SCHEMA FOR IN-CONTEXT LEARNING

Anonymous authors

000

001 002 003

004

006

008 009

010

011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

029

031

032

034

037

040

041

042

043

044

045

046

047

048

051

052

Paper under double-blind review

ABSTRACT

In-Context Learning (ICL) enables transformer-based language models to adapt to new tasks by conditioning on demonstration examples. However, traditional example-driven in-context learning lacks explicit modules for knowledge retrieval and transfer at the abstraction level. Inspired by cognitive science, specifically schema theory, which holds that humans interpret new information by activating pre-existing mental frameworks (schemas) to structure understanding, we introduce SCHEMA-ACTIVATED IN-CONTEXT LEARNING (SA-ICL). This proposed framework extracts the representation of the Building Blocks of Cognition for the reasoning process instilled from prior examples, creating an abstracted schema – a lightweight, structured template of key inferential steps and their relationships — which is then used to augment a model's reasoning process when presented with a novel question. We demonstrate that a broad range of large language models (LLMs) lack the capacity to form and utilize internal schema-based learning representations implicitly, but instead benefit significantly from explicit schemabased scaffolding. Across chemistry and physics questions from GPQA dataset, our empirical experiment results show that SA-ICL consistently boosts performance (up to 39.67%) when the single demonstration example is of high quality, which simultaneously reduces reliance on the number of demonstrations and enhances interpretability. SCHEMA-ACTIVATED IN-CONTEXT LEARNING not only bridges disparate ICL strategies ranging from pattern priming to Chain-of-Thought (CoT) prompting, but also paves a new path for enhancing human-like reasoning in LLMs.

1 Introduction

In-Context Learning (ICL) has emerged as a dominant approach for adapting large language models (LLMs) to new tasks without requiring fine-tuning or additional parameter updates. By conditioning on a set of demonstrations, ICL enables LLMs to leverage prior knowledge and generalize to unseen examples. Despite its effectiveness, traditional ICL does not align fully with how humans acquire and apply knowledge in real-world learning scenarios, as it lacks mechanisms for episodic memory and context-rich encoding Li et al. (2024a).

Learning in humans is inherently structured, involving knowledge abstraction, retrieval, and adaptive reasoning. Research in cognitive science suggests that humans develop mental frameworks, called schemas, that organize prior knowledge and facilitate problem solving in new contexts Rumelhart and Ortony (1977). These schemas enable efficient retrieval of relevant information and guide interpretation and action, reducing reliance on explicit demonstrations Rumelhart and Ortony (1977). Critically, schema activation, consisting of bringing the proper schema into working memory, is essential for effective comprehension and analogical transfer; retrieval alone may not suffice Gick and Holyoak (1983); Gentner (1983).

Recent evidence in the behavior of LLMs mirrors this limitation. For instance, recent models such as GPT-4 retrieve numerous plausible analogs with high recall, but often select incorrect ones due to their reliance on surface-level similarity rather than structural alignment Puranam et al. (2025). This setback calls for mechanisms that go beyond retrieval, mobilizing schema-like abstractions to guide reasoning.

Inspired by these cognitive insights, we introduce SCHEMA-ACTIVATED IN-CONTEXT LEARNING (SA-ICL), a schema-driven retrieval and reasoning framework for language models. Rather than

retrieving task-specific demonstrations alone, SA-ICL first guides the model to construct a problem schema, which acts as its corresponding structured abstraction. Prior examples are then retrieved using these schemas as keys, and critically, their schemas are then used to activate and refine the schema of the new problem. This activation process enables LLMs to solve problems more efficiently by integrating structured prior knowledge into current reasoning, addressing the structural mapping gap observed in analogical reasoning of LLMs Puranam et al. (2025). Echoing approaches using latent graph schemas for fast transfer learning Guntupalli et al. (2023), our method enforces structured abstraction as the medium for retrieval, reasoning, and inference.

A particularly important domain for this approach is scientific reasoning. Although physics and chemistry may appear distinct, their foundational problem-solving strategies often converge on shared relational structures. A prime example is the existence of a "conservation law" schema, a structural template for identifying initial and final states around a core principle. Using schema activation, SA-ICL enables cross-domain transfer, where schemas developed in one scientific field can scaffold reasoning in another, similar to analogical transfer, which depends on mapping hidden relational structures rather than surface similarities. Kang et al. (2025).

We evaluate SA-ICL on the graduate-level scientific benchmark *Graduate-Level Google-Proof Q&A* (GPQA dataset) Rein et al. (2024), which consists of challenging PhD-level physics, chemistry, and biology multiple-choice questions that require structured reasoning. Our experiments are particularly focused on the physics and chemistry subsets of GPQA dataset. The results show that leveraging SA-ICL enhances accuracy compared to standard ICL (One-Shot) in most scenarios. Most notably, our framework improves accuracy by up to 39.67% over One-Shot for chemistry questions and by up to 34.45% for physics questions, when the retrieved examples are of high similarity. Importantly, we demonstrate that the One-Shot prompting alone does not provide the optimal gain in LLMs' performance during in-context learning, whereas utilizing activated schemas consistently improves reasoning efficiency and effectiveness, especially when the knowledge density is high. We further analyze model outputs to illustrate the interpretability benefits of schema activation.

Our contributions are as follows:

- We propose SCHEMA-ACTIVATED IN-CONTEXT LEARNING (SA-ICL), a novel framework that integrates schema construction, schema-guided retrieval, and schema activation to enable more efficient, generalizable, and interpretable in-context learning.
- We perform comprehensive evaluations comparing SA-ICL with traditional ICL and retrieval-only baselines across multiple scientific reasoning benchmarks, demonstrating consistent improvements in overall accuracy.
- We provide interpretability analyses showing that schema activation facilitates more structured reasoning processes and reduces token reliance, offering a path toward more efficient inference-time reasoning.

Overall, our findings suggest that SA-ICL advances beyond example-driven ICL by bridging retrieval with schema activation, mirroring human cognitive strategies more closely. By leveraging abstract schemas to refine reasoning rather than relying solely on explicit demonstrations, schemadriven ICL reduces dependence on examples and makes inference more efficient and interpretable.

2 Related Work

2.1 SCHEMA THEORY IN COGNITIVE PSYCHOLOGY

Schema theory is one of the fundamental theories of cognitive psychology. This theory conceptualizes how humans organize and structure knowledge into coherent mental frameworks, or schemas, that are constructed from prior experiences and serve as interpretive structures for understanding new information Rumelhart and Ortony (1977). These abstract structures are dynamic; they actively guide how prior knowledge is encoded and retrieved and how the new information is perceived Brewer and Treyens (1981). Classic research in psychology from decades ago, like Bartlett (1932) and Piaget (1952) established that human learning involves either interpreting new information into existing schemas (assimilation), or modifying these existing schemas to incorporate novel knowledge (accommodation). Activated schemas from the lens of prior knowledge provide a cognitive mechanism that enables efficient problem-solving and reasoning by guiding the retrieval process

and allowing individuals to make inferences and fill in missing details Anderson and Pichert (1978); Piaget (1952). This model of human cognition, where activating the correct abstract structure is key to interpreting a new problem, provides the direct theoretical motivation for the SA-ICL framework.

2.2 IN-CONTEXT LEARNING METHODOLOGIES

2.2.1 EXAMPLE-DRIVEN APPROACHES (E-ICL)

One-Shot and few-shot learning paradigms Brown et al. (2020) have been adopted as computationally efficient methodologies Parnami and Lee (2022) for enabling language models to perform inference-time in-context learning without requiring internal parameter updates. Example-driven ICL utilizes predefined question-answer pairs to change the probability distribution of output tokens conditioned on user queries and prior knowledge Wang et al. (2020); Min et al. (2022b).

Despite state-of-the-art (SOTA) LLMs achieving substantially extended context windows, few-shot learning continues to demand extensive computational resources when the number of demonstration samples and their associated token counts increase, resulting in inevitable computational cost inflation Keles et al. (2023). Furthermore, LLMs demonstrate sensitivity to performance worsening when processing long in-context demonstrations for complex reasoning tasks, making example-driven ICL a compromise for tasks characterized by complex reasoning processes Li et al. (2024b). While example-driven ICL establishes a connection between human-interpretable prompting and machine learning, LLMs require additional mechanisms to achieve full alignment between their computational processes and human cognitive patterns Mahowald et al. (2024).

The majority of existing ICL research — including MetaICL and PCW — conceptualizes LLMs primarily as pattern-matching systems operating over prompt examples, without comprehensive analysis of their internal abstraction mechanisms Min et al. (2022a); Ratner et al. (2023). Current approaches show fundamental limitations, including high task specificity and response rigidity, rather than enabling a generalization across diverse domains or a naturalistic use of real-world knowledge Yang et al. (2022). Additionally, empirical experiments indicate that traditional example-driven ICL achieves optimal performance only when context lengths extend to hundreds of thousands of tokens through multi-shot prompting Agarwal et al. (2024). SA-ICL advances the exploration of how language models can generate reasoning processes through their internal knowledge representations in a human-interpretable manner, simultaneously optimizing for performance quality, computational cost, and token efficiency.

2.2.2 ABSTRACTION-DRIVEN APPROACHES

While most existing in-context learning methods were heavily example-driven, previous works raised key issues Saglam et al. (2025); Lampinen et al. (2024); Dong et al. (2022). Recently, the machine learning (ML) community has been witnessing a growing development of in-context learning approaches in a broader perspective Lampinen et al. (2024), including abstraction-driven in-context learning (A-ICL) Swaminathan et al. (2023), which could contribute to understanding the way models understand and utilize context. Although previous works have linked the mechanism of induction heads in LLMs to the contextual maintenance and retrieval (CMR) model in human episodic memory Olsson et al. (2022); Polyn et al. (2009), direct evidence for high-level schema induction in language models remains limited.

In contrast, our work adopts an A-ICL approach that explicitly extracts general reasoning steps, conducting experiments at a higher level than task-specific knowledge. Prior studies have shown that fixed, structured generation — enabled by carefully designed prompting mechanisms or properly constrained decoding strategy — can improve LLMs' performance on reasoning tasks (e.g., ReAct, Program-of-Thoughts) Yao et al. (2023); Chen et al. (2023). Furthermore, retrieval of previous LLM-generated schemas or demonstrations has been shown to be autoregressively beneficial for ICL, as in prompt-retrieval and retrieval-augmented methods Rubin et al. (2022); Shi et al. (2024).

2.2.3 Chain-of-Thought Reasoning

Chain-of-Thought (CoT) reasoning has recently arisen as a critical strategy within ICL by explicitly outlining intermediate steps before arriving at a final answer to enhance the reasoning capabilities Wei et al. (2022); Kojima et al. (2022), thus significantly improving LLM performance on tasks that

require multi-step inference Nye et al. (2021); Wang et al. (2023). However, CoT reasoning usually operates within example-driven reasoning frameworks, where explicit reasoning details are provided through a few demonstrations to guide model outputs Zhang et al. (2023). Various methods have been explored in recent studies to optimize and extend CoT. Multiple thought paths are sampled for reasoning and aggregated before inference to improve output reliability in Self-Consistency Prompting Wang et al. (2023). Moreover, in Least-to-Most prompting, reasoning is progressively refined by starting with simpler sub-questions. Zhou et al. (2022).

Our proposed framework, SCHEMA-ACTIVATED IN-CONTEXT LEARNING (SA-ICL), although sharing conceptual foundations, constitutes a fundamentally distinct computational paradigm. Traditional CoT prompting operates as an instance-specific methodology wherein the model constructs novel and frequently verbose linear reasoning sequences tailored to each input query, consequently necessitating substantial human engineering of input queries to achieve satisfactory performance on specific tasks Stechly et al. (2024). The instance-specific trajectories also exhibit limited generalizability across disparate task domains Stechly et al. (2024). In contrast, SA-ICL incorporates structured schema retrieval mechanisms, enabling language models to access and retrieve abstract, generalized schemas from their prior knowledge, thereby automatically adapting reusable cognitive abstractions to novel problems during inference, rather than depending upon task-specific demonstrations. SA-ICL serves two purposes: enhancing interpretability and facilitating knowledge transfer. These characteristics render SA-ICL particularly effective for complex reasoning tasks requiring high-level conceptual abstraction, including scientific inquiry and hypothesis generation.

2.3 OTHER HUMAN-INSPIRED PROMPTING METHODS

Wang and Zhao (2024) applied human introspective reasoning strategies by splitting the questionanswer queries into multiple metacognitive prompting steps to improve LLMs' capability in question understanding. This work explores the problem of understanding the gap between human and LLM reasoning processes. Zhou et al. (2023) prompting attempted to address the knowledge loss for LLMs in tasks with chaotic input contexts, where relevant information is obscured by distractors, by guiding LLMs to segment and analyze the input systematically, summarizing the findings as they go, before drawing an answer, to reduce the knowledge loss in long-context scenarios effectively. Retrieval-Augmented Generation (RAG) provides LLMs with access to prior knowledge within a given knowledge base for future queries on similar tasks, which can be considered longterm memories for LLMs. However, traditional RAG limits the quality of the retrieval strategy and the corresponding reasoning logic learned from prior knowledge examples by the quality of existing knowledge base examples. It remains a challenge for existing RAG techniques to adapt to dynamic and interconnected knowledge bases Gutiérrez et al. (2025). SA-ICL is built on top of the RAG paradigm and leverages schema theory, which humans use to adapt to the dynamic and interconnected knowledge base, by retrieving abstracted reasoning logic from memorized examples for activating a schema for the new problem. Our work emphasizes using human cognitive schemas to fill in the knowledge gap of LLMs between their perceived examples and similar tasks, where the ground truth answer is not apparent in the input context. In contrast, the knowledge needed is closely related.

3 SCHEMA-ACTIVATED IN-CONTEXT LEARNING

We propose this innovative ICL framework, SCHEMA-ACTIVATED IN-CONTEXT LEARNING (SA-ICL), which mimics how humans use previous examples to activate a schema, enabling a better understanding and solution to a new problem. This framework can be applied to any trained large language model and combined with existing prompting techniques. This framework is simple, yet also flexible and extendable, providing a reliable and transparent explanation of how a language model learns from previous examples and turns these abstractions into a powerful schemas that guides it in solving new problems.

3.1 Overall Workflow

SA-ICL operationalizes schema theory from cognitive science in five steps, aligning abstract schema formation with language model retrieval and reasoning. (i) **Problem Representation**: Given

Figure 1: SA-ICL applied to a coin-weighing optimization problem. The framework demonstrates five sequential stages: (i) generates problem representation to form an initial schema recognizing this as a mathematical optimization and partitioning challenge, (ii) retrieves a similar prior schema to identify relevant properties of the question, (iii) gathers a subset of past influential episodic examples that are relevant to solve the target problem, (iv) performs schema activation and integrates retrieved knowledge to develop optimal mathematical strategies adapted to solve the target problem, and (v) conditions the target problem to the adapted schema and utilizes schema-guided inference to eventually conclude that the maximum number of guaranteed real coins is 142.

Algorithm 1 SCHEMA-ACTIVATED IN-CONTEXT LEARNING

```
Require: Problem x; Schemas \mathcal{S} = \{S_1, \ldots, S_N\}; Episodic set \mathcal{E} = \{e_1, \ldots, e_M\}; Memory \mathcal{M} = \{e_1, \ldots, e_M\}
       \{(\mathcal{S}_i, e_i, w_{ij}(t))\}; Representation \mathcal{R}; Similarity sim; Activation f; LLM; Threshold \tau \in [0, 1]
Ensure: y, S_{new}
 1: S_x \leftarrow \mathcal{R}(x)
 2: \hat{i} \leftarrow \arg \max_{i \in \{1,...,N\}} \sin(\mathcal{S}_x, \mathcal{S}_i)
 3: \hat{\mathcal{S}} \leftarrow \mathcal{S}_{\hat{\imath}}
 4: \mathcal{E}_{\tau} \leftarrow \emptyset
 5: for j \in \{1, ..., M\} do
             if w_{ij}(t) \geq \tau then
 6:
                  \hat{\mathcal{E}}_{\tau} \leftarrow \hat{\mathcal{E}}_{\tau} \cup \{e_j\}
 7:
 8:
             end if
 9: end for
10: S_{\text{new}} \leftarrow f(S_x, \hat{S}, \hat{\mathcal{E}}_{\tau})
11: y \leftarrow \text{LLM}(x, \mathcal{S}_{\text{new}})
12: return (y, \mathcal{S}_{\text{new}})
```

an input problem x, the LLM constructs a representation $\mathcal{S}_x = \mathcal{R}(x)$. This representation functions as the initial schema for the new problem. (ii) **Prior Schema Retrieval**: SA-ICL retrieves the most relevant schema $\hat{\mathcal{S}} \in \mathcal{S}$ that maximizes similarity with \mathcal{S}_x . (iii) **Episodic Examples Retrieval**: Conditioned on the retrieved schema $\hat{\mathcal{S}}$, SA-ICL collects a subset of episodic examples whose decayed association weights $w_{ij}(t)$ exceed a threshold τ . This yields a set $\hat{\mathcal{E}}_{\tau}$ of examples that remain influential for the current reasoning. (iv) **Schema Activation** (Assimilation / Accommodation): The retrieved schema $\hat{\mathcal{S}}$ and episodic set $\hat{\mathcal{E}}_{\tau}$ are integrated with the current problem representation, producing a new activated schema: $\mathcal{S}_{\text{new}} = f(\mathcal{S}_x, \hat{\mathcal{S}}, \hat{\mathcal{E}}_{\tau})$. This integration may proceed through assimilation when prior schema fits well, or accommodation when internal restructuring is required. (v) **Schema-Guided Problem Solving**: Finally, the LLM solves the task by conditioning on the input x and the adapted schema \mathcal{S}_{new} : $y = \text{LLM}(x, \mathcal{S}_{\text{new}})$.

Figure 1 describes the conceptual pipeline of SA-ICL. The complete mathematical formalization of each step can be found in Appendix A. Algorithm 1 summarizes SA-ICL framework.

4 MAIN EXPERIMENTS

4.1 TECHNICAL SET UP

All experiments used standardized OpenAI-style API endpoints. For local runs, we used an NVIDIA A40 GPU with 24GB RAM. In addition to model inference for QWen-3 and Llama-3.1, all embedding generation and reranker computations were also performed on the A40 GPU, with results cached locally for faster loading. Appendix B summarizes the model families we used and the corresponding execution environments.

4.2 TASKS AND METRICS

Tasks. We designed closed-ended multiple-choice question-answering tasks wherein language models received individual questions per iteration and applied different reasoning approaches before generating final answers. The experimental design incorporated multiple knowledge density levels to evaluate model performance across varying degrees of prior knowledge acquisition. Closed-ended questions were selected to ensure fair comparison between baseline methods and the SA-ICL.

Datasets. The experiments primarily utilized GPQA dataset, a rigorously annotated benchmark containing questions in chemistry and physics that were subjected to comprehensive human annotation. The chemistry subset was employed for initial refinement of schema-based prompting strategies, while the physics subset was also used during the experiment stage. These subsets are designated as *GPQA-Chemistry* and *GPQA-Physics*, respectively. To simulate scenarios with dense knowledge bases. GPT-40 was employed to generate three synthetic variants for each problem in the database through criteria-based prompting Appendix C. The criteria defined three distinct similarity levels: *Essentially Same, Similar*, and *Different*. The synthetic datasets are designated *GPQA-Chemistry-Synthetic* and *GPQA-Physics-Synthetic*. Appendix D showed the similarity between the problems in the synthetic datasets and the target problems in the GPQA dataset.

Evaluation. For each independent question, the final responses were compared with the ground truths, which led to a downstream performance. We acknowledge that this is an indirect metric.

4.3 EXPERIMENTAL SETUP

4.3.1 HIGH QUALITY EXAMPLES

The first specific experiment discussed in this paper was a direct response to our research question: *Are examples all we need?* In particular, we investigated the LLMs' performances when the examples were of high quality.

We acknowledge the inherent challenges in curating high-quality exemplars for effective model prompting. To address this, we adopted two distinct strategies:

- 1. **Synthetic Similarity**: We generated synthetic data using controlled prompts to simulate varying levels of similarity between the generated examples and the target questions (see Appendix C for detailed prompt templates). We refer to this as *synthetic similarity*.
- 2. **Latent Similarity**: We used Cohere's Rerank 3.5 to retrieve semantically related examples from GPQA dataset and the synthetic pool, employing cross-encoder rerankers (see Appendix D for detailed analysis). We refer to this as *latent similarity*.

In this experiment, the LLMs were provided with *Essentially Same* questions as One-Shot examples. We then compare this result with the LLM groups that were provided with schemas. We reported the gaps to answer the question and argue that examples alone were not always sufficient.

4.3.2 Density of knowledge base on schema & downstream performances

To better understand the extent to which SA-ICL depends on the quality of examples when leveraging One-Shot strategies, we conducted systematic experiments by varying the density of examples provided to the LLMs (**Synthetic Similarity**: *Essentially Same* \rightarrow *Similar* \rightarrow *Different*; **Latent Similarity**: $High \rightarrow Medium \rightarrow Low$). Notably, we found that a substantial portion of High examples correspond to *Essentially Same* (61.18% in chemistry and 67.44% in physics). This experiment

Figure 2: The performances of six LLMs on Chemistry and Physics questions using SA-ICL and example-driven One-Shot prompting, with two retrieval methods Section 4.3.2. The black dotted line represents the zero-shot performance.

investigates both whether SA-ICL is still useful even when the example is of low quality, and when SA-ICL results in the greatest benefits.

4.3.3 Interpretability Experiments

As an investigation into the underlying reasoning mechanisms in SA-ICL, we conducted interpretability experiments to analyze decision patterns in model reasoning and confidence in outputs. We selected a representative chemistry problem from *GPQA-Chemistry* and compared three incontext learning techniques: (1) One-Shot + schema, (2) pure One-Shot, and (3) One-Shot + CoT.

For each approach, we extracted token-level probability distributions over multiple-choice options from the model's output logits. This analysis reveals the confidence each method has in arriving at its final answer and looks into whether SA-ICL achieves correct responses through schema activation or surface-level pattern matching. We also analyzed response length and structure to evaluate reasoning efficiency, testing our hypothesis that SA-ICL enables more direct knowledge access compared to the verbose reasoning typically required by CoT approaches.

5 Main Results

5.1 HIGH-QUALITY EXAMPLES DO NOT LEAD TO OPTIMAL PERFORMANCE WITHOUT SCHEMA ACTIVATION

Language models achieved moderate accuracy when only provided with high-quality examples Section 4.3.2, yet their performance remained suboptimal compared to models employing explicit schema-based learning techniques Figure 2. This performance gap suggests that relying solely on models' internal representations for high-level abstraction fails to fully exploit the learning potential of quality demonstrations. When models were conditioned to implement schema-based learning through structured guidelines and templates Algorithm 1, we observed consistently significant improvements in downstream task performance. These performance gains were consistent even when using domain-agnostic schemas without task-specific fine-tuning for physics or chemistry (Appendices E and F). We also conducted an experiment with GPT-5 on a different benchmark Appendix G.

5.2 Density of knowledge affects the performance of SA-ICL

The experimental results presented in Table 1 and Appendix H demonstrate a stratified performance profile for the SA-ICL methodology. Under optimal conditions, when the provided exemplar exhibits essential equivalence to the target question, the SA-ICL approach achieves complete dominance with a perfect win rate against the One-Shot baseline. In sub-optimal conditions characterized by varying degrees of quality and similarity, the SA-ICL method maintains consistent performance advantages, demonstrating superior results across the majority of experimental conditions even when exemplar-question alignment is imperfect.

These findings indicate that while SA-ICL achieves maximum efficacy when provided with highly relevant exemplars, its performance benefits extend beyond ideal matching conditions. The evidence supports the conclusion that SA-ICL constitutes a fundamentally superior prompting methodology

rather than a technique dependent solely on exceptional example quality, establishing its viability as a generalizable improvement to existing in-context learning frameworks.

380

Table 1: Performances of SA-ICL and One-Shot on Chemistry and Physics questions. For Chemistry, the improvement is up to 39.67%, 34.88% for Physics. On average, the improvement in Chemistry is 9.81%, 12.91% for Physics. All values in table were rounded up to the third decimal.

384 385 386

(a) Chemistry Results

Synthetic Similarity

Latent Similarity

3	ξ	3	7	
3	8	3	8	
3	8	3	9	
3	()	0	
3	()	1	
3	()	2	

402 403 404

411 412

Model Method Essentially Same Similar Different High Medium Low SA-ICL 0.763 0.376 0.301 0.667 0.613 0.516 Qwen-3 One-Shot 0.581 0.301 0.301 0.688 0.581 0.624 0.538 0.387 0.376 SA-ICL 0.892 0.430 0.753 Llama-3.1 0.495 0.366 0.473 One-Shot 0.366 0.441 0.441 0.946 0.366 0.538 0.441 SA-ICL 0.462 0.839 GPT-40 Mini One-Shot 0.688 0.366 0.323 0.667 0.624 0.613 SA-ICL 0.925 0.516 0.419 0.774 0.796 0.828 GPT-4o 0.559 0.409 One-Shot 0.656 0.667 0.688 0.699 0.376 0.817 SA-ICL 0.882 0.473 0.785 0.860 Ministral One-Shot 0.731 0.376 0.280 0.656 0.656 0.677 0.796 SA-ICL 0.333 0.280 0.720 0.581 0.484 Gemini 1.5 Flash One-Shot 0.538 0.258 0.194 0.473 0.452 0.409

(b) Physics Results

Model	Method	Synthetic	Latent Similarity				
		Essentially Same	Similar	Different	High	Medium	Low
Qwen-3	SA-ICL One-Shot	0.756 0.616	0.465 0.477	0.349 0.477	0.686 0.605	0.523 0.581	0.535 0.581
Llama-3.1	SA-ICL One-Shot	0.814 0.512	0.430 0.314	0.407 0.372	0.744 0.465	0.686 0.395	0.558 0.547
GPT-40 Mini	SA-ICL One-Shot	0.977 0.628	0.512 0.372	0.523 0.372	0.872 0.593	0.651 0.593	0.570 0.547
GPT-40	SA-ICL One-Shot	0.953 0.721	0.663 0.616	0.616 0.547	0.872 0.744	0.907 0.698	0.930 0.721
Ministral	SA-ICL One-Shot	0.930 0.802	0.535 0.372	0.488 0.256	0.849 0.663	0.802 0.721	0.791 0.686
Gemini 1.5 Flash	SA-ICL One-Shot	0.767 0.500	0.407 0.349	0.360 0.349	0.674 0.500	0.651 0.488	0.686 0.512

418 419 420

421

422

423

424

425

5.3 ABLATION STUDY: EFFECTIVENESS OF THE ACTIVATION

We conducted an ablation study to investigate whether it is the abstraction of the example or the activation of the schema that boosts LLMs' performance. Since we observed the most significant margin in performance between SA-ICL and One-Shot with the GPT-40 mini, we removed the activation part. We only used the abstraction of the example to solve the Physics questions. We observed that LLMs would not perform as well as when they were allowed to activate the schema Figure J.5. This result highlights the importance of the explicit human-like schema activation.

426 427 428

5.4 A DEEPER INVESTIGATION INTO THE EFFECTIVENESS OF SA-ICL

429 430

431

To investigate the interpretable effectiveness of SA-ICL over CoT and One-Shot prompting methods, we logged the log likelihood of the top-5 predicted tokens in the LLM generation output Figure I.4 Zhang et al. (2025). One-Shot prompting often encourages the model to overfit to the given

demonstration by focusing on fitting the output format (e.g., Answer: ANSWER), rather than leveraging the example to activate prior knowledge and understandings to reason the problem better and provide well-thought-out answers. This problem is discussed in earlier work as pattern-matching.

While prior work noted that enforcing rigid, structured outputs can reduce the flexibility needed for effective reasoning, SA-ICL reached equilibrium between structured reasoning and free-form thinking. Table 2 showed that in high-knowledge settings, where the answer is already well represented in the context, CoT may introduce unnecessary verbosity and even hurt performance, whereas SA-ICL provides more direct and efficient knowledge activation.

Table 2: Token counts and correctness (\checkmark/x) across different prompting strategies for the first 10 questions from *GPQA-Chemistry* dataset using GPT-40 Mini with temperature 0. All prior knowledge in this experiment is retrieved using *High* in Latent Similarity. We ran 3 experiments per question to get the average token counts and we used the majority correctness as overall correctness.

Question ID	One-Shot + Schema		One-Shot		One-Shot + CoT	
	Tokens	Correct	Tokens	Correct	Tokens	Correct
2662eff7a6231613fcaaeb	150	√	133	Х	196	Х
fc081c2fbb63be50065420	161	✓	132	✓	206	✓
a8be7a4963bfb6bc799122	180	✓	156	✓	228	✓
f730b35adb897658ba77e5	166	✓	412	X	417	X
1ce3d847d25b2c2f601155	231	✓	235	✓	254	✓
d8c36bd55ba561cb47a049	308	✓	324	✓	273	✓
40b2b50a3c993902d0bfcb	91	✓	138	✓	186	✓
a2136b05b78259562184d7	76	✓	76	X	91	X
cbf5c336a0990294b7d447	203	✓	170	X	222	X
16464cac7090a24d39bafd2	175	✓	154	✓	217	✓
Total Correct	10	0/10	6,	/10	6,	/10

6 DISCUSSION

SCHEMA-ACTIVATED IN-CONTEXT LEARNING (SA-ICL) challenges the conventional paradigm of machine learning, which has historically relied on large quantities of demonstrations. This counterintuitive shift has constrained the development of abstraction-driven approaches, even in the era of LLMs. However, from a cognitive perspective, SA-ICL demonstrates a stronger alignment with human thinking patterns. Our empirical results demonstrate that activated schemas, viewed through the lens of prior knowledge, enhance the effectiveness of that knowledge when appropriately matched to the problem domain. We demonstrated that schemas enrich the contextual abstraction of examples, and this process facilitates LLMs' understanding of schema generation mechanisms, which subsequently conditions these models to utilize schemas alongside examples more efficiently. In these scenarios, a single example augmented with schema activation yields performance improvements exceeding 20% compared to using the example alone, indicating that SA-ICL substantially reduces the number of examples required for pattern matching compared to traditional ICL approaches.

It is worth highlighting that although the improvements of SA-ICL are most significant when the episodic examples exhibit high similarity, our framework exhibits noticeable increases in accuracy compared to One-Shot in most scenarios overall. However, there are still special circumstances where accuracy boosts are not observed. We hypothesize this is because our current implementation generates schemas from single examples ($\tau=1$), which may cause the model to apply reasoning patterns too rigidly without adequate contextual grounding. Nevertheless, through the deployment of the complete SA-ICL algorithm, we posit that dynamic schema activation mechanisms will enhance performance even when the knowledge space exhibits sparsity. We encourage the LLM community to pursue this direction toward developing models with more human-like cognitive capabilities.

Finally, it should be noted that human perception of the environment around them typically does not begin with textual information as the initial sensory input that triggers their inherent schema-based thinking. Instead, visual and other sensory data captured through computer vision systems would likely raise even further the necessity for SA-ICL in real-world deployment scenarios.

REPRODUCIBILITY STATEMENT

The full code will be posted on GitHub after the review is done. It is worth noting that Gemini 1.5 will be deprecated on Sep 24, 2025. After this date, it will no longer be possible to reproduce the results from our experiments using Gemini 1.5 models. However, the authors will nevertheless provide full experiment results with Gemini 1.5 to the public. To reproduce the experiments, you can follow the README.md under the zipped code submission in the supplementary material. The supplementary material also includes the raw experimental results, and consists of multiple CSV files for the experiments in Section 4.3 which we used to analyze and report the results in Section 5.2. To examine the raw LLM responses, you can run base64.urlsafe_b64decode(process_id).decode().

REFERENCES

- Rishabh Agarwal, Avi Singh, Lei Zhang, Bernd Bohnet, Luis Rosias, Stephanie Chan, Biao Zhang, Ankesh Anand, Zaheer Abbas, Azade Nova, et al. Many-shot in-context learning. *Advances in Neural Information Processing Systems*, 37:76930–76966, 2024.
- Richard C Anderson and James W Pichert. Recall of previously unrecallable information following a shift in perspective. *Journal of Verbal Learning and Verbal Behavior*, 17(1):1–12, 1978.
- Frederic C Bartlett. *Remembering: A study in experimental and social psychology*. Cambridge University Press, 1932.
- William F Brewer and James C Treyens. Role of schemata in memory for places. *Cognitive Psychology*, 13(2):207–230, 1981.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, *Advances in Neural Information Processing Systems*, volume 33, pages 1877–1901. Curran Associates, Inc., 2020. https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.
- Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompting: Disentangling computation from reasoning for numerical reasoning tasks. *Transactions on Machine Learning Research*, 2023.
- Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. *arXiv preprint arXiv:2301.00234*, 2022.
- Dedre Gentner. Structure-mapping: A theoretical framework for analogy. In *Cognitive Science*, 1983.
- Mary L. Gick and Keith J. Holyoak. Schema induction and analogical transfer. *Cognitive Psychology*, 15(1):1–38, 1983.
- J. Swaroop Guntupalli et al. Graph schemas as abstractions for transfer learning, inference, and planning. *ArXiv preprint*, 2023.
- Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, and Yu Su. From rag to memory: Non-parametric continual learning for large language models. *arXiv preprint arXiv:2502.14802*, 2025.
- Hyeonsu B Kang, David Chuan-En Lin, Yan-Ying Chen, Matthew K Hong, Nikolas Martelaro, and Aniket Kittur. Biospark: Beyond analogical inspiration to llm-augmented transfer. In *Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems*, pages 1–29, 2025.
- Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational complexity of self-attention. In *International conference on algorithmic learning theory*, pages 597–619. PMLR, 2023.
- Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are zero-shot reasoners. *Advances in neural information processing systems*, 35:22199–22213, 2022.
- Andrew Kyle Lampinen, Stephanie CY Chan, Aaditya K Singh, and Murray Shanahan. The broader spectrum of in-context learning. *arXiv preprint arXiv:2412.03782*, 2024.
- Ji-An Li, Corey Zhou, Marcus Benna, and Marcelo G Mattar. Linking in-context learning in transformers to human episodic memory. *Advances in neural information processing systems*, 37: 6180–6212, 2024a.

- Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle with long in-context learning. *arXiv preprint arXiv:2404.02060*, 2024b.
 - Kyle Mahowald, Anna A Ivanova, Idan A Blank, Nancy Kanwisher, Joshua B Tenenbaum, and Evelina Fedorenko. Dissociating language and thought in large language models. *Trends in cognitive sciences*, 2024.
 - Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetalCL: Learning to learn in context. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz, editors, *Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 2791–2809, Seattle, United States, July 2022a. Association for Computational Linguistics. doi: 10.18653/v1/2022. naacl-main.201. https://aclanthology.org/2022.naacl-main.201/.
 - Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pages 11048–11064, Abu Dhabi, United Arab Emirates, December 2022b. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.759. https://aclanthology.org/2022.emnlp-main.759/.
 - Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work: Scratchpads for intermediate computation with language models. 2021.
 - Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. In-context learning and induction heads. *CoRR*, abs/2209.11895, 2022. https://doi.org/10.48550/arXiv.2209.11895.
 - Archit Parnami and Minwoo Lee. Learning from few examples: A summary of approaches to few-shot learning. *ArXiv*, abs/2203.04291, 2022. https://api.semanticscholar.org/CorpusID:247318847.
 - Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity's last exam. arXiv preprint arXiv:2501.14249, 2025.
 - Jean Piaget. The origins of intelligence in children. International Universities Press, 1952.
 - Sean M Polyn, Kenneth A Norman, and Michael J Kahana. A context maintenance and retrieval (cmr) model of organizational processes in free recall. *Psychological Review*, 116(1):129–156, 2009.
 - Phanish Puranam, Prothit Sen, and Maciej Workiewicz. Can Ilms help improve analogical reasoning for strategic decisions? *ArXiv preprint*, 2025.
 - Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram, Inbal Magar, Omri Abend, Ehud Karpas, Amnon Shashua, Kevin Leyton-Brown, and Yoav Shoham. Parallel context windows for large language models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 6383–6402, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.352. https://aclanthology.org/2023.acl-long.352/.
 - David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In *First Conference on Language Modeling*, 2024.
 - Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context learning. In *Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 2655–2671, 2022.

- David E Rumelhart and Andrew Ortony. Schemata: The building blocks of cognition. In Rand J Spiro, Bertram C Bruce, and William F Brewer, editors, *Theoretical issues in reading comprehension*, pages 33–58. Lawrence Erlbaum Associates, 1977.
 - Baturay Saglam, Xinyang Hu, Zhuoran Yang, Dionysis Kalogerias, and Amin Karbasi. Learning task representations from in-context learning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar, editors, *Findings of the Association for Computational Linguistics: ACL 2025*, pages 6634–6663, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.345. https://aclanthology.org/2025.findings-acl.345/.
 - Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and Wen-tau Yih. Replug: Retrieval-augmented black-box language models. In *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics*, 2024.
 - Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of thoughtlessness? an analysis of cot in planning. *Advances in Neural Information Processing Systems*, 37:29106–29141, 2024.
 - Sivaramakrishnan Swaminathan, Antoine Dedieu, Rajkumar Vasudeva Raju, Murray Shanahan, Miguel Lazaro-Gredilla, and Dileep George. Schema-learning and rebinding as mechanisms of in-context learning and emergence. *Advances in Neural Information Processing Systems*, 36: 28785–28804, 2023.
 - Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In *The Eleventh International Conference on Learning Representations*, 2023. https://openreview.net/forum?id=1PL1NIMMrw.
 - Yaqing Wang, Quanming Yao, James T. Kwok, and Lionel M. Ni. Generalizing from a few examples: A survey on few-shot learning. *ACM Comput. Surv.*, 53(3), June 2020. ISSN 0360-0300. doi: 10.1145/3386252. https://doi.org/10.1145/3386252.
 - Yuqing Wang and Yun Zhao. Metacognitive prompting improves understanding in large language models. In Kevin Duh, Helena Gomez, and Steven Bethard, editors, *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pages 1914–1926, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.106. https://aclanthology.org/2024.naacl-long.106/.
 - Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
 - Sen Yang, Yunchen Zhang, Leyang Cui, and Yue Zhang. Do prompts solve nlp tasks using natural language? *CoRR*, abs/2203.00902, 2022. https://doi.org/10.48550/arXiv.2203.00902.
 - Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in language models. In *International Conference on Learning Representations*, 2023.
 - Tunyu Zhang, Haizhou Shi, Yibin Wang, Hengyi Wang, Xiaoxiao He, Zhuowei Li, Haoxian Chen, Ligong Han, Kai Xu, Huan Zhang, Dimitris N. Metaxas, and Hao Wang. Token-level uncertainty estimation for large language model reasoning. *ArXiv*, abs/2505.11737, 2025. https://api.semanticscholar.org/CorpusID:278740334.
 - Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in large language models. In *The Eleventh International Conference on Learning Representations*, 2023. https://openreview.net/forum?id=5NTt8GFjUHkr.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning in large language models. *arXiv preprint arXiv:2205.10625*, 2022.

Yucheng Zhou, Xiubo Geng, Tao Shen, Chongyang Tao, Guodong Long, Jian-Guang Lou, and Jianbing Shen. Thread of thought unraveling chaotic contexts. *arXiv preprint arXiv:2311.08734*, 2023.

A MATHEMATICAL FORMALIZATION OF SCHEMA-ACTIVATED IN-CONTEXT LEARNING

A.1 MEMORY: SCHEMAS AND EPISODIC TRACES

We model memory as a bipartite structure linking abstract schemas to multiple episodic examples:

$$\mathcal{M} = \{ (\mathcal{S}_i, e_j, w_{ij}(t)) \mid \mathcal{S}_i \in \mathcal{S}, e_j \in \mathcal{E} \},\$$

where

- $S = \{S_1, \dots, S_N\}$ is the set of schemas,
- $\mathcal{E} = \{e_1, \dots, e_M\}$ is the set of episodic traces (examples),
- $w_{ij}(t) \in [0,1]$ is the association strength between schema S_i and example e_j at time t.

Association weights decay over time, modeling episodic forgetting:

$$w_{ij}(t) = w_{ij}(0) \cdot \exp(-\lambda t), \quad \lambda > 0.$$

The exponential function is an estimate for the forgetting curve, as we want the examples learned earlier to have less impact.

A.2 PROBLEM REPRESENTATION (SCHEMA FORMATION)

Given an input problem x, the LLM constructs a mental representation (schema):

$$S_x = \mathcal{R}(x)$$

where R is an embedding or representation function.

A.3 PRIOR SCHEMA RETRIEVAL

The model retrieves a schema \hat{S} from S:

$$\hat{\mathcal{S}} = \arg \max_{\mathcal{S}_i \in \mathcal{S}} \sin(\mathcal{S}_x, \mathcal{S}_i),$$

where $sim(\cdot, \cdot)$ denotes the similarity function, which may be cosine similarity, re-ranking, or another metric.

A.4 EPISODIC EXAMPLES RETRIEVAL

For notational convenience, let $\hat{i} \in \{1,...,N\}$ denote the index of \hat{S} such that $\hat{S} = S_{\hat{i}}$. More formally,

$$\hat{i} = \arg \max_{i \in \{1,\dots,N\}} \sin(\mathcal{S}_x, \mathcal{S}_i).$$

Afterwards, given the retrieved schema $\hat{S} = S_{\hat{i}}$, SA-ICL selects all episodic examples whose (decayed) association to \hat{S} exceeds a threshold $\tau \in [0, 1]$:

$$\hat{\mathcal{E}}_{\tau}(t \mid \hat{\imath}) = \{ e_j \in \mathcal{E} : w_{\hat{\imath}j}(t) \ge \tau \}.$$

A.5 SCHEMA ACTIVATION (ASSIMILATION / ACCOMMODATION)

The retrieved schema and its selected episodic set guide activation of a new schema for the current problem:

$$S_{\text{new}} = f(S_x, \hat{S}, \hat{\mathcal{E}}_{\tau}(t \mid \hat{\imath})),$$

where f denotes the integration mechanism.

Then, assimilation and accommodation can be conceptualized as follows:

- Assimilation: $S_{\text{new}} \approx S_x$ when \hat{S} fits well.
- Accommodation: S_{new} requires restructuring when fit is poor.

A.6 SCHEMA-GUIDED PROBLEM SOLVING

Finally, the LLM produces an output conditioned on the activated schema:

$$y = LLM(x, \mathcal{S}_{new}).$$

A.7 END-TO-END EQUATION

 Combining all steps (schema-first, then thresholded episodic selection), we obtain the following equation:

$$y = \text{LLM}\left(x, \ f\left(\mathcal{R}(x), \underbrace{\arg\max_{\mathcal{S}_i \in \mathcal{S}} \sin(\mathcal{R}(x), \mathcal{S}_i)}_{\hat{\mathcal{S}} = \mathcal{S}_i}, \underbrace{\left\{e_j \in \mathcal{E} : w_{\hat{i}j}(t) \ge \tau\right\}}_{\hat{\mathcal{E}}_{\tau}(t|\hat{i})}\right)\right).$$

B EXPERIMENTAL SETUP

Table B.1: Experimental setup across model families. "N/A" indicates the parameter count has not been disclosed. Note that embedding and reranker computations were performed on the NVIDIA A40 GPU, with results cached locally.

Model Family	Parameter Count	Execution Environment
QWen-3	8B	NVIDIA A40 GPU (24GB RAM)
LLaMA-3.1	8B	NVIDIA A40 GPU (24GB RAM)
Ministral	8B	API endpoint
Gemini 1.5 Flash	N/A	API endpoint
GPT-4o Mini	N/A	API endpoint
GPT-4o	N/A	API endpoint
GPT-5	N/A	API endpoint (subset of experiments)

C SYNTHETIC DATASET GENERATION

Below are the prompts that we used to generate the synthetic data that are used as our knowledge base for knowledge and schema retrieval mechanisms. The synthetic data are constructed using GPT-40 via the OpenAI API to ensure the GPQA dataset is not included in the LLM's training data. Specifically, we provide exact prompts for each of the three *synthetic similarity* levels: *Essentially Same*, *Similar*, and *Different*. Note that we intentionally keep all prompts identical to our experiment setup including format, punctuation, and typos to ensure reproducibility.

C.1 Essentially Same

```
852
      Consider answer({answer}) and the explanation of solving it({explanation
853
          }). this question: {question}, along with its
854
      Please generate a new question that is distinct from the previous
855
          question.
856
      You should follow the following criteria:
       - New question requires more knowledge than the provided explanation to
858
          be used to answer it.
859
       - New question should differ from the given question with a lot of
860
          distinctiveness.
861
       - Generate a set of new options with only one of them being the correct
862
          option to the new question.
       - Provide three incorrect options, which should be similar to the correct
           answer
```

```
864
      - Provide a short explanation on how to solve the new question, and the
865
          additional knowledge required to answer the new question.
866
       - Difficulty:
867
          The new question should be the similar difficulty to the previous
          question.
868
          If a student has the knowledge to answer the previous question, they
869
          should have partial knowledge to answer the new question.
870
          However, the new question should require additional knowledge than
871
          the given question's scope to be answered.
872
       - Distinctiveness:
          The new question should be distinctive enough to the previous
873
          question, that the student require additional knowledge to solve the
874
          problem.
875
          New question should be unique in its context, and is related to the
876
          previous question in a minimal level.
       - Output Format:
877
          {question_format}
878
879
880
881
      C.2 Similar
882
883
```

```
884
      Consider this question: {question}, along with its answer({answer}) and
          the explanation of solving it({explanation}).
885
886
      Please give me a slightly different question from this example that test
887
          the student's ability to transform their knowledge.
888
      You should follow the following criteria:
       - The new question only requires the knowledge provided in the
890
          explanation to be used to answer it.
891
       - New question should still differ with a lot of distinctiveness to test
892
          student's use of the same knowledge.
893
       - Generate a set of new options with only one of them being the correct
894
          option to the new question
       - Provide three incorrect options, which should be similar to the correct
895
           answer
896
       - Provide a short explanation on how to solve the new question
897
       - Difficulty:
898
          The new question should be the similar difficulty to the previous
899
          question.
          If a student has the knowledge to answer the previous question, they
900
          should have enough knowledge to answer the new question.
901
       - Distinctiveness:
902
          The new question should be distinctive enough to the previous
903
          question, that the student cannot use the same answer.
904
          New question should be unique in its context, but still related to
          the previous question.
905
       - Output Format:
906
           {question_format}
907
908
```

C.3 Different

909 910

911 912

913

914 915

916

```
Consider this question: {question}, along with its answer({answer}) and the explanation of solving it({explanation}).

Please generate a new question that is distinct from the previous question.

You should follow the following criteria:
```

```
918
       - New question requires more knowledge than the provided explanation to
919
          be used to answer it.
920
       - New question should differ from the given question with a lot of
          distinctiveness.
921
        Generate a set of new options with only one of them being the correct
922
          option to the new question.
923
        Provide three incorrect options, which should be similar to the correct
924
           answer
925
        Provide a short explanation on how to solve the new question, and the
          additional knowledge required to answer the new question.
926
        Difficulty:
927
          The new question should be the similar difficulty to the previous
928
          question.
929
          If a student has the knowledge to answer the previous question, they
930
          should have partial knowledge to answer the new question.
          However, the new question should require additional knowledge than
931
          the gicen question's scope to be answered.
932
        Distinctiveness:
933
          The new question should be distinctive enough to the previous
934
          question, that the student require additional knowledge to solve the
          New question should be unique in its context, and is related to the
936
          previous question in a minimal level.
937
        Output Format:
938
           {question_format}
939
```

D HEATMAPS FOR KNOWLEDGE DENSITY IN LATENT SIMILARITY

Figure D.1: The heatmaps for knowledge density for GPQA-Chemistry and GPQA-Physics

Knowledge density is defined as the similarity between prior knowledge and a target question. Similarity is quantified by converting prior knowledge into mental representations and employing cross-encoder rerankers to compute relevance scores. The knowledge density heatmaps Figure D.1 visualize marginal relevance scores across top-k retrieved examples for each question, revealing domain-specific patterns in knowledge sparsity. Our analysis demonstrates that chemistry maintains consistently high relevance scores across retrieved examples, while physics exhibits significantly greater sparsity — with relevance scores decreasing 68% compared to chemistry's 40% decrease. These findings underscore that effective schema-based knowledge transfer depends on inherent conceptual coherence within domains rather than universal retrieval mechanisms.

D.1 LATENT KNOWLEDGE DENSITY METHODOLOGY

We define the latent knowledge density function $\rho: Q \times K \to [0,1]$, where Q represents the set of questions and $K = \{1,2,...,k_{max}\}$ denotes retrieval ranks. In our case, $k_{max} := 10$. For each question $q \in Q$ and rank $k \in K$, $\rho(q,k)$ measures the relevance score between q and its k-th most similar prior example, computed using Cohere's Rerank 3.5 cross-encoder architecture. The aggregate density metric $\bar{\rho}(q) = \frac{1}{k_{max}} \sum_{k=1}^{k_{max}} \rho(q,k)$ quantifies overall knowledge availability for

question q, where higher values indicate robust transfer potential and lower values reveal knowledge sparsity. We define $\sigma \in [0,1]$ as the relevance threshold hyperparameter to quantify what we consider quality knowledge. For this investigation, we arbitrarily set $\sigma := 0.5$.

D.2 HEATMAP VISUALIZATION AND INTERPRETATION

Figure D.1 visualizes $\rho(q,k)$ for GPQA-Chemistry and GPQA-Physics datasets as heatmaps, where each cell (i,j) represents $\rho(q_i,k_j)$ with q_i denoting the i-th question (horizontal axis) and $k_j \in \{1,2,...,k_{max}\}$ the retrieval rank (vertical axis). Color intensity maps linearly to ρ values, from light shades $(\rho \to 0)$ to dark red $(\rho \to 1)$, symbolizing low to high relevance scores respectively.

Chemistry questions maintain $\rho_{chem}(q,k) > \sigma$ for most $(q,k) \in Q \times K$ pairs even at $k = k_{max}$, indicating persistent semantic similarity with small $\Delta \rho = \rho(q,k) - \rho(q,k+1)$ for all $k \in \{1,2,...,k_{max}-1\}$. Physics exhibits rapid density decay with $\rho_{phys}(q,k) < 0.3$ for many questions by k=5, revealing sparse knowledge availability beyond initial retrievals.

D.3 DOMAIN SPARSITY AND KNOWLEDGE SPACE ISOLATION

Defining decay rate as $\theta(k) = \frac{\rho(q,k)}{\rho(q,1)}$, we observe $\bar{\theta}_{chem}(k_{max}) = 0.60$ for chemistry versus $\bar{\theta}_{phys}(k_{max}) = 0.32$ for physics, where the bar notation indicates domain averaging. This represents $\bar{\rho}_{chem}(q,k_{max}) \approx 0.6 \cdot \bar{\rho}_{chem}(q,1)$ netting a 40% decrease, compared to $\bar{\rho}_{phys}(q,k_{max}) \approx 0.32 \cdot \bar{\rho}_{phys}(q,1)$ which yields a 68% decrease. Chemistry maintains $\bar{\rho}_{chem}(q,k) > \sigma$ throughout all $k \in \{1,2,...,k_{max}\}$, while physics shows a domain-specific density gradient $\nabla_k \rho$ approximately twice as steep.

We hypothesize that this disparity stems from the inherent conceptual fragmentation of physics across fields like quantum mechanics and general relativity — each possessing specialized theoretical vocabularies that create isolated knowledge regions within the latent space. The intercluster density satisfies $\rho(q_i,e_j)\ll\sigma$ when q_i and the episodic trace e_j belong to different physics subdomains. For example, specialized concepts inherent to quantum mechanics, such as quantum entanglement and wave functions, yield $\rho\approx0$ when matched against general relativity examples, forming disjoint clusters and thus leading to poorer schema activations.

These findings demonstrate that effective schema-based knowledge transfer depends critically on domain density structure $\rho(q,k)$. High-density regimes where $\bar{\rho}>\sigma$ support extensive retrieval sets, while sparse domains with rapidly decaying $\rho(q,k)$ require adaptive mechanisms for $\rho\to 0$ when $k>k_{threshold}$.

E DOMAIN-AGNOSTIC SCHEMA TEMPLATE

When generating mental representations or schemas, LLMs were guided for each attribute of the schema.

```
"""Drawing on schema theory from cognitive psychology, think about a high
1012
          -level abstraction (schema) of the problem to guide your reasoning.
1013
          Your ultimate goal is to select the most appropriate answer .:
1014
      Below is the template for the schema you need to fill out:
1015
1016
      Broad Category:
1017
      Identify the overarching subject and general category to which the
1018
          problem belongs.
1019
1020
      Refinement:
      Describe further details or specific aspects that narrow down the broad
1021
          category.
1022
1023
      Specific Scope:
1024
      Define the precise focus or context of the problem within the refined
1025
          category.
```

1027

1028 1029

1030 1031

1032

1033 1034

1035

1036

1037

1038

1039

1044

1045 1046

```
Goal:
Clearly state the objective or intended outcome of solving the problem.
Finally, summarize the schema in a few sentences to help students grasp
the key points. The problem you need to abstract is as follows:"""
```

The LLM will then generate a JSON-like object that represents a concrete schema for a specific question:

```
"schema": {
   "broad_category": str,
   "refinement": str,
   "specific_scope": str,
   "goal": str
},
"summary": str
```

A FULL CONVERSATION HISTORY DURING THE INFERENCE TIME WITH GPT-40 MINI

Note that all three methods use the same dynamic response JSON format:

```
1047
1048
         "name": "DynamicResponse",
1049
         "strict": true,
1050
         "schema": {
           "$defs": {
1052
              "AnswerEnum": {
1053
                "enum": [
                  "14",
1054
                  "12",
1055
                  "10",
1056
                  "11"
1057
               ],
                "title": "AnswerEnum",
1058
                "type": "string"
1059
              }
1060
1061
            "properties": {
1062
              "reasoning": {
                "title": "Reasoning",
1063
                "type": "string"
1064
1065
              "final_answer": {
1066
                "$ref": "#/$defs/AnswerEnum"
1067
1068
            "required": [
1069
              "reasoning",
1070
              "final_answer"
1071
1072
           "title": "DynamicResponse",
           "type": "object",
1073
           "additionalProperties": false
1074
1075
       }
1076
```

SCHEMA-ACTIVATED IN-CONTEXT LEARNING

System Message:

1077 1078

```
1080
      """Drawing on schema theory from cognitive psychology, think about a high
1081
          -level abstraction (schema) of the problem to guide your reasoning.
1082
          Your ultimate goal is to select the most appropriate answer.:
1083
      Below is the template for the schema you need to fill out:
      Broad Category:
1084
      Identify the overarching subject and general category to which the
1085
          problem belongs.
1086
      Refinement:
1087
      Describe further details or specific aspects that narrow down the broad
1088
          category.
      Specific Scope:
1089
      Define the precise focus or context of the problem within the refined
1090
          category.
1091
      Goal:
1092
      Clearly state the objective or intended outcome of solving the problem.
      Finally, summarize the schema in a few sentences to help students grasp
1093
      the key points. The problem you need to abstract is as follows:"""
1094
```

User Messages:

1095

```
1097
1098
          "role": "user",
          "content": "Question: trans-cinnamaldehyde was treated with
1100
          methylmagnesium bromide, forming product 1.\n\n1 was treated with
1101
          pyridinium chlorochromate, forming product 2.\n\n3 was treated with (
1102
          dimethyl(oxo)-16-sulfaneylidene) methane in DMSO at elevated
1103
          temperature, forming product 3.\n\nhow many carbon atoms are there in
           product 3?\nCandidates: \n1. 14\n2. 12\n3. 10\n4. 11"
1104
1105
1106
           "role": "assistant",
1107
          "content": "#### Schema:\n##### broad_category:\nOrganic Chemistry \
1108
          u2192 Reaction Mechanisms \u2192 Organic Synthesis\n\n####
          refinement:\nThis problem involves a series of organic reactions
1109
          starting from trans-cinnamaldehyde and leading to a final product
1110
          through specific reagents and conditions.\n\n#### specific_scope:\
1111
          nThe focus is on determining the number of carbon atoms in the final
1112
          product (product 3) after a sequence of reactions involving trans-
          cinnamaldehyde, methylmagnesium bromide, pyridinium chlorochromate,
1113
          and a sulfaneylidene compound.\n\n##### goal:\nCalculate the total
1114
          number of carbon atoms in product 3 after completing the series of
1115
          reactions.\n\n#### Summary:\nThis problem involves a series of
1116
          organic reactions that transform trans-cinnamaldehyde into a final
1117
          product through various reagents and conditions. The task is to track
1118
           the carbon atoms throughout the reactions to determine the total
          number in the final product (product 3). By analyzing the structure
1119
          of each intermediate and the final product, we can ascertain the
1120
          number of carbon atoms present. The goal is to arrive at the correct
1121
          count of carbon atoms in product 3."
1122
1123
           "role": "user",
1124
           "content": "Now that you've seen a similar question along with its
1125
          schema and solution, reflect on \n how you could refine or improve
1126
           your previously generated schema for the **current** question. Focus
1127
           on alignment \n
                             in categories, scope specificity, and consistency
           of abstraction.\n## Question:\nQuestion: Trans-cinnamaldehyde
1128
          undergoes a reaction with methylmagnesium bromide to yield compound
1129
          1. Compound 1 is then oxidized using pyridinium chlorochromate to
1130
          form compound 2. Subsequently, compound 2 reacts with (dimethyl(oxo)
1131
          -\u03bb6-sulfaneylidene) methane in DMSO at high temperature to
1132
          produce compound 3. How many carbon atoms are present in compound 3?\
          nCandidates: \n1. 12\n2. 10\n3. 9\n4. 11\n
1133
                                                            \n### Answer to
          this question is: 11\n\n### Below is the schema and summary of this
```

```
1134
          question: \n#### Schema:\n##### broad_category:\nChemistry \u2192
1135
          Organic Chemistry \u2192 Reaction Mechanisms\n\n##### refinement:\
1136
          nThis problem involves a series of organic reactions including
1137
          Grignard reactions, oxidation, and a reaction with a sulfonyl
          compound.\n\n##### specific_scope:\nThe focus is on determining the
1138
          number of carbon atoms in the final product (compound 3) after a
1139
          sequence of reactions starting from trans-cinnamaldehyde.\n\n#####
1140
          goal:\nCalculate the total number of carbon atoms in compound 3 after
1141
           all specified reactions have been completed.\n\n#### Summary:\nThis
1142
          problem involves a series of organic reactions that transform trans-
          cinnamaldehyde through various steps, including a Grignard reaction,
1143
          oxidation, and a reaction with a sulfonyl compound. The objective is
1144
          to determine the number of carbon atoms in the final product,
1145
          compound 3. By analyzing the reactions and counting the carbon atoms
1146
          at each stage, we find that compound 3 contains 11 carbon atoms."
        },
1147
1148
           "role": "assistant",
1149
           "content": "#### Schema:\n##### broad_category:\nOrganic Chemistry \
1150
          u2192 Synthetic Transformations \u2192 Carbon Skeleton Accounting\n\n
1151
          ##### refinement:\nMulti-step sequence featuring: (1) Grignard
1152
          addition to an \u03b1, \u03b2-unsaturated aldehyde (trans-
          cinnamaldehyde), (2) PCC oxidation of the resulting alcohol to a
1153
          ketone, and (3) Corey\u2013Chaykovsky-type methylene transfer using
1154
          dimethylsulfoxonium methylide in DMSO at elevated temperature.
1155
          Emphasis on how each step affects carbon count.\n\n####
1156
          specific_scope:\nTrack carbon atoms starting from trans-
          cinnamaldehyde (C9). Step 1: MeMgBr adds a methyl to the carbonyl
1157
          carbon (allylic secondary alcohol) \u2192 +1 carbon. Step 2: PCC
1158
          oxidizes alcohol to ketone \u2192 0 carbon change. Step 3: Dimethyl(
          oxo)-\u03bb6-sulfaneylidene)methane (dimethylsulfoxonium methylide)
1160
          transfers a methylene to the carbonyl (Corey\u2013Chaykovsky
1161
          epoxidation/methylenation) \u2192 +1 carbon. Determine the total
          carbons in product 3.\n\ goal:\nUse stepwise carbon accounting
1162
          across the reaction sequence to identify the number of carbon atoms
1163
          in product 3 and select the correct option.\n\n#### Summary:\nThis is
1164
           a carbon-tracking problem across a three-step synthesis from trans-
1165
          cinnamaldehyde. Only the Grignard addition and the sulfur ylide
1166
          methylene transfer change the carbon count, each adding one carbon;
          the PCC oxidation does not. Applying this schema leads to the correct
1167
           carbon total in the final product."
1168
        },
1169
1170
           "role": "user",
1171
           "content": "Now that you've refined your schema for the current
          question, select the most appropriate answer. "
1172
1173
1174
1175
1176
      F.2 ONE-SHOT
1177
1178
      System Message:
1179
      """Select the most appropriate answer. You will be shown a sample
1180
          question with its correct answer.
1181
      Then, answer a new question of the same type."""
1182
1183
      User Messages:
1184
1185
1186
          "role": "user",
           "content": "Example Question: \nQuestion: Trans-cinnamaldehyde
1187
          undergoes a reaction with methylmagnesium bromide to yield compound
```

```
1188
          1. Compound 1 is then oxidized using pyridinium chlorochromate to
1189
          form compound 2. Subsequently, compound 2 reacts with (dimethyl(oxo)
1190
          -\u03bb6-sulfaneylidene) methane in DMSO at high temperature to
          produce compound 3. How many carbon atoms are present in compound 3?\
1191
          nCandidates: \n1. 12\n2. 10\n3. 9\n4. 11\nAnswer: 11"
1192
        },
1193
1194
           "role": "user",
1195
           "content": "Now try a similar question: \nQuestion: trans-
          cinnamaldehyde was treated with methylmagnesium bromide, forming
1196
          product 1.\n\n1 was treated with pyridinium chlorochromate, forming
1197
          product 2.\n\n  was treated with (dimethyl(oxo)-16-sulfaneylidene)
1198
          methane in DMSO at elevated temperature, forming product 3.\n\nhow
1199
          many carbon atoms are there in product 3?\nCandidates: \n1. 14\n2.
1200
          12\n3. 10\n4. 11"
1201
1202
```

F.3 ONE-SHOT + COT

System Message:

```
"""Select the most appropriate answer. You will be shown a sample question with its correct answer.

Then, answer a new question of the same type."""
```

User Messages:

```
1221
      [
1222
1223
           "role": "user",
1224
           "content": "Example Question: \nQuestion: Trans-cinnamaldehyde
1225
          undergoes a reaction with methylmagnesium bromide to yield compound
1226
          1. Compound 1 is then oxidized using pyridinium chlorochromate to
          form compound 2. Subsequently, compound 2 reacts with (dimethyl(oxo)
1227
          -\u03bb6-sulfaneylidene)methane in DMSO at high temperature to
1228
          produce compound 3. How many carbon atoms are present in compound 3?\
1229
          nCandidates: \n1. 12\n2. 10\n3. 9\n4. 11\nAnswer: 11"
1230
1231
           "role": "user",
1232
           "content": "Now try a similar question: \nQuestion: trans-
1233
          cinnamaldehyde was treated with methylmagnesium bromide, forming
1234
          product 1.\n\n1 was treated with pyridinium chlorochromate, forming
1235
          product 2.\n\n  was treated with (dimethyl(oxo)-16-sulfaneylidene)
          methane in DMSO at elevated temperature, forming product 3.\n\nhow
1236
          many carbon atoms are there in product 3?\nCandidates: \n1. 14\n2.
1237
          12\n3. 10\n4. 11\nPlease think step by step."
1238
1239
1240
```

GPT-5'S PERFORMANCE ON HUMANITY'S LAST EXAM

Figure G.2: Performance of GPT-5 on the chemistry, physics, biology multi-choice questions from the Humanity's Last Exam (HLE) benchmark dataset Phan et al. (2025) (N=191, we filtered out questions with images), when provided with the Essentially Same examples. We generated the synthetic data as well using the same procedures described in Appendix C.

When GPT-5 was introduced, we used the model to run the same experiments. However, we realized that when provided with Essentially Same examples, GPT-5 reached near 100% accuracy in the GPQA dataset, eliminating the need for explicit reasoning modules introduced by SA-ICL. Therefore, we used a more challenging dataset, Humanity's Last Exam (HLE), to repeat the same experiments using Essentially Same examples, and we saw a 7% improvement in accuracy.

Note that this subset of HLE includes 136 biology/medicine questions, 34 physics questions, and 21 chemistry questions. we acknowledge that most of the questions are biology/medicine, which was not tested in the main experiments Section 5.2.

H FULL EXPERIMENT RESULTS

Figure H.3: We conducted experiments in chemistry and physics using the GPQA dataset, incorporating synthetic examples with predefined levels of prior knowledge similarity Section 4.3.2. Across all knowledge levels, incorporating schema-based examples consistently yielded notable performance improvements. This effect was particularly pronounced when the prior knowledge examples exhibited high similarity to the target questions. The number contained within each bar represents the number of experiments run. The numbers in the bars represent number of questions iterated.

I INTERPRETABILITY EXPERIMENTS

I.1 REPORT ON TOKEN COUNTS AND CORRECTNESS FOR THE FIRST $10\ GPQA$ -Chemistry QUESTIONS

The interpretability experiments are conducted via logit-centric methods to get the overall confidence of LLM generation by retrieving the token-level log likelihood Zhang et al. (2025) from the OpenAI chat completions API for each of our tested ICL prompting strategies. We implemented a customized chat interface to display the log-probability in colored texts using the color schema provided in the legend in Figure I.4 for better visualization and interaction.

From Table 2, we observed that SA-ICL achieves the highest accuracy in these questions while simultaneously generating fewer reasoning tokens compared to One-Shot + CoT, except for the sixth, eighth, and ninth questions.

VISUALIZATION OF THE LOG-PROBABILITIES OF EACH TOKEN IN THE SOLVER'S OUTPUT

Figure I.4: The probabilities of each token in the problem solver output. Note that only SA-ICL confidently gave the correct answer for this question, while pure One-Shot or One-Shot + CoT confidently gave the incorrect answer.

J ABLATION STUDY ON THE SCHEMA ACTIVATION

Figure J.5: GPT-40 Mini solving the *GPQA-Physics* questions with examples that are *Essentially Same*.

To further investigate in isolation the effectiveness of schema activation within our framework, we conducted a controlled ablation study comparing four distinct conditions: SA-ICL, One-Shot, Schema Only, and Example Schema only.

J.1 DESIGN AND NATURE OF ABLATION STUDY

This ablation analysis was designed to determine whether the performance improvements observed in SA-ICL stem from the schema activation mechanism itself or merely from the presence of abstracted examples. In particular, we are interested in the case when prior examples are of high quality, and therefore conducted this study by using GPT-40 Mini to solve questions in the *GPQA-Physics* subset with prior examples that are *Essentially Same* in terms of synthetic similarity. The Schema Only condition provided models with abstract problem schemas without corresponding episodic examples, while Example Schema Only presented abstracted schemas derived from examples but without the schema activation process that is integral to the full SA-ICL procedure.

J.2 Interpretation of Ablation Results

Figure J.5 presents the comparative accuracy results across all four scenarios. The complete SA-ICL framework demonstrated clear superiority over the other three approaches, with a near 40% accuracy boost over the other three conditions. In fact, neither Schema Only nor Example Schema Only result in a clear benefit over One-Shot, which acts as a baseline for this ablation study. This observation provides direct evidence that the schema activation mechanism constitutes the critical component driving the effectiveness of our in-context learning framework.

J.3 SCHEMA DORMANCY

The results of our ablation study strongly suggest that the mere presence of an abstracted schema within the prompt context is insufficient to improve model performance. The sheer significance of schema activation leads to a phenomenon which we coin *schema dormancy*. This term describes a state where a refined schema tailored to a specific task only exists as passive surface-level contextual information rather than an active cognitive framework that guides the language model's reasoning process. When the explicit activation step of the SA-ICL framework is omitted — as observed in the Schema Only and Example Schema Only conditions — the LLM fails to effectively integrate the abstracted reasoning structure into its problem-solving approach. This finding highlights that language models do not implicitly adopt and utilize abstract schemas without an explicit technique to activate this otherwise dormant state.

THE USE OF LARGE LANGUAGE MODELS

The authors used large language models such as ChatGPT to assist with paper writing, mostly for polishing the text, and after which the authors did a thorough check to ensure the polished paper faithfully delivered the authors' messages.