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ABSTRACT

Despite significant progress in text-to-image diffusion models, achieving precise
spatial control over generated outputs remains challenging. One of the popular
approaches for this task is ControlNet, which introduces an auxiliary conditioning
module into the architecture. To improve alignment of the generation image and
control, ControlNet++ proposes a cycle consistency loss to refine correspondence
between controls and outputs, but restricts its application to the final denoising
steps, while the main structure is introduced at an early stage of generation. To
address this issue, we suggest InnerControl – a training strategy that enforces
spatial consistency across all diffusion steps. Specifically, we train lightweight
control prediction probes — small convolutional networks — to reconstruct in-
put control signals (e.g., edges, depth) from intermediate UNet features at every
denoising step. We prove the efficiency of such models to extract signals even
from very noisy latents and utilize these models to generate pseudo ground truth
controls during training. Suggested approach enables alignment loss that mini-
mizes the difference between predicted and target condition throughout the whole
diffusion process. Our experiments demonstrate that our method improves con-
trol alignment and fidelity of generation. By integrating this loss with established
training techniques (e.g., ControlNet++), we achieve high performance across dif-
ferent condition methods such as edge, segmentation and depth conditions.

1 INTRODUCTION

Recent advances in diffusion models (Ho et al., 2020; Song et al., 2020; Sohl-Dickstein et al.,
2015; Dhariwal & Nichol, 2021) have significantly improved the quality and diversity of text-
to-image (T2I) generation, enabling models to produce images that closely match input textual
prompts Nichol et al. (2021); Ramesh et al. (2021); Rombach et al. (2022); Saharia et al. (2022).
Despite this progress, achieving precise spatial control over generated images remains a key chal-
lenge Hu et al. (2023); Ye et al. (2023); Huang et al. (2023).

To address this issue, methods such as ControlNet Zhang et al. (2023) and T2I-Adapter Mou et al.
(2024) introduce conditional mechanisms to guide the generation process using control signals (e.g.,
edge maps, depth maps, segmentation masks). Follow-up work has aimed to improve ControlNet
performance through architectural enhancements Zavadski et al. (2024), unified conditioning Qin
et al. (2023); Zhao et al. (2023), and efficient adaptation to new conditions Xu et al. (2024). However,
these approaches often suffer from inconsistencies between the input control signals and the final
generated output.

Recent methods aim to improve control fidelity by introducing additional supervision mechanisms
during training. For example, ControlNet++ Li et al. (2024) reduces the discrepancy between the
input control signal and the generated image by applying reward losses that penalize inconsistencies
between the generated output and the extracted control signals (e.g., edges or depth). In contrast,
CTRL-U Zhang et al. (2024) proposes an alternative approach based on uncertainty-aware reward
modeling, which aims to mitigate the negative impact of inaccurate or noisy feedback from reward
models. While both methods demonstrate improved control alignment, they primarily operate at
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late denoising steps, despite evidence that spatial structure emerges early in the diffusion pro-
cess Chen et al.; Baranchuk et al. (2021).

However, extending the reward losses to earlier steps leads to a significant decrease in the generated
image quality, producing visible artifacts on the generated images. These poor results are probably
caused by inefficient signal extraction in the early sampling steps, producing inaccurate signals for
loss calculations. This analysis highlights a critical limitation of the suggested approaches, making
them applicable only to the late generation steps.

To address temporal misalignment in prior methods, we introduce InnerControl – a novel training
strategy that enforces consistency between input control (e.g., edges, depth, segmentation) and sig-
nals extracted from intermediate diffusion features across the entire denoising trajectory. Our
approach is motivated by recent findings that demonstrate the utility of diffusion features for vision
tasks such as depth estimation, semantic segmentation, and classification Baranchuk et al. (2021);
Hedlin et al. (2023); Namekata et al. (2024). Building on this, we propose to use lightweight convo-
lutional networks to extract control signals directly from UNet decoder features.

Drawing inspiration from Readout Guidance Luo et al. (2024), which employs timestep-conditioned
architectures for discriminative tasks and demonstrates the effectiveness of these models during
the early stages of denoising—when spatial structure primarily emerges Chen et al.—we utilize
these estimation models to introduce an additional penalty during ControlNet training. This penalty
explicitly enforces spatial alignment throughout the entire generation process. Our findings indicate
that InnerControl enhances the previous reward training approach, improving control alignment
while preserving perceptual quality.

Our core contributions are:

• Early-stage control alignment: we propose a novel training objective that enforces con-
sistency between the input control signal (e.g., edge, depth and segmentation maps) and
signals extracted from intermediate diffusion features across the entire denoising process,
including early stages where structural content begins to emerge.

• Enhanced controllability: our training strategy improves upon existing reward-based ap-
proaches, achieving stronger control alignment and higher image quality across diverse
spatial control tasks, such as depth, edge and segmentation guidance.

2 RELATED WORK

2.1 CONTROLLABLE TEXT-TO-IMAGE DIFFUSION MODELS

Diffusion models Ho et al. (2020); Song et al. (2020); Sohl-Dickstein et al. (2015); Dhariwal &
Nichol (2021) have achieved remarkable success in generating high-quality, diverse images con-
ditioned on text prompts Nichol et al. (2021); Ramesh et al. (2021); Rombach et al. (2022); Sa-
haria et al. (2022); Balaji et al. (2022); Ramesh et al. (2022). However, traditional approaches rely
solely on textual guidance, limiting precise spatial control over generated outputs. To address this,
several methods introduce spatial control signals without retraining the entire diffusion pipeline.
ControlNet Zhang et al. (2023) augments pretrained diffusion models with a duplicate encoder and
zero-convolution layers, enabling stable training and alignment with diverse spatial conditions (e.g.,
edges, depth, segmentation masks). Similarly, T2I-Adapter Mou et al. (2024) employs lightweight
adapter modules to bridge internal text-to-image representations with external control inputs. Sub-
sequent works refine these designs for greater efficiency Zavadski et al. (2024); Cao et al. (2025),
extend them into unified frameworks supporting multiple control types Zhao et al. (2023); Qin et al.
(2023), or improve adaptability to novel control signals Xu et al. (2024) and advanced backbones Lin
et al. (2024); Ran et al. (2024). Despite these advances, ensuring consistent alignment between gen-
erated outputs and conditioning signals remains challenging.

To address this issue, ControlNet++ Li et al. (2024) introduces an additional reward loss for Con-
trolNet that enhances controllable generation by explicitly optimizing pixel-level cycle consistency
between generated images and conditional inputs.Ctrl-U Zhang et al. (2024), on the other hand, in-
troduces uncertainty-aware reward modeling to regularize reward fine-tuning through consistency
construction. Specifically, rewards with lower uncertainty are assigned higher loss weights, while
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those with higher uncertainty receive reduced weights to accommodate greater variability. How-
ever, both approaches primarily target late-stage alignment due to the suggested one-step prediction
strategy for signal estimation, thereby neglecting the earlier phases of generation. Meanwhile, prior
studies indicate that the main structure emerges during the early stages of generation Chen et al..
This makes consistency throughout the entire generation trajectory essential for preserving fidelity
to input conditions. Our approach directly addresses this gap by enforcing alignment at every de-
noising step.

2.2 DIFFUSION MODEL REPRESENTATION

Pretrained text-to-image diffusion models have proven highly effective at extracting semantically
rich representations from their internal features, supporting a wide range of discriminative tasks
such as segmentation, semantic correspondence, classification, detection, and depth estimation Fun-
del et al. (2025); Hedlin et al. (2023); Clark & Jaini (2023); Yang & Wang (2023); Xiang et al.
(2023). Several studies have analyzed the quality of UNet features across different denoising steps
for downstream vision tasks Baranchuk et al. (2021); Chen et al.. Recent efforts extend this line
of work by aggregating features across layers and denoising steps to improve discriminative perfor-
mance, with applications in segmentation Tang et al. (2022); Namekata et al. (2024); Stracke et al.
(2024), semantic correspondence Tang et al. (2023); Hedlin et al. (2023); Stracke et al. (2024), clas-
sification Li et al. (2023a); Stracke et al. (2024), detection Chen et al. (2023); Stracke et al. (2024),
and depth estimation Stracke et al. (2024). However, most existing approaches rely on aggregated
features across denoising steps, which may limit their ability to capture task-specific information at
each individual stage. To address this limitation, Luo et al. Luo et al. (2024) enhance the Diffusion
Hyperfeatures framework Luo et al. (2023) by introducing additional timesteps conditioning.

Input control

ControlNet++ (200 steps) ControlNet++ (400 steps) ControlNet++ (600 steps) ControlNet++ (920 steps)

Ours (200 steps) Ours (400 steps) Ours (600 steps)

Ours (920 steps)

Figure 1: Visualizing the trade-off between control consistency (RMSE) and image fidelity (FID)
when extending reward losses to early denoising stages. Left: Generated samples illustrate visual
artifacts when applying only reward loss (top) compared to reward plus alignment loss (bottom) dur-
ing early diffusion steps. Right: Quantitative analysis shows the trade-off between control precision
(RMSE ↓) and image fidelity (FID ↓), highlighting their inverse relationship.

3 PRELIMINARIES

In this section, we introduce the background of diffusion models and spatially controllable genera-
tion, followed by an analysis of cycle consistency losses suggested in ControlNet++ Li et al. (2024).

3.1 CONTROLLABLE GENERATION

Diffusion models Ho et al. (2020); Song et al. (2020) are a class of generative models that synthesize
data by iteratively denoising random noise through a learned reverse process.

The forward process defines a sequence of noise-adding steps that transform the data into isotropic
Gaussian noise over T steps.

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I) (1)

where αt ∈ (0, 1) is a fixed variance schedule. The reverse process learns to invert this process
using a neural network that iteratively denoises samples:

pθ(xt−1|xt) = N
(
xt−1;µθ(xt, t), σ

2
t

)
, (2)
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where µθ(·) is a learnable function that approximates the mean of the true posterior.

The standard training objective aims to minimize the noise prediction error:

Ldiff = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥2

]
(3)

where xt is a noisy sample from timestep t, ϵ ∼ N (0, I) and ϵθ(xt, t) – learned approximation
using another parametrization.

In cases where additional control is required, such as text prompt conditioning ctxt and spatial
control cspat (e.g., depth maps or edges), the objective can be expressed as:

Ldiff = Ex0,ϵ,t,ctxt,cspat

[
∥ϵ− ϵθ(xt, t, cspat, ctxt)∥2

]
(4)

3.2 CONTROLNET++

ControlNet Zhang et al. (2023) is one of the leading methods that utilizes a pretrained text-to-image
diffusion model for controllable generation with additional spatial control. While ControlNet is
trained using standard diffusion loss defined in Eq. 4, it suffers from inconsistencies between the
final predictions and the input controls. To mitigate this issue, ControlNet++ introduces a cycle
consistency loss that leverages a discriminative reward model.

Specifically, the method minimizes the discrepancy between the input control cspatial and the cor-
responding condition ĉspatial extracted from the generated image by the reward model D, where
ĉspatial = D(x0) and x0 denotes the generated image. Since diffusion models sample timesteps
t ∈ [999, 0] to simulate the denoising process, computing rewards across the full trajectory would
require prohibitive gradient accumulation. To address this, ControlNet++ approximates x0 from a
noisy sample xt using a single-step generation process:

x0 ≈ x′
0 = G(cspat, ctxt, xt, t) =

=
xt −

√
1− αt ϵθ(x

′
t, cspat, ctxt, t)√

αt

(5)

where ϵθ(·) denotes the network’s noise prediction and G(·) represents the single-step denoising
operation. The resulting approximation x′

0 can then be used for reward fine-tuning:

Lreward = L (cspatial,D [G(cspatial, ctxt, xt, t)]) (6)

Due to single-step sampling, the authors suggest applying their rewarding loss only on the last 200
steps (t ∈ [0, 200]) of diffusion trajectory sampling.

4 METHOD

In this section, we discuss the main limitations of ControlNet++ and introduce our proposed training
approach – InnerControl – designed to address these issues.

4.1 MOTIVATION

As noted earlier, ControlNet++ Li et al. (2024) applies the reward loss only to the final 200 denoising
steps (t ∈ [0, 200]) due to its reliance on a single-step prediction strategy. To better understand this
limitation, we analyze the trade-off between control consistency and image fidelity when extending
the reward loss to earlier denoising stages. Specifically, we train a ControlNet model conditioned on
depth maps, applying Lreward loss over different ranges of denoising steps. Alignment is measured
using RMSE, while perceptual quality is evaluated with FID.
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Our experiments show that extending the reward loss to earlier steps improves control alignment, as
reflected in lower RMSE (Fig. 1). While RMSE improves, the quality of generated images is signif-
icantly decreased, leading to an increase in FID (Fig. 1 right). The perceptual metrics degradation
can also be observed in the images, where artifacts appear as the reward loss is extended to earlier
steps.

As shown in Fig. 1, applying the reward loss up to 400 denoising steps produces good-quality
images, but extending it to 600 steps introduces small artifacts, and using it across nearly all steps
(e.g., 920) results in severe distortions such as unexpected lines and irregular edges.

RMSE for two depth prediction approaches and output image depth
precition for SD1.5 

RMSE for two depth prediction approaches and input depth control
for ControlNet 

Figure 2: Left: RMSE between depth estimated from the final image and DPT depth prediction for
single-step predicted images (green) and for depths estimated from intermediate features (blue) for
SD1.5 generation. Right: RMSE between control depth and DPT depth prediction for single-step
predicted images (green) and for depths estimated from intermediate features (blue) for ControlNet.

We hypothesize that this degradation arises from the poor quality of single-step predictions at highly
noisy timesteps. In early denoising stages, the single-step image predictions are extremely blurry and
fall outside the domain expected by pretrained depth estimators. Fig. 3 illustrates this effect: from
around 400 steps onward, single-step predictions become increasingly blurry, leading to unreliable
DPT depth estimates. This is further supported in Fig. 2, where RMSE increases substantially at
early steps (green line) for both SD1.5 and ControlNet generations. Consequently, the extracted
depth maps are inaccurate and misaligned with ground-truth depth map of an image, propagating
errors during training.

Input
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Figure 3: Results of one-step prediction (top) at varying noise levels (low → high), with correspond-
ing depth maps predicted by the DPT estimator Ranftl et al. (2021) (middle) and by intermediate
UNet features (bottom).
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Figure 4: Pipeline overview. Schematic illustration of our InnerControl framework, emphasizing
the integration of the alignment loss. The key difference from ControlNet++ is the Alignment
module, which processes intermediate features extracted from the UNet decoder. These features are
passed through an aggregation network to predict spatial control signals (e.g., depth or edge maps),
which are then compared with the input control cspat to enforce consistency at every denoising step.

4.2 ALIGNMENT ON EARLY STEPS

While standard discriminative models such as DPT Ranftl et al. (2021) struggle to extract reliable
control signals from blurry images, prior work has shown that intermediate diffusion features al-
ready encode spatial structure information even at early stages of generation Chen et al.. Motivated
by this, instead of relying on discriminative models for images, we propose training a lightweight
convolutional network H(·, t) to estimate the control signals directly from intermediate diffusion
features at every denoising step. This idea is inspired by Readout Guidance Luo et al. (2024), which
trains small timestep-conditioned models to extract signals from diffusion features. To validate the
effectiveness of intermediate feature-based signal estimation, we compare the predictions of H(·, t)
with those of the standard DPT depth estimator Ranftl et al. (2021) (Fig. 3). Depth prediction accu-
racy and control alignment were measured using RMSE between the two approaches: DPT applied
to single-step predictions versus H(·, t) applied to intermediate features.

Our results demonstrate that H(·, t) predicts results more aligned with the final depth prediction for
SD1.5, especially at the early stage of generation Fig. 2. Additionally, H(·, t) proves to be more
stable for ControlNet generation, maintaining consistent signal estimation throughout the entire de-
noising trajectory (Fig. 2, Right). These findings indicate that intermediate features provide more
robust signal predictions, enabling accurate control signal estimation even in high-noise regimes.
By leveraging H(·, t) to enforce alignment at early stages of generation, we introduce InnerControl
– the method that suggests the new training objective that addresses the misalignment that appeared
in the previous approaches:

Lalignment = L (cspatial, Ht) (7)
where Ht = H (ControlNet(cspat, ctxt, xT , t), t) is the lightweight convolutional estimator applied to
ControlNet features at timestep t.

This loss is applied during training to improve control alignment. The additional alignment block is
illustrated in Fig. 4.

For the final training objective, we use a weighted combination of the standard diffusion loss 4,
reward loss at the early denoising stage 6, and the additional alignment loss 7:

Ltraining = Ldiffusion + α · Lreward + β · Lalignment (8)

6
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This additional loss penalizes discrepancies between cspatial and ĉspatial at each timestep t, enforc-
ing spatial alignment throughout the denoising process and resulting in improved control correspon-
dence and image fidelity, without visible artifacts compared to reward loss at early steps (Fig. 1).

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets. Our method was evaluated on multiple datasets, corresponding to a specific task. We eval-
uated LineArt and HED conditioning on the MultiGen-20M dataset Qin et al. (2023), a large-scale
synthetic dataset containing paired images and control signals. For depth estimation, we utilized the
corresponding MultiGen-20M depth dataset, which provides precomputed depth maps generated
using standard monocular depth estimation techniques. Segmentation experiments were conducted
on ADE20K Zhou et al. (2019; 2017).
Implementation details. To ensure a fair comparison, we trained our model, ControlNet++ Li et al.
(2024) and Ctrl-U Zhang et al. (2024) under identical experimental settings. For each type of con-
trol, we first finetuned the pretrained ControlNet model using the AdamW optimizer with a learning
rate of 10−5. This stage runs for 5k iterations for segmentation and 10k iterations for all other tasks.
After finetuning, we continue training for another 5k iterations for segmentation and 10k iterations
for the remaining tasks, using the same optimization settings and the proposed loss 8. Specifically,
the proposed Lalignment loss was applied over different ranges of diffusion steps: [920, 0] for depth,
[800, 0] for HED, [700, 0] for LineArt, and [980, 450] for segmentation. The reward loss was applied
over 200 steps for the LineArt and segmentation tasks, and over 400 steps for the depth and HED
tasks. All experiments used 512 × 512 images with a batch size of 256. See the supplementary
material for detailed model settings.
Baselines. We compare our method against several competitors, including T2I-Adapter Mou et al.
(2024), ControlNet v1.1 Zhang et al. (2023), GLIGEN Li et al. (2023b), Uni-ControlNet Zhao et al.
(2023) and and UniControl Qin et al. (2023) and ControlNet++ Li et al. (2024) and CTRL-U Zhang
et al. (2024). Most of these methods are based on SD1.5 for text-to-image generation, but we
additionally include several models based on SDXL Podell et al. (2023): ControlNet-SDXL and
T2I-Adapter-SDXL, following the evaluation protocol suggested in CTRL-U Zhang et al. (2024).
For a fair comparison, all models were evaluated under identical image conditions and text prompts,
using guidance scale 7.5.
Metrics and evaluation. We evaluate alignment fidelity using task-specific metrics: Structural Sim-
ilarity Index (SSIM) between generated edges and input control signals, Root Mean Squared Error
(RMSE) between predicted and ground-truth depth maps and mIoU for the segmentation task. All
metrics were computed on the 512 × 512 images to ensure consistency. To reduce stochastic vari-
ance, we generated 4 independent sample batches with different random seeds and reported the mean
metrics. More information about evaluation models can be found in the supplementary material.

5.2 EXPERIMENTAL RESULTS

Comparison of Controllability. We summarize the results on control alignment quality in Table 1.
Our method achieves notable improvements over the baselines for both depth and segmentation
estimation: RMSE is reduced by 5.6% and the mean Intersection over Union (mIoU) is improved
by 5.6% compared to ControlNet++ Li et al. (2024). These results highlight stronger alignment with
the control signals, particularly under high guidance intensity. Furthermore, for edge-based control
tasks (LineArt and HED), our approach outperforms both ControlNet++ and CTRL-U in terms of
SSIM.

Comparison of Image Quality. To evaluate the perceptual quality of generated images, we report
the Fréchet Inception Distance (FID) Heusel et al. (2017) for all evaluated methods at a guidance
scale of 7.5. As shown in Table 1, our method achieves the best controllability metrics without
sacrificing FID. Moreover, for both depth and segmentation control tasks InnerContol improves the
image quality of ControlNet++ Li et al. (2024). While our FID scores are not as strong as CTRL-U
for the LineArt and segmentation tasks, we obtain substantially higher controllability, outperforming
it by 5% on LineArt and 9% on segmentation. Finally, we note that our alignment loss could also
be integrated into the CTRL-U Zhang et al. (2024) pipeline, which represents a promising direction
for future work.

7
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Method T2I Model Hed Edge LineArt Edge Depth Map Segmentation
SSIM ↑ FID ↓ SSIM ↑ FID ↓ RMSE ↓ FID ↓ mIoU ↑ FID ↓

Guidance scale = 7.5

ControlNet SDXL — — — — 40.00 — — —
T2I-Adapter SDXL — — 0.639 — 39.75 — — —
T2I-Adapter SD1.5 — — — — 48.40 22.52 — —
Gligen SD1.4 0.563 — — — 38.83 18.36 — —
Uni-ControlNet SD1.5 0.691 17.1 — — 40.65 20.27 — —
UniControl SD1.5 0.797 16.0 — — 39.18 18.66 — —
ControlNet SD1.5 0.762 15.4 0.705 17.4 35.90 17.76 32.60 41.1
ControlNet++ SD1.5 0.822 13.0 0.840 13.2 27.63 18.59 38.08 39.04
Ctrl-U SD1.5 0.820 13.2 0.810 12.5 26.50 18.67 36.95 35.00
InnerControl (Ours) SD1.5 0.826 13.0 0.850 13.5 26.09 18.29 40.22 37.65

Table 1: Unified comparison on the MultiGen-20M benchmark. Controllability is evaluated using
SSIM (↑) for HED/LineArt, RMSE (↓) for depth, and mIoU (↑) for segmentation; fidelity is mea-
sured by FID (↓)

Qualitative Analysis. We present a qualitative comparison of image generations, showing side-by-
side results from our method, ControlNet Zhang et al. (2023), ControlNet++ Li et al. (2024), and
CTRL-U Zhang et al. (2024) under identical prompts and control signals (i.e., depth maps, segmen-
tation maps, HED edges, and LineArt edges) at a guidance scale of 7.5. As highlighted in Figure 5,
we observed misalignments between the input conditions and the generated results of the compet-
ing models. Specifically, ControlNet produced noisy edges for both LineArt and HED control tasks,
while ControlNet++ and CTRL-U generated images with noticeable artifacts and inconsistent object
distances when using depth control. Furthermore, all competitor models exhibited inaccurate object
placement relative to the input segmentation mask during the segmentation task.

5.3 ABLATION

Alignment steps ablation. We conducted an ablation study to analyze how the application of align-
ment and reward losses across different diffusion denoising steps affects performance (Table 5).
Specifically, we trained ControlNet models with alignment (Lalignment) and reward (Lreward) losses
applied to varying subsets of denoising steps. All models were initialized from open-source Con-
trolNet weights for depth estimation and trained under identical conditions (same seed, iteration
count, and optimizer settings). Our experiments show that integrating alignment loss into both Con-
trolNet and ControlNet++ training pipelines improves control alignment (RMSE) and image quality
(FID). However, using alignment loss alone is less effective than reward loss.

We further investigated the impact of extending the alignment loss to different numbers of denoising
steps. Unlike reward loss, applying alignment loss to early steps does not increase FID. For this
reason, in our main experiments, we apply alignment loss across 920 denoising steps.

Method Steps Steps Reward RMSE ↓ FID ↓ CLIP ↑
Guidance scale = 7.5

ControlNet 0 0 33.95 18.61 32.175
ControlNet 920 0 32.80 18.55 32.05
ControlNet 0 920 25.70 22.43 31.43
ControlNet 0 200 29.66 18.51 32.11
ControlNet 200 200 28.93 18.32 32.06
ControlNet 400 200 28.56 18.57 32.00
ControlNet 600 200 28.41 18.52 31.99
ControlNet 920 200 27.50 18.22 31.92

Table 2: Ablation study on the Depth Map control task from the MultiGen-20M benchmark, analyz-
ing the influence of the number of timesteps over which reward and alignment losses are applied.
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Figure 5: Qualitative Comparison with Baselines: Side-by-side results for LineArt (top), HED
and Depth (middle) and segmentation control (bottom) using identical prompts and a guidance scale
of 7.5. Our method produces results that are more accurate and better aligned with the input controls
compared to competing approaches.

6 CONCLUSION

In this work, we address the challenge of improving ControlNet controllability by refining its train-
ing objective to enforce consistency between the input controls and intermediate diffusion features.
We analyze the limitations of previous reward-based approaches, ControlNet++Li et al. (2024) and
CTRL-U Zhang et al. (2024), which focus on control alignment during the final diffusion steps
while neglecting early denoising stages, where spatial structure predominantly emerges Chen et al..
To overcome this limitation, we propose improved training strategy, that utilizes a lightweight con-
volutional network that extracts control signals from intermediate features at every diffusion step.
This allows us to enforce an explicit alignment loss across the entire sampling trajectory. We con-
ducted experiments on four distinct control benchmarks – LineART, HED, segmentation, and depth
map control. Our results consistently demonstrate that this alignment strategy significantly improves
controllability. Crucially, it achieves this without decreasing image quality, and in the case of depth
and segmentation maps, it actually leads to an improvement in image quality. These results highlight
the importance of enforcing consistency throughout the entire diffusion trajectory and underscore
the great potential of our approach for future studies.

6.1 REPRODUCIBILITY STATEMENT.

For complete reproducibility, we conducted our training using fixed seeds across all competitors. We
provide detailed information regarding the training and evaluation procedures A.1, 5.1, including
the optimizer used, the number of steps, and the specific hyperparameters chosen for training our
models A.1. Since our experiments rely on publicly available datasets, all reported results can be
fully reproduced.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Training details. We utilize the same α for the reward loss weights as suggested in ControlNet++:
0.5 for the depth and segmentation control, 1 for the HED and 10 for LineArt control with a timestep
threshold of 200 steps for LineArt and segmentation tasks and 400 steps for depth and HED control.
For the alignment loss, training details are presented in the Table 4. Datasets information is shown
in Table 3. The training was conducted on 8H100 GPUs and took around 6 hours. Our codebase is
based on the implementation in HuggingFace’s Diffusers Von Platen et al. (2022).

Reward models details. We additionally provide information about reward models in Table 4.
Following ControlNet++ Li et al. (2024) and CTRL-U Zhang et al. (2024) we utilize a slightly
weaker model as the reward model for depth estimation and segmentation control training and a
stronger model for evaluation. For HED and LineArt we use the same models as proposed in Con-
trolNet Zhang et al. (2023).

Segmentation mask HED Edge LineArt Edge Depth Map
Dataset ADE20K Zhou et al. (2019; 2017) MultiGen20M Qin et al. (2023) MultiGen20M Qin et al. (2023) MultiGen20M Qin et al. (2023)

Training Samples 20,210 2,560,000 2,560,000 2,560,000

Evaluation Samples 2,000 5,000 5,000 5,000

Evaluation Metric mIoU ↑ SSIM ↑ SSIM ↑ RMSE ↓

Table 3: Datasets and evaluation details for explored tasks. ↑ denotes higher is better, ↓ – lower is
better.

Segmentation Mask Depth Edge Hed Edge LineArt Edge

Reward Model (RM) UperNet-R50 DPT-Hybrid ControlNet∗ ControlNet∗

RM Performance ADE20K(mIoU): 42.05 NYU(AbsRel): 8.69 - -

Evaluation Model (EM) Mask2Former DPT-Large ControlNet∗ ControlNet∗

EM Performance ADE20K(mIoU): 56.01 NYU(AbsRel): 8.32 - -

Reward Loss CrossEntropy Loss MSE Loss MSE Loss MSE Loss
Loss Weight α 0.5 0.5 1.0 10.0
Steps threshold 200 400 400 200

Alignment Loss CrossEntropy Loss MSE Loss Sparse MSE Loss MSE Loss
Loss Weight β 0.05 1.0 0.1 2.0
Steps threshold [450, 980] [0, 920] [0, 800] [0, 700]

Table 4: Details about some training parameters and reward models. ControlNet∗ denotes utilizing
the same model to extract signal as ControlNet Zhang et al. (2023)

Additional ablations. We conducted additional experiments to explore the impact of the alignment
loss coefficient β and the specific timesteps during which the alignment loss is applied for the seg-
mentation task. The results of this ablation study are presented in Tables 6 and 5. The data indicates
that the segmentation model is more efficient and performs better when the alignment loss is applied
during the second part of the diffusion generation timesteps.

β loss g.s. RMSE FID CLIP
0.5 MSE 7.5 26.09 17.82 31.72
1 MSE 7.5 26.09 18.29 32.00
2 MSE 7.5 26.21 18.24 31.82
5 MSE 7.5 25.98 18.08 31.68

Table 5: Ablations on different loss β for alignment loss for depth control task.

Comparison of CLIP Score. To estimate prompt alignment, we calculate CLIP-Score metrics,
providing the results in Table 7. We calculate CLIP metrics for ControlNet++ and CTRL-U using
our trained versions. We observe that while providing more aligned and quality images, we remain
at the same CLIP score level in various setups.
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β steps loss g.s. mIoU FID CLIP
0.05 [400, 980] CrossEntropy 7.5 40.22 37.7 30.2
0.1 [450, 980] CrossEntropy 7.5 41.68 40.9 29.90
0.1 [400, 980] CrossEntropy 7.5 41.68 43.0 29.91
0.1 [450, 920] CrossEntropy 7.5 40.20 41.1 26.25

Table 6: Ablations on different β and steps for for alignment loss for segmentation control task.

Method T2I Model Hed LineArt Depth Segmentation
CLIP ↑ CLIP ↑ CLIP ↑ CLIP ↑

Guidance scale = 7.5

T2I-Adapter SD1.5 — — 31.46 —
Gligen SD1.4 — — 31.48 —
Uni-ControlNet SD1.5 31.94 — 31.66 —
UniControl SD1.5 32.02 — 31.68 —
ControlNet SD1.5 31.46 31.26 32.05 30.6
ControlNet++ SD1.5 32.05 31.87 32.0 30.9
Ctrl-U SD1.5 32.05 31.88 31.9 31.2
InnerControl (Ours) SD1.5 32.05 31.78 32.0 30.2

Table 7: Per-condition semantic alignment measured by CLIP-score (↑).

Alignment models details For our work, we utilize the architecture for H(·, t) from ReadoutGuid-
ance Luo et al. (2024). Following Luo et al. (2024), we build an aggregation network that takes
features from the UNet decoder, and applies bottleneck layers He et al. (2016) to standardize the
channel count and aggregate with a learned weighted sum. Additionally, these models use pre-
trained timesteps embedding for model conditioning to make predictions on each diffusion step. In
order to achieve better results, we add slight modifications to model’s architecture. For the depth
control task, where we utilize the self-attention features from the UNet decoder instead of convolu-
tional features, as it provides slight improvements in MSE metrics (see Figure 6). To improve edge
control, such as HED Edge and LineArt Edge, we resize all features from the UNet decoder to a size
of 128 instead of the original 64 and add a 2D transposed convolution operator in the output head to
upsample the image. With these modifications, thin lines in this group of controls are extracted more
accurately. For segmentation maps used as input controls, we employ our main baseline model, as
it already demonstrates strong performance.

The models were trained for 10000 steps for edge tasks and 5000 for depth and segmentation using
the Adam optimizer with a batch size of 8, while the learning rate was kept fixed at 1e-3 through-
out training. For training, we employed several datasets: ADE20K Zhou et al. (2019; 2017) for
the segmentation task, PascalVOC Everingham et al. (2010) to annotate custom controls for HED
Edges with the HED model and LineArt Edges using extractors proposed in ControlNet Zhang et al.
(2023)), and DPT Ranftl et al. (2021) for depth estimation. The approximate training time of a sin-
gle model on an NVIDIA V100 GPU was about 2.5 hours. The main loss function used across all
models was mean squared error (MSE), except for the segmentation task, where cross-entropy loss
was applied.

For a more detailed look, we provide additional visualizations of the intermediate control signals,
including the extracted depth, segmentation maps, and edges (HED and LineArt), in Figs 7, 9, 8,
and 10. These figures reveal that standard discriminative models struggle to extract precise control
information from blurred images, especially for depth and segmentation estimation tasks.

Intermediate features. We compared extracted feature alignment with the control for the depth
estimation task, Fig 11. The top row illustrates that after ControlNet training, extracted depth maps
exhibit high correspondence with the input control signal across different steps. This visualization
proves the efficiency of alignment across the sampling trajectory, improving alignment not only of
extracted features but also the resulting generated image.
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Figure 6: Quality comparison for attention-based and convolution-based predictions for depth maps
extraction task

Figure 7: Visualization of one-step prediction, estimated depth of the generated image, correspond-
ing DPT depth estimation, and depth extracted from intermediate features.

Figure 8: Visualization of one-step prediction, estimated HED of the generated image, correspond-
ing HED estimation, and HED extracted from intermediate features.

A.2 LIMITATIONS.

The main limitation of our approach is the quality of small convolutional neural nets for signal es-
timation from intermediate features. Due to their small parameter count and shallow design, these
models may struggle to predict fine-grained spatial details, such as thin edges. However, we empha-
size that this limitation is not intrinsic to the method itself. Our framework may utilize any model
capable of extracting a signal at each timestep. This opens a promising direction for developing a
better model in future work.
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Figure 9: Visualization of one-step prediction, estimated segmentation mask of the generated image,
corresponding segmentation maps, and segmentation maps extracted from intermediate features.

Figure 10: Visualization of one-step prediction, estimated LineArt of the generated image, corre-
sponding LineArt estimation, and LineArt extracted from intermediate features.
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Figure 11: Visualization of difference between extracted signal from intermediate features and input
control after our training applied (top) and for standard ControlNet (bottom)

A.3 ETHIC STATEMENT

Our method, built upon the Stable Diffusion 1.5 model, consequently inherits all its possible prob-
lematic biases and limitations.

A.4 MORE VISUALIZATIONS

We also provide visualizations for different control types for InnerControl generation. The results
are shown in Figures 12,13,14.
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 Generated Images & Extracted ConditionsImage & Condition

Figure 12: More visualizations for InnerControl (ours) method (depth maps)
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 Generated Images & Extracted ConditionsImage & Condition

Figure 13: More visualizations for InnerControl (ours) method (LineArt)
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 Generated Images & Extracted ConditionsImage & Condition

Figure 14: More visualizations for InnerControl (ours) method (HED)
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