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ABSTRACT

Event-based sensing using dynamic vision sensors is gaining traction in low-
power vision applications. Spiking neural networks work well with the sparse
nature of event-based data and suit deployment on low-power neuromorphic hard-
ware. Being a nascent field, the sensitivity of spiking neural networks to poten-
tially malicious adversarial attacks has received very little attention so far. In this
work, we show how white-box adversarial attack algorithms can be adapted to the
discrete and sparse nature of event-based visual data, and to the continuous-time
setting of spiking neural networks. We test our methods on the N-MNIST and
IBM Gestures neuromorphic vision datasets and show adversarial perturbations
achieve a high success rate, by injecting a relatively small number of appropri-
ately placed events. We also verify, for the first time, the effectiveness of these
perturbations directly on neuromorphic hardware. Finally, we discuss the proper-
ties of the resulting perturbations and possible future directions.

1 INTRODUCTION

Unlike the usual neural networks of contemporary deep learning, spiking neural networks (SNN)
resemble the animal brain more closely in at least two main aspects: the way their neurons com-
municate through impulses (spikes), and their dynamics, which evolve in continuous time. Aside
from offering the field of computational neuroscience more biologically plausible neuron models
and communication schemes, research in the technological applications of spiking neural networks
is currently blooming because of the rise of neuromorphic technology. Neuromorphic hardware is
directly compatible with spiking neural networks and enables the design of low-power models for
use in battery-operated, always-on devices.

Adversarial examples are an “intriguing property of neural networks” (Szegedy et al., 2013) by
which the network is easily fooled into misclassifying an input which has been altered in an almost
imperceptible way by the attacker. This property is usually undesirable in applications: it was
proven, for example, that an adversarial attack may pose a threat to self-driving cars, by making
them misclassify a stop sign as a speed limit sign; and that this attack can be implemented in the real
world through stickers physically placed on the road sign (Eykholt et al., 2018). Because of their
relevance to real-world applications, a large amount of work has been published on this subject,
typically following a pattern where new attacks are discovered, followed by new defense strategies,
in turn followed by proof of other strategies that can still break through them (see Akhtar & Mian
(2018) for a review).

With the advent of real-world applications of spiking networks in neuromorphic devices, it is es-
sential to make sure they work securely and reliably in a variety of contexts. In particular, there is
a significant need for research on the possibility of adversarial attacks on spiking network models
used for computer sensing tasks. In this paper, we make an attempt at modifying event-based data,
by adding and removing events, to generate adversarial examples that fool spiking networks into
misclassifying them. This offers important insight into the reliability and security of neuromorphic
vision devices, with important implications for commercial applications.
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1.1 WHAT IS EVENT-BASED SENSING?

Event-based cameras, usually called Dynamic Vision Sensors (DVS), share many characteristics
with the mammalian retina, which make them excel in some circumstances where traditional frame-
based cameras do not perform well (Liu & Delbruck, 2010; Liu et al., 2019b). First, events are
generated only when there are changes in the visual scene, automatically removing redundancies;
second, their pixels fire independently of each other which means that there is no frame rate, but
rather a continuous stream of asynchronous events, so that the latency can be extremely small; third,
they have a very high dynamic range which makes them suitable to detect motion in both bright and
dark settings. For these reasons, they have found applications in human-robot interaction, odom-
etry, drone control, tracking, and surveillance, including on devices that are already commercially
available (Gallego et al., 2019; Kueng et al., 2016; Falanga et al., 2020). Beyond computer vision,
the realm of event-based sensing extends to auditory sensors known as silicon cochleas (Chan et al.,
2007), as well as radar (Stuijt et al., 2021) and tactile sensors (Caviglia et al., 2016).

Neuromorphic sensors make available a new kind of sparse, asynchronous data, which does not suit
current high-throughput, synchronous accelerators such as GPUs. To process event-based data effi-
ciently, a new generation of neuromorphic hardware is being developed in parallel to the spiking neu-
ral network models that can be trained in software. Spiking neuromorphic implementations include
large-scale simulation of neuronal networks for neuroscience research (Furber et al., 2012) and low-
power real-world deployments of machine learning algorithms. In particular, convolutional neural
network (CNN) architectures, used for computer vision, have been run on neuromorphic chips such
as IBM’s TrueNorth (Esser et al., 2016), Intel’s Loihi (Davies et al., 2018) and SynSense’s Speck and
Dynap-CNN hardware (Liu et al., 2019a). The full pipeline of event-based sensors that output sparse
data, stateful spiking neural networks which extract semantic meaning and asynchronous hardware
backends allows for large gains in power-efficiency when compared to conventional systems.

1.2 ADVERSARIAL ATTACKS ON DISCRETE DATA

The history of attack strategies against various kinds of machine-learning algorithms pre-dates the
advent of deep learning (Biggio & Roli, 2018), but the phenomenon received widespread interest
when adversarial examples were first found for deep convolutional networks (Szegedy et al., 2013).
Generally speaking, given a neural network classifier C and an input x which is correctly classified,
finding an adversarial perturbation means finding the smallest δ such that C(x+ δ) 6= C(x). Here,
“smallest” refers to minimising ‖δ‖, where the norm is chosen arbitrarily depending on the require-
ments of the experiment. For example, using the L∞ norm (maximum norm) will generally make
the perturbation less noticeable to a human eye, since the difference in any pixel value between the
original and perturbed images will be below a maximum value that is kept as low as possible. Con-
versely, the use of the L1 norm will encourage sparsity, i.e. a smaller number of perturbed pixels.
The main challenges in transferring existing adversarial algorithms to event-based neuromorphic
vision lie in the dynamics of the data and network, which develop in continuous time, and in the
discrete nature of events, which can either be present or absent at a given time and location, unlike
the continuous pixel values of traditional image data.

Event-based sensors encode information in the timing, location, and polarity of events, which can
be of ‘on’ or ‘off’ type. Because at any point in time an event can either be triggered or not, one
can simply view event-based inputs as binary data by discretising time (Figure 1). In this view,
the network’s input is a three-dimensional array whose entries describe the number of events at a
location (x, y) and in time bin t; an additional dimension, of length 2, is added due to the polarity
of events. If the time discretisation is sufficiently precise, and no more than one event appears in
each bin, the data can be treated as binary. A possible approach to attacking these data is exploiting
recent work done on attacking binary images, i.e. with either black or white pixels, which are used
in the automatic processing of cheques and other documents. Most methods proposed for attacking
binary inputs have focused on brute-force approaches that rely on heuristics to reduce the search
space (Bagheri et al., 2018; Balkanski et al., 2020). For example, SCAR (Balkanski et al., 2020)
is a black-box algorithm that only assumes access to the output probabilities of the network. The
algorithm flips bits in areas chosen according to a specific heuristic and keeps flipped those that cause
a change in the confidence of the network. Naturally, this algorithm does not scale well to large input
sizes, as the number of queries made to the network grows exponentially. In particular, this becomes
a serious problem when the time dimension is added, greatly increasing the dimensionality of the
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input. Instead, in this paper, we chose to focus on the easier problem of white box attacks, where
the attacker has full access to the network and can backpropagate gradients through it. This allows
us to adapt faster and more effective algorithms to the case of event-based data.

To this end, we chose to adapt existing attack strategies so that they could work with the time
dynamics of spiking neural networks, and with the discrete nature of event-based data. We test our
attacks on the Neuromorphic MNIST (Orchard et al., 2015) and IBM Gestures (Amir et al., 2017)
datasets, which are the most common benchmark datasets within the neuromorphic community.
Previous work on adversarial attacks in spiking networks has been reported by Sharmin et al. (2020);
however, their work only uses static image data with continuous pixel values converted to Poisson
input frequencies, so does not involve dealing with discrete data which was the main challenge in
our work. More recently, Liang et al. (2020) did apply attacks to DVS data, using a discretised-
gradient technique. They report high success rates, despite some notable problems of vanishing
gradients. Concurrently with our work, Marchisio et al. (2021) designed custom algorithms for
DVS data, rather than adapting existing ones, but did not report on the magnitudes of the resulting
perturbations. None of these validated the effectiveness of their attack strategies against an on-chip
model deployed on neuromorphic hardware. Our contributions beyond the existing literature can be
summarised as follows:

• We provide detailed results to quantify the effectiveness and scalability of several adversar-
ial attacks strategies, including some not tried before on SNNs.

• We show targeted universal attacks on event-based data in the form of adversarial patches,
which do not require prior knowledge of the input.

• We validate the resulting adversarial examples on an SNN deployed on a convolutional
neuromorphic chip. To the best of our knowledge, this is the first time the effectiveness of
adversarial examples is demonstrated directly on neuromorphic hardware.

2 METHODS

2.1 ATTACK STRATEGIES

Projected Gradient Descent As a baseline, we use Projected Gradient Descent (PGD) (Madry
et al., 2019), a standard attack algorithm which we use on discrete data in two ways. The first consists
in naively rounding the data at each iteration. However, in this case, updates will be retained only if
the gradient magnitude is large enough: otherwise, the small changes made to the adversarial input
are lost due to the subsequent discretization. Instead, we adopt an approach that prevents this loss of
information: we keep a continuous version of the image as a copy, but use the gradients computed
on the discretized image to update the continuous version which is kept in memory. To adapt PGD to
the scenario where we want to find the smallest perturbation that triggers a misclassification, we sort
the values based on how much PGD adjusted them. We then iterate through the sorted list of indices
and flip each value until a misclassification is triggered. It should be noted that this step incurs most
of the computational overhead, but is necessary to produce good results. Unless stated otherwise,
we used the following values for the parameters: the magnitude of the initial random perturbation to
the input is set to τ = 0.01. The maximum norm of the perturbation was set to ε = 1.5. We found
that 50 iterations (Npgd) of PGD sufficed and the results did not improve by much afterwards.

Probabilistic PGD We also devised an alternative way of using PGD on discrete data, which we
call “Probabilistic PGD”. Probabilistic PGD works by assuming that the binary input was generated
by sampling from a series of independent Bernoulli random variables. This approach aligns with
how the DVS camera generates the binary data: the probability of emitting a spike at time t is
proportional to the light intensity, a continuous metric. For each round of PGD, the input is sampled
in a differentiable manner by the Gumbel-softmax reparameterization trick (Jang et al., 2017):

xadv = σ ([log(r)− log(1− r) + log(padv)− log(1− padv)]/T ) ,

where r ∼ U(0,1), and T = 0.01 is a temperature parameter. The underlying probabilities padv,
instead of the pixel values xadv, are updated using the gradient obtained from the loss function that
is minimised by PGD. We saw that this generally improved the performance compared to the PGD
version explained above. Gradients are averaged over Nmc = 10 samples of r. It should be noted
that the need for a gradient sampling procedure significantly increases the runtime.

3



Under review as a conference paper at ICLR 2022

Figure 1: Schematic of the attack procedure on
DVS data.

SparseFool on discrete data To operate on
event-based data efficiently, the ideal adver-
sarial algorithm requires two main properties:
sparsity and scalability. Scalability is needed
because of the increased dimensionality given
by the additional time dimension. Sparsity en-
sures that the number of events added or re-
moved is kept to a minimum. One approach
that combines the above is SparseFool (Modas
et al., 2018), which iteratively finds the closest
point in L2 on the linearised decision boundary
of the network using the DeepFool algorithm
(Moosavi-Dezfooli et al., 2015) as a subrou-
tine, followed by a linear solver that enforces
sparsity and boundary constraints on the per-
turbation. Because Spiking Neural Networks
(SNNs) have discrete outputs (the number of
spikes over time for each output neuron), it
is easier to incur in vanishing gradients as the
perturbation approaches the decision boundary.
Therefore, we had to make changes to the al-
gorithm to take this into account. Firstly, we
found that clamping the perturbation at every
iteration of DeepFool, so that it was no smaller
than a value η, offered protection against van-
ishing gradients. η was treated as a hyperpa-
rameter that should be kept as small as it can without incurring in vanishing gradients. Secondly, to
account for the discreteness of event-based data, we rounded the output of SparseFool to the nearest
integer at each iteration. Finally, SparseFool normally involves upper and lower bounds l and u on
pixel values (normally set, for images, to l = 0;u = 255). We exploit these to enforce the binary
constraint on the data (l = 0;u = 1), or, in the on-chip experiments, to fix a maximum firing rate in
each time bin, which is the same as that of the original input (l = 0;u = max(input)).

Adversarial patches As the name suggests, adversarial patches are perturbations that are accu-
mulated in a certain region of the image. The idea is that these patches are generated in a way that
enables the adversary to place them anywhere in the image. This attack is targeted to a desired label,
and universal, i.e. not specific to an input. To test a more realistic scenario where an adversary could
potentially perform an attack without previous knowledge of the input, we apply these patches to the
IBM hand gesture dataset. We note that the prediction of the CNN trained on this dataset is mostly
determined by spatial location of the input. For example, the original input of “Right Hand Wave” is
not recognised as such if it is shifted or rotated by a substantial amount. In order to simulate effective
realistic attacks, we choose to limit both computed and random attack patches to the area of where
the actual gesture is performed. As in Brown et al. (2017), we generate the patches using PGD on
the log softmax value of the target output neuron. PGD is performed iteratively on different images
of the training set and the position of the patch is randomised after each sample. For each item
in the training data, the algorithm updates the patch until the target label confidence has reached a
pre-defined threshold. The algorithm skips the point if the original label equals the target label. This
process is repeated for every training sample and for multiple epochs. To measure the effectiveness
of our computed patches, we also generate random patches of the same size, and measure the target
success rates. In a random patch, every pixel has a 50% chance of emitting a spike at each time step.

2.2 DATASETS AND DATA PREPARATION

Binarised MNIST We tried our methods on three datasets. The first is a binarised version of
MNIST (BMNIST for short), which is derived from the popular MNIST Handwritten Digits database
(LeCun & Cortes, 2010), binarised so that pixel values 0 to 127 are mapped to white, and 128 to 255
are mapped to black. No other preprocessing is applied. This is not a dataset of DVS recordings:
we use it in order to compare our white box attacks against the SCAR attacks for binary datasets
mentioned above (Balkanski et al., 2020).
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Neuromorphic MNIST Our first DVS benchmark is NMNIST (Neuromorphic MNIST), which
consists of 300 ms-long recordings of MNIST digits that are captured using the saccadic motion
of a DVS sensor (Orchard et al., 2015). This is the most commonly used DVS benchmark dataset
for simpler tasks: since digits are only translating through the frame without changing, temporal
features are not necessary for classification. When testing the spiking network, and for creating
adversarial examples, each sample is fed to the network as a sequence of 5 ms-long binary frames.
Additional spikes that fall in the same pixel within the same 5 ms window are discarded, so that
each bin can contain either 0 or 1 events per pixel. The resulting data is a binary array (referred to as
“raster”) of dimensions (t, p, x, y) = (60, 2, 34, 34), where t = 300ms/5ms = 60 is the number of
time bins, p = 2 are the polarity channels, and x = y = 34 is the spatial resolution of the recording.

IBM Gestures For a more advanced event-based vision benchmark, we used the IBM Gestures
dataset, which consists of recordings of 11 classes of human gestures, captured under three different
lighting conditions (Amir et al., 2017). Here, unlike the previous cases, the model must have some
ability to process features in time, e.g. to distinguish between clockwise and counterclockwise hand
motion in the same spatial position. The length of each gesture recording varies between 4 and 7
seconds. In this work, we never test on the full length of the recording at once, but we use 200 ms
slices as the fundamental unit of the dataset. The data fed to the spiking network at test time are the
same 200 ms samples, with time discretised in 10 ms bins. As above, spikes are capped to 1 per
pixel per time bin. The dimensions of the resulting raster are (t, p, x, y) = (20, 2, 128, 128). The
experiments designed to run on the chip were binned at a higher time resolution of 2 ms since the
neuromorphic hardware is capable to process events in continuous time.

2.3 NETWORKS

For the BMNIST experiments, we use a non-spiking network, similar to the one used in Balkanski
et al. (2020): two 3 × 3 convolutional layers (32 and 64 channels each), with ReLU activations,
followed by 2 × 2 max-pooling, dropout, and a fully connected layer of 128 features, projecting
onto the final layer of 10 output units. The network is trained for 50 epochs at batch size 64, using
the Adam (Kingma & Ba, 2014) optimiser with learning rate 10−3 on a cross-entropy loss function.
The network reached a test accuracy of 99.12%.

The spiking networks used for the NMNIST and IBM Gestures tasks are simulated using a PyTorch-
based SNN library which simulates non-leaky, linear integrate-and-fire neurons with no synaptic
dynamics, equivalent to the ones emulated by the neuromorphic chip. In this neuron model, the
inputs to each neuron are multiplied by the input weight and simply added to the neuron’s membrane
potential. The neuron spikes as soon as its membrane potential reaches a threshold, which is always
set to 1. The threshold value is then subtracted from the membrane potential. The network’s output
label is the one corresponding to the output neuron that spikes the most, over the timespan during
which the input is presented. There are no bias terms in our SNN’s convolutional and linear layers.

The models used for NMNIST were trained using the “weight transfer” method, whereby an equiva-
lent CNN is trained on accumulated frames (i.e. summing the data over the time dimension), and the
CNN weights are transferred to the spiking network with thresholds set to 1 (Rueckauer et al., 2017;
Sorbaro et al., 2020). The ANN was trained with Adam at batch size 64 with learning rate 10−3 for
10 epochs. We then rescaled the weights by layer-wise global factors so that the 99th percentile of
activity was the same at each layer, as described by Rueckauer et al. (2017). The model we used
consists of three convolutional layers of 20, 32, and 128 channels (kernel size 5 for the first, 3 for the
other two), each followed by ReLU activation and 2 × 2 average-pooling. The convolutional stack
is followed by a fully connected layer with feature size 500, which projects onto the 10 output units.
The network achieves 84.93% classification test accuracy.

For the IBM Gestures task, training is done using backpropagation-through-time (BPTT), required
even for feed-forward networks, because of the neurons’ internal states, which persist in time. We
make use of a surrogate gradient in the backwards pass to enable learning despite the discontinuous
nature of spikes (Neftci et al., 2019): for gradient purposes, the neuron’s nonlinearity is treated as
a ReLU with zero-point placed at a value threshold – window. The window value is set to 0.5. For
the simulated experiments, we used a network with a convolutional layer of kernel size 2, stride 2,
and 8 channels, followed by two convolutional layers of kernel size 3 and 8 channels, and a fully
connected layer of 64 channels that projects to the 11 output units. After every convolutional layer,
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Figure 2: Examples of adversarial inputs on the BMNIST (top), NMNIST (middle) and IBM Ges-
tures (bottom) datasets, as obtained by the SparseFool method. The captions show the original
(true) label, correctly identified, and the class later identified by the model. The data was re-framed
in time for convenience of visualisation. Red indicates added spikes. In the BMNIST examples,
blue indicates removed pixels. We note that in the lower-dimensional BMNIST case, the effect of
the attack is semantically interpretable: for example, adding a stroke that closes the upper left part
of a “7” makes it look like a “9” not only for the network but also for a human observer. See the
supplementary video for more examples and motion visualisation.

batch-norm, spiking activation, and 2 × 2 average pooling are inserted. This network achieves a
classification test accuracy of 84.2%. The network used for the on-chip experiments has a slightly
different architecture and does not have batch-normalisation layers to make it compliant with the
hardware.

2.4 EXPERIMENTS ON THE NEUROMORPHIC CHIP

In order to verify our attack strategies in a more realistic scenario, we ran our experiments on neuro-
morphic hardware1, which is especially suited for SNN inference due to its asynchronous nature. We
use a digital, convolutional neuromorphic chip designed for computer vision applications. Weight
precision, number of computations per second and throughput are typically reduced as the hardware
is optimised for very low power consumption. This can lead to a degradation in prediction accu-
racy when compared to simulations. Because the networks detailed in the previous sections have to
be modified in order to make them suitable for neuromorphic on-chip inference, their weights are
rescaled and discretised as required by the chip’s 8-bit weight precision.

1The name and brand of the chip in question have been redacted in this version for anonymisation purposes,
and will be included in the final version of the paper.
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Attack Success
Rate (%)

Median Elapsed
Time (s/sample)

Median
No. Queries

Median
L0

B
M

N
IS

T SCAR 100.00 1.14 1175 7
PGD 98.89 0.16 102 50

Probabilistic PGD 99.70 0.54 275 23
SparseFool (η = 0.2, λ = 2) 99.90 0.08 11 14

N
M

N
IS

T PGD 48.63 72.56 1052 –†
Probabilistic PGD 54.46 68.35 774 522

SparseFool (η = 0.2, λ = 2) 99.76 30.22 45 254
SparseFool (η = 0.5, λ = 2) 99.88 13.08 26 268

IB
M

SparseFool (η = 0.1, λ = 3) 100.00 2.78 11 310
SparseFool (η = 0.1, λ = 2) 99.87 2.57 11 200
SparseFool (η = 0.1, λ = 1) 97.69 3.02 17 116

† Samples for which the attack was unsuccessful were considered to have L0 = undefined. Because PGD fails
more than half of the time, the median is undefined.

Table 1: Comparison of attack strategies (1000 samples). SCAR was implemented according to
the pseudo code in Balkanski et al. (2020) and PGD was run for 50 iterations. SparseFool takes
only a fraction of the time compared to PGD while obtaining much sparser results at almost perfect
success rate on Neuromorphic MNIST. The input size for this dataset is set to (60,2,34,34). We also
use SparseFool to attack samples from the IBM Gestures dataset at different values of λ, a parameter
trading-off speed and sparsity. The success rate is here defined as the fraction of samples that were
initially correctly classified, for which the attack algorithm converged to an adversarial example that
the network classifies incorrectly.

As this work focuses on white-box attacks, we first computed the adversarial examples using the
network simulation on the computer, then tested both original and attacked spiketrains in simulation
and on the chip. The simulation and the attack work in discrete time, while the chip receives events
in continuous time. In order to convert the discrete-time attacked raster back to a list of events for
the chip, we compared the original and attacked rasters, identifying new events added by the attack
and adding them to the original list (Figure 1). We empirically found very few events removed by
SparseFool (see supplementary section 1) and chose to ignore removals for on-chip experiments.

3 RESULTS

3.1 SPARSEFOOL ATTACKS ON BINARY AND DVS DATA

Table 1 compares the different algorithms on Binary-MNIST and shows that SparseFool finds suc-
cessful adversarial examples with a low median L0 (i.e. number of perturbed pixels), while requir-
ing a very low median execution time. Figure 2 (top) illustrates samples of perturbations found
by SparseFool and the corresponding label that was predicted by the network after applying the
perturbation. Because of the small sample size and the fact that there is no time dimension, Binary-
MNIST enables us to compare SparseFool to other, more inefficient methods. However, more real-
istic datasets are needed to truly evaluate the feasibility of applying these algorithms.

After having established that SparseFool can efficiently and reliably generate sparse perturbations
on discrete data, we evaluated SparseFool’s performance on the DVS benchmarks for different hy-
perparameters (Table 1). η indicates the minimum step size for updates to the perturbation: higher
values of η find less precise perturbations (larger L0 values), but are sometimes needed in order
to prevent zero-gradient issues within the algorithm. λ is the sparsity parameter: lower λ (with a
minimum of 1) yields sparser results, but gives a slightly lower success rate. Overall we consistently
found that SparseFool performs better than PGD and Probabilistic PGD, both in terms of success
rate and in the number of added or suppressed events. Additionally, it requires far fewer iterations
and therefore converges more quickly. Figure 2 and the supplementary video show examples of
successful attacks. Supplementary section 1 provides further information on the characteristics of
the resulting samples.
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Figure 3: Examples of adversarial patches successfully applied to a single “right hand clockwise”
data sample, with different target classes. See also the supplementary video for motion visualisation
and more examples of successful patch attacks.

3.2 VALIDATION ON NEUROMORPHIC HARDWARE

We randomly chose 1000 snippets, each 200 ms long, from the IBM Gestures dataset, on which
we ran the SparseFool attack. Out of these, 833 were successfully classified by the network and
were therefore eligible for an attack; the attacks converged and were successful in simulation in
777 cases. We presented these 777 successful attacks to the chip, alongside the un-attacked original
data, finding that 96.9% (753) of the originals are successfully classified by the chip, and 85.3% of
the attacks are able to fool the chip (663) too. A possible reason for this discrepancy lies in how
the chip is limited in computing capacity by weight quantization and restricted throughput per time
unit, which causes some of the input events to be dropped. The conversion of binned data back into
lists of spikes, discussed in the Methods section, is necessarily lossy at this time. In terms of attack
efficiency, we observe a median L1 distance (i.e., difference in number of spikes) of 903 among
the attacks that were successful on chip, corresponding to a median 9.3% increase in the number of
spikes per sample. The full distribution is shown in Figure S1 (bottom left). Figure S1 also shows
the time profile of the perturbation and how the network classified the data after the attack.

3.3 ADVERSARIAL PATCHES

Although we have demonstrated that one can achieve high success rates on custom spiking hard-
ware that operates with microsecond precision, the applicability of this method is still limited, as the
adversary needs to suppress and add events at high spatial and temporal resolution, thus making the
assumption that the adversary can modify the event-stream coming from the DVS camera. Further-
more, SparseFool assumes knowledge of the model and requires computing the perturbation offline,
which is not feasible in a timely manner. In a more realistic setting, the adversary is assumed to
generate perturbations by changing the input the DVS camera receives on the fly.

Using the training data from the IBM Gestures dataset, we generated an adversarial patch for each
target class with high temporal precision (event samples of 200 ms were binned using 0.5 ms-wide
bins) and evaluated the effectiveness in triggering a targeted misclassification both in simulation and
on-chip using the test data. To simulate spatial imprecision during deployment, each test sample
was perturbed by a patch that was randomly placed within the area of the original gesture. Table
2 summarises our findings on target success rates for generated and random patches. Simulated
results show high success rates, and on-chip performance shows a slight degradation, which can be
expected due to weight quantization on the tested specialised hardware. We also found that the chip
had trouble processing inputs because most of the added patch events occurred concentrated in the
beginning of recordings in a large transient peak. In one case, the targeted attack for label “Arm
Roll“ mostly fails on chip as not all events are processed, which makes it harder to discriminate
between similar labels such as “Hand Clap“, a similar gesture that occurs in the same central spatial
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Target label Hand
clap

RH
Wave

LH
Wave

RH
Clockwise

RH Counter
Clockwise

LH
Clockwise

LH Counter
Clockwise

Arm
Roll

Air
Drum

Air
Guitar Other

Adversarial patch 90.3 99.0 89.8 87.3 79.7 49.7 51.5 63.6 79.1 92.3 64.7
Adv. patch (on-chip) 94.0 89.0 94.1 81.3 65.1 35.9 43.8 5.0 82.7 87.3 66.8

Random patch 18.8 80.7 77.0 0 0 3.6 0.6 0 0 12.6 16.6
Rand. patch (on-chip) 43 76.8 72.2 0 0 9.0 2.4 0 0 0 17.7

Table 2: Adversarial patches for different target labels were evaluated on– and off–chip. Shown here
are the success rates in percent for each target label. An attack is considered successful if the original
label is not the target label and the network predicts the target label when the patch is applied.

location. This could somewhat be mitigated by limiting the number of events in a patch to ensure
that they could all be correctly processed on the chip.

We compare this result with a baseline of randomly generated patches, and we observe that two
labels, namely “Left“ and “Right Hand Wave“ subsume all other attacked labels in this case. This
hints that randomly injecting events in various locations is not enough to perturb network prediction
to a desired label and that our algorithm succeeds in finding a meaningful patch. To summarise,
adversarial patches are effective in triggering a targeted misclassification both on– and off–chip
compared to randomly generated ones. Figure 3 and the supplementary video show examples of
successful patch attacks. Importantly, these attacks are universal, meaning that they can be applied
to any input and do not need to be generated for each sample.

4 DISCUSSION

We studied the possibility of fooling spiking neural networks through adversarial perturbations to
dynamic vision sensor data, and verified these perturbations on a convolutional neuromorphic chip.
There were two main challenges to this endeavour: the discrete nature of event-based data, and their
dependence on time. This translated, in practice, in the need for an extra temporal dimension, and
in different sparsity requirements, because the magnitude of the perturbation is measured in terms
of number of events added or removed. For this purpose, we adapted the sparse adversarial algo-
rithm SparseFool, and showed that it achieves high convergence rates on time-discretised samples of
the Neuromorphic MNIST and IBM Gestures datasets. Empirically, we observe that the algorithm
mostly resorts to adding, rather than removing, input events, and the number of new events neces-
sary to fool the network varies significantly from sample to sample. In the best cases, the attack
requires the addition of less than a hundred events over a 200 ms sample, an increase of a few per-
cent. With this, we have proven adversarial examples in DVS data are possible, and, to the best of
our knowledge, we were also the first to show that the perturbation is effective in a network deployed
on a neuromorphic chip. As the history of adversarial attack algorithms shows, future research in
this field may well find adversarial perturbations that are even less noticeable, detectable, or com-
putationally intensive. One should be aware of this possibility when deploying any neuromorphic
devices using DVS technology together with neural network models in all contexts where malicious
attacks may have serious consequences, such as autonomous driving, surveillance, or control. For
this reason, it is also important to consider how to counter these attacks. Defence mechanisms such
as adversarial-aware training exist and can provide better robustness. In preliminary work outlined
in supplementary section 2 we apply one such method to SparseFool attacks.

SparseFool computes perturbations offline, and it is currently not obvious how to do this on the fly
on a live stream of DVS events. Therefore, we also investigated a more realistic setting, where an
adversary can, with low spatial, but high temporal precision, inject spurious events in the form of
a patch inserted into the visual field of the DVS camera. We showed that we can generate patches
for different target labels, which trigger targeted misclassifications with high precision. Although
these patches require a much higher amount of added events, they do not require prior knowledge of
the input sample and therefore offer a realistic way of fooling deployed convolutional neuromorphic
systems. A natural next step would be to understand whether it is possible to build real-world patches
that can fool networks when shown to the DVS camera from a variety of distances and orientations,
as Eykholt et al. (2018) did for photographs. Additionally, it will be interesting to see how important
knowledge about the architecture is and if one can generate adversarial patches by having access to
a network that differs from the deployed ones.
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authors report no current conflicts of interest.

6 REPRODUCIBILITY STATEMENT

The authors made available all code that was used to generate results and plots in this paper, which
we attach as supplementary material. The code will be made publicly available after the review
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source code. The DVS datasets are available online. The neuromorphic chip is available for research
purposes. When reproducing experiments on chip, results are expected to differ slightly due to
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SUPPLEMENTARY MATERIAL

1 EMPIRICAL ANALYSIS OF THE RESULTING SPARSEFOOL PERTURBATIONS

Figure S1: Properties of the adversarial perturbations found by SparseFool, for two experiments:
NMNIST (in simulation, η = 0.5, λ = 2) and IBM Gestures (as tested on chip). Top left: Number
of events in time within each data sample. The shaded areas represent the 0.1-0.9 interquantile range
(not shown for the ‘original’ curve in the bottom panel). The perturbation tends to consist of spikes
added at the beginning of the sample, especially for NMNIST which does not rely on temporal
structure for inference. Very few spikes are removed, which justifies the choice of ignoring removed
spikes in on-chip experiments. The periodic structure of NMNIST samples is intrinsic to the dataset,
recorded with saccades. Bottom left: Distribution of increase in number of spikes after the attack,
relative to the original number. Right: Matrices showing the label identified by the network when
presented with the adversarial examples, given the original label, for the two experiments. Most
IBM Gestures classes are perturbed towards the ‘other’ class, while there is no clear structure in the
NMNIST case. LH = Left Hand, RH = Right Hand, (C)CW = (Counter) ClockWise.

With the aim of gaining more insight into the behaviour of our methods, we studied the character-
istics of the perturbations resulting from SparseFool attacks in more detail. For this, we chose two
specific experiments: a SparseFool run on NMNIST with hyperparameters η = 0.5 and λ = 2;
and the on-chip IBM Gestures experiment. First, we empirically notice that SparseFool-based per-
turbations rarely involve the removal of events. In the NMNIST experiment considered here, an
average of 7.6 events is removed from each sample, compared to an average of 214 spikes added.
This justified our choice to ignore removed events in the course of the on-chip experiments.

As is evident from the examples in Figure 2, we also find that SparseFool’s adversarial perturbations
tend to consist in the insertion of spikes at the beginning of the sample, with only a few spikes
added later in time. The top left panel of figure S1 shows the time profile of the perturbations in
detail. We believe this is a consequence of the use of the non-leaky neuron model. In non-leaky
neurons, information can be stored indefinitely in the membrane potential, so early spikes have a
further chance of contributing to a spike later in time, and are more effective compared to events
added later in the sample. This effect is also present in the IBM Gestures experiment, but looks
less prominent, possibly because networks trained with BPTT on data with richer features in time
have a non-trivial dynamics. In this sense, we expect this phenomenon to be further reduced or
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disappear entirely when the task is strictly linked to the time evolution of the input signal, such as in
auditory speech recognition. The timing of adversarial events could potentially be used for model
interpretability purposes, to measure how much the model relies on temporal features.

Further to the median values reported in table 1, the lower left panel of figure S1 reports the full
distributions of the number of added or removed events (L1 distances). Here, we display the numbers
relative to the original number of events in the sample. We notice a minority of cases where the attack
is successful only at the cost of a very significant injection of events.

Finally, we analysed the statistics of classes identified by the networks after the attack. SparseFool
is used as an “untargeted” algorithm, i.e. it attempts to change the output of the network but without
requirements on what the new class should be. Unsurprisingly, the “other gesture” class is a natu-
ral target class for many ground truth classes, but there are some exceptions which we find rather
natural, such as “left hand wave” gestures being most often converted to “left hand clockwise”. Con-
versely, we observe no dominant target class in the NMNIST experiment. If the target class structure
is undesirable, targeted attacks can be used instead.

2 DEFENCE VIA ADVERSARIAL TRAINING
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Figure S2: Success rate and medianL0 of SparseFool for networks trained with TRADES robustness
based on PGD attacks.

Once it is known that a model or system is sensitive to a certain type of adversarial attack, it is natural
to investigate whether there is a way to build a network that is more resistent to these attacks. We
therefore experimented with adversarial training using the TRadeoff-inspired Adversarial DEfense
via Surrogate-loss minimization (TRADES) method (Zhang et al., 2019). The method consists
of adding a new term to the loss function during training, which minimises the Kullback-Leibler
divergence between the output of the network when the original input is presented, and the output
when the adversarial example is presented:

Lrob = L+
βrob

B
DKL(f(xadv); f(x0)).

Here, B is the batch size, βrob is the parameter that defines the trade-off between robustness and
accuracy, f is the network and xadv is the adversarial input. Although networks that were trained
using SparseFool would probably be more robust, we opted for PGD at training time, since it can
be easily batched — but we attack the resulting networks using SparseFool. We used PGD in the
L∞ domain and chose ε = 0.5 as the maximum perturbation, with Npgd = 5 attack steps. We also
did not greedily chose the best indices to flip as described in section 2.1. Even if this was a much
simplified version of the PGD attack, we found that this configuration produced perturbations with
reasonable Hamming distances while being extremely efficient, and it was sufficient in inducing
some level of robustness.

From the results in Figure S2 we note that the success rate is still quite high despite the adversarial
training for the choices of βrob we considered. However, given the fact that SparseFool aims at find-
ing the smallest perturbation that triggers a misclassification, this is expected, and there is already
a noticeable increase in the number of added spikes required, which is indeed a sign of robustness.
In other words, the adversarially-trained network requires stronger and less stealthy attacks before
it is fooled. Further work is required for a comprehensive investigation of other possible defence
strategies.
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