
Private (Stochastic) Non-Convex Optimization
Revisited: Second-Order Stationary Points and

Excess Risks

Arun Ganesh
Google Research

arunganesh@google.com

Daogao Liu
University of Washington∗

dgliu@uw.edu

Sewoong Oh
University of Washington and Google Research

sewoong@cs.washington.edu

Abhradeep Thakurta
Google DeepMind

athakurta@google.com

Abstract

We reconsider the challenge of non-convex optimization under differential privacy
constraint. Building upon the previous variance-reduced algorithm SpiderBoost,
we propose a novel framework that employs two types of gradient oracles: one
that estimates the gradient at a single point and a more cost-effective option
that calculates the gradient difference between two points. Our framework can
ensure continuous accuracy of gradient estimations and subsequently enhances
the rates of identifying second-order stationary points. Additionally, we consider
a more challenging task by attempting to locate the global minima of a non-
convex objective via the exponential mechanism without almost any assumptions.
Our preliminary results suggest that the regularized exponential mechanism can
effectively emulate previous empirical and population risk bounds, negating the
need for smoothness assumptions for algorithms with polynomial running time.
Furthermore, with running time factors excluded, the exponential mechanism
demonstrates promising population risk bound performance, and we provide a
nearly matching lower bound.

1 Introduction

Differential privacy [19] is a standard privacy guarantee for training machine learning models. Given
a randomized algorithm A : P ∗ → R, where P is a data domain and R is a range of outputs, we say
A is (ε, δ)-differentially private (DP) for some ε ≥ 0 and δ ∈ [0, 1] if for any neighboring datasets
D,D′ ∈ P ∗ that differ in at most one element and anyR ⊆ R, the distribution of the outcome of the
algorithm, e.g., pair of models trained on the respective datasets, are similar:

Pr
x∼A(D)

[x ∈ R] ≤ eε Pr
x∼A(D′)

[x ∈ R] + δ.

Smaller ε and δ imply the distributions are closer; hence, an adversary accessing the trained model
cannot tell with high confidence whether an example x was in the training dateset. Given this measure
of privacy, we consider the problem of optimizing a non-convex loss while ensuring a desired level of
privacy. In particular, suppose we are given a dataset D = {z1, . . . , zn} drawn i.i.d. from underlying
distribution P . Each loss function f(·; z) : K → R is G-Lipschitz over the convex set K ⊂ Rd of
diameter D. Let the population risk function be FP(x) := Ez∼P [f(x; z)] and the empirical risk
function be FD(x) := 1

n

∑
z∈D f(x; z). We also denote FS(x) := 1

|S|
∑
z∈S f(x; z) for S ⊆ D.

∗Most of this work was done while the author was an intern at Google.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Our focus is in minimizing non-convex (empirical and population) risk functions, which may have
multiple local minima. Since finding the global optimum of a non-convex function can be challenging,
an alternative goal in the field is to find stationary points: A first-order stationary point is a point
with a small gradient of the function, and a second-order stationary point is a first-order stationary
point where additionally the function has a positive or nearly positive semi-definite Hessian. As first
order stationary points can be saddle points or even a local maximum, we focus on the problem of
finding a second order stationary point, i.e., a local minimum, privately. Existing works in finding
approximate SOSP privately only give guarantees for the empirical function FD. We improve upon
the state-of-the-art result for empirical risk minimization and give the first guarantee for the population
function FP . This requires standard assumptions on bounded Lipschitzness, smoothness, and Hessian
Lipschitzness, which we make precise in Section 2 and in Assumption 3.1.

Compared to finding a local minimum, finding a global minimum can be extremely challenging. We
also present two methods, polynomial and exponential time, that outperform existing guarantees
measured in excess risks for respective computational complexities. Our primary results are succinctly
summarized in Table 1.

Related Work. We propose a novel and simple framework based on SpiderBoost [52], and its
private version [2] that achieves the current best rate for finding the first order stationary point privately.
We discuss the primary difference between our framework and theirs, that is their algorithms only
promise small gradient estimation errors on average, but our framework can ensure small estimation
errors consistently throughout all the iterations, and the motivation behind this briefly.

In SGD and its variants, the typical approach involves obtaining an estimation ∆t of the gradient
∇f(xt). In the stochastic variance-reduced algorithm SpiderBoost [52, 2], it queries the gradient
O1(xt) ≈ ∇f(xt) directly every q steps with some oracle O1, and for the other q − 1 steps
within each period, it queries the gradient difference between two steps, that is O2(xt, xt−1) ≈
∇f(xt) − ∇f(xt−1), and maintain ∆t = ∆t−1 + O2(xt, xt−1). The contrast between these two
types of oracles can be perceived as O1 being more accurate but also more costly, in terms of
computation or privacy budget, although our framework does not strictly necessitate this assumption.

As SpiderBoost queries O1 every q steps, the error on the estimation may accumulate and ‖∆t −
∇f(xt)‖ can become large. Despite this, as demonstrated in [2], these estimations can, on average,
suffice to find a private FOSP. However, such large deviations pose a challenge when scrutinizing
behavior near a saddle point. For instance, when the current point is a saddle point, but the current
estimation is unsatisfactory, it becomes uncertain whether the algorithm can escape the saddle point. It
could be argued that average good estimations could achieve a SOSP, but to the best of our knowledge,
there is no existing result addressing this concern.

A plausible solution to this challenge is to maintain high-quality gradient estimations throughout
all iterations, a feat accomplished by our framework. We believe this feature holds promise for
improving the outcomes of various other optimization problems, thus enhancing the overall appeal
and significance of our work.

1.1 Main Results

SOSP. One of our main contributions is a refined optimization framework (Algorithm 1), predi-
cated on the variance-reduced SpiderBoost [52], which guarantees consistently accurate gradient
estimations. By integrating this framework with private gradient oracles, we achieve improved error
rates for privately identifying SOSP of both empirical and population risks.

Advances in private non-convex optimization have focused on finding a first-order stationary point
(FOSP), whose performance is measured in (i) the norm of the empirical gradient at the solution x,
i.e., ‖∇FD(x)‖, and (ii) the norm of the population gradient, i.e., ‖∇FP(x)‖. We survey the recent
progress in the appendix in detail.

Definition 1.1 (First-order stationary point). We say x ∈ Rd is a First-Order Stationary Point (FOSP)
of g : Rd → R iff∇g(x) = 0. x is an α-FOSP of g, if ‖∇g(x)‖2 ≤ α.

Since FOSP can be a saddle point or a local maxima, finding a second-order stationary point is
desired. Exact second-order stationary points can be extremely challenging to find [25]. Instead,
progress is commonly measured in terms of how well the solution approximates an SOSP.

2

α-SOSP Excess population risk
empirical population poly-time exp-time

SOTA min(d
1
4

n
1
2 ε

1
2
, d

4
7

n
4
7 ε

4
7

) N/A d
ε2 logn

♠
N/A

Ours d
1
3

n
2
3 ε

2
3

1

n
1
3

+
(√

d
nε

) 3
7 d log logn

ε log(n)
d
nε +

√
d
n

LB
√
d

nε
1√
n

+
√
d

nε
d
nε +

√
d
n

d
nε +

√
d
n

Table 1: SOTA refers to the best previously known bounds on α for α-SOSP by [46, 48] and on
the excess population risk by [46]. We introduce algorithm 1 that finds an α-SOSP (columns 2–3)
with an improved rate. We show exponential mechanism can minimize the excess risk in polynomial
time and exponential time, respectively (columns 4 and 5). ♠ requires extra assumption on bounded
smoothness. The lower bounds for SOSP are from [2], and the lower bound on excess population risk
is from Theorem 5.11. We omit logarithmic factors in n and d except the upper bounds for excess
population risk with polynomial time.

Definition 1.2 (Second-order stationary point, [1]). We say a point x ∈ Rd is a Second-Order
Stationary Point (SOSP) of a twice differentiable function g : Rd → R iff ‖∇g(x)‖2 = 0 and
∇2g(x) � 0. We say x ∈ Rd is an α-SOSP for ρ-Hessian Lipschitz function g, if ‖∇g(x)‖2 ≤
α
∧
∇2g(x) � −√ραI .

On the empirical risk FD, the SOTA on privately finding α-SOSP is by [46, 48], which achieves α =
Õ(min{(

√
d/n)1/2, (d/n)4/7}). In Theorem 4.2, we show that applying the proposed Algorithm 1

achieves a rate bounded by α = Õ((
√
d/n)2/3), which improves over the SOTA in all regime.2 There

remains a factor (
√
d/n)−1/6 gap to a known lower bound of α = Ω(

√
d/n) that holds even if finding

only an α-FOSP [2]. On the population risk FP , applying Algorithm 1 with appropriate private
gradient oracles is the first private algorithm to guarantee finding an α-SOSP with α = Õ(n−1/3 +

(
√
d/n)3/7) in Theorem 4.6. There is a gap to a known lower bound of α = Ω(1/

√
n+
√
d/nε) that

holds even if finding only an α-FOSP [2].

Minimizing Excess Risk. In addition to the optimization framework, we present sampling-based
algorithms designed to identify a private solution xpriv ∈ Rd that minimizes both the excess empirical
risk: E[FD(xpriv)]−minx∈K FD(x), and the excess population risk: E[FP(xpriv)]−minx∈K FP(x).
Here, the expectation is over the randomness of the solution xpriv and the drawing of the training
date over P . Our method is different from [46], which Gradient Langevin Dynamics and achieves
in polynomial time a bound of O(d

√
log(1/δ)/(ε2 log n)) for both excess empirical and population

risks with a need for the smoothness assumption. In Table 1 we omit excess empirical risk, as the
bounds align with those of the population risk. We introduce a sampling-based algorithm from the
exponential mechanism, which runs in polynomial time and achieves excess empirical and population
risks bounded by O(d

√
log(1/δ)/(ε log(nd))) with improved dependence on ε (Theorem 5.6).

Crucially, it achieves these results without the need for the smoothness assumption required by [46].

In the case of permitting an exponential running time, [23] demonstrated Õ(d/(εn)) upper bound for
non-convex excess empirical risks alongside a nearly matching lower bound. However, establishing a
tight bound for the excess population risk remained an unresolved problem. We address this open
question by providing nearly matching upper and lower bounds of Θ̃(d/(εn) +

√
d/n) for the excess

population risk (Theorem 5.8).

1.2 Our Techniques

Stationary Points. In our framework, we deviate from the traditional approach of querying O1

once every q steps. Instead, we introduce a novel but simple method of monitoring the total drift we
make, that is driftt =

∑t
i=τt
‖xi−xi−1‖22, where τt represents the last timestamp when we employed

O1. As we are considering smooth functions, the maximum error to estimate∇f(xt)−∇f(xt−1)

2We want α = o(1) and hence can assume d ≤ n2.

3

is proportional to ‖xt − xt−1‖2. If the value driftt is small, we know the current estimation should
still be good enough, eliminating the need for an expensive fresh estimation from O1. Conversely,
when driftt is large, the gradient estimation error may be substantial, necessitating a query to O1 and
thus obtaining ∆t = O1(xt). To effectively manage the total cost, it is crucial to set an appropriate
threshold to decide when the drift is significant. A smaller threshold would ensure more accurate
estimations but might incur higher costs due to more frequent queries to O1.

Our aim is to bound the total occurrences of the event that driftt is large, which leads to querying O1.
A crucial observation is that, if driftt increases rapidly, then the gradient norms are large and hence
function values decrease quickly, which we know does not happen frequently under the standard
assumption that the function is bounded.

In our framework, we assume O1(x) is an unbiased estimation of ∇f(x), and O1(x) −∇f(x) is
Norm-SubGaussian (Definition 2.2), and similarly O2(x, y) is an unbiased estimation of ∇f(x)−
∇f(y) whose error is also Norm-SubGaussian. In the empirical case, we can simply add Gaussian
noises with appropriately chosen variances to the gradients of the empirical function ∇FD for
simplicity, and one can choose a smaller batch size to reduce the computational complexity. In
the population case, we draw samples from the dataset without replacement to avoid dependence
issues, and add the Gaussian noises to the sampled gradients. Hence we only need the gradient oracle
complexity to be linear in the size of dataset for the population case.

Minimizing Excess Risk. Our polynomial time approach harnesses the power of the Log-Sobolev
Inequality (LSI) and the classic Stroock perturbation lemma. The previous work of [39] shows that if
the density exp

(
− βFD(x)− r(x)

)
satisfies the LSI for some regularizer r, then sampling a model

x from this density is DP with an appropriate (ε, δ). If r is a µ strongly convex function, then the
density proportional to exp(−r) satisfies LSI with constant 1/µ, and exp(−βFD(x)− r(x)) satisfies
LSI with constant exp(maxx,y |FD(x)− FD(y)|)/µ by the Stroock perturbation lemma. Our bound
on the empirical risk follows from choosing the appropriate inverse temperature β and regularizer r
to satisfy (ε, δ)-DP. The final bound on the population risk also follows from LSI, which bounds the
stability of the sample drawn from the respective distribution.

When running time is not a priority, we employ an exponential mechanism over a discretization of
K to establish the upper bound. The empirical risk bound derives from [9], and we leverage the
concentration of sums of bounded random variables to bound the maximum difference over the
discretizations between the empirical and population risk. We show this is nearly tight by reductions
from selection to non-convex Lipschitz optimization of [23].

1.3 Organization

In Section 2, we present necessary definitions and backgrounds for our work. In Section 3, we
construct the optimization framework, with guarantees on finding the SOSP with two different
kinds of SubGaussian gradient oracles. It’s crucial to note that this framework focuses solely on
optimization and does not pertain to privacy. Section 4 explores the pursuits of finding the SOSP
privately by constructing private SubGaussian gradient oracles and seamlessly integrating them into
the existing framework. We bound the private excess bounds in Section 5. For other preliminaries, all
omitted proofs and some further discussions on related work can be found in the Appendix.

2 Preliminaries

Throughout the paper, if not stated explicitly, the norm ‖ · ‖ means the `2 norm.
Definition 2.1 (Lipschitz, Smoothness and Hessian Lipschitz). Given a function f : K → R, we
say f is G-Lipschitz, if for all x1, x2 ∈ K, |f(x1)− f(x2)| ≤ G‖x1 − x2‖, we say a function f is
M -smooth, if for all x1, x2 ∈ K, ‖∇f(x1)−∇f(x2)‖ ≤M‖x1 − x2‖. and we say the function f
is ρ-Hessian Lipschitz, if for all x1, x2 ∈ K, we have ‖∇2f(x1)−∇2f(x2)‖ ≤ ρ‖x1 − x2‖.
Definition 2.2 (SubGaussian, and Norm-SubGaussian). A random vector x ∈ Rd is SubGaussian
(SG(ζ)) if there exists a positive constant ζ such that E e〈v,x−E x〉 ≤ e‖v‖2ζ2/2, ∀v ∈ Rd. x ∈ Rd

is norm-SubGaussian (nSG(ζ)) if there exists ζ such that Pr[‖x− Ex‖ ≥ t] ≤ 2e
− t2

2ζ2 ,∀t ∈ R.

Fact 2.3. For a Gaussian θ ∼ N (0, σ2Id), θ is SG(σ) and nSG(σ
√
d).

4

Lemma 2.4 (Hoeffding type inequality for norm-subGaussian, [30]). Let x1, · · · , xk ∈ Rd be
random vectors, and for each i ∈ [k], xi | Fi−1 is zero-mean nSG(ζi) where Fi is the corresponding
filtration. Then there exists an absolute constant c such that for any δ > 0, with probability at least

1−ω, ‖
∑k
i=1 xi‖ ≤ c ·

√∑k
i=1 ζ

2
i log(2d/ω), which means

∑k
i=1 xi is nSG(

√
c log(d)

∑k
i=1 ζ

2
i).

3 Convergence to Stationary Points: Framework

We present the optimization framework for finding SOSP in this section. It’s important to emphasize
that this framework is dedicated exclusively to optimization concerns, with privacy considerations
being outside of its purview. The results about SOSP throughout the paper follows the assumptions
of [46].

Assumption 3.1. Any function drawn from P is G-Lipschitz, ρ-Hessian Lipschitz, and M -smooth,
almost surely, and the risk is upper bounded by B.

As discussed before, we define two different kinds of gradient oracles, one for estimating the gradient
at one point and the other for estimating the gradient difference at two points.

Definition 3.2 (SubGaussian gradient oracles). For a G-Lipschitz and M -smooth function F :
(1) We say O1 is a first kind of ζ1 norm-subGaussian Gradient oracle if given x ∈ Rd, O(x) satisfies
EO1(x) = ∇F (x) and O1(x)−∇F (x) is nSG(ζ1).
(2) We say O2 is a second kind of ζ2 norm-subGaussian stochastic Gradient oracle if given x, y ∈
Rd, O2(x, y) satisfies that EO2(x, y) = ∇F (x) − ∇F (y) and O2(x, y) − (∇F (x) − ∇F (y)) is
nSG(ζ2‖x− y‖).

Note that we should assume M ≥ √ρα to make finding a second-order stationary point strictly
more challenging than finding a first-order stationary point. We use smin(·) to denote the smallest
eigenvalue of a matrix.

Algorithm 1 Stochastic Spider
1: Input: Objective function F , Gradient Oracle O1,O2 with SubGaussian parameters ζ1 and ζ2,

parameters of objective function B,M,G, ρ, parameter κ, failure probability ω

2: Set γ =
√

4C(ζ2
2κ+ 4ζ2

1) · log(BMd/ρω),Γ =
M log(dMBργω)
√
ργ

3: Set η = 1/M, t = 0, T = BM log4(dMB
ργω)/γ2

4: Set drift0 = κ, frozen = 1,∇−1 = 0
5: while t ≤ T do
6: if ‖∇t−1‖ ≤ γ log3(BMd/ρω)

∧
frozent−1 ≤ 0 then

7: frozent = Γ,driftt = 0

8: ∇t = O1(xt) + gt, where gt ∼ N (0,
ζ21
d Id)

9: else if driftt−1 ≥ κ then
10: ∇t = O1(xt), driftt = 0, frozent = frozent−1 − 1
11: else
12: ∆t = O2(xt, xt−1),∇t = ∇t−1 + ∆t, frozent = frozent−1 − 1
13: end if
14: xt+1 = xt − η∇t,driftt+1 = driftt + η2‖∇t‖22, t = t+ 1
15: end while
16: Return: {x1, · · · , xT }

Inspired by [2] who adapted the SpiderBoost algorithm for finding private FOSPs, we give a frame-
work based on the SpiderBoost in Algorithm 1. Our analysis of Algorithm 1 hinges on three key
properties we establish in this section: (i)∇t remains consistently close to the true gradient∇F (xt)
with high probability; (ii) the algorithm is capable of escaping the saddle point with high probability,
and (iii) a large drift implies significant decrease in the function value, which enables us to limit the
number of queries to the more accurate but costlier first kind of gradient oracle O1.

5

Lemma 3.3. For any 0 ≤ t ≤ T and letting τt ≤ t be the largest integer such that driftτt is set to
be 0, with probability at least 1− ω/T , for some universal constant C > 0, we have

‖∇t −∇F (xt)‖2 ≤
(
ζ2
2 ·

t∑
i=τt+1

‖xi − xi−1‖2 + 4ζ2
1

)
· C · log(Td/ω). (1)

Hence with probability at least 1− ω, we know for each t ≤ T , ‖∇t −∇F (xt)‖2 ≤ γ2/16, where
γ2 := 16C(ζ2

2κ+ 4ζ2
1) · log(Td/ω) and κ is a parameter we can choose in the algorithm.

As shown in Lemma 3.3, the error on the gradient estimation for each step is bounded with high
probability. Then by adding the Gaussian noise in Line 8, we can show the algorithm can escape the
saddle point efficiently based on previous results.
Lemma 3.4 (Essentially from [46]). Under Assumption 3.1, run SGD iterations xt+1 = xt −
η∇t, with step size η = 1/M . Suppose x0 is a saddle point satisfying ‖∇F (x0)‖ ≤ α and
smin(∇2F (x0)) ≤ −√ρα, α = γ log3(dBM/ρω). If ∇0 = ∇F (x0) + ζ1 + ζ2 where ‖ζ1‖ ≤ γ,

ζ2 ∼ N (0, γ2

d log(d/ω)Id), and ‖∇t − ∇F (xt)‖ ≤ γ for all t ∈ [Γ], with probability at least

1− ω · log(1/ω), one has F (xΓ)− F (x0) ≤ −Ω
(

γ3/2

√
ρ log3(dMBργω)

)
, where Γ =

M log(dMBργω)
√
ργ .

We discuss this lemma in the Appendix in more details. The next lemma is standard, showing how
large the function values can decrease in each step.
Lemma 3.5. By setting η = 1/M , we have F (xt+1) ≤ F (xt)+η‖∇t‖·‖∇F (xt)−∇t‖− η

2‖∇t‖
2.

Moreover, with probability at least 1− ω, for each t ≤ T such that ‖∇F (xt)‖ ≥ γ, we have

F (xt+1)− F (xt) ≤ −η‖∇t‖2/6 ≤ −ηγ2/6.

With the algorithm designed to control the drift term, the guarantee for Stochastic Spider to find the
second order stationary point is stated below:
Lemma 3.6. Suppose O1 and O2 are ζ1 and ζ2 norm-subGaussian respectively. If one sets γ =

O(1)
√

(ζ2
2κ+ 4ζ2

1) · log(Td/ω), with probability at least 1− ω, at least one point in the output set
{x1, · · · , xT } of Algorithm 1 is α-SOSP, where

α = γ log3(BMd/ρωγ) =

√
(ζ2

2κ+ 4ζ2
1) · log(

d/ω

ζ2
2κ+ ζ2

1

) · log3(
BMd

ρω(ζ2
2κ+ ζ2

1)
).

As mentioned before, we can bound the number of occurrences where the drift gets large and hence
bound the total time we query the oracle of the first kind.
Lemma 3.7. Under the event that ‖∇t−∇F (xt)‖ ≤ γ/4 for all t ∈ [T] and our parameter settings,
letting K = {t ∈ [T] : driftt ≥ κ} be the set of iterations where the drift is large, we know
|K| ≤ O

(
Bη
κ + Tγ2η2/κ) = O

(
Bη log4(dMB

ργω)/κ
)
.

4 Private SOSP

We adopt the framework before and get our main results on finding SOSP privately by constructing
private gradient oracles in this section. Finding SOSP for empirical risk function FD and for
population risk function FP are discussed in Subsection 4.1 and Subsection 4.2 respectively.

4.1 Convergence to the SOSP of the Empirical Risk

We use Stochastic Spider to improve the convergence to α-SOSP of the empirical risk, and aim at
getting α = Õ(d1/3/n2/3). We use the full-batch size for simplicity, and use the gradient oracles

O1(x) := ∇FD(x) + g1, and O2(x, y) := ∇FD(x)−∇FD(y) + g2, (2)

where g1 ∼ N (0, σ2
1Id) and g2 ∼ N (0, σ2

2‖x − y‖22Id) are added to ensure privacy by Gaussian
mechanism (in Appendix).

6

Before stating the formal results, note that by Lemma 3.6, the framework can only guarantee the
existence of an α-SOSP in the outputted set. In order to find the SOSP privately from the set, we
adopt the well-known AboveThreshold algorithm, whose pseudo-code can be found in Algorithm 2
in the Appendix. Algorithm 2 is a slight modification of the well-known AboveThreshold algorithm
in [20], and we get the following guarantee immediately.
Lemma 4.1. Algorithm 2 is (ε, 0)-DP. Given the point set {x1, · · · , xT } and S of size n as the input,
(i) if it outputs any point xi, then with probability at least 1− ω, we know

‖∇FS(xi)‖ ≤ α+
32 log(2T/ω)G

nε
, and smin(∇2FS(xi)) ≥ −

√
ρα− 32 log(2T/ω)M

nε

(ii) if there exists a α-SOSP point x ∈ {xi}i∈[T], then with probability at least 1− ω, Algorithm 2
will output one point.

Choosing the appropriate noise scales for the Gaussian added in Equation (2) and running Algorithm 1
can get a private set of points which contains at least one good SOSP. Then we can run Algorithm 2
to find the good SOSP in the set privately. The formal guarantee is stated below:
Theorem 4.2 (Empirical). For ϕ = O(1), use Equation (2) as gradient oracles with κ =

G4/3B1/3

M5/3 (
√
d

n
√
ϕ)2/3, σ1 =

G
√
Bη/κ log2(dMB/ω)

n
√
ϕ , σ2 =

M
√
BM/α2

1 log5(dMB/ω)

n
√
ϕ . Running Algo-

rithm 1, outputting the set {xi}i∈[T] if the total time to queryO1 is bounded byO(Bη log4(dMB
ργω)/κ

)
,

otherwise outputting a set of T arbitrary points is (ϕ/2)-zCDP. With probability at least 1− ω, at
least one point in the output set is α1-SOSP of FD with

α1 = O

(√dBGM
n
√
ϕ

)2/3

· log6

(
nBMd

ρω

) .

Moreover, if we run Algorithm 2 with inputs {xi}i∈[T],D, B,M,G, ρ, α1, and ε =√
ϕ, with probability at least 1 − ω, we can get an α2-SOSP of FD with α2 =

O
(
α1 + G log(n/Gω)

n
√
ϕ + M log(dBGM/ρω)

n
√
ϕ
√
ρ

√
α1

)
. The whole procedure is ϕ-zCDP.

For more generality, we state the above theorem in terms of zCDP. ϕ-zCDP implies (ϕ +

2
√
ϕ log(1/δ), δ)-DP, which gives the bounds in Table 1 (see Appendix for details).

Remark 4.3. It’s worth noting that the cost of gradient computation can be reduced by utilizing
smaller batch sizes. However, our work does not focus on optimizing this aspect.

4.2 Convergence to the SOSP of the Population Risk

This subsection aims at getting an α-SOSP for FP (the population function). Differing from the
stochastic oracles used for empirical function FD, we do not use full batch in the oracle. As an
alternative, we draw fresh samples from D without replacement with a smaller batch size:

O1(x) :=
1

b1

∑
z∈S1

∇f(x; z) + g1, and O2(x, y) :=
1

b2

∑
z∈S2

(∇f(x; z)−∇f(y; z)) + g2, (3)

where S1 and S2 are sets of size of b1 and b2 respectively drawn from D without replacement,
g1 ∼ N (0, σ2

1Id) and g2 ∼ N (0, σ2
2‖x− y‖22 · Id) are added for privacy guarantee. These gradient

oracles satisfy the following.
Claim 4.4. The gradient oracles O1 and O2 constructed in Equation (3) are a first kind of
O(L

√
log d√
b1

+
√
dσ1) norm-subGaussian gradient oracle and second kind of O(M

√
log d√
b2

+
√
dσ2)

norm-subGaussian gradient oracle respectively.

Recall that in the empirical case, we use Algorithm 2 to choose the SOSP for FD. But in the
population case, we need to find SOSP for FP , and what we have are samples from P . We need
the following technical results to help us find the SOSP from the set, which follows from Hoeffding
inequality for norm-subGaussians (Lemma 2.4) and Matrix Bernstein inequality (in the Appendix).

7

Lemma 4.5. Fix a point x ∈ Rd. Given a set S of m samples drawn i.i.d. from the distribution P ,
then we know with probability at least 1− ω, we have

‖∇FS(x)−∇FP(x)‖2 ≤ O
(G log(d/ω)√

m

)∧
‖∇2FS(x)−∇2FP(x)‖op ≤ O

(M log(d/ω)√
m

)
.

By choosing the appropriate noise scales σ1 and σ2 to ensure the privacy guarantee, we can bound
the population bound similar to the empirical bound with these tools.
Theorem 4.6 (Population). Divide the dataset D into two disjoint datasets D1 and D2 of size
dn/2e and bn/2c respectively. Set b1 = nκ

Bη , b2 =
nα2

1

BM , σ1 = G
b1
√
ϕ , σ2 = M

b2
√
ϕ and κ =

max(G
4/3B1/3 log1/3 d

M5/3 n−1/3, (GB
2/3

M5/3)6/7(
√
d

n
√
ϕ)4/7) in Equation (3) and use them as gradient or-

acles. Running Algorithm 1 with D1, and outputting the set {xi}i∈[T] if the total time to query O1 is
bounded by O(Bη log4(dMB

ργω)/κ
)
, otherwise outputting a set of T arbitrary points, is (ϕ/2)-zCDP,

and with probability at least 1− ω, at least one point in the output is α1-SOSP of FP with

α1 = O
((

(BGM · log d)1/3 1

n1/3
+ (G1/7B3/7M3/7)(

√
d

n
√
ϕ

)3/7
)

log3(nBMd/ρω)
)
.

Moreover, if we run Algorithm 2 with inputs {xi}i∈[T],D2, B,M,G, ρ, α1, ε =
√
ϕ with

probability at least 1 − ω, Algorithm 2 can output an α2-SOSP of FP with α2 =

O
(
α1 + M log(ndBGM/ρω)√

ρmin(n
√
ϕ,n1/2)

√
α1 +G(log(n/Gω)

n
√
ϕ + log(d/ω)√

n
)
)
. The whole procedure is ϕ-zCDP.

5 Bounding the Private Excess Risk

In this section, we shift our focus from “second-order” guarantees to “zeroth-order” guarantees, and
consider the problem of getting good private risk bounds without convexity.

5.1 Polynomial Time Approach

If we want the algorithm to be efficient and implementable in polynomial time, to our knowledge
the only known bound is O(d log(1/δ)

ε2 logn) in [46] for smooth functions. [46] used Gradient Langevin
Dynamics, a popular variant of SGD to solve this problem, and prove the privacy by advanced
composition [31]. We generalize the exponential mechanism to the non-convex case and implement
it without a smoothness assumption.

First recall the Log-Sobolev inequality: We say a probability distribution π satisfies LSI with constant
CLSI if for all f : Rd → R, Eπ[f2 log f2]− Eπ[f2] logEπ[f2] ≤ 2CLSI Eπ ‖∇f‖22. A well-known
result ([40]) says if f is µ-strongly convex, then the distribution proportional to exp(−f) satisfies
LSI with constant 1/µ. Recall the results from previous results [39] about LSI and DP:
Theorem 5.1 ([39]). Sampling from exp(−βF (x;D)− r(x)) for some public regularizer r is (ε, δ)-
DP, where ε ≤ 2Gβn

√
CLSI

√
1 + 2 log(1/δ), and CLSI is the worst LSI constant.

We can apply the classic perturbation lemma to get the new LSI constant in the non-convex case.
Suppose we add a regularizer µ2 ‖x‖

2, and try to sample from exp(−β(F (x;D) + µ
2 ‖x‖

2)).
Lemma 5.2 (Stroock perturbation). Suppose π satisfies LSI with constant CLSI(π). If 0 < c ≤
dπ′

dπ ≤ C, then CLSI(π
′) ≤ C

c CLSI(π).

Lemma 5.3 is a more general version of Theorem 3.4 in [23] and can be used to bound the empirical
risk.
Lemma 5.3. Let π(x) ∝ exp(−β(FD(x) + µ

2 ‖x‖
2
2)). Then for βGD > d, we know

E
x∼π

(FD(x) +
µ

2
‖x‖22)− min

x∗∈K
(FD(x∗) +

µ

2
‖x∗‖22) ≤ d

β
log(βGD/d)

We now turn to bound the generalization error, and use the notion of uniform stability:

8

Lemma 5.4 (Stability and Generalization [10]). Given a dataset D = {si}i∈[n] drawn i.i.d. from
some underlying distribution P , and given any algorithm A, suppose we randomly replace a
sample s in D by an independent fresh one s′ from P and get the neighoring dataset D′, then
ED,A[FP(A(D))− FD(A(D))] = ED,s′,A[f(A(D); s′))− f(A(D′); s′))], where A(D) is the out-
put of A with input D.

As each function f(; s′) is G-Lipschitz, it suffices to bound the W2 distance of A(D) and A(D′).
If A is sampling from the exponential mechanism, letting πD ∝ exp(−β(FD(x) + µ

2 ‖x‖
2)) and

πD′ ∝ exp(−β(FD′(x) + µ
2 ‖x‖

2)), it suffices to bound the W2 distance between πD and πD′ . The
following lemma can bound the generalization risk of the exponential mechanism under LSI:

Lemma 5.5 (Generalization error bound). Let πD ∝ exp(−β(FD(x) + µ
2 ‖x‖

2
2)). Then we have

ED,x∼πD [FP(x)− FD(x)] ≤ O(G
2 exp(βGD)

nµ).

We get the following results:

Theorem 5.6 (Risk bound). We are given ε, δ ∈ (0, 1/2). Sampling from exp(−β(FD(x)+ µ
2 ‖x‖

2
2))

with β = O(ε log(nd)

GD
√

log(1/δ))
), µ = d

D2β is (ε, δ)-DP. The empirical risk and population risk are

bounded by O(GD
d·log log(n)

√
log(1/δ)

ε log(nd)).

Implementation There are multiple existing algorithms that can sample efficiently from density
with LSI, under mild assumptions. For example, when the functions are smooth or weakly smooth,
one can turn to the Langevin Monte Carlo [16], and [36]. The algorithm in [46] also requires mild
smoothness assumptions. We discuss the implementation of non-smooth functions in bit more details,
which is more challenging.

We can adopt the rejection sampler in [26], which is based on the alternating sampling algorithm
in [35]. Both [35] and [26] are written in the language of log-concave and strongly log-concave
densities, but their results hold as long as LSI holds. By combining them together, we can get the
following risk bounds. The details of the implementation can be found in Appendix D.3.

Theorem 5.7 (Implementation, risk bound). For ε, δ ∈ (0, 1/2), there is an (ε, 2δ)-DP efficient

sampler that can achieve the empirical and population risks O(GD
d·log log(n)

√
log(1/δ)

ε log(nd)). Moreover,

in expectation, the sampler takes Õ
(
nε3 log3(d)

√
log(1/δ)/(GD)

)
function values query and some

Gaussian random variables restricted to the convex set K in total.

5.2 Exponential Time Approach

In [23], it is shown that sampling from exp(− εn
GDFD(x)) is ε-DP, and a nearly tight empirical risk

bound of Õ(DGdnε) is achieved for convex functions. It is open what is the bound we can get for
non-convex DP-SO.

Upper Bound Given exponential time we can use a discrete exponential mechanism as considered
in [9]. We recap the argument and extend it to DP-SO. The proof is based on a simple packing
argument, and can be found in the Appendix.

Theorem 5.8. There exists an ε-DP differentially private algorithm that achieves a population risk
of O

(
GD

(
d log(εn/d)/(εn) +

√
d log(εn/d)/(

√
n)
))

.

Lower Bound Results in [23] imply that the first term of Õ(GDd/εn) is tight, even if we relax
to approximate DP with δ > 0. A reduction from private selection problem shows the Õ(

√
d/n)

generalization term is also nearly-tight (Theorem 5.11). In the selection problem, we have k coins,
each with an unknown probability pi. Each coin is flipped n times such that {xi,j}j∈[n], each xi,j
i.i.d. sampled from Bern(pi), and we want to choose a coin i with the smallest pi. The risk of
choosing i is pi −mini∗ pi∗ .

Theorem 5.9. Any algorithm for the selection problem has excess population risk Ω̃(
√

log k
n).

9

This follows from a folklore result on the selection problem (see e.g. [5]). We can combine this with
the following reduction from selection to non-convex optimization:
Theorem 5.10 (Restatement of results in [23]). If any (ε, δ)-DP algorithm for selection has risk
R(k), where R(k) is a function with k as variables, then any (ε, δ)-DP algorithm for minimizing
1-Lipschitz losses over Bd(0, 1) (the d-dimensional unit ball) has risk R(2Θ(d)).

From this and the aforementioned lower bounds in empirical non-convex optimization we get the
following:

Theorem 5.11. For ε ≤ 1, δ ∈ [2−Ω(n), 1/n1+Ω(1)], any (ε, δ)-DP algorithm for minimizing 1-
Lipschitz losses over Bd(0, 1) has excess population risk max{Ω(d log(1/δ)/(εn)), Ω̃(

√
d/n)}.

6 Discussion

In this paper, we gave improved bounds for finding SOSPs under differential privacy, as well as points
with low population risk. We discuss some potential follow-up questions here.

First, there is still a gap between our upper bounds and the lower bounds of [2]. Closing this gap
is an interesting question and may lead to novel technical insights about private optimization. To
obtain upper bounds for finding SOSP, both our work and the work of [2] uses the oracle of the
second kind defined in Definition 3.2. Second, in typical private optimization work, only oracles of
the first kind are used. It is possible that the oracle of the second kind is useful in private optimization
problems besides finding stationary points, either in theory or practice. In particular, since this oracle
has lower sensitivity, it may allow us to tolerate a higher noise level / lower privacy budget across
multiple iterations. Third, we privatize the SpiderBoost in the work, and there are other versions
of variance-reduced algorithms like Spiker and SARAH. It is interesting if our ideas can be used to
privatize those algorithms, and compare their practical performance. Lastly, our polynomial-time
excess population risk bounds have a O(1/ log n) dependence on the dataset size, whereas for convex
losses standard results have a max{1/

√
n, 1/εn} dependence. The stronger dependence is achievable

under LSI, but the practical settings in which LSI holds without convexity holding seems limited.
It remains an open question to find a practical assumption weaker than convexity that allows us to
achieve better dependence on n.

7 Acknowledgement

DG would like to thank Ruoqi Shen and Kevin Tian for several discussions.

10

References
[1] Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding

approximate local minima faster than gradient descent. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pages 1195–1199, 2017.

[2] Raman Arora, Raef Bassily, Tomás González, Cristóbal Guzmán, Michael Menart, and Enayat
Ullah. Faster rates of convergence to stationary points in differentially private optimization.
arXiv preprint arXiv:2206.00846, 2022.

[3] Hilal Asi, Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic convex optimiza-
tion: Optimal rates in l1 geometry. In International Conference on Machine Learning, pages
393–403. PMLR, 2021.

[4] Hilal Asi, Daniel Asher Nathan Levy, and John Duchi. Adapting to function difficulty and
growth conditions in private optimization. In Advances in Neural Information Processing
Systems, 2021.

[5] Mitali Bafna and Jonathan Ullman. The price of selection in differential privacy. In Satyen Kale
and Ohad Shamir, editors, Proceedings of the 2017 Conference on Learning Theory, volume 65
of Proceedings of Machine Learning Research, pages 151–168. PMLR, 07–10 Jul 2017.

[6] Raef Bassily, Vitaly Feldman, Cristóbal Guzmán, and Kunal Talwar. Stability of stochastic
gradient descent on nonsmooth convex losses. arXiv preprint arXiv:2006.06914, 2020.

[7] Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep Thakurta. Private stochastic convex
optimization with optimal rates. In Advances in Neural Information Processing Systems, pages
11279–11288, 2019.

[8] Raef Bassily, Cristóbal Guzmán, and Michael Menart. Differentially private stochastic opti-
mization: New results in convex and non-convex settings. Advances in Neural Information
Processing Systems, 34:9317–9329, 2021.

[9] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization:
Efficient algorithms and tight error bounds. In Proc. of the 2014 IEEE 55th Annual Symp. on
Foundations of Computer Science (FOCS), pages 464–473, 2014.

[10] Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine
Learning Research, 2:499–526, 2002.

[11] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions,
and lower bounds. In Martin Hirt and Adam Smith, editors, Theory of Cryptography, pages
635–658, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[12] Yair Carmon, Arun Jambulapati, Yujia Jin, Yin Tat Lee, Daogao Liu, Aaron Sidford, and
Kevin Tian. Resqueing parallel and private stochastic convex optimization. arXiv preprint
arXiv:2301.00457, 2023.

[13] Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic regression. Advances
in neural information processing systems, 21, 2008.

[14] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private empirical
risk minimization. Journal of Machine Learning Research, 12(Mar):1069–1109, 2011.

[15] Yongxin Chen, Sinho Chewi, Adil Salim, and Andre Wibisono. Improved analysis for a
proximal algorithm for sampling. In Conference on Learning Theory, pages 2984–3014. PMLR,
2022.

[16] Sinho Chewi, Murat A Erdogdu, Mufan Li, Ruoqi Shen, and Shunshi Zhang. Analysis of
langevin monte carlo from poincare to log-sobolev. In Conference on Learning Theory, pages
1–2. PMLR, 2022.

[17] Rishav Chourasia, Jiayuan Ye, and Reza Shokri. Differential privacy dynamics of langevin
diffusion and noisy gradient descent. In Advances in Neural Information Processing Systems,
2021.

11

[18] Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex
sgd. Advances in neural information processing systems, 32, 2019.

[19] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Proc. of the Third Conf. on Theory of Cryptography
(TCC), pages 265–284, 2006.

[20] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Founda-
tions and Trends R© in Theoretical Computer Science, 9(3–4):211–407, 2014.

[21] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-
convex optimization via stochastic path-integrated differential estimator. Advances in Neural
Information Processing Systems, 31, 2018.

[22] Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic convex optimization:
Optimal rates in linear time. In Proc. of the Fifty-Second ACM Symp. on Theory of Computing
(STOC’20), 2020.

[23] Arun Ganesh, Abhradeep Thakurta, and Jalaj Upadhyay. Langevin diffusion: An almost univer-
sal algorithm for private euclidean (convex) optimization. arXiv preprint arXiv:2204.01585,
2022.

[24] Changyu Gao and Stephen J Wright. Differentially private optimization for smooth nonconvex
erm. arXiv preprint arXiv:2302.04972, 2023.

[25] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online
stochastic gradient for tensor decomposition. In Conference on learning theory, pages 797–842.
PMLR, 2015.

[26] Sivakanth Gopi, Yin Tat Lee, and Daogao Liu. Private convex optimization via exponential
mechanism. In Conference on Learning Theory, pages 1948–1989. PMLR, 2022.

[27] Sivakanth Gopi, Yin Tat Lee, Daogao Liu, Ruoqi Shen, and Kevin Tian. Private convex
optimization in general norms. In Proceedings of the 2023 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 5068–5089. SIAM, 2023.

[28] Roger Iyengar, Joseph P Near, Dawn Song, Om Thakkar, Abhradeep Thakurta, and Lun Wang.
Towards practical differentially private convex optimization. In 2019 IEEE Symposium on
Security and Privacy (SP), 2019.

[29] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape
saddle points efficiently. In International conference on machine learning, pages 1724–1732.
PMLR, 2017.

[30] Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. A short
note on concentration inequalities for random vectors with subgaussian norm. arXiv preprint
arXiv:1902.03736, 2019.

[31] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for differential
privacy. In Francis Bach and David Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pages 1376–1385, Lille, France, 07–09 Jul 2015. PMLR.

[32] Gautam Kamath, Xingtu Liu, and Huanyu Zhang. Improved rates for differentially private
stochastic convex optimization with heavy-tailed data. In International Conference on Machine
Learning, pages 10633–10660. PMLR, 2022.

[33] Daniel Kifer, Adam Smith, and Abhradeep Thakurta. Private convex empirical risk minimization
and high-dimensional regression. In Conference on Learning Theory, pages 25–1, 2012.

[34] Janardhan Kulkarni, Yin Tat Lee, and Daogao Liu. Private non-smooth erm and sco in sub-
quadratic steps. Advances in Neural Information Processing Systems, 34, 2021.

[35] Yin Tat Lee, Ruoqi Shen, and Kevin Tian. Structured logconcave sampling with a restricted
gaussian oracle. In Conference on Learning Theory, pages 2993–3050. PMLR, 2021.

12

[36] Jiaming Liang and Yongxin Chen. A proximal algorithm for sampling from non-smooth
potentials. In 2022 Winter Simulation Conference (WSC), pages 3229–3240. IEEE, 2022.

[37] Songtao Lu, Meisam Razaviyayn, Bo Yang, Kejun Huang, and Mingyi Hong. Finding second-
order stationary points efficiently in smooth nonconvex linearly constrained optimization prob-
lems. Advances in Neural Information Processing Systems, 33:2811–2822, 2020.

[38] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’07), pages 94–103. IEEE, 2007.

[39] Kentaro Minami, HItomi Arai, Issei Sato, and Hiroshi Nakagawa. Differential privacy without
sensitivity. Advances in Neural Information Processing Systems, 29, 2016.

[40] Felix Otto and Cédric Villani. Generalization of an inequality by talagrand and links with the
logarithmic sobolev inequality. Journal of Functional Analysis, 173(2):361–400, 2000.

[41] Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. Stochastic gradient descent with
differentially private updates. In 2013 IEEE Global Conference on Signal and Information
Processing, pages 245–248. IEEE, 2013.

[42] Shuang Song, Thomas Steinke, Om Thakkar, and Abhradeep Thakurta. Evading the curse
of dimensionality in unconstrained private glms. In International Conference on Artificial
Intelligence and Statistics, pages 2638–2646. PMLR, 2021.

[43] Kunal Talwar, Abhradeep Guha Thakurta, and Li Zhang. Nearly optimal private lasso. Advances
in Neural Information Processing Systems, 28, 2015.

[44] Hoang Tran and Ashok Cutkosky. Momentum aggregation for private non-convex erm. In
Advances in Neural Information Processing Systems, 2022.

[45] Joel A Tropp. An introduction to matrix concentration inequalities. Foundations and Trends R©
in Machine Learning, 8(1-2):1–230, 2015.

[46] Di Wang, Changyou Chen, and Jinhui Xu. Differentially private empirical risk minimization
with non-convex loss functions. In International Conference on Machine Learning, pages
6526–6535. PMLR, 2019.

[47] Di Wang and Jinhui Xu. Differentially private empirical risk minimization with smooth non-
convex loss functions: A non-stationary view. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 1182–1189, 2019.

[48] Di Wang and Jinhui Xu. Escaping saddle points of empirical risk privately and scalably via
dp-trust region method. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 90–106. Springer, 2020.

[49] Di Wang, Minwei Ye, and Jinhui Xu. Differentially private empirical risk minimization revisited:
Faster and more general. Advances in Neural Information Processing Systems, 30, 2017.

[50] Lingxiao Wang, Bargav Jayaraman, David Evans, and Quanquan Gu. Efficient privacy-
preserving stochastic nonconvex optimization. arXiv preprint arXiv:1910.13659, 2019.

[51] Yongqiang Wang and Tamer Başar. Decentralized nonconvex optimization with guaranteed
privacy and accuracy. Automatica, 150:110858, 2023.

[52] Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh. Spiderboost and momentum:
Faster variance reduction algorithms. Advances in Neural Information Processing Systems, 32,
2019.

[53] Yi Xu, Rong Jin, and Tianbao Yang. First-order stochastic algorithms for escaping from saddle
points in almost linear time. Advances in neural information processing systems, 31, 2018.

[54] Xiaodong Yang, Huishuai Zhang, Wei Chen, and Tie-Yan Liu. Normalized/clipped sgd with per-
turbation for differentially private non-convex optimization. arXiv preprint arXiv:2206.13033,
2022.

13

[55] Qiuchen Zhang, Jing Ma, Jian Lou, and Li Xiong. Private stochastic non-convex optimization
with improved utility rates. In Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, 2021.

[56] Yingxue Zhou, Xiangyi Chen, Mingyi Hong, Zhiwei Steven Wu, and Arindam Banerjee. Private
stochastic non-convex optimization: Adaptive algorithms and tighter generalization bounds.
arXiv preprint arXiv:2006.13501, 2020.

14

A Other Preliminary

Definition A.1 (Laplace distribution). We say X ∼ Lap(b) if X has density f(X = x) =
1
2b exp(−|x|b).

In the analysis we use zero-concentrated differential privacy (zCDP):

Definition A.2 (zCDP). A mechanism M is ϕ-zCDP if for all α > 1 and neighboring D,D′:

Rα(M(D),M(D′)) ≤ ϕα,

where Rα denotes the α-Rényi divergence.

Theorem A.3 (zCDP composition, [11]). The (adaptive) composition of k mechanisms that satisfy
ϕ1-zCDP, ϕ2-zCDP, . . ., ϕk-zCDP respectively is (ϕ1 + ϕ2 + . . .+ ϕk)-zCDP.

Lemma A.4. [Conversion between (ε, δ)-DP and zCDP, [11]] A mechanism that is (ε, 0)-DP is also
ε2/2-zCDP. A mechanism that is ϕ-zCDP is also (ε, δ)-DP for any δ > 0 and ε = ϕ+2

√
ϕ log(1/δ).

Theorem A.5 (zCDP of Gaussian Mechanism, [11]). Given a randomized algorithm A : P ∗ → Rd,
let ∆2f = maxneighboringD,D′ ‖A(D) − A(D′)‖2, then releasing A(D) plus noise N (0, σ2) is
(∆2f)2

2σ2 -zCDP.

Theorem A.6 (Matrix Bernstein inequality, [45]). Consider a sequence {Xi}i∈m of independent,
mean-zero, symmetric d × d random matrices. If for each matrix Xi, we know ‖Xi‖op ≤ M ,

then for all t ≥ 0, we have Pr
[
‖
∑
i∈[m]Xi‖op ≥ t

]
≤ d exp

(
−t2

2(σ2+Mt/3)

)
, where σ2 =

‖
∑
i∈[m] EX2

i ‖op.

B Omitted Proof of Section 3

B.1 Proof of Lemma 3.3

Lemma 3.3. For any 0 ≤ t ≤ T and letting τt ≤ t be the largest integer such that driftτt is set to
be 0, with probability at least 1− ω/T , for some universal constant C > 0, we have

‖∇t −∇F (xt)‖2 ≤
(
ζ2
2 ·

t∑
i=τt+1

‖xi − xi−1‖2 + 4ζ2
1

)
· C · log(Td/ω). (1)

Hence with probability at least 1− ω, we know for each t ≤ T , ‖∇t −∇F (xt)‖2 ≤ γ2/16, where
γ2 := 16C(ζ2

2κ+ 4ζ2
1) · log(Td/ω) and κ is a parameter we can choose in the algorithm.

Proof. If driftτt = 0 happens, we use the first kind oracle to query the gradient, and hence ∇τt −
∇F (xτt) is zero-mean and nSG(2ζ1). If t = τt, Equation (1) holds by the property of norm-
subGaussian.

For each τt + 1 ≤ i ≤ t, conditional on ∇i−1, we know ∆i − (∇F (xi)− F (xi−1)) is zero-mean
and nSG(ζ2‖xi − xi−1‖). Note that

∇t −∇F (xt) = ∇τt −∇F (xτt) +

t∑
i=τt+1

[∆i − (∇F (xi)−∇F (xi−1))].

Equation (1) follows from Lemma 2.4.

We know driftt−1 =
∑t
i=τt+1 ‖xi − xi−1‖2 ≤ κ almost surely by the design of the algorithm. By

union bound, we know with probability at least 1− ω, for each t ∈ [T],

‖∇t −∇F (xt)‖2 ≤ C(ζ2
2κ+ 4ζ2

1) · log(Td/ω) = γ2/16.

15

B.2 Discussion of Lemma 3.4

Lemma 3.4 (Essentially from [46]). Under Assumption 3.1, run SGD iterations xt+1 = xt −
η∇t, with step size η = 1/M . Suppose x0 is a saddle point satisfying ‖∇F (x0)‖ ≤ α and
smin(∇2F (x0)) ≤ −√ρα, α = γ log3(dBM/ρω). If ∇0 = ∇F (x0) + ζ1 + ζ2 where ‖ζ1‖ ≤ γ,

ζ2 ∼ N (0, γ2

d log(d/ω)Id), and ‖∇t − ∇F (xt)‖ ≤ γ for all t ∈ [Γ], with probability at least

1− ω · log(1/ω), one has F (xΓ)− F (x0) ≤ −Ω
(

γ3/2

√
ρ log3(dMBργω)

)
, where Γ =

M log(dMBργω)
√
ργ .

We briefly recap the proof of Lemma 3.4 in [46]. One observation between the decreased function
value, and the distance solutions moved is stated below:
Lemma B.1 (Lemma 11, [46]). For each t ∈ [Γ], we know

‖xt+1 − x0‖22 ≤ 8η(Γ(F (x0)− F (xΓ)) + 50η2Γ
∑
i∈[Γ]

‖∇i −∇F (xt)‖22.

The difference between our algorithm and the DP-GD in [46] is the noise on the gradient. Note that
with high probability,

∑
i∈[Γ] ‖∇i −∇F (xt)‖22 in our algorithm is controlled and small, and hence

does not change the other proofs in [46]. Hence if F (x0)− F (xΓ) is small, i.e., the function value
does not decrease significantly, we know xt is close to x0.

Let Bx(r) be the unit ball of radius r around point x. Denote the (x)Γ the point xΓ after running
SGD mentioned in Lemma 3.4 for Γ steps beginning at x. With this observation, denote Bγ(x0) :=
{x | x ∈ Bx0

(ηα),Pr[F ((x)Γ)− F (x) ≥ −Φ] ≥ ω}. [46] demonstrates the following lemma:
Lemma B.2. If ‖∇F (x0)‖ ≤ α and smin(∇2F (x0)) ≤ −√ργ, then the width of Bγ(x0) along the

along the minimum eigenvector of∇2F (x0) is at most ωηγ
log(1/ω)

√
2π
d .

The intuition is that if two different points x1, x2 ∈ Bx0(ηα), and x1−x2 is large along the minimum
eigenvector, then with high probability, the distance between ‖(x1)Γ−(x2)Γ‖ will be large, and either
‖(x1)Γ − x1‖ or ‖(x2)Γ − x2‖ is large, and hence either F (x1)− F ((x1)Γ) or F (x2)− F ((x2)Γ)
is large. The Lemma 3.4 follows from Lemma B.2 by using the Gaussian ζ2 to kick off the point.

B.3 Proof of Lemma 3.5

Lemma 3.5. By setting η = 1/M , we have F (xt+1) ≤ F (xt)+η‖∇t‖·‖∇F (xt)−∇t‖− η
2‖∇t‖

2.
Moreover, with probability at least 1− ω, for each t ≤ T such that ‖∇F (xt)‖ ≥ γ, we have

F (xt+1)− F (xt) ≤ −η‖∇t‖2/6 ≤ −ηγ2/6.

Proof. By the assumption on smoothness, we know

F (xt+1) ≤F (xt) + 〈∇F (xt), xt+1 − xt〉+
M

2
‖xt+1 − xt‖2

=F (xt)− η/2‖∇t‖2 − 〈∇F (xt)−∇t, η∇t〉

≤F (xt) + η‖∇F (xt)−∇t‖ · ‖∇t‖ −
η

2
‖∇t‖2.

By Lemma 3.3, with probability at least 1− ω, for each t ∈ [T] we have ‖∇F (xt)−∇t‖2 ≤ γ/4.
Hence we know if∇F (xt) ≥ γ, we have

F (xt+1)− F (xt) ≤ −η‖∇t‖2/6 ≤ −ηγ2/6.

B.4 Proof of Lemma 3.6

Lemma 3.6. Suppose O1 and O2 are ζ1 and ζ2 norm-subGaussian respectively. If one sets γ =

O(1)
√

(ζ2
2κ+ 4ζ2

1) · log(Td/ω), with probability at least 1− ω, at least one point in the output set

16

{x1, · · · , xT } of Algorithm 1 is α-SOSP, where

α = γ log3(BMd/ρωγ) =

√
(ζ2

2κ+ 4ζ2
1) · log(

d/ω

ζ2
2κ+ ζ2

1

) · log3(
BMd

ρω(ζ2
2κ+ ζ2

1)
).

Proof. By Lemma 3.5, we know if the gradient ‖∇F (xt)‖ ≥ γ, then with high probability that
F (xt+1) − F (xt) ≤ −ηγ2/6. By Lemma 3.4, if xt is a saddle point (with small gradient norm
but the Hessian has a small eigenvalue), then with high probability that F (xΓ+t) − F (xt) ≤
−Ω(γ3/2

√
ρ log3(dMBργω)

), and the function values decrease Ω
(

γ2

M log4(dMBργω)

)
on average for each step.

Recall the assumption that the risk is upper bounded by B, by our setting T = Ω
(
BM
γ2 log4(dMB

ργω)
)
,

the statement is proved.

B.5 Proof of Lemma 3.7

Lemma 3.7. Under the event that ‖∇t−∇F (xt)‖ ≤ γ/4 for all t ∈ [T] and our parameter settings,
letting K = {t ∈ [T] : driftt ≥ κ} be the set of iterations where the drift is large, we know
|K| ≤ O

(
Bη
κ + Tγ2η2/κ) = O

(
Bη log4(dMB

ργω)/κ
)
.

Proof. By Lemma 3.5, if ‖F (xt)‖ ≥ γ, we know F (xt+1)−F (xt) ≤ −η‖∇t‖2/6, and F (xt+1)−
F (xt) ≤ ηγ2 otherwise. Index the items in K = {t1, t2, · · · , t|K|} such that ti < ti+1. We know

F (xti+1
)− F (xti) ≤ −

1

6η
driftti+1

+ (ti+1 − ti)γ2η ≤ − 1

6η
κ+ (ti+1 − ti)γ2η.

Recall by the assumption that maxy F (y)−minx F (x) ≤ B. And hence−B ≤ F (xt|L|)−F (xt1) ≤
− |K|6η κ+ Tγ2η, and we know

|K| ≤ O
(Bη
κ

+ Tγ2η2/κ) = O(Bη log4(
dMB

ργω
)/κ
)
.

C Appendix for Section 4

The pseudocode of Algorithm 2 is stated below:

Algorithm 2 AboveThreshold
1: Input: A set of points {xi}Ti=1, dataset S, parameters of objective functionB,M,G, ρ, objective

error α
2: Set T̂1 = α+ Lap(4G

nε) + 16 log(2T/ω)G
nε , T̂2 = −√ρα+ Lap(4M

nε)− 16 log(2T/ω)M
nε

3: for i = 1, · · · , T do
4: if ‖∇FS(xi)‖+ Lap(8G

nε) ≤ T̂1

∧
smin(∇2FS(xi)) + Lap(8M

nε) ≥ T̂2 then
5: Output: xi
6: Halt
7: end if
8: end for

C.1 Proof of Theorem 4.2

Theorem 4.2 (Empirical). For ϕ = O(1), use Equation (2) as gradient oracles with κ =

G4/3B1/3

M5/3 (
√
d

n
√
ϕ)2/3, σ1 =

G
√
Bη/κ log2(dMB/ω)

n
√
ϕ , σ2 =

M
√
BM/α2

1 log5(dMB/ω)

n
√
ϕ . Running Algo-

rithm 1, outputting the set {xi}i∈[T] if the total time to queryO1 is bounded byO(Bη log4(dMB
ργω)/κ

)
,

17

otherwise outputting a set of T arbitrary points is (ϕ/2)-zCDP. With probability at least 1− ω, at
least one point in the output set is α1-SOSP of FD with

α1 = O

(√dBGM
n
√
ϕ

)2/3

· log6

(
nBMd

ρω

) .

Moreover, if we run Algorithm 2 with inputs {xi}i∈[T],D, B,M,G, ρ, α1, and ε =√
ϕ, with probability at least 1 − ω, we can get an α2-SOSP of FD with α2 =

O
(
α1 + G log(n/Gω)

n
√
ϕ + M log(dBGM/ρω)

n
√
ϕ
√
ρ

√
α1

)
. The whole procedure is ϕ-zCDP.

Proof. The privacy guarantee can be proved by zCDP composition (Lemma A.3) Gaussian Mecha-
nism (Theorem A.5) and Lemma 3.7. Specifically, by Assumption 3.1 and our settings of parameters,
we know the sensitivity of O1 and O2 are bounded by G

n and M‖x−y‖
n respectively, and querying O1

and O2 each time are G2

n2σ2
1

-zCDP and M2

n2σ2
2

-zCDP respectively. We can apply the advanced composi-
tion to prove the privacy guarantee of the whole algorithm. As the total number of iterations T is fixed,
all queries made to O2 satisfy TM2

n2σ2
2

-zCDP. It suffices to bound the total time to query O1, which is

guaranteed in the statement. That is the total times to query O1 is T1 := O
(
Bη log4(dMB

ρω)/κ
)
, so

the queries to O1 satisfy T1G
2

n2σ2
1

-zCDP. If the time exceeds O
(
Bη log4(dMB

ρω)/κ
)
, then we will output

a set of arbitrary points which does not occur additional privacy cost. The overall privacy guarantee
is (G

2T1

n2σ2
1

+ M2T
n2σ2

2
)-zCDP. To get (ϕ/2)-zCDP, as desired we can choose:

σ1 =
2G
√
T1

n
√
ϕ

=
2G log2(dMB

ρω)
√
Bη/κ

n
√
ϕ

, σ2 =
2M
√
T

n
√
ϕ

=
2M log5(dMB

ρω)
√
BM

n
√
ϕα1

As for the utility, we know the O1 and O2 constructed in Equation (2) are first kind of σ1

√
d and

second kind of σ2

√
d norm-subGaussian gradient oracle by Fact 2.3. Hence by Lemma 3.6, the utility

α1 satisfies that

α1 =O(σ1

√
d+ σ2

√
dκ) · log3(BMd/ρω)

=O
(G√dBη/κ

n
√
ϕ

+
M log3(dMB

ρω)
√
BM

n
√
ϕα1

√
dκ
)
· log5(BMd/ρω).

By Lemma 3.7, with probability at least 1− ω, the total time to query O1 is controlled and the final
output will not be arbitrary points. Choosing the best κ demonstrates the bound on α1. The bound
for α2 follows from the value of α1 and Lemma 4.1. Combining the two items in Lemma 4.1, we
know with probability at least 1− ω, the output point x of Algorithm 2 satisfies that

‖∇FD(x)‖ ≤ α1 +
32 log(2T/ω)G

n
√
ϕ

, and smin(∇2FD(x)) ≥ −√ρα1 −
32 log(2T/ω)M

n
√
ϕ

.

Hence we know x is an α2-SOSP for α2 stated in the statement.

C.2 Proof of Claim 4.4

Claim 4.4. The gradient oracles O1 and O2 constructed in Equation (3) are a first kind of
O(L

√
log d√
b1

+
√
dσ1) norm-subGaussian gradient oracle and second kind of O(M

√
log d√
b2

+
√
dσ2)

norm-subGaussian gradient oracle respectively.

Proof. For the oracle O1, we know for each z ∈ S1, Ez∼P [∇f(x, z)] = ∇FP(x) and ∇f(x, z)−
∇FP(x) is nSG(L) due to the Lipschitzness assumption. The statement follows from Fact 2.3 and
Lemma 2.4. As for the O2, the statement follows similarly with the smoothness assumption.

18

C.3 Proof of Lemma 4.5

Lemma 4.5. Fix a point x ∈ Rd. Given a set S of m samples drawn i.i.d. from the distribution P ,
then we know with probability at least 1− ω, we have

‖∇FS(x)−∇FP(x)‖2 ≤ O
(G log(d/ω)√

m

)∧
‖∇2FS(x)−∇2FP(x)‖op ≤ O

(M log(d/ω)√
m

)
.

Proof. As for any s ∈ S,∇f(x; s)−∇FP(x) is zero-mean nSG(G). Then the Hoeffding inequality
for norm-subGuassians (Lemma 2.4) demonstrates with probability at least 1 − ω/2, we have
‖∇FS(x)−∇FP(x)‖2 ≤ O

(G log(d/ω)√
m

)
.

As for the other term, we know for any s ∈ S,E[∇2f(x; s) − ∇2FP(x)] = 0, and ‖∇2f(x; s) −
∇2FP(x)‖op ≤ 2M almost surely. Hence applying Matrix Bernstein inequality (Theorem A.6) with
σ2 = 4M2m, t = O

(√
mM log(d/ω)

)
, we know with probability at least 1 − ω/2, ‖∇2FS(x) −

∇2FP(x)‖op ≤ t/m.

Applying the Union bound completes the proof.

C.4 Proof of Theorem 4.6

Theorem 4.6 (Population). Divide the dataset D into two disjoint datasets D1 and D2 of size
dn/2e and bn/2c respectively. Set b1 = nκ

Bη , b2 =
nα2

1

BM , σ1 = G
b1
√
ϕ , σ2 = M

b2
√
ϕ and κ =

max(G
4/3B1/3 log1/3 d

M5/3 n−1/3, (GB
2/3

M5/3)6/7(
√
d

n
√
ϕ)4/7) in Equation (3) and use them as gradient or-

acles. Running Algorithm 1 with D1, and outputting the set {xi}i∈[T] if the total time to query O1 is
bounded by O(Bη log4(dMB

ργω)/κ
)
, otherwise outputting a set of T arbitrary points, is (ϕ/2)-zCDP,

and with probability at least 1− ω, at least one point in the output is α1-SOSP of FP with

α1 = O
((

(BGM · log d)1/3 1

n1/3
+ (G1/7B3/7M3/7)(

√
d

n
√
ϕ

)3/7
)

log3(nBMd/ρω)
)
.

Moreover, if we run Algorithm 2 with inputs {xi}i∈[T],D2, B,M,G, ρ, α1, ε =
√
ϕ with

probability at least 1 − ω, Algorithm 2 can output an α2-SOSP of FP with α2 =

O
(
α1 + M log(ndBGM/ρω)√

ρmin(n
√
ϕ,n1/2)

√
α1 +G(log(n/Gω)

n
√
ϕ + log(d/ω)√

n
)
)
. The whole procedure is ϕ-zCDP.

Proof. Recall that we draw the samples to construct the gradient oracles (Equation 3) without
replacement, and we should have all samples to be fresh to avoid dependency, and hence we need

b1 · |K|+ b2 · T ≤ n/2,
which is satisfied by the procedure in the statement, as if the total time to query the O1 exceeds the
threshold, the algorithm fails and outputs a set of arbitrary points. As we never reuse a sample, the
privacy guarantee follows directly from the Gaussian Mechanism [20]. Specifically, the sensitivity of
querying O1 and O2 are bounded by G/b1 and M‖x− y‖/b2 respectively, and querying O1 and O2

are (ϕ/2)-zCDP by Theorem A.5.

The Norm-subGaussian parameters of the oracles follow from Claim 4.4. By lemma 3.6, we have
α1

log3(nBMd/ρω)

=O(σ1

√
d+

G
√

log d√
b1

+ σ2

√
dκ+

M
√
κ log d√
b2

)·

=O(
GBη

√
d

n
√
ϕκ

+
BM2

n
√
ϕα2

1

√
dκ+

G
√
Bη log d√
nκ

+M
√
κ

√
BM log d√
nα1

).

Setting κ = max(G
4/3B1/3 log1/3 d

M5/3 (n)−1/3, (GB
2/3

M5/3)6/7(
√
d

n
√
ϕ)4/7), we get

α1 = O
((

(BGM log d)1/3 1

n1/3
+ (G1/7B3/7M3/7)(

√
d

n
√
ϕ

)3/7
)

log3(nBMd/ρω)
)
.

19

Then we use the other half fresh samplesD2 to find the point in the set by Algorithm 2. By Lemma 4.1
and Lemma 4.5, we know with probability at least 1− ω, for some large enough constant C > 0, the
output point x of Algorithm 2 satisfies that

‖∇FP(x)‖2 ≤α1 +G(
32 log(2T/ω)

n
√
ϕ

+
C log(dn/ω)√

n
),

smin(∇2FP(x)) ≥−√ρα1 −M(
32 log(2T/ω)

n
√
ϕ

+
C log(dn/ω)√

n
)

Hence we know x is an α2-SOSP for α2 stated in the statement. The privacy guarantee follows from
Lemmas A.3, A.4, and 4.1.

D Omitted proof of Section 5

D.1 Proof of Lemma 5.5

Lemma 5.5 (Generalization error bound). Let πD ∝ exp(−β(FD(x) + µ
2 ‖x‖

2
2)). Then we have

ED,x∼πD [FP(x)− FD(x)] ≤ O(G
2 exp(βGD)

nµ).

Proof. We know how to bound the KL divergence by LSI:

KL(πD, πD′) :=

∫
log

dπD
dπD′

dπD

≤CLSI

2
E
πD

∥∥∥∥∇ log
dπD
dπD′

∥∥∥∥2

2

≤2CLSIG
2β2/n2.

LSI can lead to Talagrand transportation inequality [Theorem 1 in [40]], i.e.,

W2(πD, πD′) .
√
CLSI ·KL(πD, πD′) = CLSIGβ/n.

The generalization error is bounded by O(CLSIG
2β/n). Using Holley-Stroock perturbation, we

know CLSI(πD) ≤ exp(βGD)
βµ and hence the W2 distance between πD and πD′ can be bounded by

O(G exp(βGD)
nµ). The statement follows the Lipschitzness constant and Lemma 5.4.

D.2 Proof of Theorem 5.6

Theorem 5.6 (Risk bound). We are given ε, δ ∈ (0, 1/2). Sampling from exp(−β(FD(x)+ µ
2 ‖x‖

2
2))

with β = O(ε log(nd)

GD
√

log(1/δ))
), µ = d

D2β is (ε, δ)-DP. The empirical risk and population risk are

bounded by O(GD
d·log log(n)

√
log(1/δ)

ε log(nd)).

Proof. Denote π(x) ∝ exp(−β(FD(x) + µ
2 ‖x‖

2
2)). By Lemma 5.2, we know CLSI(π) ≤ 1

βµ ·
exp(βGD). Plugging in the parameters and applying Theorem 5.1, we get

2Gβ

n
·

√
exp(βGD)

βµ

√
3 log(1/δ) = O(1)

GDβ

n
√
d

√
exp(βGD) log(1/δ) ≤ 1

and hence prove the privacy guarantee.

As for the empirical risk bound, by Lemma 5.3, we know

E
x∼π

(FD(x) +
µ

2
‖x‖22)− min

x∗∈K
(FD(x∗) +

µ

2
‖x∗‖22) .

d log(βGD/d)

β
,

and we know

E
x∼π

FD(x)− min
x∗∈K

FD(x∗) .
d log(βGD/d)

β
+ µD2.

20

Replacing the value of β achieves the empirical risk bound.

As for the population risk, we have

E
x∼π

FP(x)− min
y∗∈K

FP(y∗)

= E
x∼π

[FP(x)− FD(x)] + E[FD(x)− min
x∗∈K

FD(x∗)] + E[min
x∗∈D

FD(x∗)− min
y∗∈K

FP(y∗)]

≤ E
x∼π

[FP(x)− FD(x)] + E[FD(x)− min
x∗∈K

FD(x∗)].

We can bound Ex∼π[FP(x) − FD(x)] ≤ O(G
2 exp(βGD)

nµ) ≤ O(GDε log(n)

n1−cd
√

log(1/δ)
) by Lemma 5.5

for an arbitrarily small constant c > 0. Hence the empirical risk is dominated term compared to
Ex∼π[FP(x)− FD(x)], and we complete the proof.

D.3 Implementation

We rewrite them below: Let F̂ (x) := F (x) + r(x) where r(x) is some regularizer, and F = Ei∈I fi
is the expectation of a family of G-Lipschitz functions.

Algorithm 3 AlternateSample, [35]

1: Input: Function F̂ , initial point x0 ∼ π0, step size η
2: for t ∈ [T] do
3: yt ← xt−1 +

√
ηζ where ζ ∼ N (0, Id)

4: Sample xt ← exp(−F̂ (x)− 1
2η‖x− yt‖

2
2)

5: end for
6: Output: xT

Theorem D.1 (Guarantee of Algorithm 3, [15]). Let K ⊂ Rd be a convex set of diameter D, and
F̂ : K → R, and π ∝ exp(−F̂) satisfies LSI with constant CLSI. Then set η ≥ 0, we have

Rq(πt, π) ≤ Rq(π0, π)

(1 + η/CLSI)2t/q
,

where Rq(π′, π) is the q-th order of Renyi divergence between π′ and π.

To get a sample from exp(−F̂ (x)− 1
2η‖x− yt‖

2
2), we use the rejection sampler from [26], whose

guarantee is stated below:

Lemma D.2 (Rejection Sampler, [26]). If the step size η . G−2 log−1(1/δinner) and the inner
accuracy δinner ∈ (0, 1/2), there is an algorithm that can return a random point x that has δinner
total variation distance to the distribution proportional to exp(−F̂ (x)− 1

2η‖x− y‖
2
2). Moreover, the

algorithm accesses O(1) different fi function values and O(1) samples from the density proportional
to exp(−r(x)− 1

2η‖x− y‖
2
2).

Combining Theorem 5.6, Theorem D.1 and Lemma D.2, we can get the following implementation of
the exponential mechanism for non-smooth functions.
Theorem 5.7 (Implementation, risk bound). For ε, δ ∈ (0, 1/2), there is an (ε, 2δ)-DP efficient

sampler that can achieve the empirical and population risks O(GD
d·log log(n)

√
log(1/δ)

ε log(nd)). Moreover,

in expectation, the sampler takes Õ
(
nε3 log3(d)

√
log(1/δ)/(GD)

)
function values query and some

Gaussian random variables restricted to the convex set K in total.

Proof. By Theorem 5.6, it suffices to get a good sample from π with density proportional to
exp(−β(FD(x) + µ

2 ‖x‖
2
2)) where β = O(ε log(nd)

GD
√

log(1/δ))
), µ = d

D2β . Set q = 1, which gives

that Rq(·, ·) is the KL-divergence. Suppose we let x0 is drawn from density proportional to
exp(−β2µ‖x‖

2
2), then the KL divergence between π0 and π is bounded by exp(qβGD).

21

Now let π(i)
T be the distribution we get over xT from Algorithm 3 if we use an exact sampler for

i iterations, then the sampler of Lemma D.2 for the remaining T − i iterations. The output of
Algorithm 3 that we actually get is π(0)

T . Note that CLSI ≤ D2n, and η . β−2G−2 log−1(2T/δ).
Setting

T = O

(
CLSI

η
log(exp(qβGD)/δ2)

)
= Õ

(
nε3 log3(d)

√
log(1/δ)

GD

)
we get δinner = δ/2T in Lemma D.2 and that R1(π

(T)
T , π) ≤ δ2/8. This implies the total variation

distance between π(T)
T and π is at most δ/2 by Pinsker’s inequality. Furthermore, by the post-

processing inequality, the total variation distance between π(i)
T and π(i+1)

T is at most δ/2T for all i.
Then by triangle inequality the total variation distance between π(0)

T and π is at most δ.

D.4 Proof of Theorem 5.8

Theorem 5.8. There exists an ε-DP differentially private algorithm that achieves a population risk
of O

(
GD

(
d log(εn/d)/(εn) +

√
d log(εn/d)/(

√
n)
))

.

Proof. We pick a maximal packing P of O((D/r)d) points, such that every point in K is distance at
most r from some point in P . By G-Lipschitzness, the risk of any point in P for the DP-ERM/SCO
problems over K are at most Gr plus the risk of the same point for DP-ERM/SCO over P . The
exponential mechanism over P gives a DP-ERM risk bound of O

(
GD
εn log |P |

)
. Next, note that

the empirical loss of each point in P is the average of n random variables in [0, GD] wlog. So,
the expected maximum difference between the empirical and population loss of any point in P is

O

(
GD
√

log |P |√
n

)
. Putting it all together we get a DP-SCO expected risk bound of:

O

(
Gr +GD

(
d log(D/r)

εn
+

√
d log(D/r)√

n

))
.

This is approximately minimized by setting r = Dd/εn. This gives a bound of:

O

(
GD

(
d log(εn/d)

εn
+

√
d log(εn/d)√

n

))
.

E Conclusion

We present a novel framework that can improve upon the state-of-the-art rates for locating second-
order stationary points for both empirical and population risks. We also examine the utilization of the
exponential mechanism to attain favorable excess risk bounds for both a polynomial time sampling
approach and an exponential time sampling approach. Despite the progress made, several interesting
questions remain. There is still a gap between the upper and lower bounds for finding stationary
points. As noted in [2], it is quite challenging to beat the current (

√
d
n)2/3 empirical upper bound, and

overcoming this challenge may require the development of new techniques. A potential avenue for
improving the population rate for SOSP could be combining our drift-controlled framework with the
tree-based private SpiderBoost algorithm in [2]. Additionally, it is worth exploring if it is possible to
achieve better excess risk bounds within polynomial time, and what the optimal risk bound could be.

F Extended related work

In the convex setting, it is feasible to achieve efficient algorithms with good risk guarantees. In turn,
differentially private empirical risk minimization (DP-ERM) [13, 14, 17, 28, 33, 9, 43, 41, 42] and
differentially private stochastic optimization [4, 7, 6, 22, 34, 3, 32, 26, 23, 12, 27] have been two of

22

the most extensively studied problems in the DP literature. Most common approaches are variants of
DP-SGD [14] or the exponential mechanism [38].

As for the non-convex optimization, due to the intrinsic challenges in minimizing general non-convex
functions, most of the previous works [49, 50, 47, 46, 56, 42, 44, 54, 2, 51, 24] adopted the gradient
norm as the accuracy metric rather than risk. Instead of minimizing the gradient norm discussed
before, [8] tried to minimize the stationarity gap of the population function privately, which is defined
as GapFP (x) := maxy∈K〈∇FP(x), x− y〉, which requires K to be a bounded domain. There are
also some different definitions of the second order stationary point. We refer the readers to [37] for
more details.

The risk bound achieved by algorithms with polynomial running time is weak and requires n� d
to be meaningful. Many previous works consider minimizing risks of non-convex functions under
stronger assumptions, such as, Polyak-Lojasiewicz condition [49, 55], Generalized linear model
(GLM) [46] and weakly convex functions [8].

In the (non-private) classic stochastic optimization, there is a long line of influential works on finding
the first and second-order stationary points for non-convex functions, [1, 29, 21, 53, 18].

First order stationary points. Progress towards privately finding a first-order stationary point is
measured in (i) the norm of the empirical gradient at the solution x, i.e., ‖∇FD(x)‖, and (ii) the
norm of the population gradient, i.e., ‖∇FP(x)‖. We summarize compare these first-order guarantees
achieved by Algorithm 1 with previous algorithms in Table 2:

References Empirical Population
[49] d1/4√

n
N/A

[47] d1/4√
n

√
d√
n

[50] (
√
d
n)2/3 N/A

[56] d1/4√
n

d1/4√
n

[44] 1√
n

+
(√

d
n

)2/3

N/A

[2]
(√

d
n

)2/3
1

n1/3 + (
√
d
n)1/2

Table 2: Previous work in finding first-order stationary points. We omit logarithmic terms and
dependencies on other parameters such as Lipschitz constant. “N/A” means we do not find an explicit
result in the work.

Second order stationary points. We say a point x is a Second-Order Stationary Point (SOSP),
or a local minimum of a twice differentiable function g if ‖∇g(x)‖2 = 0 and smin(∇2g(x)) ≥ 0.
Exact second-order stationary points can be extremely challenging to find [25]. Instead, it is common
to measure the progress in terms of how well the solution approximates an SOSP.

Definition F.1 (approximate-SOSP, [1]). We say x ∈ Rd is an α-second order stationary point
(α-SOSP) for ρ-Hessian Lipschitz function g, if

‖∇g(x)‖2 ≤ α
∧

smin(∇2g(x)) ≥ −√ρα.

References Empirical Population
[46] d1/4√

n
N/A

[48] (dn)4/7 N/A
[24] (

√
d
n)1/2 N/A

Ours (
√
d
n)2/3 1

n1/3 + (
√
d
n)3/7

Table 3: Summary of previous results in finding α-SOSP, where α is demonstrated in the Table. Omit
the logarithmic terms and the dependencies on other parameters like Lipschitz constant. “N/A” means
we do not find an explicit result in the work.

23

Existing works in finding approximate SOSP privately give guarantees for the empirical function FD.
We improve upon the state-of-the-art result and give the first guarantee for the population function
FP , which is summarized in Table 3.

24

	Introduction
	Main Results
	Our Techniques
	Organization

	Preliminaries
	Convergence to Stationary Points: Framework
	Private SOSP
	Convergence to the SOSP of the Empirical Risk
	Convergence to the SOSP of the Population Risk

	Bounding the Private Excess Risk
	Polynomial Time Approach
	Exponential Time Approach

	Discussion
	Acknowledgement
	Other Preliminary
	Omitted Proof of Section 3
	Proof of Lemma 3.3
	Discussion of Lemma 3.4
	Proof of Lemma 3.5
	Proof of Lemma 3.6
	Proof of Lemma 3.7

	Appendix for Section 4
	Proof of Theorem 4.2
	Proof of Claim 4.4
	Proof of Lemma 4.5
	Proof of Theorem 4.6

	Omitted proof of Section 5
	Proof of Lemma 5.5
	Proof of Theorem 5.6
	Implementation
	Proof of Theorem 5.8

	Conclusion
	Extended related work

