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ABSTRACT

In-Context Learning (ICL) enables transformer-based language models to adapt
to new tasks by conditioning on demonstration examples. However, traditional
example-driven in-context learning lacks explicit modules for knowledge retrieval
and transfer at the abstraction level. Inspired by cognitive science, specifically
schema theory, which holds that humans interpret new information by activating
pre-existing mental frameworks (schemas) to structure understanding, we intro-
duce SCHEMA-ACTIVATED IN-CONTEXT LEARNING (SA-ICL). This proposed
framework extracts the representation of the Building Blocks of Cognition for the
reasoning process instilled from prior examples, creating an abstracted schema —
a lightweight, structured template of key inferential steps and their relationships
— which is then used to augment a model’s reasoning process when presented
with a novel question. We demonstrate that a broad range of large language mod-
els (LLMs) lack the capacity to form and utilize internal schema-based learning
representations implicitly, but instead benefit significantly from explicit schema-
based scaffolding. Across chemistry and physics questions from GPQA dataset,
our empirical experiment results show that SA-ICL consistently boosts perfor-
mance (up to 39.67%) when the single demonstration example is of high qual-
ity, which simultaneously reduces reliance on the number of demonstrations and
enhances interpretability. SCHEMA-ACTIVATED IN-CONTEXT LEARNING not
only bridges disparate ICL strategies ranging from pattern priming to Chain-of-
Thought (CoT) prompting, but also paves a new path for enhancing human-like
reasoning in LLMs.

1 INTRODUCTION

In-Context Learning (ICL) has emerged as a dominant approach for adapting large language models
(LLMs) to new tasks without requiring fine-tuning or additional parameter updates. By conditioning
on a set of demonstrations, ICL enables LLMs to leverage prior knowledge and generalize to unseen
examples. Despite its effectiveness, traditional ICL does not align fully with how humans acquire
and apply knowledge in real-world learning scenarios, as it lacks mechanisms for episodic memory
and context-rich encoding (Li et al., 2024a)).

Learning in humans is inherently structured, involving knowledge abstraction, retrieval, and adaptive
reasoning. Research in cognitive science suggests that humans develop mental frameworks, called
schemas, that organize prior knowledge and facilitate problem solving in new contexts (Rumelhart
and Ortonyl, |1977). These schemas enable efficient retrieval of relevant information and guide in-
terpretation and action, reducing reliance on explicit demonstrations (Rumelhart and Ortony, [1977).
Critically, schema activation, consisting of bringing the proper schema into working memory, is es-
sential for effective comprehension and analogical transfer; retrieval alone may not suffice Gick and
Holyoak] (1983)); |Gentner| (1983)).

Recent evidence in the behavior of LLMs mirrors this limitation. For instance, recent models such
as GPT-4 retrieve numerous plausible analogs with high recall, but often select incorrect ones due
to their reliance on surface-level similarity rather than structural alignment (Puranam et al., [2025).
This setback calls for mechanisms that go beyond retrieval, mobilizing schema-like abstractions to
guide reasoning.

Inspired by these cognitive insights, we introduce SCHEMA-ACTIVATED IN-CONTEXT LEARNING
(SA-ICL), a schema-driven retrieval and reasoning framework for language models. Rather than
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retrieving task-specific demonstrations alone, SA-ICL first guides the model to construct a problem
schema, which acts as its corresponding structured abstraction. Prior examples are then retrieved
using these schemas as keys, and critically, their schemas are then used to activate and refine the
schema of the new problem. This activation process enables LLMs to solve problems more ef-
ficiently by integrating structured prior knowledge into current reasoning, addressing the structural
mapping gap observed in analogical reasoning of LLMs (Puranam et al.|[2025)). Echoing approaches
using latent graph schemas for fast transfer learning (Guntupalli et al.| 2023)), our method enforces
structured abstraction as the medium for retrieval, reasoning, and inference.

A particularly important domain for this approach is scientific reasoning. Although physics and
chemistry may appear distinct, their foundational problem-solving strategies often converge on
shared relational structures. A prime example is the existence of a “conservation law” schema, a
structural template for identifying initial and final states around a core principle. Using schema
activation, SA-ICL enables cross-domain transfer, where schemas developed in one scientific field
can scaffold reasoning in another, similar to analogical transfer, which depends on mapping hidden
relational structures rather than surface similarities (Kang et al., 2025)).

We evaluate SA-ICL on the graduate-level scientific benchmark Graduate-Level Google-Proof
O&A (GPQA dataset) (Rein et al., 2024)), which consists of challenging PhD-level physics, chem-
istry, and biology multiple-choice questions that require structured reasoning. Our experiments are
particularly focused on the physics and chemistry subsets of GPQA dataset. The results show that
leveraging SA-ICL enhances accuracy compared to standard ICL (One-Shot) in most scenarios.
Most notably, our framework improves accuracy by up to 39.67% over One-Shot for chemistry ques-
tions and by up to 34.45% for physics questions, when the retrieved examples are of high similarity.
Importantly, we demonstrate that the One-Shot prompting alone does not provide the optimal gain
in LLMs’ performance during in-context learning, whereas utilizing activated schemas consistently
improves reasoning efficiency and effectiveness, especially when the knowledge density is high. We
further analyze model outputs to illustrate the interpretability benefits of schema activation.

Our contributions are as follows:

* We propose SCHEMA-ACTIVATED IN-CONTEXT LEARNING (SA-ICL), a novel frame-
work that integrates schema construction, schema-guided retrieval, and schema activation
to enable more efficient, generalizable, and interpretable in-context learning.

* We perform comprehensive evaluations comparing SA-ICL with traditional ICL and
retrieval-only baselines across multiple scientific reasoning benchmarks, demonstrating
consistent improvements in overall accuracy.

* We provide interpretability analyses showing that schema activation facilitates more struc-
tured reasoning processes and reduces token reliance, offering a path toward more efficient
inference-time reasoning.

Overall, our findings suggest that SA-ICL advances beyond example-driven ICL by bridging re-
trieval with schema activation, mirroring human cognitive strategies more closely. By leveraging
abstract schemas to refine reasoning rather than relying solely on explicit demonstrations, schema-
driven ICL reduces dependence on examples and makes inference more efficient and interpretable.

2 RELATED WORK

2.1 SCHEMA THEORY IN COGNITIVE PSYCHOLOGY

Schema theory is one of the fundamental theories of cognitive psychology. This theory conceptual-
izes how humans organize and structure knowledge into coherent mental frameworks, or schemas,
that are constructed from prior experiences and serve as interpretive structures for understanding
new information Rumelhart and Ortony|(1977). These abstract structures are dynamic; they actively
guide how prior knowledge is encoded and retrieved and how the new information is perceived
(Brewer and Treyens, |1981). Classic research in psychology from decades ago, like Bartlett| (1932)
and |Piaget| (1952) established that human learning involves either interpreting new information into
existing schemas (assimilation), or modifying these existing schemas to incorporate novel knowl-
edge (accommodation). Activated schemas from the lens of prior knowledge provide a cognitive
mechanism that enables efficient problem-solving and reasoning by guiding the retrieval process
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and allowing individuals to make inferences and fill in missing details (Anderson and Pichert, |1978;
Piaget, |1952)). This model of human cognition, where activating the correct abstract structure is key
to interpreting a new problem, provides the direct theoretical motivation for the SA-ICL framework.

2.2 IN-CONTEXT LEARNING METHODOLOGIES

2.2.1 EXAMPLE-DRIVEN APPROACHES (E-ICL)

One-Shot and few-shot learning paradigms (Brown et al.l 2020) have been adopted as computa-
tionally efficient methodologies (Parnami and Leel |2022)) for enabling language models to perform
inference-time in-context learning without requiring internal parameter updates. Example-driven
ICL utilizes predefined question-answer pairs to change the probability distribution of output tokens
conditioned on user queries and prior knowledge (Wang et al.,|2020; Min et al., [2022b).

Despite state-of-the-art (SOTA) LLMs achieving substantially extended context windows, few-shot
learning continues to demand extensive computational resources when the number of demonstra-
tion samples and their associated token counts increase, resulting in inevitable computational cost
inflation (Keles et al.|[2023)). Furthermore, LLMs demonstrate sensitivity to performance worsening
when processing long in-context demonstrations for complex reasoning tasks, making example-
driven ICL a compromise for tasks characterized by complex reasoning processes (L1 et al., 2024b).
While example-driven ICL establishes a connection between human-interpretable prompting and
machine learning, LLMs require additional mechanisms to achieve full alignment between their
computational processes and human cognitive patterns (Mahowald et al., 2024)).

The majority of existing ICL research — including MetalCL and PCW — conceptualizes LLMs pri-
marily as pattern-matching systems operating over prompt examples, without comprehensive anal-
ysis of their internal abstraction mechanisms (Min et al., |2022a; [Ratner et al., 2023). Current ap-
proaches show fundamental limitations, including high task specificity and response rigidity, rather
than enabling a generalization across diverse domains or a naturalistic use of real-world knowledge
(Yang et al.||2022). Additionally, empirical experiments indicate that traditional example-driven ICL
achieves optimal performance only when context lengths extend to hundreds of thousands of tokens
through multi-shot prompting (Agarwal et al.,2024). SA-ICL advances the exploration of how lan-
guage models can generate reasoning processes through their internal knowledge representations in
a human-interpretable manner, simultaneously optimizing for performance quality, computational
cost, and token efficiency.

2.2.2 ABSTRACTION-DRIVEN APPROACHES

While most existing in-context learning methods were heavily example-driven, previous works
raised key issues (Saglam et al., 2025} |[Lampinen et al., 2024; Dong et al., 2022). Recently, the
machine learning (ML) community has been witnessing a growing development of in-context learn-
ing approaches in a broader perspective (Lampinen et al., 2024)), including abstraction-driven in-
context learning (A-ICL) (Swaminathan et al., 2023)), which could contribute to understanding the
way models understand and utilize context. Although previous works have linked the mechanism
of induction heads in LLMs to the contextual maintenance and retrieval (CMR) model in human
episodic memory (Olsson et al., |2022; [Polyn et al., |2009)), direct evidence for high-level schema
induction in language models remains limited.

In contrast, our work adopts an A-ICL approach that explicitly extracts general reasoning steps,
conducting experiments at a higher level than task-specific knowledge. Prior studies have shown that
fixed, structured generation — enabled by carefully designed prompting mechanisms or properly
constrained decoding strategy — can improve LLMs’ performance on reasoning tasks (e.g., ReAct,
Program-of-Thoughts) (Yao et al., 2023 |Chen et al.,2023)). Furthermore, retrieval of previous LLM-
generated schemas or demonstrations has been shown to be autoregressively beneficial for ICL, as
in prompt-retrieval and retrieval-augmented methods (Rubin et al., [2022; [Shi et al., 2024).

2.2.3 CHAIN-OF-THOUGHT REASONING

Chain-of-Thought (CoT) reasoning has recently arisen as a critical strategy within ICL by explicitly
outlining intermediate steps before arriving at a final answer to enhance the reasoning capabilities
(Weit et al., 2022; [ Kojima et al., [2022)), thus significantly improving LLM performance on tasks that
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require multi-step inference (Nye et al. 2021} |Wang et al.l[2023). However, CoT reasoning usually
operates within example-driven reasoning frameworks, where explicit reasoning details are provided
through a few demonstrations to guide model outputs (Zhang et al.| 2023). Various methods have
been explored in recent studies to optimize and extend CoT. Multiple thought paths are sampled for
reasoning and aggregated before inference to improve output reliability in Self-Consistency Prompt-
ing (Wang et al.l [2023). Moreover, in Least-to-Most prompting, reasoning is progressively refined
by starting with simpler sub-questions (Zhou et al., [2022).

Our proposed framework, SCHEMA-ACTIVATED IN-CONTEXT LEARNING (SA-ICL), although
sharing conceptual foundations, constitutes a fundamentally distinct computational paradigm. Tra-
ditional CoT prompting operates as an instance-specific methodology wherein the model constructs
novel and frequently verbose linear reasoning sequences tailored to each input query, consequently
necessitating substantial human engineering of input queries to achieve satisfactory performance on
specific tasks (Stechly et al.| [2024). The instance-specific trajectories also exhibit limited gener-
alizability across disparate task domains (Stechly et al., 2024). In contrast, SA-ICL incorporates
structured schema retrieval mechanisms, enabling language models to access and retrieve abstract,
generalized schemas from their prior knowledge, thereby automatically adapting reusable cognitive
abstractions to novel problems during inference, rather than depending upon task-specific demon-
strations. SA-ICL serves two purposes: enhancing interpretability and facilitating knowledge trans-
fer. These characteristics render SA-ICL particularly effective for complex reasoning tasks requir-
ing high-level conceptual abstraction, including scientific inquiry and hypothesis generation.

2.3 OTHER HUMAN-INSPIRED PROMPTING METHODS

Wang and Zhao| (2024)) applied human introspective reasoning strategies by splitting the question-
answer queries into multiple metacognitive prompting steps to improve LLMs’ capability in ques-
tion understanding. This work explores the problem of understanding the gap between human and
LLM reasoning processes. [Zhou et al.| (2023) prompting attempted to address the knowledge loss
for LLMs in tasks with chaotic input contexts, where relevant information is obscured by distrac-
tors, by guiding LLMs to segment and analyze the input systematically, summarizing the findings
as they go, before drawing an answer, to reduce the knowledge loss in long-context scenarios ef-
fectively. Retrieval-Augmented Generation (RAG) provides LLMs with access to prior knowledge
within a given knowledge base for future queries on similar tasks, which can be considered long-
term memories for LLMs. However, traditional RAG limits the quality of the retrieval strategy and
the corresponding reasoning logic learned from prior knowledge examples by the quality of ex-
isting knowledge base examples. It remains a challenge for existing RAG techniques to adapt to
dynamic and interconnected knowledge bases |Gutiérrez et al.| (2025). SA-ICL is built on top of
the RAG paradigm and leverages schema theory, which humans use to adapt to the dynamic and
interconnected knowledge base, by retrieving abstracted reasoning logic from memorized examples
for activating a schema for the new problem. Our work emphasizes using human cognitive schemas
to fill in the knowledge gap of LLMs between their perceived examples and similar tasks, where
the ground truth answer is not apparent in the input context. In contrast, the knowledge needed is
closely related.

3 SCHEMA-ACTIVATED IN-CONTEXT LEARNING

We propose this innovative ICL framework, SCHEMA-ACTIVATED IN-CONTEXT LEARNING (SA-
ICL), which mimics how humans use previous examples to activate a schema, enabling a better
understanding and solution to a new problem. This framework can be applied to any trained large
language model and combined with existing prompting techniques. This framework is simple, yet
also flexible and extendable, providing a reliable and transparent explanation of how a language
model learns from previous examples and turns these abstractions into a powerful schemas that
guides it in solving new problems.

3.1 OVERALL WORKFLOW

SA-ICL operationalizes schema theory from cognitive science in five steps, aligning abstract
schema formation with language model retrieval and reasoning. (i) Problem Representation: Given
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LLM Black-Box

Target Problem Problem Rep F )

‘You have 1000 coins, of which 4 are lighter fake coins. You . i i and problem
have a balance scale that can compare the weights of two sets ——#= . Balance scale problem with limited weightings

of coins. What i the maximum number of real coins you can e Mustfind maximum guaranteed real coins

guarantee to identify using the scale twice? e Need strategic partitioning scheme

Prior Schema Retrieval
Adversarial optimization problems require strategic resource allocation to
guarantee outcomes under worst-case conditions

o Information Theory: Actions should maximally reduce uncertainty
o Strategic Partitioning: Divide sample space to maintain guarantees
o Minmax Strategies: Optimal solutions in worst-case scenarios

Episodic Examples Retrieval
Retrieves subset of influential past episodic examples for target problem: —
-
e 12-ball Problem: Find the different-weight ball using 3 weighings
e Nim Games: Optimal strategy under worst-case opponent play
e Prisoner’s Dilemma: Game theory variants with minmax strategies M
emory
v
Schema-Guided Problem Solving Schema A (: 1A
Use optimal partitioning: 286/286/428 or 287/142/3/142/426. Classic balance scale problems involve dividing coins into groups to extract
First weighing reveals fake distribution; second weighing maximum information per weighing:
conditionally isolates a guaranteed fake-free pile. Through <
worst-case analysis of all possible outcomes, the maximum e Conditional branching: Different branch per weighting outcome

quaranteed number of real coins is precisely 142 o Pile optimization: Optimal pile sizes for maximum real coins
o Partitioning: Uneven groups is historically optimal for similar tasks

Figure 1: SA-ICL applied to a coin-weighing optimization problem. The framework demonstrates
five sequential stages: (i) generates problem representation to form an initial schema recognizing
this as a mathematical optimization and partitioning challenge, (ii) retrieves a similar prior schema to
identify relevant properties of the question, (iii) gathers a subset of past influential episodic examples
that are relevant to solve the target problem, (iv) performs schema activation and integrates retrieved
knowledge to develop optimal mathematical strategies adapted to solve the target problem, and
(v) conditions the target problem to the adapted schema and utilizes schema-guided inference to
eventually conclude that the maximum number of guaranteed real coins is 142.

Algorithm 1 SCHEMA-ACTIVATED IN-CONTEXT LEARNING

Require: Problem z; Schemas S = {Si,...,Sn}; Episodic set £ = {e1,...,em}; Memory M =
{(Si, ej,wi;(t))}; Representation R; Similarity sim; Activation f; LLM; Threshold 7 € [0, 1]
Ensure: y, Spew

1: S + R(x)

2: i< argmax;eq1,... N} sim(Sz,S:)
3: S — S»;

4: £, 0
5:forje{l,...,M}do
6: if w;; (t) > 7 then
7: gq— — (‘f—r @] {6]'}
8: end if

9: end for A

10: new<_f(8957 3 T)
11: y < LLM(z, Snew)
12: return (y, Snew)

an input problem z, the LLM constructs a representation S,, = R(z). This representation functions
as the initial schema for the new problem. (ii) Prior Schema Retrieval: SA-ICL retrieves the most
relevant schema S € S that maximizes similarity with S,. (iii) Episodic Examples Retrieval:
Conditioned on the retrieved schema S, SA-ICL collects a subset of episodic examples whose de-
cayed association weights w;; (¢) exceed a threshold 7. This yields a set &, of examples that remain
influential for the current reasoning. (iv) Schema Activation (Assimilation / Accommodation):
The retrieved schema S and episodic set &, are integrated with the current problem representation,

producing a new activated schema: S,y = (S, S , f:'T) This integration may proceed through
assimilation when prior schema fits well, or accommodation when internal restructuring is required.
(v) Schema-Guided Problem Solving: Finally, the LLM solves the task by conditioning on the
input = and the adapted schema Sey: ¥ = LLM(2, Spew )-

[Figure T|describes the conceptual pipeline of SA-ICL.[Section A]details the complete mathematical
formalization of each step in the framework. summarizes SA-ICL framework.
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4 MAIN EXPERIMENTS

4.1 TECHNICAL SET UP

All experiments used standardized OpenAl-style API endpoints. For local runs, we used an NVIDIA
A40 GPU with 24GB RAM. In addition to model inference for QWen-3 and Llama-3.1, all em-
bedding generation and reranker computations were also performed on the A40 GPU, with results
cached locally for faster loading. summarizes the model families we used and the corre-
sponding execution environments.

4.2 TASKS AND METRICS

Tasks. We designed closed-ended multiple-choice question-answering tasks wherein language mod-
els received individual questions per iteration and applied different reasoning approaches before
generating final answers. The experimental design incorporated multiple knowledge density levels
to evaluate model performance across varying degrees of prior knowledge acquisition. Closed-ended
questions were selected to ensure fair comparison between baseline methods and the SA-ICL.

Datasets. The experiments primarily utilized GPQA dataset, a rigorously annotated benchmark con-
taining questions in chemistry and physics that were subjected to comprehensive human annotation.
The chemistry subset was employed for initial refinement of schema-based prompting strategies,
while the physics subset was also used during the experiment stage. These subsets are designated
as GPQA-Chemistry and GPQA-Physics, respectively. To simulate scenarios with dense knowledge
bases. GPT-40 was employed to generate three synthetic variants for each problem in the database
through criteria-based prompting (Section C). The criteria defined three distinct similarity levels:
Essentially Same, Similar, and Different. The synthetic datasets are designated GPQA-Chemistry-
Synthetic and GPQA-Physics-Synthetic. showed the similarity between the problems in
the synthetic datasets and the target problems in the GPQA dataset.

Evaluation. For each independent question, the final responses were compared with the ground
truths, which led to a downstream performance. We acknowledge that this is an indirect metric.

4.3 EXPERIMENTAL SETUP

4.3.1 HIGH QUALITY EXAMPLES

The first specific experiment discussed in this paper was a direct response to our research ques-
tion: Are examples all we need? In particular, we investigated the LLMs’ performances when the
examples were of high quality.

We acknowledge the inherent challenges in curating high-quality exemplars for effective model
prompting. To address this, we adopted two distinct strategies:

1. Synthetic Similarity: We generated synthetic data using controlled prompts to simulate
varying levels of similarity between the generated examples and the target questions (see
[Section C]for detailed prompt templates). We refer to this as synthetic similarity.

2. Latent Similarity: We used Cohere’s Rerank 3.5 to retrieve semantically related exam-
ples from GPQA dataset and the synthetic pool, employing cross-encoder rerankers (see
for detailed analysis). We refer to this as latent similarity.

In this experiment, the LLMs were provided with Essentially Same questions as One-Shot examples.
We then compare this result with the LLM groups that were provided with schemas. We reported
the gaps to answer the question and argue that examples alone were not always sufficient.

4.3.2 DENSITY OF KNOWLEDGE BASE ON SCHEMA & DOWNSTREAM PERFORMANCES

To better understand the extent to which SA-ICL depends on the quality of examples when leverag-
ing One-Shot strategies, we conducted systematic experiments by varying the density of examples
provided to the LLMs. More specifically, the levels of example relevance from highest to lowest
quality for both approaches are listed below:

 Synthetic Similarity: Essentially Same — Similar — Different
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Figure 2: The performances of six LLMs on Chemistry and Physics questions using SA-ICL and
example-driven One-Shot prompting, with two retrieval methods (Section 4.3.2)). The black dotted
line represents the zero-shot performance.

» Latent Similarity: High — Medium — Low

Notably, we found that a substantial portion of High examples correspond to Essentially Same
(61.18% in chemistry and 67.44% in physics). This experiment investigates both whether SA-ICL
is still useful even when the example is of low quality, and when SA-ICL results in the greatest
benefits. In our experiments with Latent Simiarity, High indicates there is only one example that is
of the highest similarity, while Medium includes four other examples that had a smaller similarity
scores and Low includes eight other examples that are less similar to the question compared to the
top@1 example.

4.3.3 INTERPRETABILITY EXPERIMENTS

As an investigation into the underlying reasoning mechanisms in SA-ICL, we conducted inter-
pretability experiments to analyze decision patterns in model reasoning and confidence in outputs.
We selected a representative chemistry problem from GPQA-Chemistry and compared three in-
context learning techniques: (1) One-Shot + schema, (2) pure One-Shot, and (3) One-Shot + CoT.

For each approach, we extracted token-level probability distributions over multiple-choice options
from the model’s output logits. This analysis reveals the confidence each method has in arriving at
its final answer and looks into whether SA-ICL achieves correct responses through schema activa-
tion or surface-level pattern matching. We also analyzed response length and structure to evaluate
reasoning efficiency, testing our hypothesis that SA-ICL enables more direct knowledge access
compared to the verbose reasoning typically required by CoT approaches.

5 MAIN RESULTS

5.1 HIGH-QUALITY EXAMPLES DO NOT LEAD TO OPTIMAL PERFORMANCE WITHOUT
SCHEMA ACTIVATION

Language models achieved moderate accuracy when only provided with high-quality examples
(Section 4.3.2)), yet their performance remained suboptimal compared to models employing ex-
plicit schema-based learning techniques (Figure 2). This performance gap suggests that relying
solely on models’ internal representations for high-level abstraction fails to fully exploit the learn-
ing potential of quality demonstrations. When models were conditioned to implement schema-based
learning through structured guidelines and templates (Algorithm TJ), we observed consistently sig-
nificant improvements in downstream task performance. These performance gains were consistent
even when using domain-agnostic schemas without task-specific fine-tuning for physics or chem-
istry and [F). We also conducted an experiment with GPT-5 on a different benchmark

(Section G).
5.2 DENSITY OF KNOWLEDGE AFFECTS THE PERFORMANCE OF SA-ICL
The experimental results presented in demonstrate a stratified performance profile for

the SA-ICL methodology. Under optimal conditions, when the provided exemplar exhibits essen-
tial equivalence to the target question, the SA-ICL approach achieves complete dominance with a
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perfect win rate against the One-Shot baseline. In sub-optimal conditions characterized by varying
degrees of quality and similarity, the SA-ICL method maintains consistent performance advantages,
demonstrating superior results across the majority of experimental conditions even when exemplar-
question alignment is imperfect.

These findings indicate that while SA-ICL achieves maximum efficacy when provided with highly
relevant exemplars, its performance benefits extend beyond ideal matching conditions. The evidence
supports the conclusion that SA-ICL constitutes a fundamentally superior prompting methodology
rather than a technique dependent solely on exceptional example quality, establishing its viability as
a generalizable improvement to existing in-context learning frameworks.

5.3 EXTENDING THE EXPERIMENTS TO DATASETS OF MEDXPERTQA, MMLU, AND
COMMONSENSEQA

To evaluate the effectiveness of SA-ICL in a broader domains, in particular when the knowledge
base is dense. We have conducted evaluations with MedXpertQA (Zuo et al.|[2025), MMLU (Wang
et al., 2024), and CommonSenseQA (Talmor et al., |2019). We have seen a consistent improvement
by SA-ICL as shown in We also compared with One-Shot with Reasoning in the context
and 5-Shots and observed that SA-ICL could be a more effectiveness context learning approach
compared with the CoT Reasoning path and SA-ICL exploits one single best knowledge, reducing
the necessity for have multiple-shots, in the dense knowledge scenerios.

5.4 ABLATION STUDY: EFFECTIVENESS OF THE ACTIVATION

We conducted an ablation study to investigate whether it is the abstraction of the example or the
activation of the schema that boosts LLMs’ performance. Since we observed the most significant
margin in performance between SA-ICL and One-Shot with the GPT-40 mini, we removed the
activation part. We only used the abstraction of the example to solve the Physics questions. We
observed that LLMs would not perform as well as when they were allowed to activate the schema
This result highlights the importance of the explicit human-like schema activation.

5.5 A DEEPER INVESTIGATION INTO THE EFFECTIVENESS OF SA-ICL

To investigate the interpretable effectiveness of SA-ICL over CoT and One-Shot prompting meth-
ods, we logged the log likelihood of the top-5 predicted tokens in the LLM generation output
[ure H.3)(Zhang et al.|[2025). One-Shot prompting often encourages the model to overfit to the given
demonstration by focusing on fitting the output format (e.g., Answer: ANSWER), rather than lever-
aging the example to activate prior knowledge and understandings to reason the problem better and
provide well-thought-out answers. This problem is discussed in earlier work as pattern-matching.

While prior work noted that enforcing rigid, structured outputs can reduce the flexibility needed
for effective reasoning, SA-ICL reached equilibrium between structured reasoning and free-form
thinking. showed that in high-knowledge settings, where the answer is already well repre-
sented in the context, CoT may introduce unnecessary verbosity and even hurt performance, whereas
SA-ICL provides more direct and efficient knowledge activation.

6 DISCUSSION

SCHEMA-ACTIVATED IN-CONTEXT LEARNING (SA-ICL) challenges the conventional paradigm
of machine learning, which has historically relied on large quantities of demonstrations. This coun-
terintuitive shift has constrained the development of abstraction-driven approaches, even in the era of
LLMs. However, from a cognitive perspective, SA-ICL demonstrates a stronger alignment with hu-
man thinking patterns. Our empirical results demonstrate that activated schemas, viewed through the
lens of prior knowledge, enhance the effectiveness of that knowledge when appropriately matched to
the problem domain. We demonstrated that schemas enrich the contextual abstraction of examples,
and this process facilitates LLMs’ understanding of schema generation mechanisms, which subse-
quently conditions these models to utilize schemas alongside examples more efficiently. In these
scenarios, a single example augmented with schema activation yields performance improvements
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Table 1: Performances of SA-ICL and One-Shot on Chemistry and Physics questions. For Chem-
istry, the improvement is up to 39.67%, 34.88% for Physics. On average, the improvement in
Chemistry is 9.81%, 12.91% for Physics. All values in the table were rounded up to the third dec-
imal. Note that for Gemini, the One-Shot, in the Latent Similarity, we were Gemini 2.0 due to the
Gemini 1.5 Flash being deprecated.

(a) Chemistry Results

Synthetic Similarity Latent Similarity
Model Method Essentially Same Similar Different | High Medium Low
Qwen-3 SA-ICL 0.763 0.376 0301 [0.667 0.634 0.624
w One-Shot 0.581 0.301  0.301 |0.688 0.581 0.624
Llama-3.1 SA-ICL 0.892 0.430  0.387 |0.753 0.548 0.495
ama-J. One-Shot 0.495 0.366 0366 |0.441 0441 0.473
GPT-4o Mini SA-ICL 0.946 0.462  0.366 |0.839 0.581 0.559
1nt One-Shot 0.688 0.366  0.323 |0.667 0.624 0.613
GPTA SA-ICL 0.925 0.516  0.419 |0.774 0.581 0.667
-0 One-Shot 0.656 0.559 0409 [0.667 0.688 0.699
Ministral SA-ICL 0.882 0473  0.376 |0.785 0.634 0.624
tistra One-Shot 0.731 0.376 0280 |0.677 0.656 0.656
Gemini 1.5 Flash* SA-ICL 0.796 0.333  0.280 | 0452 0.663 0.640
emint 1.5 Hash ™ one-Shot 0.538 0258 0.194 [0.473 0.452 0.409

(b) Physics Results

Synthetic Similarity Latent Similarity
Model Method Essentially Same Similar Different | High Medium Low
Quen-3 SA-ICL 0.756 0.465 0.349 |0.686 0.814 0.721
wen- One-Shot 0.616 0.477 0477 |0.605 0.581 0.581
Llama.3.1 SA-ICL 0.814 0.430  0.407 |0.744 0.535 0.605
: One-Shot 0.512 0314 0372 |0465 0.395 0.547
GPTAo Mini SA-ICL 0.977 0.512  0.523 |0.872 0.581 0.628
One-Shot 0.628 0372 0.372 [0.593 0.593 0.547
GPTAo SA-ICL 0.953 0.663 0.616 |0.872 0.674 0.698
One-Shot 0.721 0.616 0.547 |0.744 0.698 0.721
Ministral SA-ICL 0.930 0.535  0.488 |0.849 0.686 0.624
One-Shot 0.802 0372 0256 |0.663 0.721 0.686
Gemini 1.5 Flash* SA-ICL 0.767 0.407  0.360 |0.655 0.559 0.559
= 8 gpe-Shot 0.500 0.349  0.349 |0.500 0.488 0.512

exceeding 20% compared to using the example alone, indicating that SA-ICL substantially reduces
the number of examples required for pattern matching compared to traditional ICL approaches.

It is worth highlighting that although the improvements of SA-ICL are most significant when the
episodic examples exhibit high similarity, our framework exhibits noticeable increases in accuracy
compared to One-Shot in most scenarios overall. However, there are still special circumstances
where accuracy boosts are not observed. We hypothesize this is because our current implementation
generates schemas from single examples (7 = 1), which may cause the model to apply reasoning
patterns too rigidly without adequate contextual grounding. Nevertheless, through the deployment of
the complete SA-ICL algorithm, we posit that dynamic schema activation mechanisms will enhance
performance even when the knowledge space exhibits sparsity. We encourage the LLM community
to pursue this direction toward developing models with more human-like cognitive capabilities.

Finally, it should be noted that human perception of the environment around them typically does not
begin with textual information as the initial sensory input that triggers their inherent schema-based
thinking. Instead, visual and other sensory data captured through computer vision systems would
likely raise even further the necessity for SA-ICL in real-world deployment scenarios.
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Table 2: Performances of SA-ICL, One-Shot, One-Shot with Reasoning and 5-Shots on MedX-
pertQA, MMLU, and CommonSenseQA questions. Note that for the MMLU questions were the
original MMLU questions included in the MMLU-Pro dataset, for MedXpertQA, we were using the

Skeletal questions, for CommonSenseQA, we randomly picked up 200 questions from the validation
subset.

Dataset Method Accuracy
SA-ICL 0.7973
One-Shot 0.6216
MMLUCollegeMath One-Shot with Reasoning 0.7162
5-Shots 0.7027
SA-ICL 0.7342
One-Shot 0.6034
MedXpertQA One-Shot with Reasoning ~ 0.6667
5-Shots 0.7027
SA-ICL 0.9200
CommonSense One-Shot 0.9000
One-Shot with Reasoning 0.8400
5-Shots 0.8800

Table 3: Token counts and correctness (v'/X) across different prompting strategies for the first 10
questions from GPQA-Chemistry dataset using GPT-40 Mini with temperature set to O for the most
consistent results. All prior knowledge in this experiment is retrieved using High in Latent Similar-

ity. We ran three experiments per question to get the average token counts, and we used the majority
correctness as overall correctness.

Question ID SA-ICL One-Shot One-Shot + CoT
Tokens Correct Tokens Correct Tokens Correct
2662eff7a6231613f...caaeb 150 133 X 196 X
fc081c2fbb63be500...65420 161 132 206
a8be7a4963bfb6bc7...99122 180 156 228
f730b35adb897658b...a77e5 166 412 X 417 X
1ce3d847d25b2c216...01155 231 235 254
d8c36bd55ba561cb4...7a049 308 324 273
40b2b50a3¢993902d...0bfcb 91 138 186
a2136b05b78259562...184d7 76 76 X 91 X
cbf5¢336a0990294b...7d447 203 170 X 222 X
16464cac7090a24d3...9bafd2 175 154 217
Total Correct 10/10 6/10 6/10

7 REPRODUCIBILITY STATEMENT

The full code will be posted on GitHub after the review is done. It is worth noting that Gemini
1.5 will be deprecated on Sep 24, 2025, After this date, it will no longer be possible to reproduce
the results from our experiments using Gemini 1.5 models. However, the authors will neverthe-
less provide full experiment results with Gemini 1.5 to the public. To reproduce the experiments,
you can follow the README.md under the zipped code submission in the supplementary mate-
rial. The supplementary material also includes the raw experimental results and consists of multiple
CSV files for the experiments in which we used to analyze and report the results in
To examine the raw LLM responses, you can run the following Python command:
baseb6d4.urlsafe_b64ddecode (process_id) .decode ().
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A  MATHEMATICAL FORMALIZATION OF SCHEMA-ACTIVATED IN-CONTEXT
LEARNING

A.1 MEMORY: SCHEMAS AND EPISODIC TRACES

We model memory as a bipartite structure linking abstract schemas to multiple episodic examples:
M= {(Si,ej,wij(t)) | S; €8, e; € g},
where
* §={81,...,8n} is the set of schemas,

o &£ ={ey,...,en} is the set of episodic traces (examples),

* w;;j(t) € [0,1] is the association strength between schema S, and example e; at time ¢.

Association weights decay over time, modeling episodic forgetting:
wi;(t) = w;;(0) - exp(=At), A >0.

The exponential function is an estimate for the forgetting curve, as we want the examples learned
earlier to have less impact.

A.2 PROBLEM REPRESENTATION (SCHEMA FORMATION)

Given an input problem z, the LLM constructs a mental representation (schema):
S = R(x)

where R is an embedding or representation function.

A.3 PRIOR SCHEMA RETRIEVAL

The model retrieves a schema S from S:

S =arg max sim(S,, Si),

where sim(-, -) denotes the similarity function, which may be cosine similarity, re-ranking, or an-
other metric.

A.4 EPISODIC EXAMPLES RETRIEVAL

For notational convenience, let 7 € {1,..., N} denote the index of S such that S = S;. More
formally,

i =arg ie{T?.},{N} sim(S,, S;).

Afterwards, given the retrieved schema S = Si, SA-ICL selects all episodic examples whose (de-
cayed) association to S exceeds a threshold 7 € [0, 1]:

E i) = {e; €& wy(t)>T1}
A.5 SCHEMA ACTIVATION (ASSIMILATION / ACCOMMODATION)

The retrieved schema and its selected episodic set guide activation of a new schema for the current
problem:
Shew = f(sm S, ET(t | i)),

where f denotes the integration mechanism.

Then, assimilation and accommodation can be conceptualized as follows:

o Assimilation: S,y ~ S, when & fits well.
¢ Accommodation: S, requires restructuring when fit is poor.
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A.6 SCHEMA-GUIDED PROBLEM SOLVING

Finally, the LLM produces an output conditioned on the activated schema:
Y= LLM(:E, Snew).

A.7 END-TO-END EQUATION

Combining all steps (schema-first, then thresholded episodic selection), we obtain the following
equation:

y= LLM(&C7 f(R(x), arg max sim(R(z),S;),{e; €€ + wy(t) > 71} ))

Ss, D)

B EXPERIMENTAL SETUP

Table B.1: Experimental setup across model families. ”N/A” indicates the parameter count has not
been disclosed. Note that embedding and reranker computations were performed on the NVIDIA
A40 GPU, with results cached locally.

Model Family Parameter Count Execution Environment

QWen-3 8B NVIDIA A40 GPU (24GB RAM)
LLaMA-3.1 8B NVIDIA A40 GPU (24GB RAM)
Ministral 8B API endpoint

Gemini 1.5 Flash N/A API endpoint

GPT-40 Mini N/A API endpoint

GPT-40 N/A API endpoint

GPT-5 N/A API endpoint (subset of experiments)

C SYNTHETIC DATASET GENERATION

Below are the prompts that we used to generate the synthetic data that are used as our knowledge
base for knowledge and schema retrieval mechanisms. The synthetic data are constructed using
GPT-4o0 via the OpenAl API to ensure the GPQA dataset is not included in the LLM’s training data.
Specifically, we provide exact prompts for each of the three synthetic similarity levels: Essentially
Same, Similar, and Different. Note that we intentionally keep all prompts identical to our experiment
setup including format, punctuation, and typos to ensure reproducibility.

C.1 Essentially Same

nwn

Consider answer ({answer}) and the explanation of solving it ({explanation
}). this question: {question}, along with its

Please generate a new question that is distinct from the previous
question.

You should follow the following criteria:

- New question requires more knowledge than the provided explanation to
be used to answer it.

— New question should differ from the given question with a lot of
distinctiveness.

- Generate a set of new options with only one of them being the correct
option to the new question.

— Provide three incorrect options, which should be similar to the correct

answer
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— Provide a short explanation on how to solve the new question, and the
additional knowledge required to answer the new question.

- Difficulty:
The new question should be the similar difficulty to the previous
question.
If a student has the knowledge to answer the previous question, they
should have partial knowledge to answer the new question.
However, the new question should require additional knowledge than
the given question’s scope to be answered.

— Distinctiveness:
The new question should be distinctive enough to the previous
question, that the student require additional knowledge to solve the
problem.
New question should be unique in its context, and is related to the
previous question in a minimal level.

— Output Format:
{question_format}

wnn

C.2 Similar

wnn

Consider this question: {question}, along with its answer ({answer}) and
the explanation of solving it ({explanation}).

Please give me a slightly different question from this example that test
the student’s ability to transform their knowledge.

You should follow the following criteria:

— The new question only requires the knowledge provided in the
explanation to be used to answer it.

— New question should still differ with a lot of distinctiveness to test
student’s use of the same knowledge.

— Generate a set of new options with only one of them being the correct
option to the new question

— Provide three incorrect options, which should be similar to the correct
answer

— Provide a short explanation on how to solve the new question

— Difficulty:
The new question should be the similar difficulty to the previous
question.
If a student has the knowledge to answer the previous question, they
should have enough knowledge to answer the new question.

— Distinctiveness:
The new question should be distinctive enough to the previous
question, that the student cannot use the same answer.
New question should be unique in its context, but still related to
the previous question.

— Output Format:
{question_format}

wnn

C.3 Different

wnn

Consider this question: {question}, along with its answer ({answer}) and
the explanation of solving it ({explanation}).

Please generate a new question that is distinct from the previous
question.

You should follow the following criteria:

17



Under review as a conference paper at ICLR 2026

- New question requires more knowledge than the provided explanation to
be used to answer it.

— New question should differ from the given question with a lot of
distinctiveness.

— Generate a set of new options with only one of them being the correct
option to the new question.

— Provide three incorrect options, which should be similar to the correct
answer

— Provide a short explanation on how to solve the new question, and the
additional knowledge required to answer the new question.

- Difficulty:
The new question should be the similar difficulty to the previous
question.
If a student has the knowledge to answer the previous question, they
should have partial knowledge to answer the new question.
However, the new question should require additional knowledge than
the given question’s scope to be answered.

— Distinctiveness:
The new question should be distinctive enough to the previous
question, that the student require additional knowledge to solve the
problem.
New question should be unique in its context, and is related to the
previous question in a minimal level.

— Output Format:

{question_format}
nnn

D HEATMAPS FOR KNOWLEDGE DENSITY IN LATENT SIMILARITY

GPQA Chemistry: Density of Prior Knowledge via RAG Rerank GPQA Physics: Density of Prior Knowledge via RAG Rerank

P ——-._

Question Number

Figure D.1: The heatmaps for knowledge density for GPQA-Chemistry and GPQA-Physics

Knowledge density is defined as the similarity between prior knowledge and a target question.
Similarity is quantified by converting prior knowledge into mental representations and employing
cross-encoder rerankers to compute relevance scores. The knowledge density heatmaps
visualize marginal relevance scores across top-k retrieved examples for each question, revealing
domain-specific patterns in knowledge sparsity. Our analysis demonstrates that chemistry maintains
consistently high relevance scores across retrieved examples, while physics exhibits significantly
greater sparsity — with relevance scores decreasing 68% compared to chemistry’s 40% decrease.
These findings underscore that effective schema-based knowledge transfer depends on inherent con-
ceptual coherence within domains rather than universal retrieval mechanisms.

D.1 LATENT KNOWLEDGE DENSITY METHODOLOGY

We define the latent knowledge density function p : @ x K — [0, 1], where () represents the set
of questions and K = {1, 2, ..., kjq. } denotes retrieval ranks. In our case, ky,q, := 10. For each
question ¢ € @ and rank k € K, p(q, k) measures the relevance score between ¢ and its k-th
most similar prior example, computed using Cohere’s Rerank 3.5 cross-encoder architecture. The

aggregate density metric p(q) = k# EZZ;”‘ p(gq, k) quantifies overall knowledge availability for

max
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question g, where higher values indicate robust transfer potential and lower values reveal knowl-
edge sparsity. We define o € [0, 1] as the relevance threshold hyperparameter to quantify what we
consider quality knowledge. For this investigation, we arbitrarily set o := 0.5.

D.2 HEATMAP VISUALIZATION AND INTERPRETATION

Figure visualizes p(q, k) for GPQA-Chemistry and GPQA-Physics datasets as heatmaps, where
each cell (4, j) represents p(g;, k;) with ¢; denoting the i-th question (horizontal axis) and k; €
{1,2, ..., kmas} the retrieval rank (vertical axis). Color intensity maps linearly to p values, from
light shades (p — 0) to dark red (p — 1), symbolizing low to high relevance scores respectively.

Chemistry questions maintain pepem (g, k) > o for most (¢,k) € Q x K pairs even at k =
kmaz, indicating persistent semantic similarity with small Ap = p(q, k) — p(g,k + 1) for all
k € {1,2,...,kmaz — 1}. Physics exhibits rapid density decay with pppys(g, k) < 0.3 for many
questions by k£ = 5, revealing sparse knowledge availability beyond initial retrievals.

D.3 DOMAIN SPARSITY AND KNOWLEDGE SPACE ISOLATION

Defining decay rate as 6(k) = ZEZ’T%,

Ophys(kmaz) = 0.32 for physics, where the bar notation indicates domain averaging. This rep-
resents Penem (¢, kmaz) = 0.6 - Perem (g, 1) netting a 40% decrease, compared to pphys(q, Kmaz) =
0.32- pphys(q, 1) which yields a 68% decrease. Chemistry maintains pepem (¢, k) > o throughout all
k € {1,2,..., kmas }, while physics shows a domain-specific density gradient Vj,p approximately
twice as steep.

we observe Opem(kmaz) = 0.60 for chemistry versus

We hypothesize that this disparity stems from the inherent conceptual fragmentation of physics
across fields like quantum mechanics and general relativity — each possessing specialized theoreti-
cal vocabularies that create isolated knowledge regions within the latent space. The intercluster den-
sity satisfies p(g;, €;) < o when ¢; and the episodic trace e; belong to different physics subdomains.
For example, specialized concepts inherent to quantum mechanics, such as quantum entanglement
and wave functions, yield p ~ 0 when matched against general relativity examples, forming disjoint
clusters and thus leading to poorer schema activations.

These findings demonstrate that effective schema-based knowledge transfer depends critically on
domain density structure p(q, k). High-density regimes where p > o support extensive retrieval
sets, while sparse domains with rapidly decaying p(q, k) require adaptive mechanisms for p — 0
when k& > kthreshold-

E DOMAIN-AGNOSTIC SCHEMA TEMPLATE

When generating mental representations or schemas, LLMs were guided for each attribute of the
schema.

"""Drawing on schema theory from cognitive psychology, think about a high
—level abstraction (schema) of the problem to guide your reasoning.
Your ultimate goal is to select the most appropriate answer.:

Below is the template for the schema you need to fill out:

Broad Category:
Identify the overarching subject and general category to which the
problem belongs.

Refinement:
Describe further details or specific aspects that narrow down the broad
category.

Specific Scope:

Define the precise focus or context of the problem within the refined
category.
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Goal:
Clearly state the objective or intended outcome of solving the problem.

Finally, summarize the schema in a few sentences to help students grasp
the key points. The problem you need to abstract is as follows:"""

The LLM will then generate a JSON-like object that represents a concrete schema for a specific
question:

{

"schema": {
"broad_category": str,
"refinement": str,
"specific_scope": str,

"goal": str

by

"summary": str

F A FULL CONVERSATION HISTORY DURING THE INFERENCE TIME WITH
GPT-40 MINI

Note that all three methods use the same dynamic response JSON format:
{

"name": "DynamicResponse",
"strict": true,
"schema": {
"Sdefs": {
"AnswerEnum": {
"enum": [
T4
"12",
viEw,
"11"
1,
"title": "AnswerEnum",
"type": "string"
}
b
"properties": {
"reasoning": {
"title": "Reasoning",
"type": "string"
}s
"final_answer": {
"Sref": "#/Sdefs/AnswerEnum"
}
by
"required": [

"reasoning",
"final_answer"

1,

"title": "DynamicResponse",
"type": "object",
"additionalProperties": false

F.1 SCHEMA-ACTIVATED IN-CONTEXT LEARNING

System Message:
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"""Drawing on schema theory from cognitive psychology, think about a high
—level abstraction (schema) of the problem to guide your reasoning.
Your ultimate goal is to select the most appropriate answer.:

Below is the template for the schema you need to fill out:

Broad Category:

Identify the overarching subject and general category to which the
problem belongs.

Refinement:

Describe further details or specific aspects that narrow down the broad
category.

Specific Scope:

Define the precise focus or context of the problem within the refined
category.

Goal:

Clearly state the objective or intended outcome of solving the problem.

Finally, summarize the schema in a few sentences to help students grasp
the key points. The problem you need to abstract is as follows:"""

User Messages:
[
{
"role": "user",
"content": "Question: trans-cinnamaldehyde was treated with

methylmagnesium bromide, forming product 1.\n\nl was treated with
pyridinium chlorochromate, forming product 2.\n\n3 was treated with (
dimethyl (oxo)-16-sulfaneylidene)methane in DMSO at elevated
temperature, forming product 3.\n\nhow many carbon atoms are there in
product 3?\nCandidates: \nl. 14\n2. 12\n3. 10\n4. 11"
by
{

"role": "assistant",
"content": "#### Schema:\n##### broad_category:\nOrganic Chemistry \
u2192 Reaction Mechanisms \u2192 Organic Synthesis\n\n#####
refinement:\nThis problem involves a series of organic reactions
starting from trans-cinnamaldehyde and leading to a final product
through specific reagents and conditions.\n\n##### specific_scope:\
nThe focus is on determining the number of carbon atoms in the final
product (product 3) after a sequence of reactions involving trans-
cinnamaldehyde, methylmagnesium bromide, pyridinium chlorochromate,
and a sulfaneylidene compound.\n\n##### goal:\nCalculate the total
number of carbon atoms in product 3 after completing the series of
reactions.\n\n#### Summary:\nThis problem involves a series of
organic reactions that transform trans-cinnamaldehyde into a final
product through various reagents and conditions. The task is to track
the carbon atoms throughout the reactions to determine the total
number in the final product (product 3). By analyzing the structure
of each intermediate and the final product, we can ascertain the
number of carbon atoms present. The goal is to arrive at the correct
count of carbon atoms in product 3."

by
{

"role": "user",
"content": "Now that you’ve seen a similar question along with its
schema and solution, reflect on \n how you could refine or improve
your previously generated schema for the xxcurrentxx question. Focus
on alignment \n in categories, scope specificity, and consistency
of abstraction.\n## Question:\nQuestion: Trans—-cinnamaldehyde
undergoes a reaction with methylmagnesium bromide to yield compound
1. Compound 1 is then oxidized using pyridinium chlorochromate to
form compound 2. Subsequently, compound 2 reacts with (dimethyl (oxo)
—-\u03bbé6-sulfaneylidene)methane in DMSO at high temperature to
produce compound 3. How many carbon atoms are present in compound 372\
nCandidates: \nl. 12\n2. 10\n3. 9\n4. 11\n \n### Answer to
this question is: 11\n\n### Below is the schema and summary of this
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question: \n#### Schema:\n##### broad category:\nChemistry \u2192
Organic Chemistry \u2192 Reaction Mechanisms\n\n##### refinement:\
nThis problem involves a series of organic reactions including
Grignard reactions, oxidation, and a reaction with a sulfonyl
compound. \n\n##### specific_scope:\nThe focus is on determining the
number of carbon atoms in the final product (compound 3) after a
sequence of reactions starting from trans—-cinnamaldehyde.\n\n#####
goal:\nCalculate the total number of carbon atoms in compound 3 after
all specified reactions have been completed.\n\n#### Summary:\nThis
problem involves a series of organic reactions that transform trans-—
cinnamaldehyde through various steps, including a Grignard reaction,
oxidation, and a reaction with a sulfonyl compound. The objective is
to determine the number of carbon atoms in the final product,
compound 3. By analyzing the reactions and counting the carbon atoms
at each stage, we find that compound 3 contains 11 carbon atoms."

s
{

"role": "assistant",
"content": "#### Schema:\n##### broad_category:\nOrganic Chemistry \
u2192 Synthetic Transformations \u2192 Carbon Skeleton Accounting\n\n
##### refinement:\nMulti-step sequence featuring: (1) Grignard
addition to an \u0O3bl,\uO3b2-unsaturated aldehyde (trans-—
cinnamaldehyde), (2) PCC oxidation of the resulting alcohol to a
ketone, and (3) Corey\u2013Chaykovsky-type methylene transfer using
dimethylsulfoxonium methylide in DMSO at elevated temperature.
Emphasis on how each step affects carbon count.\n\n#####
specific_scope:\nTrack carbon atoms starting from trans-—
cinnamaldehyde (C9). Step 1: MeMgBr adds a methyl to the carbonyl
carbon (allylic secondary alcohol) \u2192 +1 carbon. Step 2: PCC
oxidizes alcohol to ketone \u2192 0 carbon change. Step 3: Dimethyl (
ox0) -\uO3bb6-sulfaneylidene)methane (dimethylsulfoxonium methylide)
transfers a methylene to the carbonyl (Corey\u2013Chaykovsky
epoxidation/methylenation) \u2192 +1 carbon. Determine the total
carbons in product 3.\n\n##### goal:\nUse stepwise carbon accounting
across the reaction sequence to identify the number of carbon atoms
in product 3 and select the correct option.\n\n#### Summary:\nThis is
a carbon-tracking problem across a three-step synthesis from trans-—
cinnamaldehyde. Only the Grignard addition and the sulfur ylide
methylene transfer change the carbon count, each adding one carbon;
the PCC oxidation does not. Applying this schema leads to the correct
carbon total in the final product."
by
{

"role": "user",
"content": "Now that you’ve refined your schema for the current
question, select the most appropriate answer. "

}

F.2 ONE-SHOT

System Message:

"""Select the most appropriate answer. You will be shown a sample
question with its correct answer.
Then, answer a new question of the same type."""

User Messages:

[

"role": "user",
"content": "Example Question:\nQuestion: Trans—-cinnamaldehyde
undergoes a reaction with methylmagnesium bromide to yield compound
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F.3

Compound 1 is then oxidized using pyridinium chlorochromate to

1.
compound 2 reacts with (dimethyl (oxo)

form compound 2. Subsequently,
-\u03bb6-sulfaneylidene)methane in DMSO at high temperature to
produce compound 3. How many carbon atoms are present in compound 372\

nCandidates: \nl. 12\n2. 10\n3. 9\n4. 11\nAnswer: 11"

"role": "user",
"content": "Now try a similar question:\nQuestion: trans-—

cinnamaldehyde was treated with methylmagnesium bromide, forming
product 1.\n\nl was treated with pyridinium chlorochromate, forming
product 2.\n\n3 was treated with (dimethyl (oxo)-16-sulfaneylidene)
methane in DMSO at elevated temperature, forming product 3.\n\nhow
many carbon atoms are there in product 3?\nCandidates: \nl. 14\n2.

12\n3. 10\n4. 11"

ONE-SHOT + COT

System Message:

Th

"Select the most appropriate answer. You will be shown a sample

question with its correct answer.

en, answer a new question of the same type."""

User Messages:

"role": "user",
"content": "Example Question:\nQuestion: Trans-cinnamaldehyde

undergoes a reaction with methylmagnesium bromide to yield compound
1. Compound 1 is then oxidized using pyridinium chlorochromate to
form compound 2. Subsequently, compound 2 reacts with (dimethyl (oxo)
—-\u03bb6-sulfaneylidene)methane in DMSO at high temperature to
produce compound 3. How many carbon atoms are present in compound 372\

nCandidates: \nl. 12\n2. 10\n3. 9\n4. 11\nAnswer: 11"

}y

{
"role": "user",
"content": "Now try a similar question:\nQuestion: trans-—
cinnamaldehyde was treated with methylmagnesium bromide, forming
product 1.\n\nl was treated with pyridinium chlorochromate, forming
product 2.\n\n3 was treated with (dimethyl (oxo)-16-sulfaneylidene)
methane in DMSO at elevated temperature, forming product 3.\n\nhow
many carbon atoms are there in product 3?\nCandidates: \nl. 14\n2.
12\n3. 10\n4. 11\nPlease think step by step."
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G GPT-5’S PERFORMANCE ON HUMANITY’S LAST EXAM

0.8 -

Accuracy
o
>

<3
IS

0.2-

0.0 -

SA-ICL One-Shot

Figure G.2: Performance of GPT-5 on the chemistry, physics, biology multi-choice questions from
the Humanity’s Last Exam (HLE) benchmark dataset (Phan et al., |2025) (N=191, we filtered out
questions with images), when provided with the Essentially Same examples. We generated the
synthetic data as well using the same procedures described in

When GPT-5 was introduced, we used the model to run the same experiments. However, we re-
alized that when provided with Essentially Same examples, GPT-5 reached near 100% accuracy
in the GPQA dataset, eliminating the need for explicit reasoning modules introduced by SA-ICL.
Therefore, we used a more challenging dataset, Humanity’s Last Exam (HLE), to repeat the same
experiments using Essentially Same examples, and saw that SA-ICL results in a 7% improvement in
accuracy compared to standard One-Shot. This gain is particularly notable given the already strong
baseline accuracy of 84%.

Note that this subset of HLE includes 136 biology and medicine questions, 34 physics questions, and
21 chemistry questions. We acknowledge that most of the questions are in the biology and medicine
sub-categories, which is a domain that was not tested in the main experiments shown in[Section 5.3
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H INTERPRETABILITY EXPERIMENTS

H.1 REPORT ON TOKEN COUNTS AND CORRECTNESS FOR THE FIRST 10 GPQA-Chemistry
QUESTIONS

The interpretability experiments are conducted via logit-centric methods to get the overall confi-
dence of LLM generation by retrieving the token-level log likelihood (Zhang et al, [2025)) from the
OpenAl chat completions API for each of our tested ICL prompting strategies. We implemented
a customized chat interface to display the log-probability in colored texts using the color schema
provided in the legend in [Figure H.3|for better visualization and interaction.

From we observed that SA-ICL achieves the highest accuracy in these questions while
simultaneously generating fewer reasoning tokens compared to One-Shot + CoT, except for the
sixth question.

H.2 VISUALIZATION OF THE LOG-PROBABILITIES OF EACH TOKEN IN THE SOLVER’S
OUTPUT

Question: trans-cinnamal dehyde © o EERETER - SR v A © 100%
was treated with m ethyl magn esium bromide, it adds almethyl group (1 carbon), bringing the tatallt9/10 carbonlatoms in product 1.

After/oxidation with pyridinium chlorochromate, the carbon/count remains 10 in product 2| The
bromide’ fOrming prOdUCt 1. reaction with (dimethyl(ox0)-A6-sulfaneylidene)methane likely adds 2 more carbon atoms,

1 was treated with pyridinium

chlorochromate, forming product 2.
3 was treated with
(dimethyl(oxo)-16-sulfaneylidene)me
thane in DMSO at elevated
temperature, forming product 3.
how many carbon atoms are there
in product 3?

Candidates:

resulting in a total of 12 carbon atoms in product 3.", final_answer" 12"}
145 1210

210

0% 1100% 100% 1000%

One-shot )¢

{¥reasoning*To determinelthe number of carbon atoms in product 3, We can analyze each step of @

the process: 1) trans-cinnamaldehyde (which has 9 carbon atoms) reacts with methylmagnesium
bromide to form product1. This reaction adds one carbon from the/methyl group, resultingin a
total of 10 carbns in product 1.2) Product1 is thenloxidized to form|product 2, which doeslnot
€hange the numberlof carbon/atoms. Therefore, produict 2 also has'10 carbons. 3) Product2
reacts with (dimethyl(oxo)A6-sulfaneylidene)methane. This compound introduces 2 additional
carbon/atoms, resultinglin product3 having 12 carbon/atoms in/fotal. Hence, the number'of.
carbon atoms in product 3 is 12.","final_answer"“2"}

1748

1 14 o 5 S S £ —
2 12 Chain of Thought 3¢
3.10 ©  ssEsAGEESEa i (€81 the sonf
bromide adds one carbon, yielding compound 1 (€10). The subsequent oxidation with!pyridinium
4. 11 chlorochromate does not change the carbon count, so compound 2 remains at C10, The reaction

of compound 2 with dimethyl(oxo) A6-sulfaneylideneJmethane adds another carbon, resultinglin
compound 3 with a total of 11 carbon atoms ", final_answer"“ )
1

0%
Token Confidence

SA-ICL [

Figure H.3: The probabilities of each token in the problem solver output. Note that only SA-ICL
confidently gave the correct answer for this question, while pure One-Shot or One-Shot + CoT
confidently gave the incorrect answer.
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I ABLATION STUDY ON THE SCHEMA ACTIVATION

Accuracy

SA-ICL One-Shot Schema Only Example Schema Only

Figure 1.4: GPT-40 Mini solving the GPQA-Physics questions with examples that are Essentially
Same.

To further investigate in isolation the effectiveness of schema activation within our framework,
we conducted a controlled ablation study comparing four distinct conditions: SA-ICL, One-Shot,
Schema Only, and Example Schema only.

I.1 DESIGN AND NATURE OF ABLATION STUDY

This ablation analysis was designed to determine whether the performance improvements observed
in SA-ICL stem from the schema activation mechanism itself or merely from the presence of ab-
stracted examples. In particular, we are interested in the case when prior examples are of high
quality, and therefore conducted this study by using GPT-40 Mini to solve questions in the GPQA-
Physics subset with prior examples that are Essentially Same in terms of synthetic similarity. The
Schema Only condition provided models with abstract problem schemas without corresponding
episodic examples, while Example Schema Only presented abstracted schemas derived from exam-
ples but without the schema activation process that is integral to the full SA-ICL procedure.

1.2 INTERPRETATION OF ABLATION RESULTS

4] presents the comparative accuracy results across all four scenarios. The complete SA-
ICL framework demonstrated clear superiority over the other three approaches, with a near 40%
accuracy boost over the other three conditions. In fact, neither Schema Only nor Example Schema
Only result in a clear benefit over One-Shot, which acts as a baseline for this ablation study. This
observation provides direct evidence that the schema activation mechanism constitutes the critical
component driving the effectiveness of our in-context learning framework.

1.3 SCHEMA DORMANCY

The results of our ablation study strongly suggest that the mere presence of an abstracted schema
within the prompt context is insufficient to improve model performance. The sheer significance of
schema activation leads to a phenomenon which we coin schema dormancy. This term describes a
state where a refined schema tailored to a specific task only exists as passive surface-level contextual
information rather than an active cognitive framework that guides the language model’s reasoning
process. When the explicit activation step of the SA-ICL framework is omitted — as observed in
the Schema Only and Example Schema Only conditions — the LLM fails to effectively integrate
the abstracted reasoning structure into its problem-solving approach. This finding highlights that
language models do not implicitly adopt and utilize abstract schemas without an explicit technique
to activate this otherwise dormant state.

THE USE OF LARGE LANGUAGE MODELS

The authors used large language models such as ChatGPT to assist with paper writing, mostly for
polishing the text, and after which the authors did a thorough check to ensure the polished paper
faithfully delivered the authors’ messages.
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