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Abstract

We study the problem of semi-supervised learning with Graph Neural Networks (GNNs) in
an active learning setup. We propose GraphPart, a novel partition-based active learning
approach for GNNs. GraphPart first splits the graph into disjoint partitions and then selects
representative nodes within each partition to query. The proposed method is motivated
by a novel analysis of the classification error under realistic smoothness assumptions over
the graph and the node features. Extensive experiments on multiple benchmark datasets
demonstrate that the proposed method outperforms existing active learning methods for
GNNs under a wide range of annotation budget constraints. In addition, the proposed
method does not introduce additional hyperparameters, which is crucial for model training,
especially in the active learning setting where a labeled validation set may not be available.

1 Introduction

Recently, Graph Neural Networks (GNNs) (Kipf & Welling, 2017; Hamilton et al., 2017; Wu et al., 2019a;
Veličković et al., 2018) have been drawing increasing research interest, due to its numerous successes in
various applications. In particular, GNNs have shown superior performance in Graph-based Semi-Supervised
Learning (GSSL), a family of problems where individual samples are inter-connected by an underlying graph,
and GNNs provide a flexible method to leverage the information stored in the graph to assist learning.

In this paper, we investigate the problem of GSSL with GNNs in an active learning setup (Settles, 2012),
where one is allowed to actively query node labels on the graph given a limited annotation budget. The
active learning setup is particularly interesting in the context of GSSL as we usually have access to abundant
unlabeled samples prior to learning and, in many cases (e.g., on a social network), we have the flexibility
to query the labels for a small portion of the samples. Furthermore, since a key advantage of GNN is the
ability to utilize the relational information among the inter-connected samples, properly selecting nodes to
annotate may further enhance GNN’s performance.

∗Equal contribution.
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However, directly adapting conventional active learning methods to GSSL may be sub-optimal due to the
special structure of the problem and the GNN models. Indeed, utilizing proper smoothness properties of the
data has been a key ingredient for the success of many active learning methods. For example, a commonly
used assumption (which we call feature smoothness) is that samples with similar features have higher chances
to fall into the same class. In addition to feature smoothness, real-world GSSL tasks often leverage multiple
types of smoothness properties over the graph, spanning the spectrum between local smoothness and global
smoothness (Zhou et al., 2004). Local smoothness usually relies on the pairwise Euclidean distance between
node representations, which becomes less informative in high-dimensional space (Aggarwal et al., 2001).
Global smoothness, on the other hand, is a commonly seen phenomenon in graph-structured data and serves
as a great supplement to the local smoothness. While there exist graph-based active learning methods
utilizing some of these smoothness properties (Gu & Han, 2012; Ji & Han, 2012; Dasarathy et al., 2015; Cai
et al., 2017; Wu et al., 2019b), methods that fully utilize feature and structural smoothness at the proper
level are rare.

We propose GraphPart, a Graph-Partition-based active learning method for GNNs. The method is largely
motivated by the community structures that are commonly present in real-world graphs. Node and struc-
tural properties often exhibit homogeneity within a community and heterogeneity across communities. We
formalize this observation with proper smoothness assumptions of the graph-structured data at community
level (represented by partitions of the graph) and conduct a novel analysis of the GNN classification er-
ror under such assumptions. The analysis further motivates the graph-partitioning step in the proposed
method, GraphPart. In particular, GraphPart first splits the graph into several partitions based on modu-
larity (Clauset et al., 2004) and then selects the most representative nodes within each partition to query.
An important merit of the proposed method is that it does not introduce additional hyperparameters, which
is crucial for active learning setups as labeled validation data are often absent. Through extensive experi-
ments, we demonstrate that the proposed method outperforms existing active learning methods for GNNs
on multiple benchmark datasets for a wide range of annotation budgets. In addition, the proposed active
learning method is able to mitigate the accuracy disparity phenomenon of GNNs (Ma et al., 2021).

2 Related Work

Active learning is a sub-field of machine learning that primarily concerns the bottleneck in expensive anno-
tation and attempts to achieve high accuracy by querying as few labeled samples as possible. Early efforts in
this field prior to the emergence of deep learning have been comprehensively summarized by (Settles, 2012).

Active Learning Setups. The classic active learning algorithms query one sample at a time and label it.
Such a setting is inefficient for a deep learning model as it frequently retrains but updates little, and it is
prone to overfitting (Ren et al., 2020). Therefore, in deep active learning, the batch-mode setting, where
a diverse set of instances are sampled and queried, is more often considered. In recent years, the optimal
experimental design principle (Pukelsheim, 2006; Allen-Zhu et al., 2020) motivates the machine learning
community to minimize the use of training resources and avoid tuning on a validation set. Combining the
settings of one-shot learning and batch-mode active learning, some recent studies (Contardo et al., 2017; Wu
et al., 2019b) adopt a one-step batch-mode active learning setting. In each run, the algorithm uses up the
predefined budget to select a batch of nodes to label. The querying process is done once and for all in order
to minimize retraining. We focus on such one-step batch-mode setup as we concern with active learning for
graph neural networks.

Active Learning on Graphs. Early works in active learning on graphs (Bilgic et al., 2010; Gu & Han, 2012;
Ji & Han, 2012; Dasarathy et al., 2015) are designed specifically for non-deep-learning models and/or fail to
take the node features into consideration. As deep geometric learning and GNNs become popular, iterative
node selection criteria were designed upon the expressiveness of GNNs. In particular, AGE (Cai et al., 2017)
evaluates the informativeness of nodes by linearly combining centrality, density, and uncertainty, (Gao et al.,
2018) further proposed ANRMAB, which extends this framework by dynamically learning the weights with a
multi-armed bandit mechanism and maximizing the surrogate reward. Similarly, (Chen et al., 2019) follows
previous works and proposed ActiveHNE, which extends AL on non-i.i.d data and heterogeneous networks.
The above frameworks neglect interaction between nodes and suffer from sub-optimality due to short-term
surrogate criteria. Upon this observation, (Hu et al., 2020a) proposes GPA, which formalizes the AL task
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as a Markov decision process and learns the optimal query strategy with reinforcement learning techniques.
More recent works approached the problem by incremental clustering (Liu et al., 2020), and adversarial
learning (Li et al., 2020). Yet, all of these models are based on an iterative setting. Given some efforts to
avoid validation (Regol et al., 2020), iterative querying and retraining is still required.

Another line of optimization-based approaches develops active learning algorithms by investigating the upper
bounds of the classification loss. FeatProp (Wu et al., 2019b) is one of the state-of-the-art active learning
approaches for GNNs, which derives an upper bound of the node classification error under smoothness
assumptions over the label distributions and GNN models. The theoretical analysis by (Wu et al., 2019b)
follows prior work, including ANDA (Berlind & Urner, 2015) which proves a finite sample bound on the
expected loss of KNNs in the covariate shift setting, and Coreset (Sener & Savarese, 2018) which conducts
an analysis on Convolution Neural Networks. A common pattern of the active learning algorithms along
this line is that the algorithms seek to select a set of nodes that achieves a good coverage of the space of
sample features or hidden representations, and this is typically done via certain clustering algorithms. Our
work falls into this category. Compared to existing methods, our method utilizes both the local and global
smoothness properties of graph-structured data, where the latter was largely missing in the literature on
active learning for GNNs so far.

3 Preliminaries
3.1 Notations

We start by introducing useful notations to characterize node classification with GNNs.

Attributed Graph The task of node classification is defined on an attributed graph. Define [n] =
{1, 2, · · · , n}. We denote a graph of size n as G = (V, A), where V = [n] is the set of nodes and A ∈ {0, 1}n×n

is the adjacency matrix. Each node i ∈ V is associated with a d-dimensional feature vector xi ∈ X ⊆ Rd,
and a label yi ∈ Y = [C], where C is the number of classes. Denote X ∈ Rn×d as the feature matrix
stacking each node feature. Given the original adjacency matrix A, the degree matrix D ∈ Rn×n is defined
as Dii =

∑
j Aij ,∀i ∈ V , and Dij = 0,∀i, j ∈ V , i ̸= j. We denote S as the normalized adjacency matrix

with added self-loops: S = (I + D)− 1
2 (A + I)(I + D)− 1

2 .

Graph Neural Networks GNNs are a family of neural networks modeling graph-structured data. A
GNN model is typically defined with two types of operations on the node representations: aggregation and
transformation. For example, an L-layer Graph Convolution Network (GCN) (Kipf & Welling, 2017) can be
recursively represented by a series of aggregation operations g

(l)
GCN and transformation operations h

(l)
GCN, for

l = 1, . . . , L, defined as follows,

H̃(l) = g
(l)
GCN(H(l−1), G) := SH(l−1), and

H(l) = h
(l)
GCN(H̃(l)) := ReLU(H̃(l)W (l))

where H(0) = X is the feature matrix, ReLU(·) is the element-wise rectified-linear unit activation func-
tion (Nair & Hinton, 2010), and W (l) is the parameter matrix for the transformation operation h

(l)
GCN.

Noticing that, in most GNNs, the prediction for each node only depends on a local neighborhood of that
node, we can define a general GNN as a function that maps a local neighborhood of a node to its classification
predictions. Define N (L)(i) as the set of all neighboring nodes of node i that can be reached within L-hop
on the graph (including itself), and G

(L)
i as the subgraph of G restricted on N (L)(i). For each node i, define

v
(L)
i :=

(
{xj}j∈N (L)(i), G

(L)
i

)
, which is a tuple including all the node features and the subgraph in node i’s

local neighborhood. Let V(L) be the space of such possible v
(L)
i . Then we can define a GNN as a function

f : V(L) → RC .

In our later analysis in Section 4.1, we will consider a type of abstract GNNs in the form of f = h ◦ g, where
the aggregation operation g : V(L) → Rd′ and the transformation operation h : Rd′ → RC are separated. In

3



Published in Transactions on Machine Learning Research (03/2023)

particular, g can represent any types of feature aggregation on the L-hop ego-network of a node. And h is
a transformation function with learnable parameters, which is often modeled by a Multi-Layer Perceptron
(MLP). Some recently developed GNN models, such as SGC (Wu et al., 2019a) and APPNP (Klicpera et al.,
2019), are special cases of this form.

In the rest of our paper, we omit the superscription (L) in notations for simplicity.

Margin Loss Given some γ ≥ 0, the margin loss (Neyshabur et al., 2018) on a GNN classifier f : V → RC

for a given labeled sample (vi, yi) is defined as follows,

Lγ(f(vi), yi) := 1
[
f(vi)[yi] ≤ γ + max

c̸=yi

f(vi)[c]
]
, (1)

where 1(·) is the indicator function. When we set γ = 0, L0 corresponds to the 0-1 classification error.

3.2 Active Learning for Graph Neural Networks

In this work, we focus on the one-step batch-mode active learning setup (Contardo et al., 2017; Wu et al.,
2019b) for node classification using GNNs. Suppose there is an attributed graph where the graph structure
and the node features are known but the node labels are unobserved. We assume that for each node i, the
node label yi is a random variable following a conditional distribution Pr[yi | vi].

At the beginning of learning, we are given a small set s0 ⊆ V of nodes being labeled, which we call a seed
set. Given all the node samples {vi}i∈V and labels on the seed set {yi}i∈s0 , for a fixed annotation budget
b > 0, an active learning algorithm aims to carefully select a set of nodes s1 ⊆ V \ s0 and |s1| ≤ b, query the
labels on s1, and train a GNN model f̂ based on the labeled data {(vi, yi)}i∈s0∪s1 , such that the expected
classification error on the remaining unlabeled set is small.

4 A Graph-Partition-Based Active Learning Framework

The key motivation of the proposed method is that many real-world graphs present community structures,
which induces a proper level of smoothness properties in the graph-structured data. In this section, we first
formalize this motivation through an analysis of the GNN performance given proper smoothness assumptions,
and then introduce the proposed graph-partition-based active learning approach.

4.1 An Analysis of Expected Classification Error Under Smoothness Assumptions

The main result of our analysis is an upper bound (Proposition 1) on the quantity Eyi
L0(f(vi), yi), the

expected classification error for a node i and a fixed GNN model f .

Assumptions We first state the set of assumptions in order to establish the upper bound. Denote a
K-partition of the graph as TK = {T1, T2, · · · , TK}, where T1, . . . , TK ⊆ V are disjoint partitions satisfying⋃K

k=1 Tk = V . Recall that we consider GNNs in the form of f = h ◦ g, where g : V → Rd′ is a feature
aggregation function and h : Rd′ → RC is an MLP that takes the aggregated features as input and output
the classification logits. We make the following two assumptions on the smoothness of the label distribution
and the model.
Assumption 1 (Label Smoothness). Assume that ∀c ∈ [C], there exists a function ηc : V → [0, 1] such that
Pr[yi = c | vi] = ηc(vi) for any i ∈ V . Moreover, ∀k ∈ [K], ∀i, j ∈ Tk, assume that there exists a constant
δη <∞, such that

|ηc(vi)− ηc(vj)| ≤ δη||g(vi)− g(vj)||2.

Assumption 2 (Model Smoothness). Assume that ∀e, e′ ∈ Rd′ , the MLP h satisfies ||h(e) − h(e′)||∞ ≤
δh||e− e′||2 for some constant δh <∞.
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The Main Result We use T (i) to denote the partition where the node i belongs to, and denote for
convenience the training set Str := s0 ∪ s1 and the test set Ste := V \ Str. We have the following result.
Proposition 1. For any fixed GNN model f , under Assumptions 1 and 2, for any i ∈ Ste, if Str ∩T (i) ̸= ∅,
letting τ(i) := arg minl∈Str∩T (i) ∥g(vi)− g(vl)∥2, εi := ∥g(vi)− g(vτ(i))∥2, and γi := 2δhεi, then we have

Eyi
[L0(f(vi), yi)] ≤ Cδηεi + Eyτ(i) [Lγi

(f(vτ(i)), yτ(i))]. (2)

Proposition 1 provides an upper bound of the expected classification loss Eyi
[L0(f(vi), yi)] for each node i

in the test set Ste. This upper bound is primarily dependent on the training node τ(i) and their distance
εi on the aggregated feature space, where τ(i) is the closest training node to i among the ones residing in
the same graph partition as i. Specifically, the first term is linearly proportional to εi; and the second term
(the expected margin loss of τ(i)) is increasing with respect to γi and hence is also increasing with respect
to εi. This upper bound motivates an active learning algorithm that selects the training set by minimizing∑

i∈Ste
εi, which we will introduce in detail in Section 4.2.

Remarks We make a few remarks on the bound (2) in comparison to relevant previous work. Our novel
technical contributions in the analysis include that 1) we have a weaker assumption on label smoothness;
and 2) our proof (Appendix A.1) removes an unrealistic implicit assumption in previous work.

First, our analysis can be viewed as an extension of the results by (Sener & Savarese, 2018) and (Wu et al.,
2019b). One key difference between our analysis and theirs lies in the assumption on label smoothness
(Assumption 1). Adapting the label smoothness assumption by (Sener & Savarese, 2018) and (Wu et al.,
2019b) into our notations gives the following Assumption 3.
Assumption 3 (Label Smoothness by (Sener & Savarese, 2018) and (Wu et al., 2019b)). Assume that
∀c ∈ [C], there exists a function ηc : V → [0, 1] such that Pr[yi = c | vi] = ηc(vi) for any i ∈ V . Moreover,
∀i, j ∈ V , assume that there exists a constant δ′

η <∞, such that

|ηc(vi)− ηc(vj)| ≤ δ′
η||g(vi)− g(vj)||2.

The following fact indicates that Assumption 1 is weaker than Assumption 3.
Lemma 1. If Assumption 3 holds, then there exists a constant δη ≤ δ′

η satisfying Assumption 1.

Intuitively, our Assumption 1 is weaker than Assumption 3 because the latter requires the smoothness
condition to hold on the entire graph, while our Assumption 1 only requires the smoothness condition
to hold within partitions of the graph. This difference also has a practical significance as Assumption 1
allows the label distributions to have sharp changes across different partitions of the graph, which is more
realistic than Assumption 3 that does not allow such sharp changes. In addition, the δη in Assumption 1
could be much smaller than the δ′

η Assumption 3 if the label distribution presents global smoothness over
the graph (Zhou et al., 2004), i.e., the distributions of node labels tend to be closer for nodes within a
partition/community of the graph than for nodes reside in different partitions/communities.

Second, while the upper bounds on classification error given by (Sener & Savarese, 2018) and (Wu et al.,
2019b) seem to be tighter than our bound (2), we remark that they made an implicit assumption in the
proofs that is counter-intuitive. In particular, the implicit assumption is that, the label distributions of the
selected training samples are always concentrated on one class. This assumption is counter-intuitive as the
selection of training samples alters the label distributions of those samples. We avoid such an assumption in
our analysis at the expense of introducing an extra margin loss term.

Finally, we remark that while GCN cannot be written in the form of f = h◦g as we assumed in our analysis,
it has been shown by (Wu et al., 2019b) that the difference between outputs of an L-layer GCN on two
nodes i, j ∈ V can be upper bounded by δGCN∥(SLX)i − (SLX)j∥2 for some constant 0 < δGCN < ∞. So
the analysis in this section can be similarly applied to GCN.

4.2 The Proposed Graph Partition-Based Active Learning Framework

The General Framework Motivated by Proposition 1, we propose an active learning framework that
selects the set of nodes to be labeled, s1, by solving the following optimization problem: for εi as defined in
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Algorithm 1 Graph-Partition-Based Query
Input: A K-partition TK of the graph, budget b
Output: A subset of unlabelled nodes s1 of size b: s1 ⊆ V \s0 and |s1| = b

1: Set s1 = ∅.
2: for Tk ∈ TK do
3: bk ← b//K.
4: Tk ← Tk \ {s0 ∪ s1}.
5: Ek ← {g(vi)}i∈Tk

.
6: s← bk-Medoids(Ek).

//Perform K-Medoids clustering on the set of data points Ek with bk medoids returned
as s.

7: s1 = s1 ∪ s.
8: end for
9: return s1

Proposition 1,
min

s1:|s1|≤b

∑
i∈Ste

εi = min
s1:|s1|≤b

∑
i∈V

min
j∈T (i)∩(s0∪s1)

||g(vi)− g(vj)||2. (3)

For any partition, Tk ∈ TK , if we further specify a budget bk for the number of nodes to be selected from
this partition, such that

∑K
k=1 = bk = b, then we can approximately1 re-write the optimization problem (3)

as K separate optimization problems as follows: for k = 1, . . . , K,

min
s(k)

1 ∈Tk:|s(k)
1 |≤bk,

∑
i∈Tk

min
j∈s(k)

1

||g(vi)− g(vj)||2, (4)

where the individual optimization problem (4) is equivalent to minimizing the objective of a K-Medoids
problem with bk medoids on the partition Tk.

Given a K-partition of the graph and a feature aggregation function g : V → Rd′ , we summarize the proposed
general framework, which we call it GraphPart (Graph-Partition-based query), in Algorithm 1. For the
K-Medoids algorithm, in practice, we apply an efficient approximation by (Park & Jun, 2009) by selecting
nodes closest to K-Means centers. The aggregation function g should be chosen according to the GNN
architecture that we will be training. For example, for a 2-Layer GCN model, we set g(vi) = (S2X)i for
any i ∈ V , since this type of aggregation function effectively reflects the output difference of GCN as we
remarked at the end of Section 4.1.

The Graph-Partition Method We use a modularity-based graph partition method, which is one of the
most popular classes of methods for community detection (Newman, 2004; Clauset et al., 2004). Specifi-
cally, we obtain a K-partition of a graph using the Clauset-Newman-Moore greedy modularity maximiza-
tion (Clauset et al., 2004) method. This method is a bottom-up algorithm, which begins with communities
containing every single node, and iteratively merges the pair of communities that increases modularity the
most, until K communities are left. If no pairs of communities can be merged to increase modularity
when more than K communities are left, we further use agglomerative hierarchical clustering (Kaufman
& Rousseeuw, 2009) to iteratively merge small outlying communities until only K communities are left.
Notably, we also propose a simple elbow method to automatically determine the number of partitions K
without the need for node labels. Therefore the whole active node selection process is hyperparameter-free.

Compensating for the Interference across Partitions One potential shortcoming of the proposed
GraphPart method shown in Algorithm 1 is that it ignores the interference across partitions as it optimizes
separate K-Medoids problems independently on each partition. The medoids selected on two different
partitions may be close to each other, which compromises the overall coverage of the unlabeled nodes. To
compensate for this problem, we come up with a greedy correction that when selecting the medoids in

1Omitting the seed set s0, which is 0 in the one-step setting.
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the partition Tk, we penalize the nodes that are close to the medoids already selected in the partitions
T1, T2, . . . , Tk−1. Instead of selecting nodes closest to K-Means centers, the distance function to minimize is
penalized by the minimum distance to any selected node. We name this corrected variant of GraphPart as
GraphPartFar, which makes sure that all the nodes returned to s1 are not too close and similar to each
other, increasing the diversity of the pool.

4.3 Complexity Analysis

We provide a complexity analysis as follows. In natural sparse networks, the number of edges m is often linear
in the number of nodes n. Under this approximation, the complexity of Clauset-Newman-Moore community
detection is O(n log2 n). The agglomerative hierarchical clustering after Clauset-Newman-Moore community
detection can be considered as O(1). Under a budget of b and d hidden channels, the K-Means++ has a
complexity of O(bnd/K2) on each of the K communities, adding up to O(bnd/K). Overall, the complexity
of the proposed methods is roughly linear in terms of the number of nodes n. Nevertheless, we note that in
a one-step active learning setup, the computational complexity of the active learning algorithms is usually
not the primary challenge. Instead, the cost of expert annotation is often the primary bottleneck problem.

5 Experiments

5.1 Experiment Setup

We experiment on 7 benchmark datasets and compare the proposed methods against several state-of-the-
art baseline active learning approaches on training 3 different GNN models. Following (Wu et al., 2019b),
we evaluate each baseline with a series of label budgets and report the Macro-F1 performance for node
classification over the full graph. Each experiment setting is repeated with 10 random seeds.

Dataset. We experiment on citation networks Citeseer, Cora, and Pubmed (Sen et al., 2008), three standard
node classification benchmarks. We also experiment on Corafull (Bojchevski & Günnemann, 2018) and
Ogbn-Arxiv (Hu et al., 2020b), for performance on denser networks with more classes, and on co-authorship
networks (Shchur et al., 2018) for diversity. The summary statistics of the datasets are provided in Table 1.
The homophily ratio is defined following Zhu et al. (2020). To determine the best number of K communities
in the graph, we find the elbow of the costs using the kneebow 2 toolkit. The value of K for each dataset is
illustrated in Figure 1.
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Figure 1: A summary of the number of partitions, automatically determined by the elbow method.

2https://pypi.org/project/kneebow/
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Table 1: Summary statistics of datasets.
Dataset #Nodes #Edges #Features #Classes (C) #Partitions (K) Homophily
Cora 2,708 5,278 1,433 7 7 0.810
Citeseer 3,327 4,552 3,703 6 14 0.736
Pubmed 19,717 44,324 500 3 8 0.802
Co-CS 18,333 81,894 6,805 15 6 0.808
Co-Physics 34,493 247,962 2,000 5 5 0.931
Corafull 19,793 126,842 8,710 70 7 0.567
Ogbn-Arxiv 169,343 1,166,243 128 40 9 0.655

GNN Models. We perform experiments over different popular GNN models, including a 2-layer GCN (Kipf
& Welling, 2017) with 16 hidden neurons, a 2-layer GraphSAGE (Hamilton et al., 2017) with 16 hidden
neurons and a 2-layer GAT (Veličković et al., 2018) with 8 attention heads with 8 hidden neurons each. For
Ogbn-Arxiv dataset, the number of hidden neurons is increased to 128. To train each model, we use an
Adam optimizer with an initial learning rate of 1 × 10−2 and weight decay of 5 × 10−4. As in the active
learning setup, there should not enough labeled samples to be used as a validation set, we train the GNN
model with fixed 300 epochs in all the experiments and evaluate over the full graph.

Baselines. We compare active learning methods that can be applied to the one-step setting, divided into
two categories: 1) general-purpose methods that are agnostic to the graph structure (Random, Density,
Uncertainty, and CoreSet); and 2) methods tailored for graph-structured data (Centrality, AGE, FeatProp,
GraphPart[Far]).

• Random: Chooses nodes uniformly at random.
• Density (Cai et al., 2017): First performs clustering on the hidden representations of the nodes, and

then chooses nodes with maximum density score, which is (approximately) inversely proportional to the
L2-distance between each node and its cluster center.

• Uncertainty (Settles & Craven, 2008): Chooses the nodes with maximum entropy on the predicted class
distribution.

• CoreSet (Sener & Savarese, 2018): Pperforms K-Center clustering over the hidden representations of
nodes. Since the MIP optimized version is not scalable to large datasets, we use the time-efficient greedy
approximation described in the original work.

• Centrality: Chooses nodes with the largest graph centrality metric value, which only considers only the
graph structure, but not the node features. As is empirically validated by (Cai et al., 2017), Degree
centrality and PageRank centrality outperform other metrics.

• AGE (Cai et al., 2017): defines the informativeness of nodes by linearly combining three metrics: cen-
trality, density, and uncertainty. It further chooses nodes with the highest scores.

• FeatProp (Wu et al., 2019b): first performs K-Means on the aggregated node features, and then chooses
the nodes closest to the cluster centers.

• GraphPart and GraphPartFar: Two variants of the proposed method as described in Section 4.2.

Active Learning Setup. In our one-step setting, we vanish the seed set s0 to zero. Note that some baseline
methods (Density, Uncertainty, CoreSet, and AGE) are intended for iterative settings and require an initial
model trained with the seed set s0, as these methods rely on the hidden representations of nodes or the
predicted class distribution returned by the initial model. For these baselines, we choose one-third of the
budget as random initialization, and let the method select the other two-thirds. On smaller datasets with
sparser networks and fewer classes, we test each active learning approach with the series of budgets chosen
as 2{0,1,2,3,4}×10. On the large datasets where the network is denser and the number of classes is drastically
larger, the budgets are chosen as 2{3,4,5,6,7} × 10.

Implementation Details. We adopt PyTorch Geometric (Fey & Lenssen, 2019) for dataset preprocessing
and model construction in our experiments. For CoreSet (Sener & Savarese, 2018), since the MIP optimized
version is not scalable to large datasets, we use the time-efficient greedy approximation version by choosing
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the node closest to the cluster centers. To adapt AGE (Cai et al., 2017) for the one-shot setting, we stick
to the default parameters in the original work (γ = 0.3 for Citeseer, γ = 0.7 for Cora and γ = 0.9 for
Pubmed. For benchmarks not mentioned, we set γ = 0.8. For methods that depend on K-Medoids, we apply
an efficient approximation by (Park & Jun, 2009) by initializing with K-Means++ (Arthur & Vassilvitskii,
2007) and selecting nodes closest to centers.

5.2 Experiment Results on GCN

We provide the active learning results of GCN on each dataset in Figure 2. We further provide the exact
average Macro-F1 scores and their standard errors in Table 2. For Ogbn-Arxiv, we reported both the
Macro and Micro (Accuracy) F1 scores. Overall, we observe in Figure 2 and Table 2 that the proposed
methods, GraphPart and GraphPartFar, outperform baseline methods in a wide range of budgets before the
performance saturates. On smaller datasets where the number of classes is relatively small, the proposed
methods outperform baseline methods by a large margin under a moderate budget size. On Corafull and
Arxiv where the number of classes is much larger, the proposed methods demonstrate advantages over
baseline methods (in particular, FeatProp) in a slightly later stage. This may be due to that some classes
were not yet fully visited so the model has not been learning reliably when the budget size is small. Indeed,
as shown in Figure 2d, 3a, the difference between our methods and FeatProp is not statistically significant
until the budget size is at least 160. As can be seen in Tables 3 on Ogbn-Arxiv benchmark, no statistically
significant difference can be observed from the Micro-F1 evaluation among the active learning methods when
the budget is larger than 320, but our methods significantly outperformed baselines on Macro-F1.

Table 2: Summary of the performance of GCN on each benchmark. The numerical values represent the
average Macro-F1 score of 10 independent trials and the error bar denotes the standard error of the mean
(all in %). For Ogbn-Arxiv, we also include the Micro-F1 score (accuracy) as standard practice. The
bold marker denotes the best performance and the underlined marker denotes the second-best performance.
Asterisk (*) means the difference between our strategy and the best baseline strategy is statistically significant
by a pairwise t-test at a significance level of 0.05.

Baselines Cora Citeseer Pubmed
Budget 20 40 80 10 20 40 10 20 40
Random 49.7 ± 9.7 60.7 ± 8.7 71.6 ± 5.0 28.4 ± 12.6 37.6 ± 6.7 48.9 ± 5.8 49.1 ± 11.4 55.7 ± 10.6 69.5 ± 6.2
Uncertainty 37.6 ± 8.2 55.2 ± 10.0 70.1 ± 6.4 18.8 ± 7.1 24.2 ± 5.7 42.8 ± 12.5 46.0 ± 11.5 54.7 ± 10.4 64.8 ± 9.2
Density 49.8 ± 8.6 58.7 ± 5.5 73.1 ± 4.1 22.6 ± 7.5 37.8 ± 9.0 47.5 ± 6.4 43.6 ± 9.8 52.1 ± 8.0 68.7 ± 5.3
CoreSet 50.6 ± 6.2 64.1 ± 5.3 73.4 ± 3.3 27.2 ± 6.6 36.3 ± 7.8 49.6 ± 7.5 45.3 ± 8.5 55.7 ± 13.0 66.3 ± 8.6
Degree 57.7 ± 0.6 61.1 ± 1.3 74.4 ± 0.5 19.1 ± 0.1 28.0 ± 0.3 38.5 ± 0.3 53.9 ± 1.9 51.2 ± 0.9 54.4 ± 0.7
Pagerank 35.1 ± 0.9 60.2 ± 1.2 70.8 ± 0.6 11.7 ± 0.3 33.0 ± 0.5 45.6 ± 0.9 45.5 ± 0.6 51.0 ± 0.6 66.4 ± 0.1
AGE 50.3 ± 5.0 66.7 ± 4.1 74.2 ± 2.7 20.9 ± 6.3 35.5 ± 9.2 45.2 ± 7.7 47.2 ± 9.9 65.2 ± 8.3 70.3 ± 8.0
FeatProp 71.0 ± 5.7 76.1 ± 2.5 79.9 ± 0.9 27.9 ± 5.5 42.9 ± 4.5 53.7 ± 4.5 59.1 ± 5.5 65.4 ± 5.2 75.1 ± 2.8
GraphPart 76.1* ± 2.7 78.1 ± 1.5 80.3 ± 1.6 45.0* ± 0.7 45.4 ± 4.1 59.0* ± 2.0 63.0 ± 0.7 73.2* ± 1.0 74.9 ± 1.3
GraphPartFar 68.6 ± 1.5 78.1 ± 2.1 82.0* ± 0.7 35.1* ± 0.6 55.2* ± 2.4 57.5* ± 2.9 75.7* ± 0.3 67.5 ± 0.5 76.2 ± 0.9
Baselines Co-CS Co-Physics Corafull
Budget 20 40 80 10 20 40 160 320 640
Random 43.8 ± 8.8 58 ± 7.7 76.1 ± 6.3 65.6 ± 14.3 73.1 ± 7.5 82.5 ± 7.6 23.8 ± 2.0 33.2 ± 1.8 43.2 ± 2.1
Uncertainty 32.4 ± 8.0 51.6 ± 6.2 66.7 ± 6.4 48.1 ± 12.6 56.3 ± 9.3 75.8 ± 9.2 17.3 ± 1.7 28.1 ± 2.1 39.1 ± 1.2
Density 34.2 ± 8.0 49.1 ± 4.6 60.1 ± 6.0 53.8 ± 8.0 67.9 ± 12.0 72.4 ± 8.8 21.3 ± 1.1 29.0 ± 0.9 38.3 ± 1.1
CoreSet 32.6 ± 4.3 50.3 ± 4.8 63.4 ± 7.2 43.8 ± 15.3 56.2 ± 14.4 79.8 ± 8.3 22.8 ± 1.4 33.4 ± 1.1 43.7 ± 0.5
Degree 31.1 ± 0.5 49.8 ± 0.5 53.8 ± 0.1 13.4 ± 0.0 13.4 ± 0.0 13.4 ± 0.0 20.3 ± 0.7 28.4 ± 0.6 37.6 ± 0.6
Pagerank 52.9 ± 0.5 67.6 ± 1.5 78.5 ± 0.5 82.8 ± 0.4 78.2 ± 0.2 84.9 ± 0.2 22.5 ± 0.4 29.9 ± 0.7 39.7 ± 0.5
AGE 39.3 ± 6.6 67.8 ± 8.0 77.9 ± 5.0 62.1 ± 10.6 75.6 ± 7.9 85.9 ± 3.8 22.2 ± 1.4 32.6 ± 1.1 43.0 ± 0.9
FeatProp 60.6 ± 3.6 77.2 ± 3.2 84.5 ± 0.6 79.7 ± 1.9 88.6 ± 1.7 90.6* ± 0.4 29.6 ± 1.0 37.6 ± 0.8 46.7 ± 0.8
GraphPart 68.5* ± 0.2 78.9 ± 2.7 86.2* ± 1.2 84.8* ± 0.2 86.1 ± 0.1 89.3 ± 0.2 31.0* ± 1.3 41.2* ± 1.4 48.6 ± 0.5
GraphPartFar 56.8 ± 0.7 77.4 ± 1.1 84.6 ± 1.3 81.2 ± 0.3 87.6 ± 0.4 90.1 ± 0.3 28.0 ± 1.2 38.4 ± 0.6 44.3 ± 0.7
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Figure 2: Performance of GCN by budget, with training set selected by each active learning baseline in one
shot, averaged from 10 different runs. Our methods are embolden. In each sub-figure, the Macro-F1 score
is plotted against the budget in a logarithm scale.

Table 3: Summary of the performance of GCN on Ogbn-Arxiv (Table 2 Continued). We also include the
Micro-F1 score (accuracy) as standard practice.

Baselines Ogbn-Arxiv (Macro-F1) Ogbn-Arxiv (Micro-F1)
Budget 160 320 640 1280 160 320 640 1280
Random 21.9 ± 1.4 27.6 ± 1.5 33.0 ± 1.4 37.2 ± 1.1 52.3 ± 0.8 56.4 ± 0.8 60.0 ± 0.7 63.5 ± 0.4
Uncertainty 17.5 ± 1.2 24.3 ± 1.8 30.5 ± 1.0 36.7 ± 0.9 44.5 ± 3.0 51.7 ± 1.0 58.0 ± 1.2 62.5 ± 0.4
Density 16.3 ± 1.6 20.7 ± 1.4 24.8 ± 0.7 29.5 ± 1.1 46.3 ± 2.3 51.8 ± 1.4 56.0 ± 1.1 60.2 ± 0.5
CoreSet 19.5 ± 1.8 25.5 ± 1.2 30.5 ± 1.2 35.0 ± 0.9 47.6 ± 2.9 53.2 ± 1.4 58.1 ± 0.8 61.3 ± 0.3
Degree 8.0 ± 0.2 12.0 ± 0.4 12.0 ± 0.3 15.4 ± 0.3 29.2 ± 0.9 42.1 ± 0.5 42.9 ± 0.9 48.5 ± 0.5
Pagerank 21.8 ± 0.6 28.9 ± 0.1 34.0 ± 0.2 38.2 ± 0.1 50.8 ± 1.6 56.8 ± 0.1 60.8 ± 0.2 64.2 ± 0.0
AGE 20.4 ± 0.9 25.9 ± 1.1 31.7 ± 0.8 36.4 ± 0.8 48.3 ± 2.3 54.9 ± 1.6 60.0 ± 0.7 63.5 ± 0.3
FeatProp 24.0 ± 0.7 28.5 ± 0.6 33.6 ± 0.4 39.1 ± 0.8 51.9 ± 1.1 56.5 ± 0.6 60.4 ± 0.4 63.5 ± 0.3
GraphPart 24.2 ± 0.7 29.5* ± 0.8 36.4* ± 0.5 41.0* ± 0.5 52.3 ± 0.9 56.8 ± 0.8 60.7 ± 0.6 63.6 ± 0.5
GraphPartFar 26.0* ± 0.7 30.2* ± 0.6 36.1* ± 0.7 40.8* ± 0.7 53.8* ± 1.0 56.3 ± 0.5 59.4 ± 0.3 63.5 ± 0.4
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Figure 3: Performance of GCN on Ogbn-Arxiv (Figure 2 Continued).
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5.3 Generalizability to Other GNNs

We further the experiment results on other GNN architectures (GraphSAGE and GAT) in Tables 4, 5 and
Figure 4, 5 (Appendix). Overall, the superior performance of the proposed methods, especially against the
state-of-the-art baseline FeatProp, demonstrates that selecting training nodes within proper partitions of
the graph significantly helps the active learning performance.

Table 4: Summary of the performance of GraphSAGE. All the markers follow Table 2

Baselines Cora Citeseer Pubmed
Budget 20 40 80 10 20 40 10 20 40
Random 36.0 ± 9.6 49.1 ± 8.5 64.2 ± 5.6 24.5 ± 11.9 32.4 ± 6.6 46.1 ± 5.6 40.6 ± 13.0 52.3 ± 12.2 66.3 ± 7.9
Uncertainty 23.5 ± 5.0 38.3 ± 10.6 58.6 ± 7.8 17.6 ± 6.3 25.1 ± 6.1 35.7 ± 4.4 35.2 ± 6.6 50.5 ± 10.1 64.1 ± 10.5
Density 38.0 ± 8.3 47.3 ± 6.2 62.1 ± 5.4 22.4 ± 9.1 35.1 ± 4.9 49.5 ± 4.7 32.7 ± 8.9 51.2 ± 10.1 62.1 ± 9.9
CoreSet 28.7 ± 5.4 47.8 ± 9.4 64.1 ± 9.2 16.6 ± 5.2 28.2 ± 7.4 39.0 ± 7.4 32.9 ± 7.8 53.1 ± 10.2 63.5 ± 7.4
Degree 43.0 ± 1.5 48.2 ± 1.4 65.4 ± 2.1 16.6 ± 0.9 23.1 ± 1.1 28.6 ± 1.2 39.7 ± 0.5 41.9 ± 0.1 43.0 ± 0.1
Pagerank 27.8 ± 1.6 47.9 ± 1.2 68.5 ± 0.9 13.0 ± 1.0 29.8 ± 1.3 38.3 ± 2.2 29.7 ± 0.3 41.7 ± 0.6 62.9 ± 0.3
AGE 38.2 ± 8.0 56.9 ± 7.8 69.5 ± 2.7 19.8 ± 5.0 29.7 ± 4.9 42.6 ± 6.0 39.9 ± 15.4 59.5 ± 9.8 70.2 ± 4.7
FeatProp 52.5 ± 4.6 61.4 ± 5.5 72.8 ± 2.6 23.4 ± 4.3 39.9 ± 6.2 53.3 ± 3.8 48.0 ± 5.9 59.1 ± 6.0 73.6 ± 1.7
GraphPart 61.4* ± 4.7 70.0* ± 2.4 76.2* ± 2.7 34.1* ± 2.6 36.1 ± 6.4 54.0 ± 4.6 52.0 ± 0.8 71.5* ± 0.5 74.6 ± 1.1
GraphPartFar 57.9* ± 2.8 69.7* ± 4.2 78.6* ± 1.5 30.7* ± 2.3 46.9 ± 5.0 53.1 ± 4.0 49.7 ± 3.1 70.7* ± 1.6 74.2 ± 0.4
Baselines Co-CS Co-Physics Corafull
Budget 20 40 80 10 20 40 160 320 640
Random 38.3 ± 8.7 52.4 ± 5.8 69.7 ± 5.2 58.3 ± 13.8 66.9 ± 10.1 78.3 ± 7.1 15.4 ± 1.1 23.4 ± 1.4 33.5 ± 1.3
Uncertainty 36.5 ± 6.3 56.0 ± 9.4 72.5 ± 3.5 44.9 ± 10.6 50.6 ± 8.4 70.5 ± 8.5 15.3 ± 0.8 27.0 ± 1.9 39.7 ± 1.1
Density 31.5 ± 8.5 39.4 ± 6.2 54.3 ± 3.3 55.8 ± 7.9 56.8 ± 11.5 77.8 ± 8.9 13.0 ± 1.2 19.7 ± 0.4 30.6 ± 1.0
CoreSet 25.0 ± 6.5 40.8 ± 4.3 55.0 ± 5.3 39.0 ± 14.1 50.7 ± 11.3 75.6 ± 9.5 12.2 ± 1.2 19.7 ± 0.6 31.2 ± 0.7
Degree 23.1 ± 5.2 33.1 ± 5.1 44.9 ± 3.0 13.4 ± 0.0 13.4 ± 0.0 13.4 ± 0.0 10.6 ± 0.4 16.7 ± 0.7 26.8 ± 0.7
Pagerank 50.6 ± 1.3 59.4 ± 1.8 75.5 ± 0.7 81.0* ± 0.8 75.6 ± 0.7 82.6 ± 0.4 12.4 ± 0.3 19.4 ± 0.8 30.3 ± 0.4
AGE 36.5 ± 6.3 56.0 ± 9.4 72.5 ± 3.5 63.7 ± 7.8 71.0 ± 8.8 82.4 ± 3.9 13.5 ± 0.8 21.4 ± 0.8 33.1 ± 1.0
FeatProp 55.9 ± 3.2 68.6 ± 3.2 74.1 ± 1.7 77.0 ± 2.4 85.2 ± 2.2 90.0 ± 0.7 18.7 ± 0.8 25.8 ± 0.7 35.0 ± 1.6
GraphPart 62.9* ± 1.4 71.8* ± 2.2 80.3* ± 1.3 75.8 ± 2.7 85.8 ± 0.3 88.9 ± 0.3 19.7* ± 0.9 28.3 ± 0.7 36.1* ± 1.0
GraphPartFar 51.9 ± 1.9 73.3* ± 2.2 81.5* ± 2.4 78.5 ± 1.1 87.6* ± 0.9 88.8 ± 0.5 17.5 ± 1.0 26.2 ± 1.4 34.1 ± 0.9
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Figure 4: Results of each baseline on benchmark datasets on GraphSAGE averaged from 10 different runs.
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Table 5: Summary of the performance of GAT. All the markers follow Table 2
Baselines Cora Citeseer Pubmed
Budget 20 40 80 10 20 40 10 20 40
Random 41.2 ± 9.4 51.2 ± 8 62.3 ± 4.3 27.1 ± 11.4 35.9 ± 4.9 46.7 ± 5.3 41.6 ± 9.5 48.8 ± 11.6 64.5 ± 7.7
Uncertainty 23.2 ± 5.5 26.5 ± 4.9 47.2 ± 6.6 21.5 ± 6.7 25.8 ± 7.5 37.1 ± 8.0 43.9 ± 10.5 47.7 ± 11.2 56.7 ± 10.2
Density 41.6 ± 9.7 47.7 ± 5.6 62.8 ± 5.0 27.0 ± 9.0 36.7 ± 6.8 45.1 ± 6.8 48.4 ± 9.8 45.8 ± 13.5 60.1 ± 11.2
CoreSet 29.1 ± 6.2 44.9 ± 9.1 61.5 ± 6.9 19.6 ± 9.8 26.3 ± 7.9 44.3 ± 5.6 49.3 ± 12.9 54.6 ± 10.2 60.4 ± 13.0
Degree 39.3 ± 3.5 47.4 ± 2.3 61.3 ± 3.3 15.9 ± 1.2 20.0 ± 4.0 30.6 ± 2.0 44.3 ± 8.4 39.9 ± 4.3 40.2 ± 5.5
Pagerank 34.8 ± 4.1 50.3 ± 2.5 65.7 ± 1.2 15.4 ± 0.6 33.0 ± 2.4 42.5 ± 1.9 40.9 ± 13 46.3 ± 7.0 61.7 ± 3.7
AGE 39.8 ± 5.5 56.5 ± 6.3 66.7 ± 2.7 24.9 ± 12.5 32.9 ± 7.8 51.0 ± 5.0 42.0 ± 13.4 51.1 ± 9.7 64.8 ± 9.6
FeatProp 56.7 ± 5.8 58.7 ± 5.7 69.8 ± 2.1 24.9 ± 4.9 38.5 ± 7.9 50.4 ± 4.2 49.2 ± 8.1 58.4 ± 6.8 71.9 ± 2.4
GraphPart 59.1 ± 6.0 63.9* ± 3.5 71.8 ± 2.4 38.6* ± 4.3 38.1 ± 5.8 53.5 ± 4.0 63.0* ± 6.6 68.2 ± 2.2 68.4 ± 8.3
GraphPartFar 58.9 ± 2.9 66.7* ± 1.7 73.8* ± 2.2 33.6* ± 4.1 46.6* ± 3.3 52.2 ± 4.2 52.1 ± 12.4 60.6 ± 7.3 66.2 ± 2.8
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Figure 5: Results of each baseline on benchmark datasets on GAT averaged from 10 different runs.

5.4 Mitigating Accuracy Disparity of GNNs

The GNN models are reported to be less accurate on nodes that are further away from the training nodes,
which leads to potential fairness concerns (Ma et al., 2021). As the goal of proposed active learning methods
is to have the selected training nodes evenly distributed on the graph, we conduct an analysis on the accuracy
disparity of the actively learned GNN models, following the study by (Ma et al., 2021).

We analyze the generalization performances by splitting the test nodes into 10 subgroups according to their
aggregated-feature distance to the 40 selected training nodes (320 for CoraFull), and report the test accuracy
on each subgroup. As can be seen in Figure 6, While the GNNs learned by GraphPart and GraphPartFar
are still less accurate for test nodes that are further away, the proposed active learning methods are able
to mitigate the accuracy disparity of GCN predictions compared to training with random training nodes in
most datasets.

6 Conclusion and Discussion

In this work, we investigate the problem of active learning for GNNs. Inspired by the commonly seen
local and global smoothness properties on graph-structured data, we propose a graph-partition-based active
learning framework for GNNs, with two variants of concrete algorithms. The proposed framework can be
seen as an active training node selection algorithm that approximately optimizes an upper bound of the
expected classification error of unlabeled nodes. Through extensive experiments, we show that the proposed
methods significantly outperform existing state-of-the-art baseline active learning methods. Furthermore,
the proposed active learning methods are able to mitigate the accuracy disparity phenomenon commonly
seen in GNN models.

Similar to previous work, e.g., FeatProp, one limitation of this work is that their effectiveness relies on the
smoothness assumptions to hold for the data of interest. Nevertheless, the proposed methods outperform
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previous approaches on many benchmarks, which suggests that it is likely to generalize to more real-world
applications.

Broader Impact Statement

As a potential positive impact, our proposed methods has demonstrated superior label efficiency. When
applied to real-world applications, it can significantly reduce the economic cost of annotations in machine
learning tasks on graphs.

For the potential negative impacts, the active learning procedure might introduce potential biases into the
construction of training data set, which remains underexplored in the literature. In this work, we find
that the proposed methods can actually reduce the accuracy disparity of GNN predictions compared to
randomly selected training nodes. However, the consequences in terms of other fairness metrics, such as
equal opportunity, still require dedicated further investigations. Therefore applications of active learning in
high-stake scenarios should proceed with extra caution.

GraphPart GraphPartFar Random 

1 2 3 4 5 6 7 8 9 10
Subgroup ID

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(a) Cora

1 2 3 4 5 6 7 8 9 10
Subgroup ID

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

(b) Citeseer

1 2 3 4 5 6 7 8 9 10
Subgroup ID

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

(c) Pubmed

1 2 3 4 5 6 7 8 9 10
Subgroup ID

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

(d) Corafull

1 2 3 4 5 6 7 8 9 10
Subgroup ID

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(e) Co-CS

1 2 3 4 5 6 7 8 9 10
Subgroup ID

0.8

0.9

1.0

Ac
cu

ra
cy

(f) Co-Physics

Figure 6: Accuracy disparity across 10 subgroups. Increasing subgroup indices represent the increasing
distance to the selected training set.
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A Appendix

A.1 Proof of Proposition 1

Before we start the proof of Proposition 1, we first introduce a helpful lemma below.
Lemma 2. Under Assumption 2, for any i ∈ Ste, if Str ∩T (i) ̸= ∅, letting τ(i) := arg minl∈Str∩T (i) ∥g(vi)−
g(vl)∥2 and εi := ∥g(vi)− g(vτ(i))∥2, then we have

||f(vi)− f(vτ(i))||∞ ≤ δhεi. (5)

Proof of Lemma 2.

||f(vi)− f(vτ(i))||∞
= ||h(g((vi))− h(g(vτ(i)))||∞
≤ δh||g((vi)− g(vτ(i))||2 (Assumption 2)
= δhεi.

We now start the proof of Proposition 1.

Proof of Proposition 1. We first consider the expected difference between the loss of vi and vτ(i):

Eyi
[L0(f(vi), yi)]− Eyτ(i) [Lγi

(f(vτ(i)), yτ(i))]
=

∑C
c=1 P [yi = c | vi]L0(f(vi), c)

−
∑C

c=1 P [yτ(i) = c | vτ(i)]Lγi
(f(vτ(i)), c)

=
∑C

c=1 ηc(vi)L0(f(vi), c)−
∑C

c=1 ηc(vτ(i))Lγi
(f(vτ(i)), c)

=
∑C

c=1 ηc(vi)
[
L0(f(vi), c)− Lγi

(f(vτ(i)), c)
]

+
∑C

c=1

[
ηc(vi)− ηc(vτ(i))

]
Lγi

(f(vτ(i)), c).

By Assumption 1, the second term can be bounded as:∑C
c=1

[
ηc(vi)− ηc(vτ(i))

]
Lγi

(f(vτ(i)), c)

≤
∑C

c=1

∣∣∣ηc(vi)− ηc(vτ(i))
∣∣∣Lγi

(f(vτ(i)), c) ≤
∑C

c=1

∣∣∣ηc(vi)− ηc(vτ(i))
∣∣∣

≤
∑C

c=1 δη

∣∣∣∣∣∣g(vi)− g(vτ(i))
∣∣∣∣∣∣

2
=

∑C
c=1 δηεi = Cδηεi.

We then prove that for γi = 2δhεi, the first term is non-positive. We prove it by discussing two cases:

1. Lγi
(f(vτ(i)), c) = 1: In this case L0(f(vi), c) − Lγi

(f(vτ(i)), c) ≤ 0 always holds and the first term is
non-positive.

2. Lγi(f(vτ(i)), c) = 0: This situation only happens if f(vτ(i))[c] > γi + maxb̸=c f(vτ(i))[b]. By Lemma 2, we
know that for any b = 1, . . . , C:

f(vi)[c] ≥ f(vτ(i))[c]− δhεi

and f(vi)[b] ≤ f(vτ(i))[b] + δhεi
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Therefore,

f(vi)[c]−maxb̸=c f(vi)[b]

≥
(

f(vτ(i))[c]− δhεi

)
−

(
maxb̸=c f(vτ(i))[b] + δhεi

)
=f(vτ(i))[c]− 2δhεi −maxb̸=c f(vτ(i))[b]
=f(vτ(i))[c]− γi −maxb̸=c f(vτ(i))[b] > 0,

which implies L0(f(vi), c) = 0. Hence L0(f(vi), c)−Lγi
(f(vτ(i)), c) = 0 and the first term is non-positive.

Therefore, for γi = 2δhεi, we have

Eyi [L0(f(vi), yi)] ≤ Cδηεi + Eyτ(i) [L2δhεi(f(vτ(i)), yτ(i))].

A.2 Addendum to Experiments

We further conduct a sensitivity analysis for the proposed method. In particular, we are interested in the
effectiveness of the partition approach when combined with distance metrics on different node representations.
Specifically, (1) Aggregation: aggregated node features S2X; (2) Embedding: the last hidden layer of
GCN trained on one-third of the budget; and (3) Feature: the original node features. As is shown in
Table 6, the graph-partition step is robustly effective when combined with various types of distance metrics.
For each choice of distance, we evaluate the active learning performance with or without the graph-partition
step. We perform the experiments on Citeseer, Pubmed, and Cora. On each dataset, we evaluate each active
learning method with a budget size of 20, 40, and 80. Each experiment is repeated with 10 random seeds.

As can be seen from Table 6, the graph-partition step is robustly effective when combined with various types
of distance metrics. This suggests that the proposed graph-partition framework may be able to generalize
to active learning for other graph representation learning methods. It is also interesting to observe that
methods with a graph-partition step tend to have lower standard errors.

Table 6: Summary of the performance of different combinations of distance metric on Citeseer, Pubmed and
Cora datasets with or without using graph partition. The numerical values represent the average Macro-F1
score of 10 independent trials and the error bar denotes the standard error of the mean (all in %). The bold
marker denotes the better performance between with and without using graph partition, and asterisk (*)
means this difference is statistically significant by a pairwise t-test at a significance level of 0.05.

Node Rep. With Cora Citeseer Pubmed
Budget Partition 20 40 80 20 40 80 20 40 80

Aggregation yes 76.1* ± 2.7 78.1 ± 1.5 80.3 ± 1.6 45.4 ± 4.1 59.0* ± 2.0 67.7 ± 1.5 73.2* ± 1.0 74.9 ± 1.3 79.7 ± 2.3
no 71.0 ± 5.7 76.1 ± 2.5 79.9 ± 0.9 42.9 ± 4.5 53.7 ± 4.5 67.4 ± 2.0 65.4 ± 5.2 75.1 ± 2.8 79.5 ± 0.9

Embedding yes 61.3* ± 4.8 69.4* ± 3.9 76.7 ± 3.4 43.9 ± 7.1 54.4 ± 2.8 61.1 ± 2.3 70.1 ± 8.8 74.9 ± 2.8 78.1 ± 2.0
no 54.5 ± 4.7 62.6 ± 5.7 74.1 ± 3.7 38.2 ± 9.0 50.6 ± 5.1 59.7 ± 2.3 63.4 ± 10.6 70.3 ± 6.6 77.0 ± 1.5

Feature yes 65.6* ± 2.6 71.0* ± 2.1 77.2 ± 1.3 15.7* ± 0.9 33.1 ± 3.4 54.4 ± 1.8 56.6 ± 2.1 67.1 ± 2.1 77.1 ± 2.0
no 53.2 ± 5.2 64.0 ± 5.1 77.4 ± 1.7 6.1 ± 2.4 30.9 ± 4.5 54.0 ± 4.1 64.3* ± 8.6 70.0 ± 4.1 76.6 ± 0.9
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