there exists C1(An) > 0 and θY such that

HessH([Y]) [θY, θY] ⩽− C1(An) ∥θY∥2F .

In particular, it is possible to exactly quantify the size of α and then explicitly construct the escape
direction θY. See Theorem H.1 in the appendix for more details.
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Theorem 3.3 guarantees that, if Y is close to a saddle point, then θY will make its escape from the
saddle point linearly.

Finally, the next result says that if we are not close to a FOSP, then we have large gradients.

Theorem 3.4 ((Regions with Large Riemannian Gradient of Equation 1.5).

1. ∥gradH([Y])∥F > αµσ3
r (Y

∗) / (4κ∗) , ∀Y ∈ R′
3;

2. ∥gradH([Y])∥F ⩾ 2
(
∥Y∥3 − ∥Y∥ ∥Y∗∥2

)
> 2

(
β3 − β

)
∥Y∗∥3 , ∀Y ∈ R′′

3 ;

3. ⟨gradH([Y]),Y⟩ > 2(1− 1/γ)
∥∥YY⊤

∥∥2
F
, ∀Y ∈ R′′′

3 .

In particular, if β > 1 and γ > 1, we have the Riemannian gradient of H([Y]) has large magnitude
in all regions R′

3,R′′
3 and R′′′

3 .

The behavior, implied by our theorems, of gradient descent dynamics as it goes through the regions
R1, R2, R3 is illustrated in Figures 3 and 4. See a discussion in Appendix B.2.

Remark 3.1. These results can be seen as an under-parameterized generalization to the regression
problem of Section 5 in (Luo & Garcı́a Trillos, 2022). The proof in (Luo & Garcı́a Trillos, 2022)
is simpler because in their setting there are no saddle points or local minima that are not global in
Rn×r

∗ . Conceptually, (Tarmoun et al., 2021) proves that in the setting r ≥ n, the gradient flow for
Equation 1.5 converges to a global minimum linearly. We complement this result by studying the
case r < n.

Remark 3.2. In the specific case of An as in Equation 1.3, and under Assumptions 2.1, Assumption
3.1 should be interpreted as λM

r < λM
r+1, as suggested by Remark E.1. Also, µ must be taken to

be in the order ε2. The scale ε2 is actually a natural scale for this problem, since, as discussed in
Remark G.3, the energy gap between saddle points and the global minimizer [Y∗] is O(ε2).

4 CONCLUSIONS

We have explored some theoretical aspects of Spectral Neural Networks (SNN), a framework that
substitutes the use of traditional eigensolvers with suitable neural network parameter optimization.
Our emphasis has been on approximation theory, specifically identifying the minimum number of
neurons of a multilayer NN required to capture spectral geometric properties in data, and investigat-
ing the optimization landscape of SNN, even in the face of its non-convex ambient loss function.

For our approximation theory results we have assumed a specific proximity graph structure over
data points that are sampled from a distribution over a smooth low-dimensional manifold. A natural
future direction worth of study is the generalization of these results to settings where data points,
and their similarity graph, are sampled from other generative models, e.g., as in the application to
contrastive learning in (HaoChen et al., 2021). To carry out this generalization, an important first
step is to study the regularity properties of eigenvectors of an adjacency matrix/graph Laplacian
generated from other types of probabilistic models.

At a high level, our approximation theory results have sought to bridge the extensive body of re-
search on graph-based learning methods, their ties to PDE theory on manifolds, and the approxima-
tion theory for neural networks. While our analysis has focused on eigenvalue problems, such as
those involving graph Laplacians or Laplace Beltrami operators, we anticipate that this overarching
objective can be extended to develop new provably consistent methods for solving a larger class of
PDEs on manifolds with neural networks, such as Schrödinger equation as in Hermann et al. (2020);
Lu & Lu (2022). We believe this represents a significant and promising research avenue.

On the optimization front, we have focused on studying the landscape of the ambient space problem
1.5. This has been done anticipating the use of our estimates in a future analysis of the training
dynamics of SNN. We reiterate that the setting of interest here is different from other settings in
the literature that study the dynamics of neural network training in an appropriate scaling limit
—leading to either a neural tangent kernel (NTK) or to a mean field limit. This difference is mainly
due to the fact that the spectral contrastive loss ℓ (see 1.1) of SNN is non-convex, and even local
strong convexity around a global minimizer does not hold in a standard sense and instead can only
be guaranteed when considered under a suitable quotient geometry.
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Lénaı̈c Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

Ronald R Coifman, Stephane Lafon, Ann B Lee, Mauro Maggioni, Boaz Nadler, Frederick Warner,
and Steven W Zucker. Geometric diffusions as a tool for harmonic analysis and structure defini-
tion of data: Diffusion maps. Proceedings of the national academy of sciences, 102(21):7426–
7431, 2005.

Zhijie Deng, Jiaxin Shi, and Jun Zhu. NeuralEF: Deconstructing kernels by deep neural networks. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 4976–4992. PMLR, 17–23 Jul 2022.

Manfredo Perdigao Do Carmo and J Flaherty Francis. Riemannian geometry, volume 6. Springer,
1992.

Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction: Ridge regression
and classification. The Annals of Statistics, 2018.

David B Dunson, Hau Tieng Wu, and Nan Wu. Spectral convergence of graph laplacian and heat ker-
nel reconstruction in l∞ from random samples. Applied and Computational Harmonic Analysis,
55:282–336, 2021.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936.
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A TRAINING OF NEURAL NETWORKS FOR SPECTRAL APPROXIMATIONS

A.1 TRAINING

Two of the main issues of standard eigensolvers are the need to store large matrices in memory and
the need to redo computations from scratch if new data points are added. As mentioned, SNN can
overcome this issue using mini-batch training. Specifically, the loss function ℓ(Y) can be written
as,

ℓ(Yθ) =

n∑
i=1

n∑
j=1

(
(An)ij − (YθY

⊤
θ )ij)

)
=

n∑
i=1

n∑
j=1

(
(An)ij −

〈
fθ(xi), fθ(xj)

〉)2
(A.1)

where (An)ij represents the (i, j) entry of An and fθ is the neural network. Hence, in every itera-
tion, one can randomly generate 1 index (i, j) from [n]× [n], compute the loss and gradient for that
term in the summation, and then perform one iteration of gradient descent.

A.2 OTHER TRAINING APPROACHES

Besides SNN, there are two alternative ways of training spectral neural networks: Eigensolver Net
and SpectralNet (Shaham et al., 2018). We compare these three different tools of neural network
training and highlight the relative advantages and disadvantages of SNN.

Eigensolver Net: Given the matrix ∆n, one option could be to compute the eigendecomposition of
∆n using traditional eigensolvers to get eigenvectors v1, . . . ,vr. Then, to learn an eigenfunction
(that is, the function that maps data points to the corresponding entries of an eigenvector), we can
minimize the following ℓ2 loss:

min
θ

∥fθ(Xn)− v∥2, (A.2)

where v = [v1,v2 . . . ,vr] and Xn is the data.

In general, the Eigensolver net is a natural way to extend to out-of-sample data and can be used
to learn the eigenvector for matrices that are not PSD. On the other hand, the Eigensolver net has
some drawbacks. Specifically, one still needs to compute the eigendecomposition using traditional
eigensolvers.

SpectralNet: SpectralNet aims at minimizing the SpectralNet loss,

LSpectralNet (θ) =
1

n2

n∑
i=1

n∑
j=1

η

(
|xi − xj |

ε

)
∥fθ(xi)− fθ(xj)∥2 (A.3)

where fθ : Rd → Rr encodes the spectral embedding of xi while satisfying the constraint

Y⊤
θ Yθ = nIr, (A.4)

where Yθ = [fθ(x1), . . . , fθ(xn)]. This constraint is used to avoid a trivial solution. Note that
Equation A.4 is a global constraint. (Shaham et al., 2018) have established a stochastic coordinate
descent fashion to efficiently train SpectralNets. However, the stochastic training process in (Shaham
et al., 2018) can only guarantee Equation A.4 holds approximately.

Conceptually, the SpectralNet loss Equation A.3 can also be written as

LSpectralNet (θ) =
2

n2
trace

(
Y⊤

θ (DG −G)Yθ

)
(A.5)

where G ∈ Rn×n such that Gij = η
(

∥xi−xj∥
ε

)
, and DG is a diagonal matrix where

(DG)ii =

n∑
j=1

Gij . (A.6)

The symmetric and positive semi-definite matrix DG −G encodes the unnormalized graph Lapla-
cian. Since DG−G is positive semi-definite, the ambient problem of Equation A.5 is a constrained
convex optimization problem. However, the parametrization and hard constraint A.4 make under-
standing SpectralNet’s training process from a theoretical perspective challenging.
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Other NN-based Eigensolvers: Other types of NN-based Eigensolvers have been considered in
Pfau et al. (2019) and Deng et al. (2022).

Pfau et al. (2019) uses a bi-level optimization algorithm to solve a constrained optimization problem.
This algorithm’s computational complexity is typically higher than the one of SNN training and it
requires keeping certain covariance matrices in memory during updates.

Deng et al. (2022) takes a similar approach as Pfau et al. (2019), but it can avoid the bi-level opti-
mization in Pfau et al. (2019). This, however, comes at the expense of having an intractable theoret-
ical computational complexity.

B NUMERICAL DETAILS

B.1 FOR EIGENVECTOR ILLUSTRATION

We sample 2000 data points xi uniformly from a 2-dimensional sphere embedded in R3, and then
construct a 30 nearest neighbor graph among these points. Figure 1 shows a 1-hidden layer neural
network evaluated at xi, with 10000 hidden neurons to learn the first eigenvector of the graph Lapla-
cian. The Network is trained for 5000 epochs using the full batch Adam in Pytorch and a learning
rate of 2 ∗ 10−5.

B.2 AMBIENT VS PARAMETERIZED PROBLEM

We took 100 data points from MNIST. We normalized the pixel values to live in [0, 1] and then
computed An as the gran matrix.

The neural network has one hidden layer with a width of 1000. To initialize the neural network
near a saddle point, we randomly pick a saddle point and then pretrain the network to approach this
saddle. We used full batch gradient descent with an initial learning rate of 3e-6. We trained the
network for 10000 iterations and used Cosine annealing as the learning rate scheduler.

After pretraining the network, we trained the network with the true objective. We used full batch
gradient descent with an initial learning rate of 3e-6. We trained the network for 10000 iterations
and used Cosine annealing as the learning rate scheduler.

When we initialized the network near the optimal solution, we followed the same procedure but
pretrained the network for 1250 iterations.

For the ambient problem, we used full batch gradient descent with a learning rate 3e-6. We trained
the network for 5000 iterations and again used Cosine annealing for the learning rate scheduler.

We remark that the sublinearity convergence rate in Figures 3 and 4 is due to the step size decaying
in the optimizer. In R1, H([Y]) has been shown to be strongly convex, so keeping the same step
size should guarantee a linear rate. In this work, we don’t focus on the optimization problem of
SNN, but use this to illustrate Theorem 3.1, 3.3 and 3.4.

C MULTI-LAYER RELU NEURAL NETWORKS

For concreteness, in this work we use multi-layer ReLU neural networks. To be precise, our neural
networks are parameterized functions f : Rd → Rr of the form:

f(x) = WL · ReLU (WL−1 · · ·ReLU (W1x+ b1) · · ·+ bL−1) + bL, x ∈ Rd. (C.1)

More specifically, for a given choice of parameters r, κ, L, p,N we will consider the family of
functions:

15



Under review as a conference paper at ICLR 2024

F(r, κ, L, p,N) =

{
f | f(x) has the form C.1, where:

Wl ∈ Rp×p,bl ∈ Rp for l = 2, . . . , L− 1,

W1 ∈ Rp×d,b1 ∈ Rp,WL ∈ Rr×p,bL ∈ Rr.

∥Wl∥∞,∞ ≤ κ, ∥bl∥∞ ≤ κ for l = 1, . . . , L,

L∑
l=1

∥Wl∥0 + ∥bl∥0 ≤ N

}
(C.2)

where ∥ · ∥0 denotes the number of nonzero entries in a vector or a matrix, ∥·∥∞ denotes the ℓ∞
norm of a vector. For a matrix M , we use ∥M∥∞,∞ = maxi,j |Mij |.
For convenience, after specifying the quantities r, κ, L, p,N , we denote by Θ the space of admissible
parameters θ = (W1,b1, . . . ,WL,bL) in the function class F(r, κ, L, p,N), and we use fθ to
represent the function in Equation C.1.

D PROPERTIES OF THE MATRIX An IN EQUATION 1.1

D.1 PROOF OF PROPOSITION 1

Proof of Proposition 1. Notice that

An = −∆n + (a+ 1)In, (D.1)

from where it follows that the eigenvectors of An associated to its r largest eigenvalues coincide with
the eigenvectors of ∆n associated to its r smallest eigenvalues. Since An is obviously symmetric,
it remains to show that its eigenvalues are non-negative. In turn, from the definition of An in
Equation 1.3 and the fact that a > 1, it is sufficient to argue that all eigenvalues of D−1/2

G GD
−1/2
G

have absolute value less than or equal to 1. This, however, follows from the following two facts: 1)
the matrix D

−1/2
G GD

−1/2
G is similar to the matrix D−1

G G, given that

D
1/2
G (D−1

G G)D
−1/2
G = D

−1/2
G GD

−1/2
G ,

implying that D−1/2
G GD

−1/2
G and D−1

G G have the same eigenvalues; and 2) all the eigenvalues of
D−1

G G have norm less than one, since D−1
G G is a transition probability matrix.

Remark D.1. While one could set An to be ∆n itself (since ∆n is PSD), solving the resulting
problem 1.5 would return the eigenvectors of ∆n with the largest eigenvalues, which would not
constitute a desirable output for data analysis, as the tail of the spectrum of ∆n has little geometric
information about the data set Xn. It is interesting that we can still recover the relevant part of
the spectrum of ∆n indirectly, by studying the spectrum of the matrix An that we use in this paper.
Finally, it is worth mentioning that we add the term aIn in the definition of An in 1.3 to guarantee
that An is always PSD, in this way simplifying the statements and proofs of our main results.

D.2 FORM OF Y∗ AND SOME NOTATION

Since An is a PSD matrix, the Eckart–Young–Mirsky theorem (see (Eckart & Young, 1936)) implies
that the global optimizers of 1.5 are the matrices Y of the form Y = Y∗O, where O ∈ Or and

Y∗ def
=

 | |√
σ1(An)v1 . . .

√
σr(An)vr

| |

 .

In the above, σl(An) represents the l-th largest eigenvalue of An and vl is a corresponding eigen-
vector with Euclidean norm one. In case there are repeated eigenvalues, the corresponding vl need
to be chosen as being orthogonal to each other.

For convenience, we rescale the vectors vl as follows:

ul
def
=

√
nvl.

16



Under review as a conference paper at ICLR 2024

In this way we guarantee that

∥ul∥2L2(Xn)
def
=

1

n

n∑
i=1

(ul(xi))
2 = 1,

i.e., the rescaled eigenvectors ul are normalized in the L2-norm with respect to the empirical measure
1
n

∑n
i=1 δxi

. In terms of the rescaled eigenvectors ul, we can rewrite Y∗ as follows:

Y∗ =

 | |√
σ1(An)

n u1 . . .
√

σr(An)
n ur

| |

 . (D.2)

Remark D.2. As discussed in Remark E.1 below, under Assumptions 2.1 we can assume that all the
σs(An) are quantities of order one.

E AUXILIARY APPROXIMATION RESULTS

E.1 GRAPH-BASED SPECTRAL APPROXIMATION OF WEIGHTED LAPLACE-BELTRAMI
OPERATORS

In this section, we discuss two important results characterizing the behavior of the spectrum of the
normalized graph Laplacian matrix ∆n defined in Equation 2 when n is large and ε scales with n
appropriately. In particular, ∆n’s spectrum is seen to be closely connected to that of the weighted
Laplace-Beltrami operator ∆ρ defined as

∆ρf
def
= − 1

ρ3/2
div

(
ρ2∇

(
f
√
ρ

))
for all smooth enough f : M → R; see section 1.4 in (Garcı́a Trillos & Slepčev, 2018). In the above,
div stands for the divergence operator on M, and ∇ for the gradient in M. ∆ρ can be easily seen to
be a positive semi-definite operator with respect to the L2(M, ρ) inner product and its eigenvalues
(repeated according to multiplicity) can be listed in increasing order as

0 = λM
1 ≤ λM

2 ≤ . . .

We will use f1, f2, . . . to denote associated normalized (in the L2(M, ρ)-sense) eigenfuntions of
∆ρ.

The first result, whose proof we omit as it is a straightforward adaptation of the proof of Theorem
2.4 in (Calder & Garcı́a Trillos, 2022) –which considers the unnormalized graph Laplacian case–,
relates the eigenvalues of ∆n and ∆ρ.
Theorem E.1 (Convergence of eigenvalues of graph Laplacian; Adapted from Theorem 2.4 in
(Calder & Garcı́a Trillos, 2022)). Let l ∈ N be fixed. Under Assumptions 2.1, with probability
at least 1− Cn exp

(
−cnεm+4

)
over the sampling of the xi, we have:∣∣∣∣∣σηλ
M
s − λ̂s

ε2

∣∣∣∣∣ ≤ Crε, ∀s = 1, . . . , l.

In the above, λ̂1 ≤ · · · ≤ λ̂l are the first eigenvalues of ∆n in increasing order, Cl is a deterministic
constant that depends on M’s geometry and on l, and ση is a constant that depends on the kernel
η determining the graph weights (see Equation 1.2). We also recall that m denotes the intrinsic
dimension of the manifold M.
Remark E.1. From Theorem E.1 and Equation D.1 we see that the top l eigenvalues of An (for l
fixed), i.e., σ1(An), . . . , σl(An), can be written as

σs(An) = 1 + a− σησ
M
s ε2 +O(ε3)

with very high probability.

In particular, although each individual σs(An) is an order one quantity, the difference between any
two of them is an order ε2 quantity.
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Next we discuss the convergence of eigenvectors of ∆n toward eigenfunctions of ∆ρ. For the pur-
poses of this paper (see some discussion below) we follow a strong, almost C0,1 convergence result
established in (Calder et al., 2022) for the case of unnormalized graph Laplacians. A straightforward
adaptation of Theorem 2.6 in (Calder et al., 2022) implies the following.

Theorem E.2 (Almost C0,1 convergence of graph Laplacian eigenvectors; Adapted from Theorem
2.6 in (Calder et al., 2022)). Let r ∈ N be fixed and let u1, . . . , ur be normalized eigenvectors of ∆n

as in Appendix D.2. Under Assumptions 2.1, with probability at least 1 − Cε−6m exp
(
−cnεm+4

)
over the sampling of the xi, we have:

∥fs − us∥L∞(Xn) + [fs − us]ε,Xn
≤ Crε. ∀s = 1, . . . , r, (E.1)

for normalized eigenfuctions fi : M → R of ∆ρ, as introduced at the beginning of this section. In

the above, ∥·∥L∞(Xn) is the norm ∥v∥L∞(Xn)
def
= maxxi∈Xn

|v(xi)|, and [·]ε,Xn
is the seminorm

[v]ε,Xn

def
= max

xi,xj∈Xn

|v(xi)− v(xj)|
dM(xi, xj) + ε

.

dM(·, ·) denotes the geodesic distance on M.

An essential corollary of the above theorem is the following set of regularity estimates satisfied by
eigenvectors of the normalized graph Laplacian ∆n.

Corollary 2. Under the same setting, notation, and assumptions as in Theorem E.2, the functions
us satisfy

|us(xi)− us(xj)| ≤ Ls(dM(xi, xj) + ε2), ∀xi, xj ∈ Xn (E.2)

for some deterministic constant Ls.

Proof. From Equation E.1 we have

|(us(xi)− fs(xi))− (us(xj)− fs(xj))| ≤ Csε(dM(xi, xj) + ε), ∀xi, xj ∈ Xn.

It follows from the triangle inequality that

|us(xi)− us(xj)| ≤ |us(xi)− fs(xi)− (us(xj)− fs(xj))|+ |fs(xi)− fs(xj)|
≤ Csε(dM(xi, xj) + ε) + C ′

sdM(xi, xj)

≤ Ls(dM(xi, xj) + ε2).

In the above, the second inequality follows from inequality E.1 and the fact that fs, being a normal-
ized eigenfunction of the elliptic operator ∆ρ, is Lipschitz continuous with some Lipschitz constant
C ′

s.

Remark E.2. We observe that the ε2 term on the right hand side of Equation E.2 is strictly better
than the ε term that appears in the explicit regularity estimates in Remark 2.4 in (Calder et al.,
2022). It turns out that in the proof of Theorem 2.2 it is essential to have a correction term for the
distance that is o(ε); see more details in Remark G.1 below.

E.2 NEURAL NETWORK APPROXIMATION OF LIPSCHITZ FUNCTIONS ON MANIFOLDS

(Chen et al., 2022) shows that Lipschitz functions f defined over an m-dimensional smooth manifold
M embedded in Rd can be approximated with a ReLU neural network with a number of neurons
that doesn’t grow exponentially with the ambient space dimension d. Precisely:

Theorem E.3 (Theorem 1 in (Chen et al., 2022)). Let f : M → R be a Lipschitz function with
Lipschitz constant less than K. Given any δ ∈ (0, 1), there are κ, L, p,N satisfying:

1. L ≤ CK

(
log 1

δ + log d
)
, and p ≤ CK (δ−m + d),

2. N ≤ CK

(
δ−m log 1

δ + d log 1
δ + d log d

)
, and κ ≤ CK ,
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such that there is a neural network fθ ∈ F(1, κ, L, p,N) (as defined in Equation C.2), for which

∥fθ − f∥L∞(M) ≤ δ.

In the above, CK is a constant that depends on K and on the geometry of the manifold M.

In this paper we utilize the results from (Chen et al., 2022) due to the fact that in their estimates the
ambient space dimension d does not appear in any exponent.

F PROOFS OF THEOREM 2.1 AND COROLLARY 1

Lemma F.1. Let u : Xn → R be a function satisfying

|u(x)− u(x̃)| ≤ L(dM(x, x̃) + ε2), ∀x, x̃ ∈ Xn (F.1)

for some L and ε > 0. Then there exists a 3L-Lipschitz function g̃ : M → R such that

∥u− g̃∥L∞(Xn) ≤ 5Lε2. (F.2)

Proof. We start by constructing a subset X ′
n of Xn satisfying the following properties:

1. Any two points x, x̃ ∈ X ′
n (different from each other) satisfy dM(x, x̃) ≥ 1

2ε
2.

2. For any x ∈ Xn there exists x̃ ∈ X ′
n such that dM(x, x̃) ≤ ε2.

The set X ′
n can be constructed inductively, as we explain next. First, we enumerate the points in Xn

as x1, . . . , xn. After having decided whether to include or not in X ′
n the first s points in the list, we

decide to include xs+1 as follows: if the ball of radius ε2/2 centered at xs+1 intersects any of the
balls of radius ε2/2 centered around the points already included in X ′

n, then we do not include xs+1

in X ′
n, otherwise we include it. It is clear from this construction that the resulting set X ′

n satisfies
the desired properties (property 2 follows from the triangle inequality).

Now, notice that the function u : X ′
n → R (i.e., u restricted to X ′

n) is 3L-Lipschitz, since

|u(x)− u(x̃)| ≤ L(dM(x, x̃) + ε2) ≤ 3LdM(x, x̃)

for any pair of points x, x̃ in X ′
n. Using McShane-Whitney theorem we can extend the function

u : X ′
n → R to a 3L-Lipschitz function g̃ : M → R. It remains to prove Equation F.2. To see this,

let x ∈ Xn and let x̃ ∈ Xn be as in property 2 of X ′
n. Then

|u(x)− g̃(x)| ≤ |u(x)− u(x̃)|+ |u(x̃)− g(x)|
= |u(x)− u(x̃)|+ |g(x̃)− g(x)|
≤ L(dM(x, x̃) + ε2) + 3LdM(x, x̃)

≤ 5Lε2.

This completes the proof.

Remark F.1. Lemma F.1 guarantees that if a function u, defined in any given metric space, is
(L, ε2)-almost Lipschitz, then we can find a function g̃ that is L-Lipschitz continuous in the same
space and is within uniform distance ε2 from u.

We are ready to prove Theorem 2.1, which here we restate for convenience.

Theorem 2.1 (Spectral approximation of normalized Laplacians with neural networks). Let r ∈ N
be fixed. Under Assumptions 2.1, there are constants c, C that depend on M, ρ, and the embedding
dimension r, such that, with probability at least

1− Cε−6m exp
(
−cnεm+4

)
for every δ ∈ (0, 1) there are κ, L, p,N and a ReLU neural network fθ ∈ F(r, κ, L, p,N) (defined
in Equation C.2), such that:
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1.
√
n∥Yθ −Y∗∥∞,∞ ≤ C(δ + ε2), and thus also ∥Yθ −Y∗∥F ≤ C

√
r(δ + ε2) .

2. The depth of the network, L, satisfies: L ≤ C
(
log 1

δ + log d
)
, and its width, p, satisfies p ≤

C (δ−m + d).
3. The number of neurons of the network, N , satisfies: N ≤ Cr

(
δ−m log 1

δ + d log 1
δ + d log d

)
,

and the range of weights, κ, satisfies κ ≤ C
n1/(2L) .

Proof. Let s ≤ r. As in the discussion of section D.2 we let us be a ∥·∥L2(Xn)-normalized eigen-
vector of ∆n corresponding to its s-th smallest eigenvalue. Thanks to Corollary 2, we know that,
with very high probability, the function us : Xn → R satisfies

|us(xi)− us(xj)| ≤ Ls(dM(xi, xj) + ε2), ∀xi, xj ∈ Xn, (F.3)

for some deterministic constant Ls. Using the fact that
√

σs(An) is an order one quantity (accord-
ing to Remark E.1) in combination with Lemma F.1, we deduce the existence of a CLs-Lipschitz
function gs : M → R satisfying

∥gs −
√

σs(An)us∥L∞(Xn) ≤ 5CLsε
2. (F.4)

In turn, Theorem E.3 implies the existence of parameters κ, L, p,N as in the statement of the theo-
rem and a (scalar-valued) neural network fθ̃ in the class F(1, κ, L, p,N) such that

∥fθ̃(x)− gs(x)∥L∞(M) ≤ δ. (F.5)

Using the fact that the ReLU is a homogeneous function of degree one, we can deduce that

1√
n
fθ̃ = fθ,

where θ
def
= 1

n1/(2L) θ̃ and thus fθ ∈ F(1, κ
n1/(2L) , L, p,N). It follows that the neural network fθ

satisfies
√
n∥fθ −

1√
n
gs∥L∞(M) ≤ δ,

and also, thanks to Equation F.4,

√
n

∥∥∥∥∥fθ −
√

σs(An)

n
us

∥∥∥∥∥
L∞(Xn)

≤ (5CLs + 1)(δ + ε2).

Stacking the scalar neural networks constructed above to approximate each of the functions us for
s = 1, . . . r, and using Equation D.2, we obtain the desired vector valued neural network approxi-
mating Y∗.

Remark F.2. Notice that the term
√
n∥Y∗∥∞,∞ is of order one. Consequently, the estimate in

Theorem 2.1 is a non-trivial error bound.

The bound in ∥·∥∞,∞ between Yθ and Y∗ in Theorem 2.1 can be used to bound the difference
between YθY

⊤
θ and Y∗Y∗⊤ in ∥·∥∞,∞.

Corollary 3. For fθ as in Theorem 2.1 we have
√
n∥YθY

⊤
θ −Y∗Y∗⊤∥∞,∞ ≤ Cr(δ + ε2), (F.6)

and thus also
∥YθY

⊤
θ −Y∗Y∗⊤∥F ≤

√
rCr(δ + ε2),

for some deterministic constant Cr.
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Proof.
√
n∥YθY

⊤
θ −Y∗Y∗⊤∥∞,∞ =

√
n∥Yθ

(
Y⊤

θ −Y∗⊤)+ (Yθ −Y∗)Y∗⊤∥∞,∞

≤
√
n∥Yθ

(
Y⊤

θ −Y∗⊤) ∥∞,∞ +
√
n∥ (Yθ −Y∗)Y∗⊤∥∞,∞

≤
√
nr∥Yθ∥F∥Y⊤

θ −Y∗⊤∥∞,∞ +
√
nr∥Yθ −Y∗∥∞,∞∥Y∗⊤∥F

≤
√
r(Cr(δ + ε2) + 2∥Y∗∥F)Cr(δ + ε2)

≤ Cr(δ + ε2),

where the second to last inequality follows from our estimate for
√
n∥Yθ −Y∗∥∞,∞ ≤ Cr(δ+ ε2)

in Theorem 2.1, and the last inequality follows from the fact that ∥Y∗∥2F =
∑r

s=1 σs(An) =
O(r).

F.1 EIGENFUNCTION APPROXIMATION

The neural network fθ constructed in the proof of Theorem 2.1 can be used to approximate eigen-
functions of ∆ρ. We restate Corollary 1 for the convenience of the reader.

Corollary 1. Under the same setting, notation, and assumptions as in Theorem 2.1, the neural
network fθ : Rd → Rr can be chosen to satisfy∥∥∥∥√ n

1 + a
f i
θ − fi

∥∥∥∥
L∞(M)

≤ C(δ + ε), ∀i = 1, . . . , r.

In the above, f1
θ , . . . , f

r
θ are the coordinate functions of the vector-valued neural network fθ, and

the functions f1, . . . , fr are the normalized eigenfunctions of the Laplace-Beltrami operator ∆ρ that
are associated to ∆ρ’s r smallest eigenvalues.

Proof. Let gs : M → R be the Lipschitz function appearing in Equation F.4 and recall that the
scalar neural network fθ constructed in the proof of Theorem 2.1 satisfies

√
n∥fθ −

1√
n
gs∥L∞(M) ≤ δ. (F.7)

It can be shown that except on an event with probability less than n exp(−nεm), for any x ∈ M,
there exists xi ∈ Xn such that dM(xi, x) ≤ ε. From the triangle inequality, it thus follows that

|fs(x)−
√
n/(1 + a)fθ(x)| ≤|fs(x)− fs(xi)|+ |fs(xi)− us(xi)|

+ |us(xi)−
1√

σs(An)
gs(xi)|+ | 1√

σs(An)
gs(xi)−

1√
1 + a

gs(xi)|

+ | 1√
1 + a

gs(xi)−
1√
1 + a

gs(x)|

+ | 1√
1 + a

gs(x)−
√

n

1 + a
fθ(x)|

≤Cs(δ + ε),
(F.8)

where we have used the Lipschitz continuity of fs and gs, Theorem E.2, Remark E.1, and Equa-
tion F.7.

Remark F.3. We notice that, while one could use existing memorization results (e.g., Theorem 3.1 in
(Yun et al., 2019)) to show that there is a neural network with ReLU activation function and O(

√
n)

neurons that fits Y∗ perfectly, this does not constitute an improvement over our results in Theorem
2.1 and Corollary 1. Indeed, by using this type of memorization result, we can not state any bounds
on the size of the parameters of the network, and none of the out-of-sample generalization properties
that we have discussed before (i.e., approximation of eigenfunctions of ∆ρ) can be guaranteed.
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G PROOF OF THEOREM 2.2

Recall that that fθ∗ ∈ argminfθ∈F(r,κ,L,p,N)∥YθY
⊤
θ − An∥2F. We start our proof with a lemma

from linear algebra.

Lemma G.1. For any Y ∈ Rn×r we have

∥YY⊤ −An∥2F − ∥Y∗Y∗⊤ −An∥2F ≤ ∥YY⊤ −Y∗Y∗⊤∥2F.

Proof. A straightforward computation reveals that

∥YY⊤ −An∥2F − ∥Y∗Y∗⊤ −An∥2F
= ∥(YY⊤ −Y∗Y∗⊤) + (Y∗Y∗⊤ −An)∥2F − ∥Y∗Y∗⊤ −An∥2F
= ∥YY⊤ −Y∗Y∗⊤∥2F + 2⟨YY⊤ −Y∗Y∗⊤,Y∗Y∗⊤ −An⟩
= ∥YY⊤ −Y∗Y∗⊤∥2F + 2⟨YY⊤,Y∗Y∗⊤ −An⟩
≤ ∥YY⊤ −Y∗Y∗⊤∥2F,

(G.1)

where the last inequality follows thanks to the fact that YY⊤ is positive semi-definite and the fact
that Y∗Y∗⊤−An is negative semi-definite, as can be easily deduced from the form of Y∗ discussed
in section D.2.

Invoking Corollary 3 with δ = δ̃ε we immediately obtain the following approximation estimate.

Corollary 4. With probability at least

1− Cε−6m exp
(
−cnεm+4

)
,

for every δ̃ ∈ (0, 1) there is fθ ∈ F(r, κ, L, p,N) with κ, L, p,N as specified in Theorem 2.2 such
that

∥YθY
⊤
θ −Y∗Y∗⊤∥F ≤ Crε(δ̃ + ε). (G.2)

Corollary 5. Let fθ be as in Corollary 4. Then

∥YθY
⊤
θ −An∥2F − ∥Y∗Y∗⊤ −An∥2F ≤ Crε

2(δ̃ + ε)2.

Proof. Let θ be as in Corollary 4. Then

∥YθY
⊤
θ −An∥2F − ∥Y∗Y∗⊤ −An∥2F ≤ ∥YθY

⊤
θ −Y∗Y∗⊤∥2F ≤ C2

r ε
2(δ̃ + ε)2,

where the second to last inequality follows from Lemma G.1.

In what follows we will write the SVD (eigendecomposition) of An as UΣU
⊤

. Using the fact
that U is invertible (since it is an ortogonal matrix), we can easily see that Yθ∗ can be written as
Yθ∗ = U(E1 +E2) where E1,E2 ∈ Rn×r are such that the ithrow E1

i = 0 for i ≥ r + 1, and ith

row E2
i = 0 for i ≤ r. Indeed, it suffices to select E1 and E2 so as to have E1 + E2 = U

−1
Yθ∗ .

We thus have (E2)⊤E1 = 0.

In what follows we will make the following assumption.

Assumption G.1. ε and δ̃ in Corollary 4 satisfy the following condition:

ε2E < σ2
r(An)− σ2

r+1(An), (G.3)

where E
def
= Cr(δ̃ + ε)2.

Remark G.1. Assumption G.1 is satisfied under the assumptions in the statement of Theorem 2.2.
To see this, notice that σ2

r(An) − σ2
r+1(An) ∼ ε2 according to Remark E.1 and the fact that

λM
r < λM

r+1. Thus, taking δ̃ to be sufficiently small, we can guarantee that indeed ε2E < σ2
r(An)−

σ2
r+1(An).
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Remark G.2. Returning to Remark E.2, if the correction term in the Lipschitz estimate for graph
Laplacian eigenvectors had been ε, and not ε2, the term ε2E would have to be replaced with the
term (Crεδ̃ + Crε)

2, but the latter cannot be guaranteed to be smaller than σ2
r(An)− σ2

r+1(An).

Remark G.3. The energy gap between Y∗ and the constructed Yθ is, according to Corollary 5,
ε2E, whereas the energy gap between Y∗ and any other critical point of ℓ that is not a global
optimizer is in the order of ε2, as it follows from Remark E.1. Continuing the discussion from
Remark G.2, it was thus relevant to use estimates that could guarantee that, at least energetically,
our constructed Yθ was closer to Y∗ than any other saddle of ℓ.

Proof of Theorem 2.2. Due to the definition of θ∗, we have

∥Y∗Y∗⊤ −An∥2F ≤ ∥Yθ∗Y⊤
θ∗ −An∥2F ≤ ∥YθY

⊤
θ −An∥2F. (G.4)

Also,

0 ≥ ∥Yθ∗Y⊤
θ∗ −An∥2F − ∥YθY

⊤
θ −An∥2F

= ∥(Yθ∗Y⊤
θ∗ −Y∗Y∗⊤) + (Y∗Y∗⊤ −An)∥2F − ∥YθY

⊤
θ −An∥2F

= ∥Yθ∗Y⊤
θ∗ −Y∗Y∗⊤∥2F + ∥Y∗Y∗⊤ −An∥2F + 2⟨Yθ∗Y⊤

θ∗ −Y∗Y∗⊤,Y∗Y∗⊤ −An⟩ − ∥YθY
⊤
θ −An∥2F

= ∥Yθ∗Y⊤
θ∗ −Y∗Y∗⊤∥2F + ∥Y∗Y∗⊤ −An∥2F + 2⟨Yθ∗Y⊤

θ∗ ,Y∗Y∗⊤ −An⟩ − ∥YθY
⊤
θ −An∥2F

(G.5)

where the third equality follows from the fact that ⟨Y∗Y∗⊤,Y∗Y∗⊤ −An⟩ = 0. Notice that

∥Yθ∗Y⊤
θ∗ −Y∗Y∗⊤∥2F + 2⟨Yθ∗Y⊤

θ∗ ,Y∗Y∗⊤ −An⟩ = ∥Yθ∗Y⊤
θ∗∥2F + ∥Y∗Y∗⊤∥2F − 2⟨Yθ∗Y⊤

θ∗ ,An⟩
(G.6)

By combining Equation G.5, Lemma 5 and Equation G.6, we have

∥Yθ∗Y⊤
θ∗∥2F + ∥Y∗Y∗⊤∥2F − 2⟨Yθ∗Y⊤

θ∗ ,An⟩ ≤ ε2E (G.7)

From (E1)⊤E2 = 0 and Tr(AB) = Tr(BA), we have

⟨E1(E1)⊤,E2(E2)⊤⟩ = 0

⟨E1(E2)⊤,E2(E2)⊤⟩ = 0

⟨E1(E2)⊤,E1(E1)⊤⟩ = 0

⟨E2(E1)⊤,E1(E1)⊤⟩ = 0

⟨E2(E1)⊤,E2(E2)⊤⟩ = 0

(G.8)

Let Σ1 be the diagonal matrix such that (Σ1)ii = Σii for i ≤ r, and (Σ1)ii = 0 for i > r; let Σ2

be the diagonal matrix such that (Σ2)ii = 0 for i ≤ r, and (Σ2)ii = Σii for i > r. By plugging the
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decomposition of Yθ∗ in Equation G.7, we deduce

ε2E ≥∥Yθ∗Y⊤
θ∗∥2F + ∥Y∗Y∗⊤∥2F − 2⟨Yθ∗Y⊤

θ∗ ,An⟩

=∥U(E1 +E2)(E1 +E2)⊤U
⊤∥2F + ∥Y∗Y∗⊤∥2F − 2⟨U(E1 +E2)(E1 +E2)⊤U

⊤
,An⟩

=∥(E1 +E2)(E1 +E2)⊤∥2F + ∥Y∗Y∗⊤∥2F − 2⟨(E1 +E2)(E1 +E2)⊤,Σ⟩
Equation G.8

= ∥E1(E1)⊤∥2F + ∥E2(E2)⊤∥2F + 2∥E2(E1)⊤∥2F + 2⟨(E1)⊤E1, (E2)⊤E2⟩
+ ∥Y∗Y∗⊤∥2F − 2⟨(E1 +E2)(E1 +E2)⊤,Σ⟩

(E1)⊤ΣE2=0
= ∥E1(E1)⊤∥2F + ∥E2(E2)⊤∥2F + 2∥E2(E1)⊤∥2F + 2⟨(E1)⊤E1, (E2)⊤E2⟩

+ ∥Y∗Y∗⊤∥2F − 2⟨E1(E1)⊤ +E2(E2)⊤,Σ⟩
=∥E1(E1)⊤∥2F + ∥E2(E2)⊤∥2F + 2∥E2(E1)⊤∥2F + 2⟨(E1)⊤E1, (E2)⊤E2⟩
+ ∥Σ1∥2F − 2⟨E1(E1)⊤,Σ1⟩ − 2⟨E2(E2)⊤,Σ2⟩

=∥E1(E1)⊤ −Σ1∥2F + ∥E2(E2)⊤∥2F + 2∥E2(E1)⊤∥2F + 2⟨(E1)⊤E1, (E2)⊤E2⟩
− 2⟨E2(E2)⊤,Σ2⟩

≥∥E1(E1)⊤ −Σ1∥2F + ∥E2(E2)⊤∥2F + 2∥E2(E1)⊤∥2F + 2⟨(E1)⊤E1, (E2)⊤E2⟩
− 2∥E2(E2)⊤∥F · σr+1(An)

≥∥E1(E1)⊤ −Σ1∥2F + ∥E2(E2)⊤∥2F + (2∥E2∥2F + 2∥E2(E2)⊤∥F) · σ2
r(E

1)

− 2∥E2(E2)⊤∥F · σr+1(An).
(G.9)

On the other hand, we have

∥Yθ∗Y⊤
θ∗ −Y∗Y∗⊤∥2F =∥Yθ∗Y⊤

θ∗∥2F + ∥Y∗Y∗⊤∥2F − 2⟨Yθ∗Y⊤
θ∗ ,An⟩+ 2⟨Yθ∗Y⊤

θ∗ ,An −Y∗Y∗⊤⟩
=∥Yθ∗Y⊤

θ∗∥2F + ∥Y∗Y∗⊤∥2F − 2⟨Yθ∗Y⊤
θ∗ ,An⟩+ 2⟨E2(E2)⊤,Σ2⟩

≤ε2E + 2∥E2(E2)⊤∥F · σr+1(An).
(G.10)

It remains to show that ∥E2(E2)⊤∥F can be controlled by a term of the form Cε2E. We split
the following discussion into two cases. First, we assume that σ2

r(E
1) is large compared with

σr+1(An). In this first case ∥E2(E2)⊤∥F can be guaranteed to be small according to Equation G.9.
Second, when σ2

r(E
1) is small, we’ll show that ∥E1(E1)⊤ − Σ1∥2F is large, which will contradict

Equation G.9.

Case 1: If σ2
r(E

1) ≥ 2
3σr+1(An).

We have 3∥E2∥2F · σ2
r(E

1)− 2∥E2(E2)⊤∥F · σr+1(An) ≥ 0. Then, from Equation G.9 and the fact
that ∥AB∥F ≤ ∥A∥F · ∥B∥F, we have

∥E1(E1)⊤ −Σ1∥2F + ∥E2(E2)⊤∥2F + 2∥E2(E2)⊤∥F · σr+1(An) ≤ ε2E. (G.11)

This immediately implies

∥E2(E2)⊤∥F ≤ ε2E

σr+1(An)
. (G.12)

Combining Equation G.12 and Equation G.10, we obtain

∥Yθ∗Y⊤
θ∗ −Y∗Y∗⊤∥2F ≤ ε2E + ∥E2(E2)⊤∥F · σr+1(An) ≤ 2ε2E. (G.13)

Case 2: If 0 ≤ σ2
r(E

1) < 2
3σr+1(An).
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Invoking Equation G.9, we have

ε2E ≥ ∥E1(E1)⊤ −Σ1∥2F + ∥E2(E2)⊤∥2F + (2∥E2∥2F + 2∥E2(E2)⊤∥F) · σ2
r(E

1)− 2∥E2(E2)⊤∥F · σr+1(An)

≥ (σ2
r(E

1)− σr(An))
2 + ∥E2(E2)⊤∥2F + 4∥E2(E2)⊤∥F · σ2

r(E
1)− 2∥E2(E2)⊤∥F · σr+1(An)

= (σ2
r(E

1)− σr(An))
2 + ∥E2(E2)⊤∥2F − 2∥E2(E2)⊤∥F · (σr+1(An)− 2σ2

r(E
1))

= (σ2
r(E

1)− σr(An))
2 +

(
∥E2(E2)⊤∥F − (σr+1(An)− 2σ2

r(E
1))
)2 − (σr+1(An)− 2σ2

r(E
1))2

≥ (σ2
r(E

1)− σr(An))
2 − (σr+1(An)− 2σ2

r(E
1))2,

(G.14)

where the second inequality follows from Weyl’s inequality (Stewart, 1998).

It is straightforward to check that (σ2
r(E

1)− σr(An))
2 − (σr+1(An)− 2σ2

r(E
1))2 is a decreasing

function with respect to σ2
r(E

1) in the range 0 ≤ σ2
r(E

1) < 2
3σr+1(An). The smallest value of

(σ2
r(E

1) − σr(An))
2 − (σr+1(An) − 2σ2

r(E
1))2 in this range is thus larger than 1

9 (σ
2
r(An) −

σ2
r+1(An)). However, the resulting inequality contradicts Assumption G.1. Case 2 is thus void.

By combining the aforementioned two cases, we conclude

∥Yθ∗Y⊤
θ∗ −Y∗Y∗⊤∥2F ≤ 2Eε2. (G.15)

By using Equation H.3, we have

d2([Yθ∗ ], [Y∗]) ≤ 1

2(
√
2− 1)σ2

r(Y
∗)
∥Yθ∗Y⊤

θ∗ −Y∗Y∗⊤∥2F ≤ ε2E

(
√
2− 1)σ2

r(Y
∗)
, (G.16)

where d([Yθ∗ ], [Y∗]) = minO∈Or
∥Yθ∗ −Y∗O∥F. This completes the proof.

H AMBIENT OPTIMIZATION

This section contains the proof of the results from Section 3.

H.1 SETUP FROM MAIN TEXT

Let us recall the quotient manifold that we are interested in. Let Nn

r+ be the space of n× r matrices
with full column rank. To define the quotient manifold, we encode the invariance mapping, i.e.,
Y → YO, by defining the equivalence classes [Y] = {YO : O ∈ Or}. Since the invariance
mapping is performed via the Lie group Or smoothly, freely and properly, we have Nn

r+

def
= Nn

r+/Or

is a quotient manifold of Nn

r+ (Lee, 2018). Moreover, we equip the tangent space TYNn

r+ = Rn×r

with the metric ḡY (ηY, θY) = tr
(
η⊤YθY

)
.

For convenience, we recall the following.

gradH([Y]) = 2
(
YY⊤ −An

)
Y,

HessH([Y]) [θY, θY] =
∥∥Yθ⊤Y + θYY⊤∥∥2

F
+ 2

〈
YY⊤ −An, θYθ⊤Y

〉 (H.1)

R1
def
=
{
Y ∈ Rn×r

∗
∣∣d ([Y], [Y∗]) ⩽ µσr (Y

∗) /κ∗} ,
R2

def
=

{
Y ∈ Rn×r

∗

∣∣∣∣ d ([Y], [Y∗]) > µσr (Y
∗) /κ∗, ∥gradH([Y])∥F ⩽ αµσ3

r (Y
∗) / (4κ∗)

∥Y∥ ⩽ β ∥Y∗∥ ,
∥∥YY⊤

∥∥
F
⩽ γ

∥∥Y∗Y∗⊤
∥∥
F

}
,

R′
3

def
=
{
Y ∈ Rn×r

∗

∣∣∣∥gradH([Y])∥F > αµσ3
r (Y

∗) / (4κ∗) , ∥Y∥ ⩽ β ∥Y∗∥ ,
∥∥YY⊤∥∥

F
⩽ γ

∥∥Y∗Y∗⊤∥∥
F

}
,

R′′
3

def
=
{
Y ∈ Rn×r

∗
∣∣∥Y∥ > β∥Y∗∥, ∥YY⊤ ∥F ⩽ γ∥Y∗Y∗⊤∥F

}
,

R′′′
3

def
=
{
Y ∈ Rn×r

∗
∣∣∥YY⊤∥∥

F
> γ

∥∥Y∗Y∗⊤|F
}
,

(H.2)
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Remark H.1. To demonstrate strong geodesic convexity, the eigengap assumption is necessary as
it prevents multiple global solutions. However, it is possible to relax this assumption and instead
deduce a Polyak-Lojasiewicz condition, which would also imply a linear convergence rate for a
first-order method.

H.2 SOME AUXILIARY INEQUALITIES

In this section, we collect results from prior work that will be useful for us. First, we provide the
characterization of and results about the geodesic distance on Nn

r+ from (Massart & Absil, 2020)
and (Luo & Garcı́a Trillos, 2022).
Lemma H.1 (Lemma 2, (Luo & Garcı́a Trillos, 2022)). Let Y1,Y2 ∈ Rn×r

∗ , and QUΣQ⊤
V be the

SVD of Y⊤
1 Y2. Denote Q∗ = QV Q

⊤
U . Then

1. Y2Q
∗ −Y1 ∈ HY1N

n

r+,Q
∗ is one of the best orthogonal matrices aligning Y1 and Y2,

i.e., Q∗ ∈ argminQ∈Or ∥Y2Q−Y1∥F and the geodesic distance between [Y1] and [Y2]
is d ([Y1] , [Y2]) = ∥Y2Q

∗ −Y1∥F;

2. if Y⊤
1 Y2 is nonsingular, then Q∗ is unique and the Riemannian logarithm log[Y1] [Y2]

is uniquely defined and its horizontal lift at Y1 is given by log[Y1] [Y2] = Y2Q
∗ − Y1;

moreover, the unique minimizing geodesic from [Y1] to [Y2] is [Y1 + t (Y2Q
∗ −Y1)] for

t ∈ [0, 1].
Lemma H.2 (Lemma 12 in (Luo & Garcı́a Trillos, 2022)). For any Y1,Y2 ∈ Rn×r

∗ , we have

d2 ([Y1] , [Y2]) ⩽
1

2(
√
2− 1)σ2

r (Y2)

∥∥Y1Y
⊤
1 −Y2Y

⊤
2

∥∥2
F

(H.3)

and ∥∥∥(Y1 −Y2Q) (Y1 −Y2Q)
⊤
∥∥∥2
F
⩽ 2

∥∥Y1Y
⊤
1 −Y2Y

⊤
2

∥∥2
F

, (H.4)

where Q = argminO∈Or ∥Y1 −Y2O∥F.

In addition, for any Y1,Y2 ∈ Rn×r
∗ obeying d ([Y1] , [Y2]) ⩽ 1

3σr (Y2), we have∥∥Y1Y
⊤
1 −Y2Y

⊤
2

∥∥
F
⩽

7

3
∥Y2∥ d ([Y1] , [Y2]) (H.5)

Given any Y ∈ Rn×r
∗ and x > 0, let Bx([Y])

def
= {[Y1] : d ([Y1] , [Y]) < x} be the geodesic ball

centered at [Y] with radius x. For any Riemannian manifold, there exists a convex geodesic ball
at every point (Chapter 3.4, (Do Carmo & Flaherty Francis, 1992)). The next result quantifies the
convexity radius around a point [Y] in the manifold Nn

r+.

Lemma H.3 (Theorem 2, (Luo & Garcı́a Trillos, 2022)). Given any Y ∈ Rn×r
∗ , the geodesic ball

centered at [Y] with radius x ⩽ rY
def
= σr(Y)/3 is geodesically convex. In fact, for any two points

[Y1] , [Y2] ∈ Bx([Y]), there is a unique shortest geodesic joining them, which is entirely contained
in Bx([Y]).

Finally, we provide some useful inequalities.
Lemma H.4 (Proposition 2 in (Luo et al., 2021)). Let Y ∈ Rn×r

∗ , and let X = YY⊤. Then
2σ2

r(Y) ∥θY∥2F ⩽
∥∥Yθ⊤Y + θYY⊤

∥∥2
F
⩽ 4σ2

1(Y) ∥θY∥2F holds for all θY ∈ HYMq

r+.

Lemma H.5. For A ∈ Rm×n, B ∈ Rn×n where B is positive semi-definite, we have

∥A∥F · σn(B) ≤ ∥AB∥F ≤ ∥A∥F · σ1(B) (H.6)

Proof. When m = 1, this statement is direct by the definition of the Frobenius norm. When m > 1,
we denote Ai to be the ith row of A, and then

∥AB∥2F =

m∑
i=1

∥AiB∥2F ≤
m∑
i=1

∥Ai∥F · σ1(B) = ∥A∥F · σ1(B)
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Similarly,

∥AB∥2F =

m∑
i=1

∥AiB∥2F ≥
m∑
i=1

∥Ai∥F · σn(B) = ∥A∥F · σn(B)

H.3 PROOF OF RESULTS

In this section, we provide the proofs for Theorems 3.1, 3.2, 3.3, and 3.4.
Theorem 3.1 (Local Geodesic Strong Convexity and Smoothness of Equation 3.1). Suppose 0 ⩽
µ ⩽ κ∗/3. Given that Assumption 3.1 holds, for any Y ∈ R1 defined in Equation 3.3.

σmin(HessH([Y])) ⩾
(
2 (1− µ/κ∗)

2 − (14/3)µ
)
σr (An)− 2σr+1(An),

σmax(HessH([Y])) ⩽ 4 (σ1 (Y
∗) + µσr (Y

∗) /κ∗)
2
+ 14µσ2

r (Y
∗) /3

In particular, if µ is further chosen such that
(
2 (1− µ/κ∗)

2 − (14/3)µ
)
σr (An)− 2σr+1(An) >

0, we have H([Y]) is geodesically strongly convex and smooth in R1.

Proof. Denote by Q the best orthogonal matrix that aligns Y and Y∗. Then by the assumption on
Y ∈ R1 as defined in Equation H.2, we have

∥Y −Y∗Q∥ ⩽ ∥Y −Y∗Q∥F = d ([Y], [Y∗]) ⩽ µσr (Y
∗) /κ∗. (H.7)

Thus

σr(Y) = σr (Y −Y∗Q+Y∗Q) ⩾ σr (Y
∗)− ∥Y −Y∗Q∥

Equation H.7
⩾ (1− µ/κ∗)σr (Y

∗)

σ1(Y) = σ1 (Y −Y∗Q+Y∗Q) ⩽ σ1 (Y
∗) + ∥Y −Y∗Q∥

Equation H.7
⩽ σ1 (Y

∗) + µσr (Y
∗) /κ∗

(H.8)
where the first inequalities follow from Weyl’s theorem (Stewart, 1998). Then,

HessH([Y]) [θY, θY] =
∥∥Yθ⊤Y + θYY⊤∥∥2

F
+ 2

〈
YY⊤ −An, θYθ⊤Y

〉
[Equation H.1]

⩾ 2σ2
r(Y) ∥θY∥2F + 2

〈
YY⊤ −An, θYθ⊤Y

〉
[ Lemma H.4]

= 2σ2
r(Y) ∥θY∥2F + 2

〈
YY⊤, θYθ⊤Y

〉
− 2

〈
Y∗Y∗⊤, θYθ⊤Y

〉
− 2

〈
ZZ⊤, θYθ⊤Y

〉
[An = Y∗Y∗⊤ + ZZ⊤]

⩾ 2σ2
r(Y) ∥θY∥2F − 2

∥∥YY⊤ −Y∗Y∗⊤∥∥ ∥∥θYθ⊤Y
∥∥
F

− 2∥ZZ⊤∥∥θYθ⊤Y∥F [⟨A,B⟩ ≤ ∥A∥∥B∥F]
⩾ 2σ2

r(Y) ∥θY∥2F − 2
∥∥YY⊤ −Y∗Y∗⊤∥∥ ∥θY∥2F

− 2∥ZZ⊤∥∥θY∥2F [∥θYθ⊤Y∥F = ∥θY∥2F]

⩾ 2
(
1− µ

κ∗

)2
σ2
r (Y

∗) ∥θY∥2F − 2∥ZZ⊤∥∥θY∥2F

− 2
∥∥YY⊤ −Y∗Y∗⊤∥∥ ∥θY∥2F [Equation H.8]

⩾ 2
(
1− µ

κ∗

)2
σ2
r (Y

∗) ∥θY∥2F − 2∥ZZ⊤∥∥θY∥2F

− 2 · 7
3
∥Y∗∥ µσr (Y

∗)

κ∗ ∥θY∥2F [Lemma H.2,Y ∈ R1]

= 2
(
1− µ

κ∗

)2
σ2
r (Y

∗) ∥θY∥2F − 2 · 7
3
∥Y∗∥ µσr (Y

∗)

κ∗ ∥θY∥2F
− 2σr+1(An)∥θY∥2F [∥ZZ⊤∥ = σr+1(An)]

=

((
2
(
1− µ

κ∗

)2
− 14

3
µ

)
σr (An)− 2σr+1(An)

)
∥θY∥2F

[
κ∗ =

∥Y∗∥
σr(Y∗)

]
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Likewise,

HessH([Y]) [θY, θY] =
∥∥Yθ⊤Y + θYY⊤∥∥2

F
+ 2

〈
YY⊤ −An, θYθ⊤Y

〉
[Equation H.1]

≤ 4σ2
1(Y) ∥θY∥2F + 2

〈
YY⊤ −An, θYθ⊤Y

〉
[ Lemma H.4]

≤ 4σ2
1(Y) ∥θY∥2F + 2

〈
YY⊤ −Y∗Y∗⊤, θYθ⊤Y

〉
[An −Y∗Y∗⊤ is PSD]

⩽ 4σ2
1(Y) ∥θY∥2F + 2

∥∥YY⊤ −Y∗Y∗⊤∥∥ ∥θY∥2F
⩽ 4σ2

1(Y) ∥θY∥2F + 2
∥∥YY⊤ −Y∗Y∗⊤∥∥

F
∥θY∥2F

⩽ 4

(
σ1 (Y

∗) +
µσr (Y

∗)

κ∗

)2

∥θY∥2F + 2
∥∥YY⊤ −Y∗Y∗⊤∥∥

F
∥θY∥2F [Equation H.8]

⩽

(
4

(
σ1 (Y

∗) +
µσr (Y

∗)

κ∗

)2

+
14

3
µσ2

r (Y
∗)

)
∥θY∥2F [Lemma H.2]

From the above we conclude that when µ is chosen such that(
2
(
1− µ

κ∗

)2
− 14

3
µ

)
σr (An)− 2σr+1(An) > 0,

we have H([Y]) in Equation 3.1 is geodesically strongly convex and smooth in R1 as R1 is a
geodesically convex set by (Luo & Garcı́a Trillos, 2022). Note that this is equivalent to((

1− µ

κ∗

)2
− 7

3
µ

)
>

σr+1(An)

σr(An)
.

Then note as µ → 0, the left hand side approaches 1 and the inequality becomes true as σr(An) >
σr+1(An).

Remark H.2. Compared with the bound in Theorem 8 of (Luo & Garcı́a Trillos, 2022), the smooth-
ness and geodesically strongly convexity are as follows,

σmin(HessH([Y])) ⩾
(
2 (1− µ/κ∗)

2 − (14/3)µ
)
σ2
r (Y

∗) ,

σmax(HessH([Y])) ⩽ 4 (σ1 (Y
∗) + µσr (Y

∗) /κ∗)
2
+ 14µσ2

r (Y
∗) /3.

There is an extra term −2σr+1(An) in our lower bound of the strong convexity because even if
d([Y], [Y∗]) is small, An −YY⊤ is not close to 0, which leads to the extra error term.

In the next three theorems, we show that for Y /∈ R1, either the Riemannian Hessian evaluated at Y
has a large negative eigenvalue, or the norm of the Riemannian gradient is large. Let Y = UDV⊤,
Y∗ = U∗Σ∗1/2.

Theorem 3.2 (FOSP of Equation 3.1). Let UΣU
⊤

be An’s SVD factorization, and let Λ = Σ1/2.
Then for any S subset of [n], we have that

[
USΛS

]
is a Riemannian FOSPs of Equation 3.1.

Further, these are the only Riemannian FOSPs.

Proof. From Equation H.1, the gradient can be written down as,

gradH([Y]) = 2
(
YY⊤ −An

)
Y = 2

(
UDV⊤(UDV⊤)⊤ −An

)
UDV⊤

= 2
(
UD3V⊤ −AnUDV⊤)

Therefore, whenever gradH([Y]) = 0, we have UD3V⊤ − AnUDV⊤ = 0. Since both V and
D are of full rank, the condition is equivalent to

UD2 −AnU = 0 (H.9)

Since D2 is also a diagonal matrix, to satisfy Equation H.9, the columns of U have to be the eigen-
vectors of An, and the diagonal of D2 has to be the eigenvalues of An. This completes the proof.

28



Under review as a conference paper at ICLR 2024

Before we can prove the next main result, Theorem 3.3, we need to discuss some of the assumptions.
Specifically, we want to quantify the statement α is sufficiently small.
Assumption H.1 (Parameters Settings). Denote e1, e2 and e3 to be some error terms.

e1
def
=

αµσ3
r (Y

∗)

2
√
2κ∗σr+1(Λ)

, e2 =
e1√
2
, and e3 = e2 · σr+1(Λ)

Note that e1, e2, e3 → 0 and α → 0. Hence, pick α small enough such that the following are true.

1. σ2
r(Λ)− 2e1 − σ2

r+1(Λ) > 0.

2. σ2
r(Λ)

(
1− e21

|σ2
r(Λ)−e1−σ2

r+1(Λ)|2
)
− e1 − σ2

r+1(Λ) > 0.

3. (α− 2(
√
2− 1))σ2

r (Y
∗) + 6

α2σ4
r(Y

∗)σ2
r+1(Λ)/16

|σ2
r(Λ)−e2−σ2

r+1(Λ)|2 < 0.

Note that for the first two, we have that as α → 0. They converge to σ2
r(Λ) − σ2

r+1(Λ) which is
positive due to the eigengap assumption. For the last condition, we have that as α → 0, it converges
to −2(

√
2− 1)σ2

r (Y
∗) which is negative.

Hence, notice that this assumption is only related to the eigengap assumption σr(Λ) and σr+1(Λ)
in Assumption 3.1. As soon as α is small enough, Assumption H.1 is satisfied.
Theorem H.1 (Region with Negative Eigenvalue in the Riemannian Hessian of Equation 1.5 (for-
mal Theorem 3.3)). Assume that Assumption 3.1 holds. Given any Y ∈ Rn×r

∗ , let θ1Y =
[0,0, . . . ,0,a,0, . . . ,0]V⊤ where a such that

a = argmax
a:Y⊤a=0

a⊤Ana

∥a∥2
(H.10)

and [0,0, . . . ,0,a,0, . . . ,0] ∈ Rn×r such that the ĩth columns is a and other columns are 0 where

ĩ
def
= argmin

j∈[r]

Djj . (H.11)

Denote θ2Y = Y − Y∗Q, where Q ∈ Or is the best orthogonal matrix aligning Y∗ and Y. We
choose θY to be either θ1Y or θ2Y. Then

HessH([Y]) [θY, θY] ⩽min

{
−
σ2
r+1(Λ)

2
∥θY∥2,

− 2

(
σ2
r(Λ)

(
1− e21∣∣σ2

r(Λ)− e1 − σ2
r+1(Λ)

∣∣2
)

− e1 − σ2
r+1(Λ)

)
∥θY∥2,(

(α− 2(
√
2− 1))σ2

r (Y
∗) + 6

α2σ4
r (Y

∗)σ2
r+1(Λ)/16∣∣σ2

r(Λ)− e2 − σ2
r+1(Λ)

∣∣2
)
∥θY∥2F

}
In particular, if α and µ satisfies Assumption H.1, we have HessH([Y]) has at least one negative
eigenvalue and θY is the escaping direction.

Proof. By the definition of a, a ∈ Span{U1,...,r+1}. This is because the null space of Y has
dimension n− r. Hence, its intersection with a dimension r+1 space has a dimension of at least 1.

Using the SVD decomposition of Y, we have, U⊤a = 0. Then, by using Equation H.1, we have

HessH([Y])
[
θ1Y, θ1Y

]
=
∥∥Y(θ1Y)⊤ + θ1YY⊤∥∥2

F
+ 2

〈
YY⊤ −An, θ

1
Y(θ1Y)⊤

〉
[Equation H.1]

=
∥∥Y(θ1Y)⊤ + θ1YY⊤∥∥2

F
− 2

〈
An, θ

1
Y(θ1Y)⊤

〉
[Y⊤a = 0]

= 2⟨Y⊤Y, (θ1Y)⊤θ1Y⟩+ 2⟨Y(θ1Y)⊤, θ1YY⊤⟩ − 2
〈
An, θ

1
Y(θ1Y)⊤

〉
[∥A∥2F = ⟨A,A⟩]

= 2⟨Y⊤Y, (θ1Y)⊤θ1Y⟩ − 2
〈
An, θ

1
Y(θ1Y)⊤

〉
[Y⊤a = 0]

= 2⟨VD2V⊤, (θ1Y)⊤θ1Y⟩ − 2
〈
An, θ

1
Y(θ1Y)⊤

〉
= 2D2

ĩ̃i
∥a∥2 − 2a⊤Ana
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where the last equality comes from the definition of a and the fact that the V⊤V = I in θ1Y(θ1Y)⊤.
Recall ĩ = argminDii, then

HessH([Y])
[
θ1Y, θ1Y

]
= 2min

i
D2

ii∥a∥2 − 2a⊤Ana (H.12)

In the following, we separate the proof into three regimes of mini D
2
ii, corresponding to different

escape directions.

Case 1:
(
When mini D

2
ii <

σ2
r+1(Λ)

2

)
. For this case we must have that

HessH([Y])
[
θ1Y, θ1Y

]
≤ −

σ2
r+1(Λ)

2
∥θ1Y∥2.

This is because a⊤Ana ≥ σ2
r+1(Λ)∥a∥2 and ∥a∥ = ∥θ1Y∥.

Case 2:
(
When mini D

2
ii ≥

σ2
r+1(Λ)

2

)
.

From the proof of Theorem 3.2, the gradient condition of R2 can be written as

αµσ3
r (Y

∗) / (4κ∗) ≥ ∥gradH([Y])∥F [Y ∈ R2]

= ∥2
(
UD3V⊤ −AnUDV⊤) ∥F [Equation H.1]

= ∥2
(
UD2 −AnU

)
D∥F

Assume U = UC where C ∈ Rn×r. Since U⊤U = Ir and U
⊤
U = In, we have C⊤C = Ir.

Furthermore,

∥2
(
UD2 −AnU

)
D∥F = ∥2

(
UCD2 −AnUC

)
D∥F [U = UC]

= ∥2
(
UCD2 −UΣC

)
D∥F [An = UΣU

⊤
]

= 2∥
(
CD2 −ΣC

)
D∥F.

Here the third equality follows from U
⊤
U = In. By a direct computation, the ith column of(

CD2 −ΣC
)
D is D3

iiCi −DiiΣCi. Therefore, the gradient condition of R2 can be written as∑
i,j

(
D3

iiCji −DiiΣjjCji

)2 ≤ α2µ2σ6
r (Y

∗) / (4κ∗)
2 (H.13)

We fix i in the left hand side of Equation H.13, we have∑
j

(
D2

ii −Σjj

)2
D2

iiC
2
ji ≤ α2µ2σ6

r (Y
∗) / (4κ∗)

2 (H.14)

where
∑

j C
2
ji = 1. From D2

ii ≥
σ2
r+1(Λ)

2 , we must have

min
j

|D2
ii −Σjj |2 ≤

∑
j

(
D2

ii −Σjj

)2
C2

ji ≤
α2µ2σ6

r (Y
∗)

(4κ∗)2
σ2
r+1(Λ)

2

. (H.15)

We use Equation H.14 for the second inequality. Equation H.15 is important in the proof because
this essentially guarantees that D2

ii must be close to some Σjj . This is because α2µ2σ6
r(Y

∗)

(4κ∗)2
σ2
r+1

(Λ)

2

is

guaranteed small according to Assumption H.1.

We decompose Cĩ into ξ1 + ξ2 where ξ1j = 0 for all j ≥ r + 1 and ξ2j = 0 for all j ∈ [r]. Since
⟨ξ1, ξ2⟩ = 0 and C⊤C = I,

∥ξ1∥2 + ∥ξ2∥2 = 1 (H.16)

In the following, we divide all the cases into different regimes based on which of the eigenvalues of
Λ is close to Dĩ̃i.
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Case 2.1:
(
When σ2

r+1(Λ)

2 ≤ D2
ĩ̃i
≤ αµσ3

r(Y
∗)

2
√
2κ∗σr+1(Λ)

+ σ2
r+1(Λ)

)
.

Notice that the first assumption in Assumption H.1 essentially guarantees a small e1 =
αµσ3

r(Y
∗)

2
√
2κ∗σr+1(Λ)

.

Hence, we have

α2µ2σ6
r (Y

∗) / (4κ∗)
2 ≥

∑
j

(
D2

ĩ̃i
−Σjj

)2
D2

ĩ̃i
C2

jĩ
[Equation H.13]

≥
∑
j≤r

∣∣σ2
j (Λ)−D2

ĩ̃i

∣∣2 ·D2
ĩ̃i
·C2

jĩ

≥
∣∣σ2

r(Λ)−D2
ĩ̃i

∣∣2 ·D2
ĩ̃i
· ∥ξ1∥2

≥
∣∣σ2

r(Λ)− e1 − σ2
r+1(Λ)

∣∣2 · σ2
r+1(Λ)

2
· ∥ξ1∥2.

Where in the last two inequalities, we use the condition σ2
r+1(Λ)

2 ≤ D2
ĩ̃i
≤ e1 + σ2

r+1(Λ) and that
e1 < (σ2

r(Λ)− σ2
r+1(Λ))/2 (follows from Assumption H.1).

By reordering the inequality, we have

∥ξ1∥ ≤ e1∣∣σ2
r(Λ)− e1 − σ2

r+1(Λ)
∣∣ (H.17)

Recall that Y = UDV⊤, then a⊤Y = 0 reduces to a⊤UDV⊤ = 0. Since both D,V ∈ Rr∗r are
full rank, then we have a⊤U = 0, in turn a⊤UC = 0 because U = UC. Denote b⊤

def
= a⊤U,

then

max
a:Y⊤a=0

a⊤Ana

∥a∥2
= max

a:a⊤UC=0

a⊤Ana

∥a∥2

= max
a:a⊤UC=0

a⊤UΛU
⊤
a

∥a∥2
[An = UΛU

⊤
]

= max
b:b⊤C=0

b⊤Λb

∥b∥2
[U

⊤
U = I]

(H.18)

Since a ∈ Span{U1,...,r+1}, we have bj = 0 for j > r + 1. From b⊤C = 0, we have b⊤Cĩ = 0,
which can be written as b⊤(ξ1 + ξ2) = 0. Since there are in total r constraints in b⊤C = 0,
there must exist a b satisfying the constraints b⊤C = 0, and the norm of br+1:n is relatively small
compared with the norm of b1:r. Specifically, denote C1:r to be the 1st to rth rows of C. We
consider b to be b1 + b2 such that b1i = 0 for i > r, and b2i = 0 for i ∈ [r]. We discuss two cases of
C1:r ∈ Rr∗r in the following.

Case 2.1.1: If C1:r is not full rank.

In this case, there exists b̃1 ∈ Rr such that ∥b̃1∥ > 0 and (b̃1)⊤C1:r = 0. Therefore, by denoting
b̄1:r = tb̃1 + b11:r, and b̄r+1:n = b2r+1:n. From the definition of b̄ and the fact that b⊤C = 0, we
have b̄⊤C = 0. By letting t → ∞, we have

max
b⊤C=0

b⊤Λb

∥b∥2
≥ b̄⊤Λb̄

∥b̄∥2
≥ σ2

r(Λ) (H.19)

Combining Equation H.19, Equation H.12 and the Assumption that D2
ĩ̃i

≤ e1 + σ2
r+1(Λ), this

implies,

HessH([Y])
[
θ1Y, θ1Y

]
⩽ −(σ2

r(Y
∗)− σr+1(Λ)− e1)∥θ1Y∥2F (H.20)

According to Assumption H.1, this satisfies the bound in Theorem H.1 with θ1Y being a negative
escaping direction.

Case 2.1.2 : If C1:r is full rank. In this case, we denote b2 = ξ2. Since C1:r is full rank, there
exists b1 to have (b11:r)

⊤C1:r = −(b2)⊤C; this is because (b11:r)
⊤C1:r = −(ξ2)⊤C has in total
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r constraints, and there are in total r parameters in b11:r. Specifically, one can choose b1 to be
b11:r = −ξ2C(C1:r)

−1 to satisfy b⊤C = 0. In addition, from the specific condition b⊤Cĩ = 0, we
know that

b1 · ξ1 + ∥ξ2∥2 = 0 (H.21)

By using the Cauchy inequality, this further implies that

∥b1∥ ≥ ∥ξ2∥2

∥ξ1∥
(H.22)

Since we only choose a specific b such that b⊤C = 0 holds, we have

max
b⊤C=0

b⊤Λb

∥b∥2
≥ (b1 + b2)⊤Λ(b1 + b2)

∥b1 + b2∥2

=
(b1)⊤Λb1 + (b2)⊤Λb2

∥b1∥2 + ∥b2∥2

≥ (b1)⊤Λb1

∥b1∥2 + ∥ξ2∥2

≥ ∥b1∥2 · σ2
r(Λ)

∥b1∥2 + ∥ξ2∥2

≥
∥ξ2∥4

∥ξ1∥2 · σ2
r(Λ)

∥ξ2∥4

∥ξ1∥2 + ∥ξ2∥2

= ∥ξ2∥2 · σ2
r(Λ)

(H.23)

where the first equality follows from the definition of b1 and b2; the second inequality follows
from the assumption that Λ is PSD, and b2 = ξ2; the third inequality follows from the fact that
b1i = 0 for i > r; the fourth inequality follows from Equation H.22; the last equality follows from
Equation H.16. By using Equation H.18, this can be written as

max
a:Y⊤a=0

a⊤Ana

∥a∥2
≥ ∥ξ2∥2 · σ2

r(Λ) (H.24)

By the definition in Equation H.10 and Equation H.12, we have

HessH([Y])
[
θ1Y, θ1Y

]
= 2min

i
D2

ii · ∥a∥2 − 2a⊤Ana [Equation H.12]

≤ 2D2
ĩ̃i
· ∥a∥2 − 2σ2

r(Λ)∥ξ2∥2 · ∥a∥2 [Equation H.24]

= 2D2
ĩ̃i
· ∥a∥2 − 2σ2

r(Λ)(1− ∥ξ1∥2) · ∥a∥2 [∥ξ1∥2 + ∥ξ2∥2 = 1]

≤
(
−2σ2

r(Λ)(1− ∥ξ1∥2) + 2e1 + 2σ2
r+1(Λ)

)
∥θ1Y∥2

where the last inequality follows from D2
ĩ̃i
≤ e1 + σ2

r+1(Λ) and the fact that ∥θ1Y∥ = ∥a∥. Finally,
by applying Equation H.17 to control ∥ξ1∥, we conclude that

HessH([Y])
[
θ1Y, θ1Y

]
≤ −2

(
σ2
r(Λ)

(
1− e21∣∣σ2

r(Λ)− e1 − σ2
r+1(Λ)

∣∣2
)

− e1 − σ2
r+1(Λ)

)
∥θ1Y∥2

(H.25)

According to the second assumption in Assumption H.1, Equation H.25 guarantees an escape direc-
tion.

Case 2.2:
(
When D2

ĩ̃i
> e1 + σ2

r+1(Λ)
)
.

Recall the first assumption in Assumption H.1, we have e1 is small enough, which is viewed as an
error term. In the following, we will show that θ2Y is the escaping direction. We have

min
j

D2
ĩ̃i
|D2

ĩ̃i
−Σjj |2 ≤ D2

ĩ̃i

∑
j

(
D2

ĩ̃i
−Σjj

)2
C2

jĩ
≤ α2µ2σ6

r (Y
∗)

(4κ∗)2
(H.26)
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σ2
r − e2 σ2

rσ2
r+1 + e1σ2

r+1

Figure 5: The value of Dĩ̃i must be close to some σi(Λ) according to Equation H.26. If D2
ĩ̃i

>

σ2
r+1 + e1, then we must have D2

ĩ̃i
≥ σ2

r − e2.

where we use Equation H.14 in the last inequality.

Recall that Assumption H.1 guarantees small e1 and e2 , by combining Equation H.26 and the
assumption D2

ĩ̃i
> σ2

r+1(Λ) + e1, we must have

D2
ĩ̃i
≥ σ2

r(Λ)− e2 (H.27)

where e2 is defined in Assumption H.1. Otherwise, if σ2
r+1(Λ) + e1 < D2

ĩ̃i
< σ2

r(Λ) − e2, this
contradicts to Equation H.26; see an illustration of this fact in Figure 5.

In this scenario, we consider the escaping direction θ2Y to be Y −Y∗Q. From the fact that Dii ≥
Dĩ̃i, we have

α2µ2σ6
r (Y

∗) / (4κ∗)
2 ≥

n∑
i=1

n∑
j=1

(
D2

ii −Σjj

)2
D2

iiC
2
ji [Equation H.13]

≥
n∑

i=1

n∑
j=r+1

∣∣σ2
j (Λ) + e2 − σ2

r(Λ)
∣∣2 ·D2

iiC
2
ji

where Equation H.27 and the first assumption in Assumption H.1 guarantees the last inequality
because e2 is small with respect to σ2

r(Λ)− σ2
r+1(Λ). Therefore,

n∑
i=1

n∑
j=r+1

D2
iiC

2
ij ≤

e23∣∣σ2
r(Λ)− e2 − σ2

r+1(Λ)
∣∣2 (H.28)

where e3 is defined in Assumption H.1. Recall that e3 is small enough, guaranteed in Assumption
H.1. Also recall that e2 = e1√

2
, which is guaranteed to be small enough as in the first assumption in

Assumption H.1, so σr(Λ)2 − e3 − σ2
r+1(Λ) > 0.

Denote Σ(r+1):n to be a diagonal matrix with only r + 1th to nth eigenvalues of Σ, then we have

⟨An −X∗,YY⊤⟩ = ⟨An −X∗,UD2U⊤⟩

= ⟨An −X∗,UCD2C⊤U
⊤⟩

= ⟨Σ(r+1):n,CD2C⊤⟩

≤ σ2
r+1(Λ)

n∑
j=r+1

∑
i

C2
ijD

2
ii

≤
e23σ

2
r+1(Λ)∣∣σ2

r(Λ)− e2 − σ2
r+1(Λ)

∣∣2
(H.29)

where the last inequality follows from Equation H.28. Equation H.29 directly implies,

⟨An −X∗, θ2Y(θ2Y)⊤⟩ = ⟨An −X∗,YY⊤⟩

≤
e23σ

2
r+1(Λ)∣∣σ2

r(Λ)− e2 − σ2
r+1(Λ)

∣∣2 (H.30)
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because (An −X∗)Y∗ = 0 and θ2Y = Y −Y∗Q.

Recall X∗ = Y∗Y∗⊤. A simple calculation yields

Y(θ2Y)⊤ −X∗ + θ2Y(θ2Y)⊤ = Y(θ2Y)⊤ + θ2YY⊤ (H.31)

and by using Equation H.1,

⟨gradH([Y]), θ2Y⟩ =
〈
2
(
YY⊤ −An

)
Y, θ2Y

〉
=
〈
2(YY⊤ −An), θ

2
YY⊤〉

=
〈
YY⊤ −An, θ

2
YY⊤ +Y(θ2Y)⊤

〉
[first argument is symmetric]

=
〈
YY⊤ −An, θ

2
Y(θ2Y)⊤ +YY⊤ −X∗〉 .

(H.32)

where the last equality follows from Equation H.31.

HessH([Y])
[
θ2Y, θ2Y

]
=
∥∥Y(θ2Y)⊤ + θ2YY⊤∥∥2

F
+ 2

〈
YY⊤ −An, θ

2
Y(θ2Y)⊤

〉
[Equation H.1]

=
∥∥YY⊤ −X∗ + θ2Y(θ2Y)⊤

∥∥2
F
+ 2

〈
YY⊤ −An, θ

2
Y(θ2Y)⊤

〉
[Equation H.31]

=
∥∥θ2Y(θ2Y)⊤

∥∥2
F
+
∥∥YY⊤ −X∗∥∥2

F
+ 4

〈
YY⊤ −X∗, θ2Y(θ2Y)⊤

〉
− 2

〈
An −X∗, θ2Y(θ2Y)⊤

〉
=
∥∥θ2Y(θ2Y)⊤

∥∥2
F
− 3

∥∥YY⊤ −X∗∥∥2
F
+ 4

〈
YY⊤ −X∗,YY⊤ −X∗ + θ2Y(θ2Y)⊤

〉
− 2

〈
An −X∗, θ2Y(θ2Y)⊤

〉
=
∥∥θ2Y(θ2Y)⊤

∥∥2
F
− 3

∥∥YY⊤ −X∗∥∥2
F
+ 4

〈
YY⊤ −An,YY⊤ −X∗ + θ2Y(θ2Y)⊤

〉
+ 2

〈
An −X∗, θ2Y(θ2Y)⊤

〉
+ 4

〈
An −X∗,YY⊤ −X∗〉

=
∥∥θ2Y(θ2Y)⊤

∥∥2
F
− 3

∥∥YY⊤ −X∗∥∥2
F
+ 4

〈
An −X∗,YY⊤ −X∗〉

+ 2
〈
An −X∗, θ2Y(θ2Y)⊤

〉
+ 4

〈
gradH([Y]), θ2Y

〉
[Equation H.32]

This decomposes H([Y])
[
θ2Y, θ2Y

]
into 2 parts, which will be bounded separately.

First, for
∥∥θ2Y(θ2Y)⊤

∥∥2
F

− 3
∥∥YY⊤ −X∗

∥∥2
F

+ 2
〈
An −X∗, θ2Y(θ2Y)⊤

〉
+

4
〈
An −X∗,YY⊤ −X∗〉, we have∥∥θ2Y(θ2Y)⊤

∥∥2
F
− 3

∥∥YY⊤ −X∗∥∥2
F
+ 2

〈
An −X∗, θ2Y(θ2Y)⊤

〉
+ 4

〈
An −X∗,YY⊤ −X∗〉

≤ −
∥∥YY⊤ −X∗∥∥2

F
+ 2

〈
An −X∗, θ2Y(θ2Y)⊤

〉
+ 4

〈
An −X∗,YY⊤ −X∗〉 [Equation H.4]

= −
∥∥YY⊤ −X∗∥∥2

F
+ 2

〈
An −X∗, θ2Y(θ2Y)⊤

〉
+ 4

〈
An −X∗,YY⊤〉 [⟨An −X∗,X∗⟩ = 0]

≤ −
∥∥YY⊤ −X∗∥∥2

F
+ 6

e23σ
2
r+1(Λ)∣∣σ2

r(Λ)− e2 + σ2
r+1(Λ)

∣∣2 [Equation H.29,Equation H.30]

≤ −2(
√
2− 1)σ2

r (Y
∗)
∥∥θ2Y∥∥2F + 6

e23σ
2
r+1(Λ)∣∣σ2

r(Λ)− e2 + σ2
r+1(Λ)

∣∣2 [Equation H.3]

Second, for
〈
gradH([Y]), θ2Y

〉
,〈

gradH([Y]), θ2Y

〉
≤∥gradH([Y])∥F

∥∥θ2Y∥∥F
≤ ασ2

r (Y
∗)
∥∥θ2Y∥∥2F
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where the last inequality is because ∥gradH([Y])∥F ⩽ αµσ3
r (Y

∗) / (4κ∗). According to the
definition of R2 in Equation 3.3, Y ∈ R2 also implies d ([Y], [Y∗]) > µσr (Y

∗) /κ∗, then

∥gradH([Y])∥F ⩽ αd ([Y], [Y∗])σ2
r (Y

∗) /4 = α
∥∥θ2Y∥∥F σ2

r (Y
∗) /4

By combining the above three inequalities, we have

HessH([Y])
[
θ2Y, θ2Y

]
=
∥∥θ2Y(θ2Y)⊤

∥∥2
F
− 3

∥∥YY⊤ −X∗∥∥2
F

+ 4
〈
gradH([Y]), θ2Y

〉
+ 2

〈
An −X∗, θ2Y(θ2Y)⊤

〉
+ 4

〈
An −X∗,YY⊤ −X∗〉

≤ (α− 2(
√
2− 1))σ2

r (Y
∗)
∥∥θ2Y∥∥2F + 6

e23σ
2
r+1(Λ)∣∣σ2

r(Λ)− e2 − σ2
r+1(Λ)

∣∣2
≤

(
(α− 2(

√
2− 1))σ2

r (Y
∗) + 6

α2σ4
r (Y

∗)σ2
r+1(Λ)/16∣∣σ2

r(Λ)− e2 − σ2
r+1(Λ)

∣∣2
)∥∥θ2Y∥∥2F

where the last inequality follows from µσr (Y
∗) /κ∗ ≤ d ([Y], [Y∗]) = ∥θY∥F and the definition

of e3 in Assumption H.1.

Finally, according to the third assumption in Assumption H.1, one can guarantee the right-hand side
of this bound is negative, which implies that θ2Y is the escaping direction in this scenario.

Combining all the discussion, this finishes the proof of this theorem.

Remark H.3. Theorem H.1 suggests that if some spectral values of Y are small, then the descent
direction θ1Y should increase them, If all of the spectral values of [Y] are large enough compared
with σr(Λ), then θ2Y should directly point [Y] to [Y∗]. Theorem H.1 fully characterizes the regime
of Y with respect to different minimum spectral values of Y.

• If any spectral value of YY⊤ is smaller than σ2
r+1(Λ)

2 , then we have

HessH([Y])
[
θ1Y, θ1Y

]
≤ −

σ2
r+1(Λ)

2
∥θ1Y∥2

• When the smallest absolute spectral value of YY⊤ is larger than σ2
r+1(Λ)

2 and smaller than e1 +

σ2
r+1(Λ), then we have

HessH([Y])
[
θ1Y, θ1Y

]
≤ −2

(
σ2
r(Λ)

(
1− e21∣∣σ2

r(Λ)− e1 − σ2
r+1(Λ)

∣∣2
)

− e1 − σ2
r+1(Λ)

)
∥θ1Y∥2

• If all of the spectral values of YY⊤ is larger than αµσ3
r(Y

∗)

2
√
2κ∗σr+1(Λ)

+ σ2
r+1(Λ), then we have

HessH([Y])
[
θ2Y, θ2Y

]
is smaller than(

(α− 2(
√
2− 1))σ2

r (Y
∗) + 6

α2σ4
r (Y

∗)σ2
r+1(Λ)/16∣∣σ2

r(Λ)− e2 − σ2
r+1(Λ)

∣∣2
)∥∥θ2Y∥∥2F

Remark H.4. The eigengap assumption is crucial in discussing the three regions of the minimum
singular value of Y. Without this eigengap assumption and under the current quotient geometry,
the third regime cannot lead to a strong convexity result because any span on the eigenspace are
all global solutions. We comment that it is possible to change the quotient geometry to show a new
strong convexity result when the eigengap assumption does not hold.

Finally, we look at the last main result. Theorem 3.4 guarantees that when Y ∈ R3, the magnitude
of the Riemannian gradient descent is large. The proof of Theorem 3.4 directly follows from the
proof of (Luo & Garcı́a Trillos, 2022) without any modification. Hence, we do not repeat it here.
Notice that Y ∈ R3 does not require Assumption 3.1 because R3 describes the case that [Y] is far
away from the FOSP.

Theorem 3.4 ((Regions with Large Riemannian Gradient of Equation 1.5).
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1. ∥gradH([Y])∥F > αµσ3
r (Y

∗) / (4κ∗) , ∀Y ∈ R′
3;

2. ∥gradH([Y])∥F ⩾ 2
(
∥Y∥3 − ∥Y∥ ∥Y∗∥2

)
> 2

(
β3 − β

)
∥Y∗∥3 , ∀Y ∈ R′′

3 ;

3. ⟨gradH([Y]),Y⟩ > 2(1− 1/γ)
∥∥YY⊤

∥∥2
F
, ∀Y ∈ R′′′

3 .

In particular, if β > 1 and γ > 1, we have the Riemannian gradient of H([Y]) has large magnitude
in all regions R′

3,R′′
3 and R′′′

3 .
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