
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPARSE WORLD MODELS: VISUAL WORLD MODEL-
ING WITH SPARSE REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

World models promise efficient prediction, imagination, and planning by operat-
ing in a compact latent space, yet prevailing approaches inherit dense, entangled
visual features from large pretrained encoders. Such latents conflate unrelated
factors and contain redundant dimensions, undermining intervention fidelity, in-
flating planning cost, and reducing robustness to distribution shifts. We propose
Sparse World Models (SWMs), which learn and plan entirely in a sparse feature
space. SWMs obtain selectively active codes by training a sparse autoencoder
(SAE) to translate dense vision embeddings into an overcomplete but sparse vo-
cabulary, and then use these codes for state estimation, dynamics learning, and
action optimization. By aligning units to meaningful factors, SWMs enable tar-
geted interventions and attribution, and shrink the optimization search space. We
further introduce an evaluation suite that probes feature capacity and links spar-
sity to planning outcomes. Across studies, sparse representations reduce polyse-
manticity and maintain planning performance while offering better efficiency and
interpretability.

1 INTRODUCTION

World models (WMs) aim to capture environment dynamics in a compact latent space, enabling
agents to predict, imagine, and plan without operating directly on pixels (Ha & Schmidhuber, 2018;
Hafner et al., 2019a; 2020; 2023). However, in practice, learning such latent representations poses
a major challenge: uncertainty and perceptual noise often obscure the true dynamics necessary for
effective planning. Recent methods, thus, leverage large, pretrained vision backbones to extract vi-
sual features, which helps improve performance but yields dense and entangled representations (Ha
& Schmidhuber, 2018; Hafner et al., 2019a; 2020; 2023; Zhou et al., 2024). These representations
suffer from two key limitations: (1) Entanglement: A single latent unit may respond to multiple
unrelated factors (e.g., both object rotation and background texture), making it difficult to inter-
pret activations or intervene on specific variables; (2) Redundancy: Many latent dimensions encode
overlapping or irrelevant information, inflating dimensionality without adding task-relevant content.

As a result, dense representations limit world models in three recurring ways. (i) Intervention fi-
delity and attribution: When latent units encode multiple unrelated factors (e.g., object pose and
background texture), interventions on one variable may unintentionally alter others. This makes it
difficult to isolate causal effects or attribute actions to specific visual inputs. (ii) Planning cost: Re-
dundant features diffuse task-relevant information across correlated dimensions, inflating the search
space. Planners need to optimize over more axes, increasing both runtime and variance–especially
with wider latents and longer horizons. (iii) Robustness to distribution shifts: Entanglement mixes
task and nuisance variables, so minor changes (e.g., in lighting, viewpoint, or layout) can activate
irrelevant latents, corrupt transition inputs, and lead to cascading errors over time. Feature-space
world models that bypass pixel reconstruction (e.g., planning directly on visual features) reduce re-
construction burden yet still operate on dense representations and therefore inherit these limitations.

Rather than processing all visual information indiscriminately, humans focus on a few task-relevant
cues and ignore the rest. Similarly, world models should rely on sparse visual representations—
where only a small subset of units activate per scene, each aligned with a meaningful and inter-
pretable factor. This selective encoding preserves essential predictive signals while suppressing
nuisance variation. As a result, sparse representations directly mitigate the limitations above: they

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Comparison of dense and sparse visual features. Sparse features yield more monosemantic
units and lower redundancy, making downstream planning and attribution more effective.

enhance intervention fidelity, reduce planning complexity, and improve robustness to minor distri-
bution shifts. This raises the following questions:

Can world models learn and plan entirely within a sparse feature space? If so, how can such a
space be identified, and how can learning and planning be effectively carried out within it?

We propose Sparse World Models (SWMs) that operate entirely in sparse space. As illustrated
in Fig. 1, dense visual features are often redundant and entangled, whereas sparse codes exhibit
selective activation and tend toward monosemanticity (approximately one dimension per factor).
Enforcing sparsity in visual representations reshapes the model’s latent state so that (i) factor-aligned
units improve the fidelity of targeted interventions and attribution; (ii) optimizers search a narrower
space, reducing planning cost; and (iii) task-irrelevant features stay inactive under routine changes
in viewpoint, lighting, or texture, improving robustness.

To obtain such representations, we enforce sparsity via a sparse autoencoder (SAE). An SAE learns
an overcomplete code in which only a small subset of units activate for a given input, encouraging
selective, often human-interpretable units and reducing superposition. Prior studies show that SAEs
can reveal monosemantic directions and support causal interventions in large language models, and
sparsify pre-trained vision embeddings while preserving semantics (Cunningham et al., 2023; Tem-
pleton et al., 2024; Wen et al., 2025). This provides a practical path to interpretable, selectively
active latents without modifying the upstream perception model. Accordingly, for our SWMs, we
train an SAE to translate dense visual features from a vision encoder into a sparse, structured vocab-
ulary, keeping the salient “words” (factors) and discarding task-irrelevant ones.

Contributions. (i) We show that SAE-derived visual representations reduce polysemanticity in
WMs, yielding monosemantic features aligned with meaningful environment factors. (ii) We
demonstrate that sparse features can replace dense embeddings without degrading planning per-
formance, while improving efficiency and interpretability. (iii) We introduce an evaluation suite,
including feature probes and attribution overlap, that connects sparsity to planning outcomes.

2 RELATED WORKS

2.1 VISUAL REPRESENTATION LEARNING IN WORLD MODELS

Early world models learned visual representations from scratch with reconstruction objectives. The
“World Models” framework encoded images with a VAE and rolled forward with an RNN to support
imagination-based control (Ha & Schmidhuber, 2018). Latent dynamics models such as PlaNet and
Dreamer families advanced this idea by learning compact stochastic latents from pixels and using
imagined rollouts for policy optimization (Hafner et al., 2019b;a; 2020; 2023).

A recent trend replaces training vision encoders end-to-end with frozen, pre-trained backbones to
obtain stronger features from image observations. In robotics and RL, such features improve sample
efficiency and generalization by providing semantically rich visual states before learning dynamics
or policies (Nair et al., 2022; Linsley et al., 2024; He et al., 2022; Radford et al., 2021). In world-
model settings, DINO-WM shows that patch-level ViT features (DINOv2) enable learning dynamics

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Overview of our Sparse World Models. We operate entirely in the sparse latent space:
during training, the transition model pθ is fit on sparse sequences; during planning, actions are
optimized via rollouts in the same space.

and planning directly in feature space, sidestepping pixel reconstruction altogether and preserving
spatial structure useful for control (Zhou et al., 2024). However, even with powerful pre-training,
the resulting representations are typically dense and polysemantic: individual dimensions respond
to multiple unrelated factors, and many channels are redundant, which inflates planning cost and
complicates interpretation.

2.2 SPARSE REPRESENTATIONS

Sparse representations activate only a small subset of latent units per input, yielding selectively
active features that are easier to attribute and probe than dense embeddings. Classic sparse cod-
ing showed that optimizing for sparsity on natural images recovers localized, edge-like primitives
(Olshausen & Field, 1996). Neural variants enforce sparsity either by keeping only the top-k activa-
tions or via competition: k-Sparse Autoencoders retain the k largest hidden responses per example
(Makhzani & Frey, 2013), while Winner-Take-All (WTA) autoencoders impose lifetime and spatial
sparsity through competitive inhibition (Makhzani & Frey, 2015).

Recent sparse autoencoders (SAEs) trained on foundation-model activations extract monosemantic
units aligned with human-interpretable concepts, supporting attribution, unit-level ablations, and
targeted activation edits. In language models, SAEs decompose residual streams into interpretable
features and scale to millions of latents with low dead-unit rates (Cunningham et al., 2023; Bricken
et al., 2023; Templeton et al., 2024). In vision/vision–language models, hierarchical SAEs recover
multi-granularity concept banks from CLIP while maintaining high reconstruction fidelity under
substantial sparsity (Zaigrajew et al., 2025). For adaptive inference budgets, Contrastive Sparse
Representation (CSR) sparsifies frozen embeddings into a selectively active high-dimensional code,
preserving semantic quality while allowing sparsity-controlled compute (Wen et al., 2025). These
results suggest that SAEs can map dense features into a sparse space without retraining the encoder,
thereby narrowing the planner’s effective search space and clarifying which units drive decisions; at
test time, sparsity provides a principled knob for the compute–accuracy trade-off.

3 SPARSE WORLD MODELS

We propose operating world models entirely in sparse space, mitigating the redundancy and polyse-
manticity commonly observed in dense features. Here, we describe (i) how we obtain sparse visual
representations with sparse autoencoders (SAEs), (ii) a decoder-free world model trained purely in
the sparse space, and (iii) test-time planning with model predictive control (MPC) in that space.

3.1 SPARSE AUTOENCODERS (SAES)

Let ot be an observation (i.e., an image). A frozen vision encoder fvis : I→RP×d maps ot to dense
per-patch features xt = fvis(ot) = [xt,1, . . . , xt,P], with xt,p ∈ Rd. An SAE with encoder Wenc :

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Rd→Rhz , decoder Wdec : Rhz→Rd, and sparsity operator TopK produces per-patch sparse codes
zt,p = TopK

(
Wenc(xt,p)

)
∈ Rhz . Stacking over patches yields zt = [zt,1, . . . , zt,P] ∈ RP×hz .

The decoder reconstructs dense features per patch, x̂t,p =Wdec zt,p, forming x̂t ∈ RP×d.

Let Wenc ∈ Rhz×d, Wdec ∈ Rd×hz , and biases benc, bpre (a learned pre-mean). With ReLU σ+(u) =
max(0, u) and TopK(·) selecting the k largest elements,

zt = σ+

(
TopK

(
Wenc(vt − bpre) + benc

))
, (1)

v̂t =Wdeczt + bpre, (2)

and the reconstruction loss at sparsity k is

L(k)
recon =

∥∥ vt − v̂t ∥∥22. (3)

Dead-latent mitigation. To reduce dead latents (Templeton et al., 2024), we adopt tied initializa-
tion (Wenc←W⊤

dec at start), unit-norm column renormalization of Wdec, and an auxiliary “AuxK”
loss that asks a small set of currently inactive units to explain the residual during training. We denote
the auxiliary regularizer by Laux and include it when training the SAE (Gao et al., 2024; Wen et al.,
2025).

Unsupervised sparse contrastive learning. Beyond pure reconstruction, we shape z with a non-
negative contrastive objective. For a minibatch {zi}Bi=1 (each zi ≥ 0 elementwise due to σ+), the
loss is

Lncl = −
1

B

B∑
i=1

log
exp

(
z⊤i z

+
i

)
exp

(
z⊤i z

+
i

)
+

∑B
j ̸=i exp

(
z⊤i zj

) . (4)

We obtain zi and its positive z+i from two stochastic augmentations of the same frame, and treat all
other codes in the batch as negatives, requiring no labels and thus making the objective fully unsu-
pervised. This encourages discriminative, identifiable non-negative features while keeping sparsity
control via k (Wen et al., 2025).

Overall SAE objective. Our SAE is trained with

LSAE = L(k)
recon + Laux + Lncl. (5)

3.2 SPARSE WORLD MODELS (SWMS)

We operate the world model entirely in the sparse latent space produced above. At time t, given an
observation ot and action at, the model has three parts:

zt = TopK
(
Wenc(Xt)

)︸ ︷︷ ︸
Observation model

, ẑt+1 = pθ
(
zt−h:t, at−h:t

)︸ ︷︷ ︸
Transition model

, x̂t = Wdec zt
[
and ôt = q(x̂t)

]︸ ︷︷ ︸
Decoder (optional)

.

Here h≥1 is the history length, pθ is a parametric dynamics model in the sparse space. The decoder
is used only for feature/pixel visualization (e.g., inspecting x̂t or, if an external image decoder q is
available, ôt = q(x̂t)) and is not required for training pθ or for planning; all learning and control
operate on the sparse codes {zt}.

3.2.1 OBSERVATION MODEL

We follow the feature-space world model paradigm, representing observations with a frozen, task-
agnostic vision backbone. We use DINOv2 due to its strong spatial priors and robust transfer to
detection, segmentation, and depth tasks. (Oquab et al., 2023) Given ot, the backbone yields patch
embeddings Xt = fvis(ot) ∈ RP×d.

To mitigate the polysemanticity and redundancy of dense features, we attach a spare autoencoder
(SAE) on top of the frozen backbone and take the resulting sparse codes as the observation state.
Applying the encoder Wenc and sparsity operator TopK row-wise over patches gives

zt = TopK
(
Wenc(Xt)

)
∈ RP×hz ,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Train SWM Transition pθ
Require: Sequential data {(ot, at)}Nt=1; frozen fvis,Wenc,TopK; history h; action encoder ϕ;

regime mode ∈ {full,active}
Ensure: Trained transition pθ

1: Pre-encode: zt ← TopK
(
Wenc(fvis(ot))

)
for all t

2: Initialize θ
3: repeat
4: Sample a center index t with t ≥ h and t+1 ≤ N
5: uz ← zt−h:t; ua ← ϕ(at−h:t)
6: ẑt+1 ← pθ(uz, ua) (Eq. equation 6)
7: z⋆ ← zt+1

8: if mode = full: L ← ∥ẑt+1 − z⋆∥2
9: else (active): L ← LOSSACTIVE(ẑt+1, z

⋆)
10: Update θ to minimize L
11: until convergence

which preserves the backbone’s task-agnostic spatial structure while translating dense features into
a selectively active, more monosemantic latent on which our dynamics and planner operate (Fig. 2).
For clarity, our observation mapping is

Obs(ot) = TopK
(
Wenc(fvis(ot))

)
.

3.2.2 TRANSITION MODEL

Goal. Learn a dynamics map from a short history of sparse latents and actions to the next sparse
latent.

We write zu:v = [zu, . . . , zv] and au:v = [au, . . . , av], with zt ∈ RP×hz . Given history length h, a
sequence of actions at−h:t, and an action encoder ϕ that embeds actions into the model input space,
a parametric dynamics model pθ maps a sequence of sparse latents and actions to the next sparse
latent:

ẑt+1 = pθ
(
zt−h:t, ϕ(at−h:t)

)
, zt+1 = TopK

(
Wenc(fvis(ot+1))

)
. (6)

With teacher forcing, the single-step prediction loss is

Lpred =
∥∥ ẑt+1 − zt+1

∥∥2. (7)

Two supervision regimes. Our SAE learns an overcomplete code (hz ≫ d) but enforces sparsity
via the TopK operator: a dense pre-activation ut = Wenc(Xt) is mapped to a k-sparse code zt =
TopK(ut). This yields two natural targets for training the transition model:

1. Full-sparse. Predict the entire next code ẑt+1 ∈ RP×hz and regress to zt+1:

Lfull = ∥ẑt+1 − zt+1∥2.
This maximizes coverage: every channel is trained to carry forward dynamics. It is the most faithful
to the original representation and best when broad consistency of the feature space matters (e.g.,
for decoding/analysis across many channels). Since the SAE’s dictionary is overcomplete, this
regime encourages the model to propagate all represented factors that survive TopK, offering broad
coverage of the learned basis.

2. Active-set (Top-k only). Supervise only the entries that are active in the ground-truth code at
t+1:

Lactive =
∥∥Mt+1 ⊙ (ẑt+1 − zt+1)

∥∥2, Mt+1 = ⊮[zt+1 ̸= 0] (Top-k mask).
This maximizes focus: it directs capacity to the control-salient subset that the planner will actually
use, aligns with the SAE’s sparsity pattern, and reduces compute. It is preferred when planning qual-
ity and efficiency are paramount and we want to avoid spending capacity on rarely used channels.

When to use which. Full-sparse is a good default for analysis, image reconstruction, or when we
expect task-relevant signal to spread across many channels. Active-set is preferred for control-
heavy regimes where a small set of features drives behavior; it mirrors the planner’s reliance on
Top-k coordinates and concentrates learning on those directions.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Training process is summarized in Algorithm 1.

3.2.3 DECODER (FOR INTERPRETABILITY)

For visualization only, we map sparse codes back to dense features via the SAE decoder X̂t =
Wdec zt. If desired, a separately trained image decoder qψ (kept fixed thereafter) maps dense features
to pixels, ôt = qψ(Xt), with reconstruction loss Limg(ψ) = ∥ ôt − ot ∥22. At analysis time we may
also render qψ(X̂t) to visualize sparse rollouts. This component is not used to train pθ and is not
used during planning.

3.3 PLANNING WITH SWMS

At test time, given a current observation o0 and a goal observation og , we encode them into sparse
latents via the observation pipeline,

z0 = TopK
(
Wenc(fvis(o0))

)
, zg = TopK

(
Wenc(fvis(og))

)
.

We perform MPC with the cross-entropy method (CEM) over action sequences a0:T−1, rolling out
the learned dynamics equation 6 in the sparse space. Let z−h+1:0 denote the last h observed latents;
we initialize

ẑ−h+1:0 = z−h+1:0, ẑt+1 = pθ
(
ẑt−h+1:t, ϕ(at−h+1:t)

)
for t = 0, . . . , T − 1.

The planning cost is the terminal latent distance to the goal:

C(a0:T−1) =
∥∥ẑT − zg∥∥2. (8)

CEM iteratively samples candidate action sequences, refits a proposal to elite samples under equa-
tion 8, and executes the first action in a receding-horizon loop.

4 EXPERIMENTS

We test a single claim: planning entirely in a sparse feature space preserves control performance
while concentrating task signal and reducing compute. Accordingly, we evaluate along two axes.
A1 — Representation & dynamics. Do sparse visual features improve spatial selectivity without
degrading the transition model’s next-state attribution? Sparsity should sharpen where the model
attends while keeping what the dynamics relies on comparably grounded, showing that a sparse
substrate is at least as attributionally faithful as a dense one. A2 — Planning quality & efficiency.
Do sparse features sustain high success while converting compute to performance more efficiently?
We assess both the end-point quality (success rate) and the compute–performance trajectory (suc-
cess versus time/operations), expecting sparse predictors to reach high-performance thresholds with
fewer operations.

Please see Appendix A.1 and Appendix A.2 for Experiment Setup.

4.1 SAE PRETRAINING

We pretrain the SAE on fixed DINOv2 ViT-S/14 patch tokens (384-d) extracted from 196×196
images; all setup details are summarized in Table 5. Unless otherwise noted, we use Top-k=128
sparsity and sweep k ∈ {32, 64, 256} in ablations. For efficiency, we train for 10 epochs on a∼10%
subsample of the data. The objective is reconstruction-dominated, and all remaining hyperparame-
ters follow the public defaults.1

4.2 FEATURE PROBING

If sparse representations emphasize control-relevant cues, those variables (goal, action) should be
more linearly accessible than in dense embeddings. Because our planner operates entirely in feature
space, greater linear accessibility should translate into easier prediction, lower optimization cost,
and improved interpretability.

1https://github.com/neilwen987/CSR_Adaptive_Rep

6

https://github.com/neilwen987/CSR_Adaptive_Rep

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Visual vs. dynamics attribution. Left: visual feature heat map highlighting spatial re-
gions/features with high attribution in visual features; DINO denotes DINOv2. Right: dynamics
heat map showing channels/patches most influential for next-state prediction in the learned transi-
tion model; DINO denotes DINO-WM.

Following Qi et al. (2024), we freeze the visual encoder and train lightweight linear heads on single
frames to predict two labels: (i) goal (identity/region) and (ii) action (the executed control, dis-
cretized). We compare dense DINOv2 features against sparse SAE features trained on the same
backbone. Probes use identical train/val splits, cross-entropy, and a fixed training budget, with no
augmentation or feature finetuning. Higher is better (accuracy).

Discovery. Across Maze, PushT, and Wall, SAE features consistently improve action decoding and
match or exceed DINOv2 on goal. The largest gains occur on PushT, where fine-grained control
matters, supporting the view that sparsity concentrates control salience into a small set of readout-
friendly directions. This aligns with our frequency analysis (Sec. A.8): SWM repeatedly reuses a
compact subset of channels, whereas dense features distribute signal more broadly. Overall, sparsity
yields representations that are both more selective (easier to decode) and more efficient for planning.

Maze PushT Wall

Feature goal action goal action goal action

DINOv2 0.58 0.35 0.68 0.52 0.78 0.65
SAE 0.57 0.37 0.74 0.62 0.82 0.68

Table 1: Control-oriented feature probing (accuracy). Linear probes on frozen features. SAE
yields consistent gains on action decoding and improves goal decoding on PushT and Wall, indicat-
ing that sparsity concentrates control-relevant information.

4.3 REPRESENTATION AND DYNAMICS ATTRIBUTION

From Tab. 2, SAE improves spatial selectivity of visual features over DINOv2 (IoU 0.16 vs.
0.00), indicating that sparse codes localize task-relevant regions that dense features largely miss.
At the same time, dynamics attribution remains unchanged between models (MC 0.048 for both
DINO-WM and SWM), showing that moving to a sparse substrate does not erode what the transi-
tion model relies on. Qualitatively, the left heat maps in Fig. 3 are sharper and more localized for
SAE, whereas the right panels show comparable patterns for next-state influence across DINO-WM
and SWM. Taken together, these results support the intended tradeoff: sparsity concentrates where
the model looks, while preserving what the dynamics depends on.

4.4 PLANNING.

From Tab. 3, SWM (Top-k) matches the best result on Maze (1.00) and is competitive on Wall
(0.92 vs. 0.96 for DINO-WM), while landing second on the manipulation-heavy PushT (0.86 vs.
0.90). Notably, it does so using only 128 active sparse channels per step (one third of the 384-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Visual features Dynamics

Method IoU ↑ Method MC ↑
DINOv2 0.00 DINO-WM 0.048
SAE 0.16 SWM (full) 0.048

Table 2: Visual feature quality (IoU) and dynamics quality (MC).

Method Maze PushT Wall

DreamerV3 1.00 0.30 1.00
TDMPC 0.00 0.00 0.00
DINO-WM 0.98 0.90 0.96
SWM (Top-k) 1.00 0.86 0.92

Table 3: Planning success rate (higher is better) on Maze, PushT, and Wall. SWM uses a Top-
k predictor with 128-D inputs (active sparse coordinates), whereas DINO-WM uses 384-D dense
DINO features. Best in bold, second-best underlined.

D dense input used by DINO-WM), indicating that a focused, sparsity-aligned predictor retains the
task signal needed for planning with far fewer features. DreamerV3 performs strongly on navigation
(Maze, Wall) but struggles on PushT (0.30), and TDMPC fails on this suite due to lack of reward.
Overall, these results support our claim that concentrating learning and inference on the active SAE
coordinates yields efficient, high-success planning, narrowing the gap to dense-feature models while
reducing representational overhead.

CEM GD MPC

Method Maze PushT Wall Maze PushT Wall Maze PushT Wall

DINO-WM 0.80 0.86 0.74 0.22 0.28 N/A 0.98 0.90 0.96
SWM (full) 1.00 0.74 0.78 0.16 0.32 0.60 0.96 0.76 0.88
SWM (Top-k) 1.00 0.70 0.70 0.22 0.46 0.62 1.00 0.86 0.92

Table 4: Planning success rate (higher is better) across three planners: CEM, direct gradient-based
planning (GD) in latent space, and MPC with CEM.

From Tab. 4, across planners, MPC is consistently strongest: SWM (Top-k) reaches 1.00 on Maze
and 0.92 on Wall, while DINO-WM leads PushT at 0.90. Under CEM (open-loop shooting), both
SWM variants hit 1.00 on Maze; SWM (full) edges out others on Wall (0.78), whereas DINO-WM
remains best on PushT (0.86). The clearest separation appears with GD (gradient action optimiza-
tion): SWM (Top-k) achieves the best scores on all available tasks (0.22 / 0.46 / 0.62), suggesting
that concentrating supervision and inference on the active sparse coordinates yields a smoother,
more informative planning landscape for gradient-based methods. Overall, focusing on Top-k fea-
tures trades a small amount of PushT performance versus DINO-WM under MPC, but delivers
robust wins for GD and competitive CEM results, supporting our claim that sparse, focused latents
are especially well-suited to gradient-driven planning while remaining strong under stochastic and
receding-horizon schemes.

4.5 SR VS. COMPUTATION COST

In Fig. 4, we evaluate planning efficiency on Maze by plotting success rate (SR) against cumulative
computation during planning. Each curve traces how SR grows as compute accrues, exposing not
just the final SR but also the speed at which high-performance thresholds are reached. We compare
DINO-WM (purple) and SWM (Top-k, blue): steeper slopes and shorter time-to-threshold (e.g.,
80%/90% SR) indicate better compute-to-performance conversion.

To quantify compute, we use token operations (token ops): the cumulative count of token-level
operations issued during planning. This proxy scales with FLOPs and correlates with wall-clock
time while avoiding profiler noise and hardware-specific effects. Since transformer cost grows

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: SR vs. computation on Maze. Left: SR vs. cumulative time. Right: SR vs. cumulative
token ops. DINO-WM (purple) vs. SWM (Top-k, blue). Dashed lines mark 80%/90% SR.

Figure 5: Planning visualizations on Maze (top), Wall (middle), and PushT (bottom). Left:
DINO-WM. Right: SWM (full-sparse).

roughly with d× S (latent width d, number of patches S), SWM-Topk (128-D) consumes far fewer
token operations per step than DINO-WM (384-D), yielding faster SR gains per unit compute.

4.6 PLANNING VISUALIZATION (COMBINED).

Figure 5 presents side-by-side planning rollouts on Maze (top two rows), Wall (middle two rows),
and PushT (bottom two rows). The left column shows DINO-WM and the right column shows
SWM (full-sparse). Within each environment block, the upper (shaded) row depicts the executed
observations obtained by running the planned actions in the environment, and the lower row shows
the model’s imagined observations along that plan. Across Maze and Wall, both models recover
goal-directed paths.

5 CONCLUSION

Sparse World Models operate entirely in a sparse feature space, preserving control performance
while concentrating task-relevant signal and reducing compute. Across various tasks, sparse features
improve attribution selectivity, maintain predicted-state quality, and achieve strong success with
better success–compute tradeoffs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093, 2024.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2(3), 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019b.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Guangqi Jiang, Yifei Sun, Tao Huang, Huanyu Li, Yongyuan Liang, and Huazhe Xu. Robots pre-
train robots: Manipulation-centric robotic representation from large-scale robot datasets. arXiv
preprint arXiv:2410.22325, 2024.

Drew Linsley, Peisen Zhou, Alekh Karkada Ashok, Akash Nagaraj, Gaurav Gaonkar, Francis E
Lewis, Zygmunt Pizlo, and Thomas Serre. The 3d-pc: a benchmark for visual perspective taking
in humans and machines. arXiv preprint arXiv:2406.04138, 2024.

Alireza Makhzani and Brendan Frey. K-sparse autoencoders. arXiv preprint arXiv:1312.5663, 2013.

Alireza Makhzani and Brendan J Frey. Winner-take-all autoencoders. Advances in neural informa-
tion processing systems, 28, 2015.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A univer-
sal visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381(6583):607–609, 1996.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Han Qi, Haocheng Yin, and Heng Yang. Control-oriented clustering of visual latent representation.
arXiv preprint arXiv:2410.05063, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Trans-
former Circuits Thread, 2024. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Tiansheng Wen, Yifei Wang, Zequn Zeng, Zhong Peng, Yudi Su, Xinyang Liu, Bo Chen, Hong-
wei Liu, Stefanie Jegelka, and Chenyu You. Beyond matryoshka: Revisiting sparse coding for
adaptive representation. arXiv preprint arXiv:2503.01776, 2025.

Vladimir Zaigrajew, Hubert Baniecki, and Przemyslaw Biecek. Interpreting clip with hierarchical
sparse autoencoders. arXiv preprint arXiv:2502.20578, 2025.

Gaoyue Zhou, Hengkai Pan, Yann LeCun, and Lerrel Pinto. Dino-wm: World models on pre-trained
visual features enable zero-shot planning. arXiv preprint arXiv:2411.04983, 2024.

A APPENDIX

A.1 EXPERIMENTAL SETUP

We evaluate on three image-based control environments that stress complementary skills:

• PushT (manipulation). A T-shaped block must be pushed to a target pose. Success requires
contact reasoning and precise action sequencing. This setting probes whether sparse features
capture action-relevant cues for manipulation.

• PointMaze (navigation). A point agent must reach a goal region through a maze. This empha-
sizes long-horizon wayfinding with minimal contact dynamics, isolating planning over geometry.

• Wall (navigation with bottleneck). The agent must pass through a narrow gap between walls to
reach the goal. This stresses spatial selectivity (identifying the passage) and robust rollout around
obstacles.

Observations and actions. Unless noted, observations are RGB frames resized to 224×224 and
encoded by a frozen DINOv2 ViT-S/14 into patch tokens; SWM replaces dense tokens with sparse
SAE codes (Top-k by default). Actions are environment-native controls (e.g., planar motions or
end-effector deltas) applied at a fixed frameskip.

Planners and budgets. We report results with three planners: stochastic shooting with CEM,
gradient-based action optimization (GD) in feature space, and receding-horizon MPC. Planner hori-
zons, samples/iterations, and termination conditions follow the standard protocol used across base-
lines; all methods share the same episode budgets.

Metrics. Primary metrics are success rate (SR) for control, SR vs. time/token ops for efficiency,
and attribution/rollout diagnostics: IoU and MC Jiang et al. (2024) for representation/dynamics
grounding, LPIPS/SSIM (context only) for pixel fidelity, and linear probing accuracy for control-
factor accessibility.

A.2 DATASET LABELING

We construct control-oriented labels that are decodable from a single frame to probe whether repre-
sentations linearly expose task factors.

11

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aspect Setting

Backbone features DINOv2 ViT-S/14 patch tokens (384-d)
Input resolution 196× 196
Training epochs 10
Data fraction ∼ 10% of full dataset
Sparsity (default / sweep) Top-k=128 / k ∈ {32, 64, 256}
Latent size (overcomplete) 1536 (4× 384)
Objective Reconstruction-dominated; others at defaults

Table 5: SAE pretraining configuration used throughout our experiments.

For navigation environments (PointMaze, Wall), we extract spatial relationship features between the
agent and target locations. Since stored trajectory data lacks explicit target position information,
we infer target regions from final frame positions where agents successfully reach goals. Labels
are generated based on relative position encoding: (i) dx,dy: Spatial displacement between agent
and target in world coordinates; (ii) θ: Angular displacement toward target direction; (iii) Region
Classification: 8-class discretization based on spatial quadrants and angular bins. For manipulation
(PushT), we adopt the standard object/pose and discretized action labels (compass directions + stop)
used in large-scale robotic representation studies.

Full labeling details and conventions closely follow Jiang et al. (2024).

A.3 GRADIENT-BASED ATTRIBUTION ANALYSIS

To further understand how sparse representations affect attention patterns and attribution quality,
we analyze feature attributions using gradient-based visualization methods. We implement both
standard Grad-CAM and Mask-guided Token-CAM (MT-CAM) to compare how dense DINO-WM
features versus sparse SWM features attend to task-relevant regions.

A.3.1 ATTRIBUTION METHOD

For each model, we compute attention heatmaps by backpropagating gradients through the visual en-
coder to identify which spatial regions most strongly influence the model’s predictions. For DINO-
WM, we apply Grad-CAM to the final transformer block of the DINOv2 backbone operating on
dense 384-dimensional features. For SWM, we extend the analysis to the sparse autoencoder’s top-
k active features, focusing on the most salient sparse dimensions.

We evaluate attribution quality using the Mask Coverage (MC) metric (need reference here), which
measures the intersection-over-union (IoU) between the binarized attention map and ground-truth
object masks:

MC =
|Attention Binary ∩ GT Mask|
|Attention Binary ∪ GT Mask|

. (9)

A.4 FEATURE PROBING ABLATIONS

Setup. We freeze the visual encoders and train lightweight probes on PushT to predict two task-
relevant predicates: goal and action. Unless noted, probes are trained on a fixed subset of image
patches and evaluated on a held-out set; higher is better. We report two ablations: (i) varying sparsity
dimension k at a fixed training set size (10M patches), and (ii) varying the training set size with fixed
k=128. The DINOV2 row probes dense DINOv2 features directly (no SAE), while the other rows
probe SWM’s sparse codes.

Observations from Tab. 6. Relative to DINOV2, sparse features improve alignment with task
factors: at k=128 we see +0.06 (goal) and +0.08 (action), and at k=256 the gains reach +0.07 /
+0.10. Very small k=32 roughly matches dense probing on goal but lags on action, suggesting
insufficient capacity for contact/interaction cues.

Observations from Tab. 7. (1) Data helps: 10M→ 50M yields modest further gains, especially for
action (+0.0281 over 10M). (2) Sweet spot: 10–50M patches are sufficient; “ALL” underperforms

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 6: Probing on PushT with a fixed 10M-patch training set while varying k.
Method / Dim. Goal Action

DINOV2 (dense 384) 0.68 0.52
SWM-k=32 0.67 0.52
SWM-k=64 0.71 0.56
SWM-k=128 0.74 0.60
SWM-k=256 0.75 0.62

Table 7: Probing on PushT with fixed k=128 while varying the number of training patches.
Train size Goal Action

DINOV2 (dense 384) 0.68 0.52
1M 0.68 0.53
10M 0.74 0.60
50M 0.74 0.62
ALL 0.66 0.52

10–50M, consistent with label/temporal noise or domain heterogeneity diluting probe signal. (3)
Takeaway: k=128 with 10–50M patches is a strong default, achieving most of the improvement
while keeping representation compact.

Summary. Sparse codes yield more linearly separable factors than dense DINOv2 features, par-
ticularly for action-related cues. Scaling k improves probing up to k≈128–256 with diminishing
returns, and moderate pretraining sets (10–50M patches) are sufficient. We adopt k=128 with 50M
patches on PushT as the default, as it offers the best efficiency–accuracy trade-off.

A.5 SWM IMPLEMENTATION DETAILS

Component architectures. The predictor is a ViT operating on sparse features from an SAE. It
stacks depth-6 Transformer blocks (LN–MHSA–FFN) with 16 heads and 2048-d MLPs, returning
token-wise outputs in the same embedding dimension. We embed the action (and proprioception, if
available) with a lightweight MLP and concatenate the resulting vectors to each patch token before
the transformer. The image decoder is a VQ-VAE–style upsampler.

Component Default config

Predictor depth=6, heads=16, mlp dim=2048, dropout=0.1
Action encoder MLP: Linear(action dim→ 64)→GELU→Linear(64→ 10)
Proprio encoder MLP: Linear(proprio dim→ 64)→GELU→Linear(64→ 10)
Image decoder channel=384, n res block=4, n res channel=128, n embed=2048

Table 8: SWM component architectures.

Training hyperparameters. The visual encoder is frozen. We use Adam/AdamW with distinct
learning rates for the encoder, predictor, optional decoder, and the action/proprio encoders. The
decoder is optional: when enabled, it reconstructs sparse codes back to DINOv2 features (and can
be paired with an RGB head if desired). Other implementation details follow Zhou et al. (2024).

A.6 OPEN-LOOP ROLLOUTS.

Figure 6 visualizes open-loop predictions on PointMaze, Wall, and PushT. Across all environments,
SWM closely tracks GT over long horizons. The qualitative parity between rows highlights our core
strength: by operating entirely in a sparse feature space, SWM maintains sharp, consistent dynamics
with minimal drift, yielding rollouts that visually match GT sequences while preserving task-critical
structure.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Parameter Value Description

training.batch size 32 Global batch size
training.encoder lr 1×10−6 Encoder learning rate (Adam)
training.decoder lr 3×10−4 Decoder learning rate (Adam)
training.predictor lr 5×10−4 Predictor learning rate (AdamW)
training.action encoder lr 5×10−4 Action/proprio encoders LR (AdamW)
img size 224 Input image size
frameskip 5 Temporal stride between steps
action emb dim 10 Action embedding dimension
proprio emb dim 10 Proprioception embedding dimension
num hist 3 History frames used by predictor
num pred 1 Future frames predicted

Table 9: SWM training hyperparameters.

Figure 6: Open-loop rollouts on PointMaze, Wall, and PushT. For each environment, the top row
shows ground-truth (GT) frames and the bottom row shows SWM rollouts.

Method LPIPS ↓ SSIM ↑
R3M 0.045 0.956
ResNet 0.063 0.950
AVDC 0.046 0.959
DINO-WM 0.007 0.985
SWM 0.022 0.964

Table 10: Perceptual fidelity on PushT. Lower is better for LPIPS; higher is better for SSIM.
Results for baselines are cited from Zhou et al. (2024).

A.7 IMAGE RECONSTRUCTION QUALITY

DINO-WM attains the best pixel-level fidelity (lowest LPIPS, highest SSIM), which is expected for a
method optimized around dense feature reconstruction. SWM is competitive, clearly outperforming
R3M/ResNet/AVDC on LPIPS, while trailing DINO-WM on both metrics.

Since our goal is to operate entirely in sparse feature space for planning; the image decoder is used
only for visualization. To minimize compute, we adapt the DINO-WM image decoder and perform

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

only light finetuning as in Sec. 3.2.3, rather than training an image decoder from scratch. This
choice substantially reduces training cost and keeps the focus on our core contribution: planning
entirely in sparse feature space. We expect stronger LPIPS/SSIM if we train a dedicated image
decoder end-to-end with SWM; however, our results (Sec. 4.2, Fig. 6) show that SWM already
concentrates control-relevant structure and produces stable rollouts that matter more for planning
than maximizing dense perceptual scores.

A.8 FEATURE FREQUENCY ANALYSIS

We quantify how often the same feature channels are important for both the current observation
and the one-step prediction. At each planning step, we compute per-patch features in each model’s
native space: SWM uses DINOv2→SAE sparse codes (1536-D), while DINO-WM uses DINOv2
features (384-D). For each patch, we select the top-k channels by absolute activation for the input
and for the predicted next state (k=128), take their intersection by channel index, and accumulate
counts over time and patches to form a histogram. Axes: DINO-WM—x: channel index 0–383, y:
overlap frequency; SWM—x: channel index 0–1535, y: overlap frequency.

Result. SWM yields a peaked histogram (few high-frequency channels), indicating focused,
reusable features; DINO-WM is flatter with many high-frequency channels, indicating broader, more
redundant usage (Fig. 7).

Figure 7: Frequency-overlap histograms of input/prediction top-k co-occurrence in each model’s
native feature space on PushT.

15

	Introduction
	Related Works
	Visual Representation Learning in World Models
	Sparse Representations

	Sparse World Models
	Sparse Autoencoders (SAEs)
	Sparse World Models (SWMs)
	Observation Model
	Transition Model
	Decoder (for Interpretability)

	Planning with SWMs

	Experiments
	SAE Pretraining
	Feature Probing
	Representation and Dynamics Attribution
	Planning.
	SR vs. Computation Cost
	Planning visualization (combined).

	Conclusion
	Appendix
	Experimental Setup
	Dataset Labeling
	Gradient-based Attribution Analysis
	Attribution Method

	Feature Probing Ablations
	SWM Implementation Details
	Open-loop rollouts.
	Image Reconstruction Quality
	Feature Frequency Analysis

