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ABSTRACT

World models promise efficient prediction, imagination, and planning by operat-
ing in a compact latent space, yet prevailing approaches inherit dense, entangled
visual features from large pretrained encoders. Such latents conflate unrelated
factors and contain redundant dimensions, undermining intervention fidelity, in-
flating planning cost, and reducing robustness to distribution shifts. We propose
Sparse World Models (SWMs), which learn and plan entirely in a sparse feature
space. SWMs obtain selectively active codes by training a sparse autoencoder
(SAE) to translate dense vision embeddings into an overcomplete but sparse vo-
cabulary, and then use these codes for state estimation, dynamics learning, and
action optimization. By aligning units to meaningful factors, SWMs enable tar-
geted interventions and attribution, and shrink the optimization search space. We
further introduce an evaluation suite that probes feature capacity and links spar-
sity to planning outcomes. Across studies, sparse representations reduce polyse-
manticity and maintain planning performance while offering better efficiency and
interpretability.

1 INTRODUCTION

World models (WMs) aim to capture environment dynamics in a compact latent space, enabling
agents to predict, imagine, and plan without operating directly on pixels (Ha & Schmidhuber, 2018;
Hafner et al.| 2019a; 20205 |2023)). However, in practice, learning such latent representations poses
a major challenge: uncertainty and perceptual noise often obscure the true dynamics necessary for
effective planning. Recent methods, thus, leverage large, pretrained vision backbones to extract vi-
sual features, which helps improve performance but yields dense and entangled representations (Ha
& Schmidhuber; 2018}, Hafner et al., [2019a} [2020; 2023 [Zhou et al., [2024)). These representations
suffer from two key limitations: (1) Entanglement: A single latent unit may respond to multiple
unrelated factors (e.g., both object rotation and background texture), making it difficult to inter-
pret activations or intervene on specific variables; (2) Redundancy: Many latent dimensions encode
overlapping or irrelevant information, inflating dimensionality without adding task-relevant content.

As a result, dense representations limit world models in three recurring ways. (i) Intervention fi-
delity and attribution: When latent units encode multiple unrelated factors (e.g., object pose and
background texture), interventions on one variable may unintentionally alter others. This makes it
difficult to isolate causal effects or attribute actions to specific visual inputs. (ii) Planning cost: Re-
dundant features diffuse task-relevant information across correlated dimensions, inflating the search
space. Planners need to optimize over more axes, increasing both runtime and variance—especially
with wider latents and longer horizons. (iii) Robustness to distribution shifts: Entanglement mixes
task and nuisance variables, so minor changes (e.g., in lighting, viewpoint, or layout) can activate
irrelevant latents, corrupt transition inputs, and lead to cascading errors over time. Feature-space
world models that bypass pixel reconstruction (e.g., planning directly on visual features) reduce re-
construction burden yet still operate on dense representations and therefore inherit these limitations.

Rather than processing all visual information indiscriminately, humans focus on a few task-relevant
cues and ignore the rest. Similarly, world models should rely on sparse visual representations—
where only a small subset of units activate per scene, each aligned with a meaningful and inter-
pretable factor. This selective encoding preserves essential predictive signals while suppressing
nuisance variation. As a result, sparse representations directly mitigate the limitations above: they
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Figure 1: Comparison of dense and sparse visual features. Sparse features yield more monosemantic
units and lower redundancy, making downstream planning and attribution more effective.

enhance intervention fidelity, reduce planning complexity, and improve robustness to minor distri-
bution shifts. This raises the following questions:

Can world models learn and plan entirely within a sparse feature space? If so, how can such a
space be identified, and how can learning and planning be effectively carried out within it?

We propose Sparse World Models (SWMs) that operate entirely in sparse space. As illustrated
in Fig. [I] dense visual features are often redundant and entangled, whereas sparse codes exhibit
selective activation and tend toward monosemanticity (approximately one dimension per factor).
Enforcing sparsity in visual representations reshapes the model’s latent state so that (i) factor-aligned
units improve the fidelity of targeted interventions and attribution; (ii) optimizers search a narrower
space, reducing planning cost; and (iii) task-irrelevant features stay inactive under routine changes
in viewpoint, lighting, or texture, improving robustness.

To obtain such representations, we enforce sparsity via a sparse autoencoder (SAE). An SAE learns
an overcomplete code in which only a small subset of units activate for a given input, encouraging
selective, often human-interpretable units and reducing superposition. Prior studies show that SAEs
can reveal monosemantic directions and support causal interventions in large language models, and
sparsify pre-trained vision embeddings while preserving semantics (Cunningham et al., 2023} [Tem-
pleton et al., 2024} [Wen et al., [2025). This provides a practical path to interpretable, selectively
active latents without modifying the upstream perception model. Accordingly, for our SWMs, we
train an SAE to translate dense visual features from a vision encoder into a sparse, structured vocab-
ulary, keeping the salient “words” (factors) and discarding task-irrelevant ones.

Contributions. (i) We show that SAE-derived visual representations reduce polysemanticity in
WDMs, yielding monosemantic features aligned with meaningful environment factors. (ii) We
demonstrate that sparse features can replace dense embeddings without degrading planning per-
formance, while improving efficiency and interpretability. (iii) We introduce an evaluation suite,
including feature probes and attribution overlap, that connects sparsity to planning outcomes.

2 RELATED WORKS

2.1 VISUAL REPRESENTATION LEARNING IN WORLD MODELS

Early world models learned visual representations from scratch with reconstruction objectives. The
“World Models” framework encoded images with a VAE and rolled forward with an RNN to support
imagination-based control (Ha & Schmidhuber} 2018)). Latent dynamics models such as PlaNet and
Dreamer families advanced this idea by learning compact stochastic latents from pixels and using
imagined rollouts for policy optimization (Hafner et al.,[2019bfa; 2020} [2023).

A recent trend replaces training vision encoders end-to-end with frozen, pre-trained backbones to
obtain stronger features from image observations. In robotics and RL, such features improve sample
efficiency and generalization by providing semantically rich visual states before learning dynamics
or policies (Nair et al., 2022} [Linsley et al.| [2024; |[He et al., [2022}; Radford et al.| [2021). In world-
model settings, DINO-WM shows that patch-level ViT features (DINOv2) enable learning dynamics
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Figure 2: Overview of our Sparse World Models. We operate entirely in the sparse latent space:
during training, the transition model py is fit on sparse sequences; during planning, actions are
optimized via rollouts in the same space.

and planning directly in feature space, sidestepping pixel reconstruction altogether and preserving
spatial structure useful for control (Zhou et al., 2024). However, even with powerful pre-training,
the resulting representations are typically dense and polysemantic: individual dimensions respond
to multiple unrelated factors, and many channels are redundant, which inflates planning cost and
complicates interpretation.

2.2  SPARSE REPRESENTATIONS

Sparse representations activate only a small subset of latent units per input, yielding selectively
active features that are easier to attribute and probe than dense embeddings. Classic sparse cod-
ing showed that optimizing for sparsity on natural images recovers localized, edge-like primitives
(Olshausen & Field,|1996). Neural variants enforce sparsity either by keeping only the top-k activa-
tions or via competition: k-Sparse Autoencoders retain the k largest hidden responses per example
(Makhzani & Freyl 2013)), while Winner-Take-All (WTA) autoencoders impose lifetime and spatial
sparsity through competitive inhibition (Makhzani & Frey, 2015).

Recent sparse autoencoders (SAEs) trained on foundation-model activations extract monosemantic
units aligned with human-interpretable concepts, supporting attribution, unit-level ablations, and
targeted activation edits. In language models, SAEs decompose residual streams into interpretable
features and scale to millions of latents with low dead-unit rates (Cunningham et al.} 2023, [Bricken
et al., 2023; [Templeton et al., [2024). In vision/vision—language models, hierarchical SAEs recover
multi-granularity concept banks from CLIP while maintaining high reconstruction fidelity under
substantial sparsity (Zaigrajew et al., |2025). For adaptive inference budgets, Contrastive Sparse
Representation (CSR) sparsifies frozen embeddings into a selectively active high-dimensional code,
preserving semantic quality while allowing sparsity-controlled compute (Wen et al.| [2025). These
results suggest that SAEs can map dense features into a sparse space without retraining the encoder,
thereby narrowing the planner’s effective search space and clarifying which units drive decisions; at
test time, sparsity provides a principled knob for the compute—accuracy trade-off.

3 SPARSE WORLD MODELS

We propose operating world models entirely in sparse space, mitigating the redundancy and polyse-
manticity commonly observed in dense features. Here, we describe (i) how we obtain sparse visual
representations with sparse autoencoders (SAEs), (ii) a decoder-free world model trained purely in
the sparse space, and (iii) test-time planning with model predictive control (MPC) in that space.

3.1 SPARSE AUTOENCODERS (SAES)

Let o; be an observation (i.e., an image). A frozen vision encoder f;s : Z —RPxd maps o; to dense
per-patch features x; = fyis(0r) = [T41,. .., T, p ], Withxy ) € R<%. An SAE with encoder W, :
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R? — R"= decoder Wy, : R"* — R?, and sparsity operator TopK produces per-patch sparse codes
zt,p = TopK(Wene(w1p)) € R":. Stacking over patches yields z; = [21,...,2,p] € RF*P=,
The decoder reconstructs dense features per patch, &, = Wec 2¢,p, forming £, € RPx4,

Let Wepe € RP=X4 Wy € R¥M= and biases benc, byre (2 learned pre-mean). With ReLU o (u) =
max(0, u) and TopK(-) selecting the k largest elements,

Zt = J+( TOPK (Wenc (Ut - bpre) + benc))7 (1)
Uy = Waeczt + bpl'87 2

and the reconstruction loss at sparsity k is

k ~ 2
£, = v —o];. (3)
Dead-latent mitigation. To reduce dead latents (Templeton et al., 2024), we adopt tied initializa-
tion (Wepe < Wdzc at start), unit-norm column renormalization of Wy, and an auxiliary “AuxK”
loss that asks a small set of currently inactive units to explain the residual during training. We denote

the auxiliary regularizer by L,,x and include it when training the SAE (Gao et al.,[2024; [Wen et al |
2025).

Unsupervised sparse contrastive learning. Beyond pure reconstruction, we shape z with a non-
negative contrastive objective. For a minibatch {z;}2 | (each z; > 0 elementwise due to o), the
loss is

B T+

1 exp(zi Z; )
Lo =—— E I . 4
el B~ o8 exp(z 2) + Ziﬁi exp(z;' z;) @

We obtain z; and its positive zj' from two stochastic augmentations of the same frame, and treat all
other codes in the batch as negatives, requiring no labels and thus making the objective fully unsu-
pervised. This encourages discriminative, identifiable non-negative features while keeping sparsity
control via k (Wen et al., [2025]).

Overall SAE objective. Our SAE is trained with
Loae = L + L + Loat (5)

3.2 SPARSE WORLD MODELS (SWMSs)

We operate the world model entirely in the sparse latent space produced above. At time ¢, given an
observation o; and action a;, the model has three parts:

zZt = TopK(Wenc(Xt))7 2t+1 = pe(zt—h:t, at—h:t)7 Ty = Waee 2t [and O = Q(ft)]~

Observation model Transition model Decoder (optional)

Here h > 1 is the history length, py is a parametric dynamics model in the sparse space. The decoder
is used only for feature/pixel visualization (e.g., inspecting Z; or, if an external image decoder q is
available, 6; = ¢(&;)) and is not required for training py or for planning; all learning and control
operate on the sparse codes {z;}.

3.2.1 OBSERVATION MODEL

We follow the feature-space world model paradigm, representing observations with a frozen, task-
agnostic vision backbone. We use DINOV2 due to its strong spatial priors and robust transfer to
detection, segmentation, and depth tasks. (Oquab et al., [2023) Given o, the backbone yields patch
embeddings X; = fuis(0f) € RP*4,

To mitigate the polysemanticity and redundancy of dense features, we attach a spare autoencoder
(SAE) on top of the frozen backbone and take the resulting sparse codes as the observation state.
Applying the encoder Wy, and sparsity operator TopK row-wise over patches gives

2z = TopK(Wem(Xt)) e RPXxh=
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Algorithm 1 Train SWM Transition pg

Require: Sequential data {(o;,a;)} ;; frozen fyis, Wene, TopK; history h; action encoder ¢;
regime mode € {full,active}
Ensure: Trained transition pg
1: Pre-encode: z; < TopK (Wene( fvis(0r))) for all ¢
2: Initialize 0
3: repeat

4 Sample a center index ¢t with¢ > h and t+1 < N

5: Uy <= Zt—h:ts Uq < (b(atfh:t)

6: Zi1 + poluz, ug) (Eq. equation [6)
7: Z2F Zt41

8: ifmode = full: L < |21 — 2*|?

9: else (active): L < LOSSACTIVE(Z¢41,2%)

10: Update 6 to minimize £
11: until convergence

which preserves the backbone’s task-agnostic spatial structure while translating dense features into
a selectively active, more monosemantic latent on which our dynamics and planner operate (Fig. [2)).
For clarity, our observation mapping is

ObS(Ot) = TOpK (Wenc (fvis (Ot))) .

3.2.2 TRANSITION MODEL

Goal. Learn a dynamics map from a short history of sparse latents and actions to the next sparse
latent.

We write 2., = [Zu,- - -, 2] and @y.p = [@y, - - - , @], with z; € RP*"=_ Given history length h, a
sequence of actions a;_p.¢, and an action encoder ¢ that embeds actions into the model input space,
a parametric dynamics model py maps a sequence of sparse latents and actions to the next sparse
latent:

Ziv1 = po(Zi—nits P(ar—nit)), Zi41 = TopK(Wene (fuis(0141))). (6)

With teacher forcing, the single-step prediction loss is
. 2
Lored = || Rt+1 — Ft+1 H . (7)

Two supervision regimes. Our SAE learns an overcomplete code (h, > d) but enforces sparsity
via the TopK operator: a dense pre-activation u; = Wy (X¢) is mapped to a k-sparse code z; =
TopK (u;). This yields two natural targets for training the transition model:

1. Full-sparse. Predict the entire next code 2; 1 € RP*h= and regress to zy41:

L = [|Ze41 — ze41 [
This maximizes coverage: every channel is trained to carry forward dynamics. It is the most faithful
to the original representation and best when broad consistency of the feature space matters (e.g.,
for decoding/analysis across many channels). Since the SAE’s dictionary is overcomplete, this
regime encourages the model to propagate all represented factors that survive TopK, offering broad
coverage of the learned basis.

2. Active-set (Top-k only). Supervise only the entries that are active in the ground-truth code at
t+1:
. 2
Lactive = H M1 © (241 — 241) H , Miy1 = K241 # 0] (Top-k mask).
This maximizes focus: it directs capacity to the control-salient subset that the planner will actually
use, aligns with the SAE’s sparsity pattern, and reduces compute. It is preferred when planning qual-
ity and efficiency are paramount and we want to avoid spending capacity on rarely used channels.

When to use which. Full-sparse is a good default for analysis, image reconstruction, or when we
expect task-relevant signal to spread across many channels. Active-set is preferred for control-
heavy regimes where a small set of features drives behavior; it mirrors the planner’s reliance on
Top-k coordinates and concentrates learning on those directions.
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Training process is summarized in Algorithm 1]

3.2.3 DECODER (FOR INTERPRETABILITY)

For visualization only, we map sparse codes back to dense features via the SAE decoder X, =
Wiec 2. If desired, a separately trained image decoder g, (kept fixed thereafter) maps dense features
to pixels, 6y = qy(X¢), with reconstruction 1088 Limg(¢)) = || 6: — o ||3. At analysis time we may
also render ¢, (X;) to visualize sparse rollouts. This component is not used to train py and is not
used during planning.

3.3 PLANNING WITH SWMSs

At test time, given a current observation oy and a goal observation o,, we encode them into sparse
latents via the observation pipeline,

20 = TOpK(Wenc(fvis (OO)))7 z4 = TopK (Wenc(fvis(og)))-

We perform MPC with the cross-entropy method (CEM) over action sequences ag.7—1, rolling out
the learned dynamics equation[6]in the sparse space. Let z_j,1.9 denote the last i observed latents;
we initialize

Z_h41.0 = Z_hi1:.0 Ziy1 = pa(ét—h-s-l:t, ¢(at—h+1:t)) fort =0,...,7—1.
The planning cost is the terminal latent distance to the goal:
. 2
C(GO:T—1) = ||ZT—Zg|| . ®

CEM iteratively samples candidate action sequences, refits a proposal to elite samples under equa-
tion 8] and executes the first action in a receding-horizon loop.

4 EXPERIMENTS

We test a single claim: planning entirely in a sparse feature space preserves control performance
while concentrating task signal and reducing compute. Accordingly, we evaluate along two axes.
Al — Representation & dynamics. Do sparse visual features improve spatial selectivity without
degrading the transition model’s next-state attribution? Sparsity should sharpen where the model
attends while keeping what the dynamics relies on comparably grounded, showing that a sparse
substrate is at least as attributionally faithful as a dense one. A2 — Planning quality & efficiency.
Do sparse features sustain high success while converting compute to performance more efficiently?
We assess both the end-point quality (success rate) and the compute—performance trajectory (suc-
cess versus time/operations), expecting sparse predictors to reach high-performance thresholds with
fewer operations.

Please see Appendix and Appendix for Experiment Setup.

4.1 SAE PRETRAINING

We pretrain the SAE on fixed DINOv2 ViT-S/14 patch tokens (384-d) extracted from 196x196
images; all setup details are summarized in Table |5} Unless otherwise noted, we use Top-k=128
sparsity and sweep k € {32, 64, 256} in ablations. For efficiency, we train for 10 epochs on a ~10%
subsample of the data. The objective is reconstruction-dominated, and all remaining hyperparame-
ters follow the public defaults

4.2 FEATURE PROBING

If sparse representations emphasize control-relevant cues, those variables (goal, action) should be
more linearly accessible than in dense embeddings. Because our planner operates entirely in feature
space, greater linear accessibility should translate into easier prediction, lower optimization cost,
and improved interpretability.

'"https://github.com/neilwen987/CSR_Adaptive_Rep
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Figure 3: Visual vs. dynamics attribution. Left: visual feature heat map highlighting spatial re-
gions/features with high attribution in visual features; DINO denotes DINOv2. Right: dynamics
heat map showing channels/patches most influential for next-state prediction in the learned transi-
tion model; DINO denotes DINO-WM.

Following (2024), we freeze the visual encoder and train lightweight linear heads on single
frames to predict two labels: (i) goal (identity/region) and (ii) action (the executed control, dis-
cretized). We compare dense DINOv?2 features against sparse SAE features trained on the same
backbone. Probes use identical train/val splits, cross-entropy, and a fixed training budget, with no
augmentation or feature finetuning. Higher is better (accuracy).

Discovery. Across Maze, PushT, and Wall, SAE features consistently improve action decoding and
match or exceed DINOv2 on goal. The largest gains occur on PushT, where fine-grained control
matters, supporting the view that sparsity concentrates control salience into a small set of readout-
friendly directions. This aligns with our frequency analysis (Sec. [A.8): SWM repeatedly reuses a
compact subset of channels, whereas dense features distribute signal more broadly. Overall, sparsity
yields representations that are both more selective (easier to decode) and more efficient for planning.

Maze PushT Wall

Feature goal action goal action goal action

DINOv2 0.58 035 068 052 078 0.65
SAE 057 037 074 062 082 0.68

Table 1: Control-oriented feature probing (accuracy). Linear probes on frozen features. SAE
yields consistent gains on action decoding and improves goal decoding on PushT and Wall, indicat-
ing that sparsity concentrates control-relevant information.

4.3 REPRESENTATION AND DYNAMICS ATTRIBUTION

From Tab. 2] SAE improves spatial selectivity of visual features over DINOv2 (IoU 0.16 vs.
0.00), indicating that sparse codes localize task-relevant regions that dense features largely miss.
At the same time, dynamics attribution remains unchanged between models (MC 0.048 for both
DINO-WM and SWM), showing that moving to a sparse substrate does not erode what the transi-
tion model relies on. Qualitatively, the left heat maps in Fig. 3] are sharper and more localized for
SAE, whereas the right panels show comparable patterns for next-state influence across DINO-WM
and SWM. Taken together, these results support the intended tradeoff: sparsity concentrates where
the model looks, while preserving what the dynamics depends on.

4.4 PLANNING.

From Tab. 3] SWM (Top-k) matches the best result on Maze (1.00) and is competitive on Wall
(0.92 vs. 0.96 for DINO-WM), while landing second on the manipulation-heavy PushT (0.86 vs.
0.90). Notably, it does so using only /28 active sparse channels per step (one third of the 384-
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Visual features Dynamics
Method IoU 1 Method MC 7t
DINOv2 0.00 DINO-WM 0.048
SAE 0.16 SWM (full) 0.048

Table 2: Visual feature quality (IoU) and dynamics quality (MC).

Method Maze PushT Wall
DreamerV3 1.00 0.30 1.00
TDMPC 0.00 0.00 0.00

DINO-WM 0.98 0.90 0.96
SWM (Top-k)  1.00 0.86 0.92

Table 3: Planning success rate (higher is better) on Maze, PushT, and Wall. SWM uses a Top-
k predictor with /28-D inputs (active sparse coordinates), whereas DINO-WM uses 384-D dense
DINO features. Best in bold, second-best underlined.

D dense input used by DINO-WM), indicating that a focused, sparsity-aligned predictor retains the
task signal needed for planning with far fewer features. DreamerV3 performs strongly on navigation
(Maze, Wall) but struggles on PushT (0.30), and TDMPC fails on this suite due to lack of reward.
Overall, these results support our claim that concentrating learning and inference on the active SAE
coordinates yields efficient, high-success planning, narrowing the gap to dense-feature models while
reducing representational overhead.

CEM GD MPC
Method Maze PushT Wall Maze PushT Wall Maze PushT Wall

DINO-WM 0.80 0.86 0.74  0.22 0.28 N/A 0.98 0.90 0.96
SWM (full) 1.00 0.74 0.78 0.16 0.32 0.60  0.96 0.76 0.88
SWM (Top-k)  1.00 0.70 0.70  0.22 0.46 0.62 1.00 0.86 0.92

Table 4: Planning success rate (higher is better) across three planners: CEM, direct gradient-based
planning (GD) in latent space, and MPC with CEM.

From Tab. ] across planners, MPC is consistently strongest: SWM (Top-k) reaches 1.00 on Maze
and 0.92 on Wall, while DINO-WM leads PushT at 0.90. Under CEM (open-loop shooting), both
SWM variants hit 1.00 on Maze; SWM (full) edges out others on Wall (0.78), whereas DINO-WM
remains best on PushT (0.86). The clearest separation appears with GD (gradient action optimiza-
tion): SWM (Top-k) achieves the best scores on all available tasks (0.22 / 0.46 / 0.62), suggesting
that concentrating supervision and inference on the active sparse coordinates yields a smoother,
more informative planning landscape for gradient-based methods. Overall, focusing on Top-k£ fea-
tures trades a small amount of PushT performance versus DINO-WM under MPC, but delivers
robust wins for GD and competitive CEM results, supporting our claim that sparse, focused latents
are especially well-suited to gradient-driven planning while remaining strong under stochastic and
receding-horizon schemes.

4.5 SR vs. COMPUTATION COST

In Fig. fi] we evaluate planning efficiency on Maze by plotting success rate (SR) against cumulative
computation during planning. Each curve traces how SR grows as compute accrues, exposing not
just the final SR but also the speed at which high-performance thresholds are reached. We compare
DINO-WM (purple) and SWM (Top-k, blue): steeper slopes and shorter time-to-threshold (e.g.,
80%/90% SR) indicate better compute-to-performance conversion.

To quantify compute, we use token operations (token_ops): the cumulative count of token-level
operations issued during planning. This proxy scales with FLOPs and correlates with wall-clock
time while avoiding profiler noise and hardware-specific effects. Since transformer cost grows
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Success Rate vs Model Inference Cost Success Rate vs Token Operations
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Figure 4: SR vs. computation on Maze. Left: SR vs. cumulative time. Right: SR vs. cumulative
token_ops. DINO-WM (purple) vs. SWM (Top-k, blue). Dashed lines mark 80%/90% SR.
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Figure 5: Planning visualizations on Maze (top), Wall (middle), and PushT (bottom). Left:
DINO-WM. Right: SWM (full-sparse).

roughly with d x S (latent width d, number of patches 5), SWM-Topk (128-D) consumes far fewer
token operations per step than DINO-WM (384-D), yielding faster SR gains per unit compute.

4.6 PLANNING VISUALIZATION (COMBINED).

Figure [3] presents side-by-side planning rollouts on Maze (top two rows), Wall (middle two rows),
and PushT (bottom two rows). The left column shows DINO-WM and the right column shows
SWM (full-sparse). Within each environment block, the upper (shaded) row depicts the executed
observations obtained by running the planned actions in the environment, and the lower row shows
the model’s imagined observations along that plan. Across Maze and Wall, both models recover
goal-directed paths.

5 CONCLUSION

Sparse World Models operate entirely in a sparse feature space, preserving control performance
while concentrating task-relevant signal and reducing compute. Across various tasks, sparse features
improve attribution selectivity, maintain predicted-state quality, and achieve strong success with
better success—compute tradeoffs.
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A APPENDIX

A.1 EXPERIMENTAL SETUP

We evaluate on three image-based control environments that stress complementary skills:

¢ PushT (manipulation). A T-shaped block must be pushed to a target pose. Success requires
contact reasoning and precise action sequencing. This setting probes whether sparse features
capture action-relevant cues for manipulation.

* PointMaze (navigation). A point agent must reach a goal region through a maze. This empha-
sizes long-horizon wayfinding with minimal contact dynamics, isolating planning over geometry.

* Wall (navigation with bottleneck). The agent must pass through a narrow gap between walls to
reach the goal. This stresses spatial selectivity (identifying the passage) and robust rollout around
obstacles.

Observations and actions. Unless noted, observations are RGB frames resized to 224 x 224 and
encoded by a frozen DINOv2 ViT-S/14 into patch tokens; SWM replaces dense tokens with sparse
SAE codes (Top-k by default). Actions are environment-native controls (e.g., planar motions or
end-effector deltas) applied at a fixed frameskip.

Planners and budgets. We report results with three planners: stochastic shooting with CEM,
gradient-based action optimization (GD) in feature space, and receding-horizon MPC. Planner hori-
zons, samples/iterations, and termination conditions follow the standard protocol used across base-
lines; all methods share the same episode budgets.

Metrics. Primary metrics are success rate (SR) for control, SR vs. time/t oken_ops for efficiency,
and attribution/rollout diagnostics: IoU and MC [Jiang et al.| (2024) for representation/dynamics
grounding, LPIPS/SSIM (context only) for pixel fidelity, and linear probing accuracy for control-
factor accessibility.

A.2 DATASET LABELING

We construct control-oriented labels that are decodable from a single frame to probe whether repre-
sentations linearly expose task factors.
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Aspect Setting

Backbone features DINOV2 ViT-S/14 patch tokens (384-d)
Input resolution 196 x 196

Training epochs 10

Data fraction ~ 10% of full dataset

Sparsity (default / sweep) ~ Top-k=128 / k € {32,64,256}
Latent size (overcomplete) 1536 (4 x 384)
Objective Reconstruction-dominated; others at defaults

Table 5: SAE pretraining configuration used throughout our experiments.

For navigation environments (PointMaze, Wall), we extract spatial relationship features between the
agent and target locations. Since stored trajectory data lacks explicit target position information,
we infer target regions from final frame positions where agents successfully reach goals. Labels
are generated based on relative position encoding: (i) dx,dy: Spatial displacement between agent
and target in world coordinates; (i) 8: Angular displacement toward target direction; (iii) Region
Classification: 8-class discretization based on spatial quadrants and angular bins. For manipulation
(PushT), we adopt the standard object/pose and discretized action labels (compass directions + stop)
used in large-scale robotic representation studies.

Full labeling details and conventions closely follow Jiang et al.|(2024)).

A.3 GRADIENT-BASED ATTRIBUTION ANALYSIS

To further understand how sparse representations affect attention patterns and attribution quality,
we analyze feature attributions using gradient-based visualization methods. We implement both
standard Grad-CAM and Mask-guided Token-CAM (MT-CAM) to compare how dense DINO-WM
features versus sparse SWM features attend to task-relevant regions.

A.3.1 ATTRIBUTION METHOD

For each model, we compute attention heatmaps by backpropagating gradients through the visual en-
coder to identify which spatial regions most strongly influence the model’s predictions. For DINO-
WM, we apply Grad-CAM to the final transformer block of the DINOv2 backbone operating on
dense 384-dimensional features. For SWM, we extend the analysis to the sparse autoencoder’s top-
k active features, focusing on the most salient sparse dimensions.

We evaluate attribution quality using the Mask Coverage (MC) metric (need reference here), which
measures the intersection-over-union (IoU) between the binarized attention map and ground-truth
object masks:

|Attention_Binary N GT_Mask|

~ |Attention_Binary U GT_Mask|’

MC €))

A.4 FEATURE PROBING ABLATIONS

Setup. We freeze the visual encoders and train lightweight probes on PushT to predict two task-
relevant predicates: goal and action. Unless noted, probes are trained on a fixed subset of image
patches and evaluated on a held-out set; higher is better. We report two ablations: (i) varying sparsity
dimension £ at a fixed training set size (10M patches), and (ii) varying the training set size with fixed
k=128. The DINOV2 row probes dense DINOv2 features directly (no SAE), while the other rows
probe SWM'’s sparse codes.

Observations from Tab. [6} Relative to DINOV2, sparse features improve alignment with task
factors: at k=128 we see +0.06 (goal) and +0.08 (action), and at k=256 the gains reach +0.07 /
+0.10. Very small k=32 roughly matches dense probing on goal but lags on action, suggesting
insufficient capacity for contact/interaction cues.

Observations from Tab.[7} (1) Data helps: 10M — 50M yields modest further gains, especially for
action (+0.0281 over 10M). (2) Sweet spot: 10-50M patches are sufficient; “ALL” underperforms
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Table 6: Probing on PushT with a fixed 10M-patch training set while varying k.

Method / Dim. Goal Action
DINOV2 (dense 384)  0.68 0.52
SWM-k=32 0.67 0.52
SWM-k=64 0.71 0.56
SWM-k=128 0.74 0.60
SWM-k=256 0.75 0.62

Table 7: Probing on PushT with fixed k=128 while varying the number of training patches.

Train size Goal Action
DINOV2 (dense 384)  0.68 0.52
IM 0.68 0.53
10M 0.74 0.60
50M 0.74 0.62
ALL 0.66 0.52

10-50M, consistent with label/temporal noise or domain heterogeneity diluting probe signal. (3)
Takeaway: k=128 with 10-50M patches is a strong default, achieving most of the improvement
while keeping representation compact.

Summary. Sparse codes yield more linearly separable factors than dense DINOv2 features, par-
ticularly for action-related cues. Scaling k improves probing up to k~128-256 with diminishing
returns, and moderate pretraining sets (10-50M patches) are sufficient. We adopt k=128 with 50M
patches on PushT as the default, as it offers the best efficiency—accuracy trade-off.

A.5 SWM IMPLEMENTATION DETAILS

Component architectures. The predictor is a ViT operating on sparse features from an SAE. It
stacks depth-6 Transformer blocks (LN-MHSA-FFN) with 16 heads and 2048-d MLPs, returning
token-wise outputs in the same embedding dimension. We embed the action (and proprioception, if
available) with a lightweight MLP and concatenate the resulting vectors to each patch token before
the transformer. The image decoder is a VQ-VAE—style upsampler.

Component Default config

Predictor depth=6, heads=16, ml1p_dim=2048, dropout=0.1

Action encoder  MLP: Linear(act ion_dim— 64)—GELU—Linear(64 — 10)

Proprio encoder MLP: Linear(proprio-dim — 64)—GELU—Linear(64 — 10)

Image decoder channel=384, n_res_block=4, n_res_channel=128, n_embed=2048

Table 8: SWM component architectures.

Training hyperparameters. The visual encoder is frozen. We use Adam/AdamW with distinct
learning rates for the encoder, predictor, optional decoder, and the action/proprio encoders. The
decoder is optional: when enabled, it reconstructs sparse codes back to DINOv2 features (and can
be paired with an RGB head if desired). Other implementation details follow [Zhou et al.| (2024).

A.6 OPEN-LOOP ROLLOUTS.

Figure[6] visualizes open-loop predictions on PointMaze, Wall, and PushT. Across all environments,
SWM closely tracks GT over long horizons. The qualitative parity between rows highlights our core
strength: by operating entirely in a sparse feature space, SWM maintains sharp, consistent dynamics
with minimal drift, yielding rollouts that visually match GT sequences while preserving task-critical
structure.
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Parameter Value Description
training.batch_size 32 Global batch size
training.encoder_lr 1x10~%  Encoder learning rate (Adam)
training.decoder_lr 3x10™*  Decoder learning rate (Adam)
training.predictor_lr 5x107%  Predictor learning rate (AdamW)
training.action._encoder_.lr 5x107* Action/proprio encoders LR (AdamW)
img_size 224 Input image size

frameskip 5 Temporal stride between steps
action_emb_dim 10 Action embedding dimension
proprio_emb_dim 10 Proprioception embedding dimension
num_hist 3 History frames used by predictor
num_pred 1 Future frames predicted

PointMaze

Table 9: SWM training hyperparameters.

Wall

b/ b .S

PushT

.
4
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Figure 6: Open-loop rollouts on PointMaze, Wall, and PushT. For each environment, the top row
shows ground-truth (GT) frames and the bottom row shows SWM rollouts.

Method LPIPS | SSIM 1
R3M 0.045 0.956
ResNet 0.063 0.950
AVDC 0.046 0.959
DINO-WM 0.007 0.985
SWM 0.022 0.964

Table 10: Perceptual fidelity on PushT. Lower is better for LPIPS; higher is better for SSIM.

Results for baselines are cited from (2024)).

A.7 IMAGE RECONSTRUCTION QUALITY

DINO-WM attains the best pixel-level fidelity (lowest LPIPS, highest SSIM), which is expected for a
method optimized around dense feature reconstruction. SWM is competitive, clearly outperforming
R3M/ResNet/AVDC on LPIPS, while trailing DINO-WM on both metrics.

Since our goal is to operate entirely in sparse feature space for planning; the image decoder is used
only for visualization. To minimize compute, we adapt the DINO-WM image decoder and perform
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only light finetuning as in Sec. 3.2.3] rather than training an image decoder from scratch. This
choice substantially reduces training cost and keeps the focus on our core contribution: planning
entirely in sparse feature space. We expect stronger LPIPS/SSIM if we train a dedicated image
decoder end-to-end with SWM; however, our results (Sec. @ Fig. |§[) show that SWM already
concentrates control-relevant structure and produces stable rollouts that matter more for planning
than maximizing dense perceptual scores.

A.8 FEATURE FREQUENCY ANALYSIS

We quantify how often the same feature channels are important for both the current observation
and the one-step prediction. At each planning step, we compute per-patch features in each model’s
native space: SWM uses DINOv2—SAE sparse codes (1536-D), while DINO-WM uses DINOv2
features (384-D). For each patch, we select the top-k channels by absolute activation for the input
and for the predicted next state (k=128), take their intersection by channel index, and accumulate
counts over time and patches to form a histogram. Axes: DINO-WM—x: channel index 0-383, y:
overlap frequency; SWM—x: channel index 0-1535, y: overlap frequency.

Result. SWM yields a peaked histogram (few high-frequency channels), indicating focused,
reusable features; DINO-WM is flatter with many high-frequency channels, indicating broader, more
redundant usage (Fig. [7).
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Figure 7: Frequency-overlap histograms of input/prediction top-k co-occurrence in each model’s
native feature space on PushT.
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