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ABSTRACT

The objective function landscape of Quantum Neural Networks (QNNs) is both
numerically and theoretically demonstrated to be highly non-convex, exhibiting
numerous local optima. This raises an important question regarding the efficiency
of training QNNs: can the optimization error systematically converge to a target
threshold as the number of optimization iterations grows polynomially with the
number of qubits n? In this work, we explore this question by proposing a the-
oretical framework from a Bayesian perspective. We focus on the trainability of
Parameter-Shared QNNs (PS-QNNs), a widely used model for solving combina-
torial optimization problems. Our first result shows that noise-free PS-QNNs with
a depth of O (\/ log n) can be trained efficiently. Furthermore, we demonstrate
that if each quantum gate is influenced by a g-strength local Pauli channel, the
noisy PS-QNN with a depth of O (logn/log(1/q)) can also be trained efficiently.
These results provide valuable insights into the performance of QNNs, particularly
in the context of the noisy intermediate-scale quantum era.

1 INTRODUCTION

Quantum Neural Networks (QNNs) (Cerezo et al., |2021a; |Bharti et al., |2022; [Huang et al., |2023)),
a hybrid quantum-classical machine learning model, have demonstrated success in various tasks on
Noisy Intermediate-Scale Quantum (NISQ) devices, including classification (Farhi & Neven) 2018;
Abohashima et al.| 2020; Deng|, 2021; L1 & Deng, [2022} Song et al., [2024a} [Wei et al.| 2022} |L1
et al.| [2022; [Song et al., |2024b), regression (Kyriienko et al.| [2021; |Chen et al.l 2022 Wu et al.,
2023)), generative learning (Zoufal et al.l 2019; |Situ et al., 2020; Nakaji & Yamamotol 2021; Wu
et al., 2024), and reinforcement learning (Chen et al., |2020} [Lockwood & Si, |2020). A notable
example of QNNs is the Parameter-Shared QNN (PS-QNN), which is also known as the quantum
alternating operator ansatz (Farhi et al., [2014). This model is designed to solve combinatorial op-
timization problems that involve optimizing a quadratic function of binary variables (Lucas, [2014).
As a hybrid quantum-classical model, the quantum component combines the quantum network and
a problem-oriented Hamiltonian encoding the quadratic function to generate the PS-QNN objective
function. Meanwhile, the classical component searches for the optimal solution of the PS-QNN
objective function, employing either gradient-based classical optimization methods (Guerreschi &
Smelyanskiy, 2017; Sweke et al., [2020; |Stokes et al., 2020; |Harrow & Napp, 2021; Koczor & Ben-
jamin, 2022) or gradient-free classical optimization methods (Zhu et al.| 2019; Self et al., 2021}
Tibaldi et al., [2023)) to iteratively update the parameters within the PS-QNN.

Understanding the trainability of the PS-QNN is crucial for assessing its potential quantum advan-
tages in the NISQ era. The barren plateau phenomenon (McClean et al., 2018)) during the training
process is a significant topic, which directly relates to the sample complexity. In this context, the
gradient function of the PS-QNN may vanish exponentially as the system size increases, indicat-
ing that obtaining an effective gradient function could demand an unmanageable level of sample
complexity. Specifically, Ref. [Cerezo et al.| (2021b) proved that the gradient function induced by
the O(log n)-depth PS-QNN and a local Hamiltonian is greater than 1/poly(n) when either the left
or right slice of each block in the PS-QNN forms a local 1-design (Harrow & Low| 2009} |Cerezo
et al., 2021b). Meanwhile, similar findings also exist in the noisy PS-QNN scenario (Wang et al.,
2021)). In both cases, although the O(log n)-depth PS-QNN does not suffer from the barren plateau
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Table 1: Comparisons between our works and related previous studies. Here, PL represents Polyak-
Lojasiewicz, SGD represents Stochastic Gradient Descent, SMD represents Stochastic Mirror De-
scent, and BO represents Bayesian Optimization.

Refs on Convergence Rate Convexity Environment Optimization

Ref. Harrow & Napp|(2021) Strong Convexity noise-free SGD and SMD
Ref.|Sweke et al.[(2020) PL inequality noise-free SGD

This work No Convexity Assumptions  noise-free and noisy BO

Refs on Sample Complexity Assumptions Environment Trainability

Ref. McClean et al.|(2018) Global 2-design noise-free Exclude Q(n)-depth
Ref.|Cerezo et al.|(2021b) Assumption noise-free O(logn) is unclear
Ref.|Wang et al.|(2021) Assumption|.3] noisy Exclude Q(log n)-depth

This work Assumptions noise-free and noisy O(logn) is trainable

phenomenon, the manageable sample complexity does not necessarily imply the effective training of
the corresponding PS-QNN. Therefore, further theoretical analysis of the convergence performance
of the classical optimization method employed in the PS-QNN is necessary.

Previous studies assumed either strong convexity (Harrow & Napp, 2021) or the satisfaction of
the Polyak-Lojasiewicz inequality (Sweke et al., 2020). In these contexts, the convergence perfor-
mance of stochastic gradient descent, a gradient-based optimization method, has been theoretically
analyzed. However, in realistic scenarios, the PS-QNN objective function landscape is generally
non-convex with numerous local optima (Shaydulin et al.,|2019; [Huembeli & Dauphin, 2021).

In this work, considering the PS-QNN objective function and the sample drawn from the Gaus-
sian process with the Matern covariance function share similar high-order differentiability proper-
ties (Williams & Rasmussen, [2006; Kanagawa et al., 2018; [Bouland et al., [2019; Wu et al., 2025;
Fontana et al |2025), we naturally regard the PS-QNN objective function as a sample drawn from
this Gaussian process, referred to as the Bayesian perspective. This perspective offers valuable in-
sights into the PS-QNN objective function, which may be more realistic than the assumptions used
in previous studies. Subsequently, under this perspective, we theoretically analyze the convergence
performance of Bayesian Optimization (BO) (Snoek et al., |2012; Shahriari et al.| 2015} [Frazier,
2018), a gradient-free global optimization method, in both the noise-free PS-QNN and the noisy
PS-QNN exposed to local Pauli channels (Wang et al., 2021} |Quek et al, 2024). Specifically, we
start by analyzing the continuity property of the PS-QNN objective function. By leveraging this
property, we establish a theoretical limit on the network depth, guaranteeing the convergence of the
optimization error to a target threshold as the number of optimization iterations scales polynomially
with the system size. Finally, we provide the efficient trainable network depth that satisfies the above
constraints and avoids the barren plateau phenomenon, such that the PS-QNN has both acceptable
sample complexity and optimization iteration complexity.

Our theoretical analysis shows that when either the left or right slice of each block in the n-qubit
noise-free PS-QNN forms a local 1-design, the network with a depth of O(y/logn) can be trained
efficiently. Furthermore, when each quantum gate is affected by a local Pauli channel with the
strength ¢ ranging from 1/poly(n) to 0.1, we demonstrate that the noisy PS-QNN with a depth of
O (logn/log(1/q)) can also be trained efficiently for the Maximum Cut problem on an unweighted
regular graph. These findings provide important theoretical insights for exploring potential quantum
advantages, particularly within the NISQ era. For easy reference, connections between our work
and relevant prior studies are summarized in Table[T]

2 PS-QNNS FOR SOLVING COMBINATORIAL OPTIMIZATION PROBLEMS

In theoretical computational science, combinatorial optimization problems encompass a wide range
of typical problems, such as Maximum Cut, Maximum Independent Set, and Graph Coloring (Gross



Under review as a conference paper at ICLR 2026

et al., |2018). These problems define their constraints as clauses, with a candidate solution rep-
resented by a specific assignment of the corresponding binary variables. The objective of these
problems is to find an optimal assignment that maximizes the number of satisfied clauses. In other
words, solving a combinatorial optimization problem can be reformulated as optimizing a quadratic
function involving binary variables. However, finding the exact solution is widely recognized as an
NP-hard problem (Garey & Johnsonl [2002). Consequently, an alternative approach is to seek an
approximate solution. Inspired by the quantum annealing process (Kadowaki & Nishimoril |1998)),
the PS-QNN was proposed and applied to solve combinatorial optimization problems. Although
the prospects of achieving quantum advantages through the PS-QNN remain unclear, it provides a
simple paradigm for optimization that can be implemented on near-term quantum devices.

Given a specific combinatorial optimization problem with n binary variables and C clauses, the
PS-QNN starts by constructing a problem-oriented Hamiltonian H7, a mixing Hamiltonian Ho,
and 2p variational parameters @ = [01.1,01.9, - ,0,1,0,2]". Specifically, the problem-oriented
Hamiltonian H; is a linear combination of C Pauli strings

C
Hy =Y P, (1)
c=1

where 7. € Rand P € {I,07}®" with o~ is the Pauli Z operator. The typical form of the mixing
Hamiltonian Hs is the transverse field Hamiltonian

n
Hy=> o}, )
1=1

where o is the Pauli X operator acting on the i-th qubit. Subsequently, by iteratively applying
H, and H> to the initial state p for p rounds, the noise-free PS-QNN objective function f() in the
absence of quantum gate noise is given by the following expectation value

f(8) =Tr [HiU(0)pU'(8)] , 3)

where p = (|4)(+|)®™ denotes the uniform superposition over computational basis states and the
noise-free PS-QNN

P 2
u®) =[T1115.0;0 )
j=11=1

with U; ;(8;,) = exp(—ib;,H;) for (j,1) € [p] x [2]. The statistical estimation of f(@) can be
achieved by repeating the aforementioned process with identical parameters and computational ba-
sis measurements. After defining f(0), the next step involves iteratively updating 6 within U ()
through classical optimization methods to maximize f(6) and obtain the global maximum point

0" = arg max (o), &)
where the domain D = [0, 27]2P.

The classical optimization method plays a crucial role in this process. Finding 8* may be intractable
due to the non-convex landscape of f(0) and the presence of numerous local optima. Thus, it is
pivotal to determine the appropriate classical optimization method that can efficiently find a better
approximation of 8*. In the following section, we illustrate the utilization of BO to accomplish this
optimization task and provide a theoretical analysis of the trainability of PS-QNNs.

3  OPTIMIZING PS-QNNS THROUGH BO

BO is designed for gradient-free global optimization. It is particularly suitable in situations where
estimating the objective function is computationally expensive and the convexity property of the
objective function is uncertain (Snoek et al., |2012; Shahriari et al., [2015} |Frazier, 2018). BO com-
prises two essential components: (i) a statistical model, usually the Gaussian process (Williams &
Rasmussen, 2006)), that generates a posterior distribution conditioned on a prior distribution and a
collection of observations of the objective function. (ii) an acquisition function that utilizes the cur-
rent posterior distribution for the objective function to determine the location of the next point. In
the context of PS-QNNs, we present a comprehensive introduction to BO, focusing on the Gaussian
process and the acquisition function.
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3.1 GAUSSIAN PROCESS

A Gaussian process is a collection of random variables, where any subset forms a multivariate Gaus-
sian distribution. In the optimization task described by Eq. [5] the random variables correspond to
the values of the noise-free PS-QNN objective function f(8) at points @ € D. A Gaussian process,
serving as a distribution for f(0), is fully determined by its mean function 1(@) and covariance
function k(0, 0). Specifically, 1(0) specifies the mean value of f(8) at any point 0, while k(6,0’)
determines the covariance between f(6) and f(6’) at any two points 0 and 6’. The Gaussian process
is denoted as

where ;(0) = E[f(0)] and k(0,0") = E[(f(0) — 1(0))(f(0") — n(8"))]. It is commonly assumed
that the prior mean function (@) = 0. Additionally, the prior covariance function k(6,80’) is
commonly chosen from some notable covariance functions, such as the Matern covariance function
kmatern—v (6, 0"), whose specific form is provided in Appendix[A.1}

Suppose we have the following accumulated observations after ¢ — 1 steps of BO

Si—1={(01,y(601)), - ,(0:-1,9(0:-1))}, (7

where y(0;) denotes the estimation of f(6;) for i € [t — 1]. In each step i, the measurements
are taken to ensure that y(6;) = f(0;) + £P°¢, where £8°¢ ~ N(0,1/4M) is independent
and identically distributed Gaussian noise with M representing the fixed number of measure-
ments |'| Conditioned on S;_1, the distribution for f(@) is a Gaussian process with the poste-
rior mean function p;—1(0) = E[f(6)|S;—1] and the posterior covariance function k;_1(0,60") =
E[(f(0) — 1(0))(f(0") — 11(0))|St—1]- These are specified as follows

pe-1(0) =k 1 (0) (Ky—y + I,y /AM) ty_y,

®)

kt—1(0,0") =knatern—v(0,0") — (ke—1(0)T (K1 + I,—1/4M) ki1 (6')),
where k;_1(0) = [knatern—v (0, 01) - - - kntatern— (0, 0:_1)] T, the positive definite covariance ma-
trix K 1 = [kMatern—v(0i,0;)]0,,0;c4,_, With the accumulated points A; 1 = {01,---,60; 1}
from the previous ¢ — 1 steps, and y; 1 = [y(01)---y(0;_1)]T. The posterior variance of f(8) is
denoted as 02 (0) = k;_1(6, ).

3.2 ACQUISITION FUNCTION

In the ¢-th step of BO, the acquisition function utilizes S;_; to guide the search towards the next point
6;, aiming to converge to the global maximum point 8* of f(0). This procedure is accomplished by
maximizing the acquisition function over the domain D. Specifically, the design of the acquisition
function should consider both exploration (sampling in regions of high uncertainty) and exploitation
(sampling in regions likely to yield high function values). The upper confidence bound UCB,(8),
which is a commonly employed acquisition function, is defined as

UCB(0) = p1t-1(0) + /neot-1(0), 9)
and the next point 8; is selected as

6, = arg glea% UCB,(0), (10)

where 1;—1(0) and 0, _1(0) denote the posterior mean function and the posterior standard deviation
respectively, as defined in Eq.[8] and 7, > 0 represents a time-dependent scaling parameter. Subse-
quently, the accumulated observations are updated as S; = {(01,y(01)),--- ,(0:,4(60;))}, and the
posterior distribution for f(0) is updated based on S;.

"Let M be the fixed number of measurements and y; (@) be the one-shot measurement result for j € [M].
According to Central Limit Theorem (Fischer, [2011), for a sufficiently large M, we have ﬁ j” i 195(0) =
w+ FzY, where Y ~ N (0,1). Here, i and o represent the mean value and standard deviation of y;(0)
for j € [M]. Consequently, we find £*¢ = L Z;Lil y;i(0) — p = \/LMY. Thus, the result £7°5¢ ~
N(0,02/M) holds. Considering 0 < 1/4, it is reasonable to assume that £"°*° ~ N (0, 1/4M).
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Figure 1: Numerical performance of PS-QNNs for solving Maximum Cut problems through BO.
(a) Structure of PS-QNNs on a Maximum Cut graph instance. For a 2-regular graph with 4 vertices,
the quantum subroutine prepares parameterized quantum states using a 1-layer noise-free PS-QNN
U(0). It estimates the corresponding two-dimensional noise-free PS-QNN objective function f(6)
with @ = (011,61 ,2) through multi-round measurements. BO iteratively updates 8 within U (0)
until reaching the predetermined number of steps, ultimately providing the approximation of the
maximum point. (b) Detailed optimization steps of BO on the given Maximum Cut graph instance.
In the 10th step, the acquisition function UCB1(8) are calculated based on the accumulated points
Ag from the previous 9 steps. The next point 61 is selected by maximizing UCB1((6), and the
current approximation of the maximum point 0?0 is updated to the best point selected in the previous
10 steps. Finally, after 20 steps, the final approximation of the maximum point 0;0 is returned.
(c) The estimation of the function value at the approximation of the maximum point y(6,") as a
function of the step ¢.

The aforementioned process is repeated for a predetermined number of steps 7'. The best point se-
lected in the previous T’ steps represents the approximation of the maximum point 0;5 . Specifically,

05 = 0 11
T arg;gé};y( )s (11

where Ay = {61, -, 07} represents the accumulated points from the previous T steps. Figure
illustrates the numerical performance of PS-QNNs for solving the Maximum Cut problem on a spe-
cific graph instance using BO. The numerical results regarding the performance of BO on diverse
graph structures and the comparison between BO and Gradient Descent(GD) can be found in Ap-
pendices [FI] and respectively. In conclusion, the Gaussian process is widely preferred as the
statistical model in BO due to its flexibility and capacity to model complex functions. It offers a
powerful framework for modeling the objective function by capturing both the mean and uncer-
tainty associated with observations of the objective function. This enables BO to make informed
decisions regarding the location of the next point. Subsequently, the upper confidence bound bal-
ances the trade-off between exploration and exploitation and selects the next point based on the
current knowledge provided by the Gaussian process. In summary, the combination of the Gaussian
process as the statistical model and the upper confidence bound as the acquisition function consti-
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tutes the core of the BO framework, enabling efficient global optimization in the absence of gradient
information.

4  MAIN RESULTS I: ANALYZING THE TRAINABILITY OF THE NOISE-FREE
PS-QNN

Our main focus is to theoretically investigate the trainability of the n-qubit noise-free PS-QNN U ()
using BO. The optimization error r after 1" steps of executing BO is defined as the difference in
function values between the global maximum point 8* and the approximation of the maximum point
0; in the previous T steps. It is given by

rp = f(0°) — f(6F), (12)

where 0 = arg maxge 4, f(6) with the accumulated points Ar = {61, - - , OT

Definition 4.1 (Effective network depth and parameter dimension). Given a p-depth PS-QNN U (6)
(with p repeated variational blocks), we define the maximum p enabling rr < ¢ after T = poly(n)
steps as the effective network depth of U(0). In the context of PS-QNNs, the effective parameter
dimension and the network depth are equivalent.

Hence, we can directly explore the effective parameter dimension p of U (@) in subsequent analysis.
In this work, we adopt the following widely accepted assumption.

Assumption 4.2 (Harrow & Low| (2009); |Cerezo et al|(2021b))). Given an n-qubit noise-free PS-
QNN

v©) =TT T1Ui0. (13)
=11l=1

each block U;;(6,,) = Uf’l)UEj’l) for (j,1) € [p] x [2], where U is independent to U(j’l), and
at least one of them forms a local 1-design.

.

The scenario mentioned above for investigating the trainability of U () using BO is described in
detail in Figure Assuming that Assumption[d.2]holds, we first explore the Lipschitz continuity
of the corresponding noise-free PS-QNN objective function f(0). Additionally, we establish a the-
oretical limit on p that ensures achieving rr < e within T' = poly(n) steps. The following sections
provide a comprehensive introduction.

4.1 CONTINUITY PROPERTY OF THE NOISE-FREE PS-QNN OBJECTIVE FUNCTION

Now, we will show that Assumption results in a quantum analog of the Lipschitz continuity
property about the noise-free PS-QNN objective function f(8).

Lemma 4.3. Assuming that Assumption[4.2] holds, let f(8) : D = [0, 27]>" + R be the noise-free
PS-QONN objective function (Eq.[3). Given a failure probability § € (0,1), for any 0,0' € D, the

relationship
1£(68) — f(6")] < v/Vo[0af(6)]/5]10 — 61 (14)

is valid with a success probability of at least 1 — 6, where Vg[0,, f(0)] is the variance of the partial
derivative O, f(0) with index a = arg maxcap] (Supgep |0;5.f(0)]).

Proof details of Lemmafd.3|can be found in Appendix [B] In addition to Assumption we provide
the following remark based on the differentiable property of f(8).

Remark 4.4. Given the differentiable property of the noise-free PS-QNN objective function
£(@) (Bouland et al., 2019;|Wu et al., 2025)), we can consider it as a sample drawn from a Gaussian
process with the Matern prior covariance function knatern—r (0, 6”) (Appendix , as this Gaus-
sian process allows us to model high-order differentiable functions (Williams & Rasmussen, |2006;
Kanagawa et al.| [2018]).

*We assume by default that the estimations {y(0)}ec 4, from the previous T steps contain sufficient in-
formation about the noise-free PS-QNN objective function values {f(6)}oc.4, with the accumulated points
Ap = {61,...,07}. Therefore, it is reasonable to define the approximation of the maximum point as
07 = argmaxec.a, f(0), even though it was originally defined as 0} = arg maxge 4, y(6).
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Figure 2: Scenarios to investigate the trainability of PS-QNNs. (a) Optimization of the n-qubit noise-
free PS-QNN using BO. In the ¢-th step of the quantum subroutine, the noise-free PS-QNN U (6;)
prepares parameterized quantum states, where either the left or right slice of each block in U (6;)
forms a local 1-design. Next, the noise-free PS-QNN objective function f(8,) is estimated through
the fixed number of measurements M, yielding the estimation y(6;). In the classical subroutine,
BO utilizes the acquisition function UCB;1(0) to select the next point 6,41 based on the current
knowledge provided by the Gaussian process. Afterwards, the variational parameters are updated.
This process is repeated for a predetermined number of steps 7', and the best point selected in the
previous T steps represents the approximation of the maximum point 0}' . (b) Optimization of the n-
qubit noisy PS-QNN using BO. In the ¢-th step of the quantum subroutine, the noisy PS-QNN ¢/, (6;)
prepares parameterized quantum states, where a noise channel N' = )", N exists between any
two blocks in the network, and A; represents a local Pauli channel acting on the i-th qubit. Next, the
noisy PS-QNN objective function f,(6;) is estimated through the fixed number of measurements
M, yielding the estimation ,(6;). In the classical subroutine, BO iteratively updates the variational
parameters using the same optimization process for 7' steps and eventually returns the approximation
of the maximum point 0}' . The presence of noise may result in a flatter landscape with fewer local

optima for f,(6) compared to f(8).

4.2 EFFECTIVE PARAMETER DIMENSION OF THE NOISE-FREE PS-QNN

Assuming that Assumption [4.2] holds and using the result of Lemma[4.3] we establish a theoretical
limit on the effective parameter dimension p (Definition[4.T)) through the perspective of the Bayesian
approach.

Theorem 4.5 (Informal). Given a constant threshold ¢ and an n-qubit noise-free PS-QNN
U(0) (Eq. that satisfies Assumption run BO for T = poly(n'/ 62) steps, where a prede-
fined scaling parameter 1 for the acquisition function UCB(0) (Eq.|9) is used in each step t. If the

parameter dimension
p < @ (\/logn) , (15)

then the optimization error rr (Eq.[I2)) satisfies r1 < € with high success probability.
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The formal statement and corresponding proof details of Theorem [.5]are provided in Appendix [C|
The numerical validation of this theoretical result is provided in Appendix[F.3] In summary, we con-
sider the n-qubit noise-free PS-QNN objective function (@) as a sample drawn from a Gaussian
process with the Matern covariance function Kypatern— (6, 0"), leveraging its high-order differen-
tiable property. We then investigate the trainability of the corresponding noise-free PS-QNN U ()
through this perspective. Based on Assumption 4.2 that either the left or right slice of each block in
U (0) forms a local 1-design, we demonstrate that U () with a parameter dimension p of O(/logn)
can be trained efficiently using BO.

5 MAIN RESULTS II: ANALYZING THE TRAINABILITY OF THE NOISY
PS-QNN

After exploring the trainability of the noise-free PS-QNN U(8) through BO, we will proceed to
investigate its theoretical performance in a practical scenario. This scenario involves the Maximum
Cut problem on an unweighted regular graph, where U (0) is affected by local Pauli channels. For
the sake of clarity, we begin by presenting the definitions of the Maximum Cut problem and the
local Pauli channel.

Definition 5.1 (Maximum Cut problem). Considering an unweighted d-regular graph G = (V, E)
with the vertices set V' = {vq,--- ,v,} and the edges set E = {¢; ;}, the Maximum Cut problem
aims at dividing all vertices into two disjoint sets such that maximizing the number of edges that
connect the two sets. In the context of PS-QNNs, the problem-oriented Hamiltonian H %V[axc‘“ is
defined as )

HMaxCut _ 3 Z (I°" — o7 0%). (16)

e; ;€E
Definition 5.2 (Local Pauli channel). Let N; denote a local Pauli channel acting on each qubit 7.
The action of V; on a local Pauli operator o € {o%, 0¥, 0%} can be expressed as
Ni(o) = go0, a7

where ¢y=, ¢ov, o= € (—1,1). The noise strength in this model is represented by a single parameter
q= \/maXrTE{a'”",Uy,az} |q0|

Due to imperfections in quantum devices, we assume that each quantum gate is affected by a ¢-
strength local Pauli channel, and the effects of these noises are postponed until the end of each block
in U(6). This assumption is reasonable, as it has been employed in Ref. Wang et al|(2021) and
demonstrated to hold true in Clifford circuits (Quek et al.l 2024). Below is a detailed and precise
description of this assumption.

Assumption 5.3. Given the g-strength local Pauli channel N; (Eq. which is gate-independent
and time-invariant, the n-qubit noisy PS-QNN is given by
Uy(8) = Of—, Oy W oUsa(8;1)) (18)

where N' = @, V; is the noise channel and ; ;(6; ) is the channel that implements the unitary
Uj(0;.0) for (5,1) € [p] x [2].

Assuming that Assumption holds, the n-qubit noisy PS-QNN objective function fq(O) with
g-strength local Pauli channels is given by

fq(6) = Tr [HY™"U, (0) ()] (19)
where HMa*Cut jg the problem-oriented Hamiltonian about the Maximum Cut problem (Eq. ,
Uy(8) is the noisy PS-QNN (Eq.[18) and p = (|+)(-+|)®" is the initial state. Now, the optimization
error 7 after T' steps of executing BO is defined as the difference in function values between the

global maximum point 6* and the approximation of the maximum point ON; in the previous T steps.
Specifically,

i = fo(07) = fo(07), (20)
where 0. = arg maxge 1. £,(8) with the accumulated points Ay = {61, --- ,07}. Figure[2(b)
provides a detailed description of the scenario mentioned above for investigating the trainability o
U,(0) using BO. In the following sections, we first explore the Lipschitz continuity of f,(8).
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5.1 CONTINUITY PROPERTY OF THE NOISY PS-QNN OBJECTIVE FUNCTION

Now, we will show that Assumption results in a quantum analog of the Lipschitz continuity
property about the noisy PS-QNN objective function f, ().

Lemma 5.4. Assuming that Assumptionhald{and considering the Maximum Cut problem on an
unweighted d-regular graph with n vertices, let f,(6) : D = [0, 27]?*? — R be the noisy PS-ONN
objective function with q-strength local Pauli channels (Eq. . Forany 0,0’ € D, the relationship

IORFACH

is valid, where the strength q € (0,1).

< d3n7/2q(d+1)p‘|0 _ 0/”1 (21)

Proof details of Lemmal[5.4]can be found in Appendix D] In addition to Assumption[5.3] we provide
the following remark based on the differentiable property of fq(O).

Remark 5.5. Given the differentiable property of the noisy PS-QNN objective function
fq(e) (Fontana et al, 2025)), we can consider it as a sample drawn from a Gaussian process with
the Matern prior covariance function knfatern—v (6, 60") (Appendix , as this Gaussian process
allows us to model high-order differentiable functions (Williams & Rasmussen| 2006} Kanagawa
et al., 2018)).

5.2 EFFECTIVE PARAMETER DIMENSION OF THE NOISY PS-QNN

Assuming that Assumption [5.3holds and using the result of Lemma[5.4] we establish a theoretical
limit on the effective parameter dimension (Definition 4.T) of the noisy PS-QNNs.

Theorem 5.6 (Informal). Consider the Maximum Cut problem on an unweighted d-regular graph
with n vertices, where d is a constant. Given a constant threshold € and a noisy PS-QNN U, (0) with

q-strength local Pauli channels (Eq. @) that satisfies Assumption run BO for T = poly(nl/ 62)
steps, where a predefined scaling parameter n; for the acquisition function UCB¢(0) (Eq. @]} is used

in each step t. Under the condition where the strength q spans 1/poly(n) to 1/n*/VI°8" if the

parameter dimension
p < O(logn/log(1/q)), (22)
then the optimization error 77 (Eq. satisfies 7 < € with high success probability.

The formal statement and corresponding proof details of Theorem 5.6 are provided in Appendix [E]
Following our previous perspective of the Bayesian approach, we consider the n-qubit noisy PS-
QNN objective function f,(0) as a sample drawn from a Gaussian process with the Matern covari-
ance function knfatern—y (0, 60’). Using this framework, we investigate the trainability of the corre-
sponding noisy PS-QNN ¥/, (@) within a practical scenario concerning the Maximum Cut problem
on an unweighted regular graph. Based on Assumption we show that if each quantum gate is
affected by a g-strength local Pauli channel with the strength range of 1/poly(n) to 1/n'/vios™,
Uy(0) with a parameter dimension p of O (logn/log(1/¢)) can also be trained efficiently. For a
more intuitive description of the strength range described above, we focus on near-term quantum
devices with 50-100 qubits (Preskill,[2018). In this case, 1/ pl/viesn ig only slightly larger than 0.1.
This suggests that this range corresponds to the actual noise levels in near-term quantum devices
and holds practical significance.

6 CONCLUSION

In this paper, we provide theoretical guarantees regarding the convergence performance of PS-
QNNs. We adopt a novel Bayesian approach that considers the PS-QNN objective function as a
sample drawn from a specific Gaussian process. By this paradigm shift, we eliminate the need for
explicit assumptions about the strong convexity landscape. This enables us to investigate the con-
vergence performance of PS-QNNs in more realistic scenarios, addressing the question of the depth
range for efficiently trainable PS-QNNSs, as well as analyzing the impact of local Pauli channels on
the training of PS-QNNSs. Our results shed light on the performance of the QNN and are essential
for evaluating its potential quantum advantages in the NISQ era.
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A RELATED DEFINITIONS

This section presents background information on the Matern covariance function, differential en-
tropy, and information gain.

A.1 MATERN COVARIANCE FUNCTION

The Matern covariance function, widely used in BO, is defined as

1 d ) 2vd
kMaterrl—V(070/) - 1—‘(1/)21,71 <\/7 ) Bl/ <\/? > 5 (23)

where | > 0, d = ||@ — 0'||2 represents the Euclidean distance between 6 and 6’, v > 0 denotes
the smoothness parameter, I'(-) represents the gamma function, and B, (-) denotes the modified
Bessel function of the second kind. Varying v determines the smoothness of samples drawn from a
Gaussian process with this covariance function. Smaller values of v correspond to rougher samples.
Additionally, these samples are [v] — 1 times continuously differentiable (Williams & Rasmussen,
2006). Figure [3]illustrates samples drawn from a Gaussian process with this covariance function
using different values of v.

2 IR D T
= M ' LULLY =0 = /
TR YN N/ 1 -
Sample 1 Sample 1 Sample 1
-2 Sample 2 1 Sample 2 y Sample 2
Sample 3 Sample 3 Sample 3
-3
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
6 6 6

Figure 3: Samples drawn from a Gaussian process with the Matern covariance function
kMatern—v (0, 0") using smoothness parameters v from v = 0.5 to v = 6.5.

A.2 DIFFERENTIAL ENTROPY

Let X be a random variable with a probability density function ¢ whose support is a set X. The
differential entropy H (X)) is defined as

H[X] = E[~ log(¢(X))] ::/qu<x>1ogq<x>dx. (24)

Specifically, the differential entropy of a multivariate Gaussian random variable Xgaussian With
distribution N (u, K) is expressed as

1
H[Xcassian] = 5 log(det(2me ), (25)

where p denotes the mean vector and K represents the covariance matrix.

A.3 INFORMATION GAIN

Let St = {(61,9(61)),- -, (07,y(0r))} be T accumulated observations about the function f(8),
where y(6;) denotes the estimation of f(8;) for t € [T]. The informativeness of St regarding f(0)
is quantified by the information gain gz, which is the mutual information (Shannon, [1948) between

yr = [y(61)---y(0r)]" and fr = [f(61)--- f(6r)]". Specifically,
gr = Hlyr| — Hlyr|fr], (26)

where H[yr| represents the information entropy of yr and H[yr|fr] denotes the conditional infor-
mation entropy of yr given fr.

13
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B PROOF OF LEMMA (4.3

In this section, we present a complete proof of Lemma through a sequence of lemmas. We
initially establish the following result regarding the partial derivative 9; f(0) of the noise-free PS-
QNN objective function f(0) : D = [0,27]?” — R for any j € [2p] and any 8 € D.

Lemma B.1. Assuming that Assumptionholds, let f(0) : D = [0,27]?" — R be the noise-free
PS-QNN objective function. Given a failure probability 6 € (0,1), the partial derivative 0; f ()

satisfies

Vj € (2,70 € D, 10,£(0)] < \/Vo[01(0)]/0 @)
with a success probability of at least > 1 — 6, where Vg[0, f(0)] is the variance of 0, f(0) with
index a = arg max;epap) (Supgep |95 f(0)]).

Proof. Fix a € [2p], by Chebyshev’s Inequality, we have

Pr{V¥0 € D,Vs > 0, |0, f(8) — Eo[0. f(8)]] < s} > 1 — Vo[af(8)]/52, 28)

where Eg[0, f(0)] and V[0, f (0)] are the expectation value and the variance of 9, f(0). Assuming
that Assumption [4.2/ holds, we demonstrate that Eg [0, f(0)] = 0. The detailed proof can be found
in Ref.|Cerezo et al.|(2021b)). This implies

Pr{V0 € D,Vs > 0, [0.f(0)| < s} > 1 —Vg[0.f(0)]/5°. (29)
By choosing a = arg max;¢op) (Supgep |05 f(0)|), we have
Pr {Vs >0, sup |0, f(0)| < s} >1—Ve[0.f(0)]/5% (30)
6eD
The use of the index a and the notation sup(-) immediately implies
Pr{Vj € [2p],¥0 € D,Vs > 0, |0, f(0)| < s} > 1 — Vg[0,f(0)]/5> (3D
Let the failure probability 6 = V[0, f(0)]/s? € (0, 1), we have
Pr{vj € [2).¥0 € D, 10,/(0)] < Vo[8[ (0)]/5} > 14, (32)
O

Lemma B.2. Given a noise-free PS-QNN objective function f(0) : D = [0,27]?? — R, we have
V0.0' € D, |f(0) — f(6')] < max (SHP 0;£()] ) 10 — 0|1, (33)
jel2p] \oeD

where 0, f(0) is the partial derivative of f(0) for j € [2p].

Proof. Let 6 be represented as [01, - - - ,02,] 7. For any 8,0’ € D, we have
f(9>_f(0/) :f(eh 792p)_f( /1a927"' a92p)+"'+

f(0,17 59;'—150j7'” 79210) 7f(9/1’ 79;703'-‘1-17"' 592p)+"'+ (34)
f(gllv o a9/2p71,92p) - f(glla e 79/2p)'

By Triangle Inequality, for any 8, 6’ € D, we have

1£(0) = F(O) <1f(Or, -, 02p) = f(07,02, -, O2p)| + - +

‘f( /17 5 _;—159.77"' 7921)) _f( /la 76;a9j+17"' 50213)’ + (35)
|f(9,17 e 50/2[)—17021)) - f(ella e 79l2p)| :

For any j € [2p], the partial derivative with respect to the problem-oriented Hamiltonian H;

8, (8) = i{wo|UL [Hy, UL H\UJU_|00) (36)
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and the partial derivative with respect to the mixing Hamiltonian Ho
0;£(6) = i(po|UT [Ha, UL HiULJU_|¢po) (37

exist and are continuous on D = [0, 27]??, where U_ is the left slice circuit and U is the right slice
circuit of the variational parameter 8, in the noise-free PS-QNN U (), and |) is the initial state.

Fix [07, -+ ,05 1,0541,--- ,02,]" € [0,27]*’~', f(6) can be seen as an uni-variable function
in ;. By Lagrange’s Mean Value Theorem (Sohrab, [2003), for any 0;, 93 € [0,2x] and for any
(07, 05_y,0541, 02,7 €[0,27]2P~" denoted as 6 € D, we have
|f(9/17 o 30; 130j7’ o ;02p) - f(allv T 79]aaj+17' o 302p)’ < Lj7é |9] - 0;| ) (33)
where L 5 = supy. ¢(o,2x) [0;.f(0)|. In light of this, for any 0;, 6’ € [0, 27] and for any 6 € D, we
have
|f( /la ; ;‘—lvoja"' a92p) _f( /17 39;79J+1a"' 792P)| < L.’/ |91 _9”7 (39)
where Lj = supgp Lj ¢- Therefore, for any 8,60’ € D, we have
|f(8) — f(0")] < L]0y — 01|+ -+ Loy |92p - 9/2p| (40)
L; 0, — 0] 41
< (pagia) 1 o
= max L;[0 — 6’| (42)
j€(2p]
— max (sup 10,1(60)1) 16 - ). @3)
16[217]
O
Given Lemma [B.T|and Lemma[B.2] we come to Lemma [4.3] straightforwardly.
Proof of Lemma[.3] By Lemma|[B.1] we pick & € (0,1) and have
e { s (sup [0,10)]) < Va7 @5} =1~ (@)
j€l2p] \oeD

where Vg[0,f(0)] is the variance of the partial derivative 0,f(0) with index a =
arg max;c(ap] (Supgep |95/ (6)]). Substituting this into Lemma B.2} the statement holds. O

C PROOF OF THEOREM [4.3]

Theorem C.1 (Formal). Given a constant threshold €, a failure probability § € (0,1) and an n-
qubit noise-free PS-QNN objective function f(0) : D = [0,27]*? — R induced by the network
U(0) that satisfies Assumption run BO for T = poly(n'/ 62) steps, where the scaling parameter
N for the acquisition function UCB,(0) used in each step t is predefined as

ne = 2log (27t /38) + 4plog(8mpt*\/Ve[0u £(0)]/0). (45)
If the parameter dimension

p<0(Viogn), 46)

then the optimization error rp satisfies rp < € with a success probability of at least 1 —
5.  Here, Vg[0,f(0)] is the variance of the partial derivative O,f(0) with index a =

arg max;e(ap] (SuPgep |0;.f(6)))-
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C.1 OUTLINE OF THE PROOF PROCEDURE

Our objective is to determine the effective parameter dimension p of the noise-free PS-QNN U ()
such that the optimization error r = f(6*) — f(07) after T = poly(n) steps of executing BO
can be upper bounded by a constant threshold e. Here, 6* represents the global maximum point
and 0; denotes the approximation of the maximum point in the previous 7" steps. We investigate
this question through the perspective of the Bayesian approach, which considers the corresponding
noise-free PS-QNN objective function f(@) as a sample drawn from a Gaussian process with the
Matern covariance function kypatern—» (6, 0”) (Eq. . We first establish that 7 is upper bounded

by + Z?:l (f(0%) — f(6:)), where 6, represents the next point selected in each step ¢. It is ev-
ident that the condition + ZtT:1 (f(0%) — f(6:)) < e is sufficient to deduce the result r < e.

Hence, by ensuring that the upper bound on Z;le (f(6*) — f(6:)) is no greater than €, we can
determine the effective p that guarantees rr < e. Subsequently, we utilize the continuity property
of the noise-free PS-QNN objective function f(6) (Lemma to establish an upper bound on

LT (f(67) — £(8))).

The complete proof of Theorem [4.5]is supported by a series of lemmas (Lemma [C.2}Lemma[C.8§).
We will introduce how these lemmas are employed in our proof. For convenience, we ini-
tially present explanations of several notions that commonly occur in the following sections.
Specifically, Vg[0,f(0)] denotes the variance of the partial derivative 0, f(6) with index a =
arg max;eap (Supgep |05 f(0)|). Additionally, p1;1(6) represents the posterior mean function of
f(@) and o;_1(0) denotes the posterior standard deviation of f(8) based on the accumulated obser-
vations S;_1 from the previous ¢t — 1 steps.

To facilitate the analysis in the continuous domain D = [0, 27]??, we discretize D into a finite grid
D; in each step ¢, as it has been employed in Ref. |Srinivas et al.| (2012)). Specifically, the size of
D; is determined by the degree of discretization 74, such that [D;| = (7;)?”. In the subsequent
discussion, we use [0*]; to denote the closest point in D; to 6*. Next, we will evaluate upper
bounds on f(0*) — f([0*]+) (the first term) and f([6*];) (the second term) to obtain an upper bound
on f(6*). Regarding the first term, according to Lemma if 7, = 8mpt?\/V[0,f(0)]/9, then
f(6%) — £([6*]:) can be upper bounded by 1/t? with a success probability of at least 1 — § /4. Con-
sidering that 6, is selected by maximizing the acquisition function UCB,(0) over D, according to
Lemma UCB,(0¢) = p14—1(6:) +/t01—1(6;) can be used to upper bound f([0*];) with a suc-
cess probability of at least 1 —&/4. Here, a predefined scaling parameter 1, = 2 log (2%t? | Dy /30)
is used. Taking the two upper bounds mentioned above into account, Lemma[C.4]demonstrates that

F(07) = (£(0") = f([6"]) + £(10"]) < 1/ + p1—1(80) + /0eo1—1(81)
with a success probability of at least 1 — § /2. Furthermore, we establish that f(6;) is lower bounded
by pi—1(6:) — \/n;0:—1(6¢) with a success probability of at least 1 — §/2 using Lemma where

n; = 2log(w*t?/34). Since 1, > 7;, we can also use 1¢—1(6;) — /N;0¢—1(6;) as a lower bound for
f(6,). Afterward, Lemma|C.6|establishes that

F(07) = f(8:) < 1/t* +2/nioe—1(61)
with a success probability of at least 1 — §. Then, Lemma establishes a connection between
the sum of posterior variances 23:1 o? 1(0,;) and the information gain gr (Eq. . As f(0)
is considered as a sample drawn from a Gaussian process with kyfatern— (6, 0’), we can bound
ZZ;I o?_1(0;) by the upper bound O(T 77 log77 (T)) on the maximal g7 for kyfatern—y (6, 60')
in Ref. |Vakili et al| (2021). By applying Cauchy-Schwarz Inequality and considering the non-

decreasing property of 7; as t increases, we can substitute the form of 1 to obtain the result stated
in Lemma

rr <0 (\/plog (PT%(Ve[0a f(0)])1/2) (1ogT/T)uip>

with a success probability of at least 1 — §. Finally, we obtain the effective p by solving for this
upper bound is no greater than a constant threshold e with 7' = poly (n'/ ¢ ).

C.2 PROOF DETAILS

In this section, we provide a comprehensive introduction to the corresponding lemmas.
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Lemma C.2. Assuming that Assumption 4.2 holds, let f(8) : D = [0,27]%" — R be the n-qubit
noise-free PS-QNN objective function. Given a failure probability § € (0,1) and a finite grid D; of
size |Dy| = (71)?P with the degree of discretization T, = 4wpt?\/V[0,f(0)]/6 in each step t, run
BO for T = poly(n) steps. The following relationship

vt € [T],96 € D, |/(6) — f([6])] < 1/¢* @7)

holds with a success probability of at least 1 — 0, where [0); represents the closest point in Dy to 6.

Proof. By choosing a finite grid D; of size (7;)?" in each step ¢, for any & € D we have
16 — [6]:]l, < 4mp/7. Given Lemma.3] we have

Pr{vt € [T],¥0 € D, |£(6) - £(6]0)] < 4np\/ VO O)/0/m} > 1-5,  (48)
where the failure probability § € (0,1). Since 7, = 4wpt?+/V[d, f(0)]/9, then
Pr{vt € [T],¥0 € D, |f(6) — f([0]:)] < 1/t*} > 1 4. (49)

Furthermore, we consider V[0, f(0)] to be 1/poly(n), as shown in Ref. |Park & Killoran| (2024).
Additionally, we assume that parameter dimension p is at most poly(n). In order to guarantee
the degree of discretization 7; of at least 1, we enforce a constraint that the number of steps T' =
poly(n). This constraint is consistent with the scenario we are exploring. O

Lemma C.3. Given a failure probability § € (0,1), an n-qubit noise-free PS-QNN objective func-
tion f(0) : D = [0,27]?? — R and a finite grid D, C D of size | D;| in each step t, run BO for
T = poly(n) steps, where a scaling parameter 1, for the acquisition function UCB.(0) used in
each step t is predefined as 0y, = 2log(n?t? | Dy| /66). The following relationship

vt € [T],V0 € Dy, f(0) € Ci(0) (50)
holds with a success probability of at least 1 — §, where Ci(0) represents a confidence interval

(1t-1(0) — /1iot-1(0), pi—1(0) + \/nro1—1(0)]-

Proof. Fixt € [T] and 8 € D;. Conditioned on accumulated observations S;_; from the previous
t — 1 steps, the posterior distribution f(8) ~ N(u;—1(0),02_1(0)). Now, if b ~ N(0, 1), then

Pr{b > w} = exp(—w?/2)(27) "2 exp (=(b—w)?/2 — w(b— w)) (1)
< exp(—w?/2) Pr{b > 0} (52)
= %exp(—w2/2) (53)

for w > 0, since exp(—w(b — w)) < 1 forb > w. Using b = (f(0) — ut—1(0))/0+—1(0) and
w = /1, we have

Pr{f(0) ¢ C:(8)} < exp(—1:/2). (54)
Applying the union bound for 8 € D;, we have
Pr{v0 € Dy, f(0) € C:(6)} > 1 — [Difexp(—m:/2). (55)

Given that |D;| exp(—1;/2) = /q;, where ), (1/q;) = 1, ¢; > 0, by applying the union bound
for t € N, the statement holds. For example, we can use q; = 722 /6. O

Lemma C.4. Assuming that Assumption [4.2] holds, let f(0) : D = [0,27]* — R be the n-
qubit noise-free PS-QNN objective function. Given a failure probability § € (0,1), run BO for
T = poly(n) steps, where a scaling parameter 1 for the acquisition function UCB(0) used in
each step t is predefined as n; = 2log(m*t?/36) + 4plog(4mpt®\/2Ve[0.f(0)]/5). The following
relationship

vt € [T], f(6%) < j—1(0:) + /7eor—1(6;) + 1/ (56)

holds with a success probability of at least 1 — §, where 8* denotes the global maximum point and
0. represents the next point selected in each step t.
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Proof. Using the failure probability §/2 in Lemma for the global maximum point 6*, we have
Pr{vt € [T], f(0") — f([67]:) <1/t*} > 1-4/2, (57)

where [6*]; denotes the closest point in D, to 6*. Here, a finite grid D, of size |D;| = (7;)?" with

7, = 47pt?/2V[0,f(0)] /5. Then, applying Lemmawith the failure probability §/2, for [0*];,

we have

Pr{vt € [T, £(16"].) < ju1(18"]0) + Vo1 (18710)} = 1 - 8/2, (58)
where 1; = 2log(n%t? |Dy| /36). As the next point ; is selected by maximizing UCB;(8) in each
step ¢, we have UCB;([0*];) < UCB,(6;). Then, we have

Pr{vt € [T], f([0"]¢) < pe-1(0) + /neor—1(60:)} > 1—6/2. (59)
Taking Eq. and Eq. together, the statement holds since (1 —§/2)? > 1 — 4. O

Lemma C.5. Given a failure probability § € (0,1) and an n-qubit noise-free PS-QNN objective
function f(0) : D = [0,27]?" — R, run BO for T = poly(n) steps, where a scaling parameter 1,
for the acquisition function UCB,(0) used in each step t is predefined as n, = 2log(n*t?/665). The
following relationship

vt € [T], f(6:) € C:(6:) (60)
holds with a success probability of at least 1 — §, where 0, represents the next point selected in
each step t and C(0,) denotes the confidence interval [p;—1(6;) — mgt_l(et), wi—1(0) +

n0t-1(6)]-

Proof. Fixt € [T]. Conditioned on S;_1 from the previous ¢ — 1 steps, for the next point 6; selected
in each step ¢, the posterior distribution f(6;) ~ N (p—1(6),07_1(8;)). Now, if b ~ N(0,1), then

Pr{b > w} < Lexp(—w?/2) for w > 0. Using b = (f(6:) — p1e—1(601))/0¢—1(6;) and w = /7],

we have

Pr{f(6:) ¢ C:(6:)} < exp(—1;/2). (61)
Given that exp(—;/2) = 6/q:, where }_,-,(1/q:) = 1, ¢ > 0, by applying the union bound for
t € N, the statement holds. For example, we can use ¢; = 22 /6. O
Lemma C.6. Assuming that Assumption holds, let f(0) : D = [0,27]*" +— R be the n-

qubit noise-free PS-ONN objective function. Given a failure probability 6 € (0,1), run BO for
T = poly(n) steps, where a scaling parameter 1, for the acquisition function UCB.(0) used in

each step t is predefined as n; = 2log(27t?/36) + 4plog(8mpt2+\/V[0,.f(0)]/5). The following

relationship

vt € [T, £(0%) — f(6,) < 2y/mo—1(0;) + 1/ (62)
holds with a success probability of at least 1 — §, where 0* denotes the global maximum point and
0, represents the next point selected in each step t.

Proof. Using the failure probability §/2 in Lemma [C.4] for the global maximum point 8*, we have
Pr{vt € [T, f(07) < pue-1(0r) + \/meoe—1(0:) +1/t7} > 1~ 6/2 (63)

with 1, = 2log(2n%t?/35) + 4plog(8mpt?/ V[0, f(0)]/9) in each step t. Then, using the failure
probability §/2 in Lemma|C.5| for the next point 6, selected in each step ¢, we have

Pr{Vt € [T}, f(6:) > pe—1(6:) — V/mjor-1(6:)} > 1—6/2 (64)
with 7, = 2log(m%t?/36) in each step t. As the aforementioned 7, is greater than 7, used here,
choosing 7, here is also valid. Taking Eq.[63]and Eq. [64] together, the proof is completed. O

Lemma C.7. Given an n-qubit noise-free PS-QNN objective function f(0) : D = [0,27]*? — R,
run BO for T = poly(n) steps. Let St = {(01,y(01)), - ,(07,y(07))} be the accumulated
observations from the previous T steps, where the estimation y(0;) = f(0;) + £2°'¢ in each step
t. Here, £1°¢ ~ N(0,1/4M) is independent and identically distributed Gaussian noise with M
representing the fixed number of measurements. The information gain gr (Eq.[26) can be expressed

as
T

1
gr = ZlOg(l +4Mo? | (6y)). (65)

t=1
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PVOOf Let Yi—1 — [ (91) (0t 1)] and ft 1 = [f(01) f(Bt 1)]T fort € [T+ 1] Plug—
ging in the differential entropy of a multlvanate Gaussian random variable (Eq 25), we have

H(y(6:)|yi—1] = 1/2log(2me(1/4M + 0?2 1(0,))) for t € [T] and H[yr|fr] = flog(Tre/QM)
Using the fact that H[y;] = H[y;—1] + H[y(0:)|y:—1], we have

Hlyr| = Hlyo] + Hly(61)|yo] + H[y(62)[y1] + - + Hly(07)[yr 1] (66)
T
1
=3 > log(2me(1/4M + o7, (6y))). (67)
t=1
Recalling the definition of g7 (Eq.[26), the statement holds. O

Lemma C.8. Assuming that Assumption [4.2] holds, let f(0) : D = [0,27]*? — R be the n-
qubit noise-free PS-QNN objective function. Given a failure probability § € (0,1), run BO with
the Matern prior covariance function kyiatern—v(0,0") (Eq.[23) for T = poly(n) steps, where a
scaling parameter 1, for the acquisition function UCB¢(0) used in each step t is predefined as

ne = 21log(2m2t2/36) + 4plog(8mpt?+/Ve[0. f(0)]/6). The optimization error rr satisfies

rp <O (\/p log (pT2(Ve[0.f(8)])1/2) (log T/TW) (68)

with a success probability of at least 1 — 6.

Proof. Noted that 7; in Lemma is non-decreasing. Since 0 < 4Mo? ,(0,) <
4AMEatern—v (0, 6;) < 4M, denoted as 4Mo? | (6;) € [0,4M], we have 4Mo? | (6;) <
(4M/log(1 4+ 4M))log(1 + 4Mo?_,(6;)). Moreover, Lemma links the sum of the posterior
variances Zthl o2 ,(0,) to the information gain g7. By Cauchy-Schwarz Inequality, we have

T 2 T T
(Z 2\/%1(90) <D dAmYy o7 1(6) (69)

t=1 t=1 t=1
Tn r
T
<=r ;(4Ma?_1<0t>) (70)
%ilo (1+4Mo? (8,)) (71)
= log(1 + 401) &= % -1\t
= coTnrgr, (72)

where the parameter ¢g = 8/log(1 + 4M). The optimization error is given by r7 = f(0*) —
f(65), where 6* represents the global maximum point and 07 = argmaxge 4, f(0) denotes the
approximation of the maximum point with the accumulated points Ay = {64,--- ,0r} from the
previous T steps. Now, we have

T
rp < T; 1(0) — £(6,)) (73)
T T
<7 (Z Vi1io-1(61) +Zl/t2> (74)
t=1 t=1
1
< = (VaTunrgr +7/6). 75)

As f(0) is considered as a sample drawn from a Gaussian process with knatern—v (0, 6'), we can
use the upper bound O(T e logv+P (T')) on the maximal g7 for kytatern—» (6, 0’) in Ref. |Vakili
et al.[(2021). By substituting 1 and O(Tﬁ log#7 (T')) into Eq.[75| the statement holds. O

Now we are ready to complete the proof of Theorem §.3]
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Proof of Theorem[{.5] We consider V[0, f(8)] to be 1/poly(n), as shown in Ref. Park & Killoran
(2024). Additionally, we assume that the parameter dimension p is at most poly(n). To ensure
consistency with the scenario under investigation and to guarantee the degree of discretization 74 in
Lemma of at least 1, we impose a constraint that the number of steps 7' = poly(n). Hence,
it is reasonable to treat log (pT%(Vg[0,f(6)])'/2) as a constant. Therefore, our task is to find the

effective p that satisfies the condition (p(log(T)/T)7+7)'/2 < e, where € is a constant threshold
and T' = poly(n). Let

p < % (62 — v+ /(2 —v)2 +4ve? (1 + log(T/ logT))) , (76)
then the above upper bound satisfies the inequality
p? — (2 —v)p —ve? (1 +1log (T/logT)) <O0. a7n
Equivalently, the above inequality can be rewritten by
log (logT/T) < (14 p/v) (1 — p/eQ) . (78)
Considering the relationship log x > 1 — 1/« holds for 2 > 0, then the above inequality implies
log (log T/T) < (1 + p/v)log (¢*/p) (79)
which directly leads to
log T/T < (2/p)" ™", (80)

that is (p(log(T)/T) 77 )'/2 < ¢. Finally, let T = poly(n'/<’) and substitute it into Eq.[76| We
obtain the effective parameter dimension p for the noise-free PS-QNN, which is p < O (\/log n)
O

D PROOF OF LEMMA [5.4]

In this section, we provide the proof of Lemma [5.4] which is similar to the proof of Lemma[4.3]

Proof of Lemma Given an n-qubit noisy PS-QNN objective function with g-strength local Pauli
channels f,(0) : D = [0, 27]* — R, for any j € [2p], the partial derivatives 9; f,(6) exist and are
continuous, as shown in Ref.[Wang et al| (2021). Using a similar proof sketch as in Lemma[B.2] we
have

V60,6’ € D, fq(e) - fq(al)

< max (sup |0,7,(0)]) 16~ 01 @1
j€2p] \oeD
Considering the Maximum Cut problem on an unweighted d-regular graph with n vertices, we can

rely on Corollary 2 in Ref. Wang et al.|(2021) to obtain an upper bound on 9; f,(8) for any j € [2p).
Then, the following relationship

V0,0’ ¢ D,

fa(0) — f(8)| < L|0 -0 (82)

holds, where the Lipschitz continuity factor is given by

I = /In 2/2d2n% HH{\/IaxCutl|ooq((d1+1)p+1) (83)

with the strength ¢ € (0,1) and d; representing the network depth of the implementation of the
unitary corresponding to the problem-oriented Hamiltonian HMaxCut  Since ||HMaxCut|| =
O(nd/2), ¢ € (0,1) and d; = Q(d), we have L = O(d*n"/?q(@+1P), Thus, the proof of
Lemmal5.4lis concluded. U
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E PROOF OF THEOREM

Theorem E.1 (Formal). Consider the Maximum Cut problem on an unweighted d-regular graph
with n vertices, where d is a constant. Given a constant threshold ¢, a failure probability
d € (0,1) and a noisy PS-ONN objective function with q-strength local Pauli channels fq 0) :
D = [0,27]*’ — R induced by the network Uy (@) that satisfies Assumption run BO for
T = poly(n!/ 62) steps, where the scaling parameter 1 for the acquisition function UCB(0) used
in each step t is predefined as

ne = 2log(m%t?/(38)) + 4plog(4mpt?d®n/2 ¢4+ 1P, (84)

Under the condition where the strength q spans 1/poly(n) to 1/n'/V1°e™ if the parameter dimen-

sion
p < O(logn/log(1/q)), (85)

then the optimization error T'r satisfies 71 < € with a success probability of at least 1 — 0.

E.1 OUTLINE OF THE PROOF PROCEDURE

Our objective is to determine the effective parameter dimension p of the noisy PS-QNN 4, (0)
such that the optimization error 7 = f,(0*) — f,(85) after T = poly(n) steps of executing
BO can be upper bounded by a constant threshold ¢. Here, 0~ represents the global maximum
point and ON; denotes the approximation of the maximum point in the previous 7" steps. We in-
vestigate this question through the perspective of the Bayesian approach, which considers the cor-
responding noisy PS-QNN objective function fq(G) as a sample drawn from a Gaussian process
with the Matern covariance function knjatern—, (6, 0”). We first establish that 77 is upper bounded
by =+ Zle( f4(0%) — £,(6)), where 8; represents the next point selected in each step . It is ev-
ident that the condition ZtT:1( f4(0%) — f,(8,)) < e is sufficient to deduce the result 77 < .
Hence, by ensuring that the upper bound on Zthl( fa(6%) = f,(6,)) is no greater than €, we
can determine the effective p that guarantees 7 < €. Subsequently, we utilize the continuity prop-
erty of the noisy PS-QNN objective function fq(G) (Lemma D to establish an upper bound on
+ Zle( fa(6%) — £,(6)). The complete proof of Theorem [5.6|is similar to the proof of Theo-
rem [4.5] and is supported by a series of lemmas analogous to Cemma [C.2]to Lemma[C.§] Instead
of providing a detailed description of each lemma here, we will directly present lemma [E.2] similar
to Lemma[C.8] Additionally, we will emphasize the impact of the difference in continuity property
between the noise-free and noisy PS-QNN objective functions on the result.

E.2 PROOF DETAILS

In this section, we provide a comprehensive introduction to the Lemma

Lemma E.2. Considering a Maximum Cut problem on an unweighted d-regular graph with n ver-
tices, where d is a constant. Assuming that AssumptiOnholds, let f,(0) : D = [0,27]?P — R
be the noisy PS-QNN objective function with q-strength local Pauli channels, where the strength
g € (0,1). Given a failure probability § € (0,1), run BO with the Matern prior covariance
Sunction kntatern—v(0,07) (Eq. for T = poly(n) steps, where a scaling parameter n; for
the acquisition function UCB,(0) used in each step t is predefined as n;, = 2log(m*t?/(39)) +
4p 10g(4ﬂpt2d3n7/2q(d+1)p). If the parameter dimension p is given by

p < O (logn/log(1/q)), (86)

the optimization error v satisfies

i < O (\fplogtpT2atn /26 0r) o 7/7) 75 (87

with a success probability of at least 1 — 6.

Proof. Using the continuity property of the noisy PS-QNN objective function fq(e) as stated in
Lemma [5.4] and a series of lemmas similar to Lemma to Lemma we can easily obtain
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the aforementioned result. It is essential to emphasize the constraint imposed on the parameter
dimension p. To guarantee the degree of discretization 7 of at least 1, as mentioned in LemmalC.2]
we need to discuss the range of p that satisfies p72d®n7/2¢(*t1DP > 1. Since the number of steps
T = poly(n) and p is at most poly(n), we can establish the inequality

n < pT’n™/? <n®, (88)

where ¢y and ¢, are two very close constants. Then, we have

P 1 P
nci d3 S T2n7/2d3 S nczd?) . (89)
Since ¢ € (0, 1), the relationship
p(d+1) d+1
qr2ad < qT2aT/243 (90)
holds. As y¥ is monotonically decreasing in the interval (0, 1/e), we have
1 pT2n17/2d3 1 ncllds
(pT2n7/2d3> = (ncld3> on
Let
ci1logn +3logd
p< BT EIRE 92)
(d +1)log(1/g)nler=c2)
then the above inequality implies
1 T p(d+1)
(nm d3) < gne2ds (93)
which directly leads to
1 pT2nl7/2d3 _d41
<pT2n7/2ds> < g, (94)

that is pT2d®n"/2¢(@+1)P > 1. Considering d as a constant, Eq.implies p < O(logn/log(1/q)).
O

Proof of Theorem[5.6] Furthermore, when the strength ¢ > 1/poly(n), it is reasonable to treat
log(pT2d>n™/?q(+1)P) as a constant. Therefore, our objective is to determine the effective p that
satisfies the condition (p(log(T')/T)7+7)*/2 < e with a constant threshold e. The previous result
shows that p < O(y/Iogn) and T = poly(n'/<’). Therefore, we have

p < min{O(y/logn), O(log n/ log(1/a))}. 95)

Let 1/poly(n) < q < 1/n'/VI°87 then this constraint implies
logn/log(1/q) < \/logn, (96)
thatis p < O (log n/log(1/q)). Thus, the proof of Theorem|5.6]is concluded. O

F NUMERICAL EXPERIMENTS

We perform numerical experiments in three directions: (1) employing a more diverse set of graph
structures, (2) comprehensively comparing BO and GD, and (3) numerically validating our theoreti-
cal results. To ensure conceptual clarity, we first define three key concepts for solving the Maximum
Cut problems using PS-QNN: (1) Exact Solution of the Problem as the exact Maximum Cut value
of a given graph, (2) Circuit-Achievable Value as the maximum objective function value attainable
with the PS-QNN at specified depth, and (3) Algorithm-Optimized Value as the optimized objective
function value obtained via BO or GD.
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Table 2: Performance of BO on diverse graph structures.
Graph(Qubit=6) 1 2 3 4 5 6 7 8 9 10 Average

ExactSolution 5 5 7 8 6 6 7 8 6 8 6.6
AchievableValue 427 458 5.91 6.83 5.2 549 653 698 557 754 5.89
BO(Iteration=60) 4.19 441 569 6.62 514 535 6.2 6.84 525 712 5.68

Graph(Qubit=8) 1 2 3 4 5 6 7 8 9 10 Average

ExactSolution 7 9 9 11 12 13 13 11 11 16 11.2
AchievableValue 627 7.84 813 983 10.11 11.05 11.76 10.11 1045 13.69 9.93
BO(Iteration=60) 598 7.6l 747 938 9.66 1065 113 975 10.14 12.37 9.43

Graph(Qubit=10) 1 2 3 4 5 6 7 8 9 10 Average

ExactSolution 16 14 14 12 14 18 18 16 22 24 16.8
AchievableValue 1343 11.07 12.19 10.65 1248 1491 1531 1441 20.13 20.78 14.54
BO(Iteration=60) 12.5 10.8 11.65 1037 11.85 14.66 14.42 1378 19.16 19.89 13.91

Table 3: Performance comparison of BO and GD.
Graph(Qubit=10) 1 2 3 4 5 6 7 8 9 10 Average

ExactSolution 16 14 14 12 14 18 18 16 22 24 16.8
AchievableValue 1343 11.07 12.19 10.65 1248 1491 1531 1441 20.13 20.78 14.54

BO(Iteration=30) 1240 10.61 11.26 1033 11.78 1447 1431 13.59 1844 19.71 13.69
BO(Iteration=60) 12.50 10.80 11.65 10.37 11.85 14.66 1442 1378 19.16 19.89  13.91
BO(Iteration=90) 12.67 10.80 11.78 1037 11.86 14.66 1442 13.78 1935 19.96 1397

GD(Iteration=30) 12.35 9.50 10.84 9.71 11.16 12.01 1327 1194 1843 1870 12.79
GD(Iteration=60) 1237 948 1086 990 11.23 1256 13.28 1225 1842 1894 1293
GD(Iteration=90) 12.55 947 10.87 992 1139 1259 1328 1226 1847 1897 12.98

F.1 PERFORMANCE OF BO ON DIVERSE GRAPH STRUCTURES

We investigate random graphs with 6, 8, and 10 vertices (10 graphs per size) and construct the
Maximum Cut objective function using a 2-layer PS-QNN. For each graph, we run BO with 10
random initializations and 60 iterations per run. The results, summarized in Table @ demonstrate
that BO performs robustly, achieving average accuracies-defined as the ratio of the mean Algorithm-
Optimized Value to the mean Exact Solution-of 86.06%, 84.20%, and 82.80% for graphs with 6, 8,
and 10 vertices, respectively.

F.2 PERFORMANCE COMPARISON OF BO AND GD

We comprehensively compare the performance of BO and GD by evaluating the Algorithm-
Optimized Value and the number of steps to convergence. This comparison uses 10 randomly gen-
erated 10-vertex graphs, with the Maximum Cut objective function constructed for each graph using
a 2-layer PS-QNN. To ensure a rigorous comparison, BO and GD are executed with 10 random
initializations and tested for 30, 60, and 90 iterations. The results are summarized in Table
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Table 4: Numerical validation of theoretical results.

Graph(Qubit=10) 1 2 3 4 5 6 7 8 9 10 Average
ExactSolution 16 14 14 12 14 18 18 16 22 24 16.8
AchievableValue(depth=1) 1246 9.73 11.13 991 11.73 13.54 14.02 1345 1890 20.21 13.51
Iteration(c=0.9) 2 3 4 6 9 3 6 9 13 17 7.2
Iteration(e=0.8) 3 4 4 7 9 4 6 9 19 18 8.3
Iteration(e=0.7) 3 4 6 7 9 5 6 11 21 22 9.4

AchievableValue(depth=2) 1343 11.07 12.19 10.65 1248 1491 1531 1441 20.13 20.78 14.54

Iteration(e=2.0) 15 7 13 1 5 11 13 10 26 9 11
Iteration(e=1.5) 19 12 17 8 14 19 18 20 36 18 18.1
Iteration(e=1.0) 36 16 28 15 18 25 31 25 59 43 29.6

F.3 NUMERICAL VALIDATION OF THEORETICAL RESULTS

Recognizing that error mitigation techniques can effectively address quantum circuit noise, we fo-
cus our analysis on the noiseless scenario. Our experiments use 10 randomly generated 10-vertex
graphs, with the Maximum Cut objective function implemented via 1-layer and 2-layer PS-QNNss.
For the 1-layer PS-QNN, we analyze the relationship between the optimization error e-defined as
the difference between Circuit-Achievable Value and Algorithm-Optimized Value-and average iter-
ation counts 7" at error levels of 0.7, 0.8, 0.9. Similarly, for the 2-layer PS-QNN, we examine this
relationship at error levels of 1, 1.5, 2. In both cases, we observe log T' o< 1/¢2. The detailed results
are summarized in Table [4l

G THE USE OF LARGE LANGUAGE MODELS(LLMS)

During the preparation of this work, we use LLMs to assist in language polishing and editing the
initial draft. This tool is used solely to improve grammatical fluency and sentence structure.
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