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ABSTRACT

In this study, we present a novel molecular fingerprint generation method based on
multiparameter persistent homology. This approach reveals the latent structures
and relationships within molecular geometry, and detects topological features that
exhibit persistence across multiple scales along multiple parameters, such as atomic
mass, partial charge, and bond type, and can be further enhanced by incorporating
additional parameters like ionization energy, electron affinity, chirality and orbital
hybridization. The proposed fingerprinting method provides fresh perspectives on
molecular structure that are not easily discernible from single-parameter or single-
scale analysis. Besides, in comparison with traditional graph neural networks,
multiparameter persistent homology has the advantage of providing a more com-
prehensive and interpretable characterization of the topology of the molecular data.
We have established theoretical stability guarantees for multiparameter persistent
homology, and have conducted extensive experiments on the Lipophilicity, Free-
Solv, and ESOL datasets to demonstrate its effectiveness in predicting molecular
properties.

1 INTRODUCTION

Drug discovery process is the early phase of the pharmaceutical R&D pipeline that takes 10− 15
years end-to-end and costs in excess of ∼ 2 billion US dollars (Berdigaliyev & Aljofan, 2020). Early
phases of drug discovery process begin with identifying possible drug targets (gene/protein) and their
role in the disease progression. Target identification is followed by high-throughput screening (HTS)
experiments (via either structure- or ligand-based virtual screening methods) to identify the drug
candidates within large compound libraries that affect the target in the desired way, also called as
“hits” or “leads”. In the final phases of the R&D pipeline, drug candidates have to pass a series of
rigorous controlled tests in clinical trials to be considered for regulatory approval by FDA. Overall,
drug discovery is a complex and error-prone process. Specifically, in oncology only 4% of therapies
entering phase 1 clinical trials ultimately gains provisional approval from FDA (Mullard, 2016) due
to experimental disproof of the promised therapeutic efficacy or unforeseen side effects. Another
challenging problem which arises in this domain is that the known chemical space including public
databases and proprietary data owned by private organizations probably contains on the order 100
million molecules, while the chemical space might contain as many as 1060 compounds obeying
Lipinski’s rule-of-five for oral bioavailability (Reymond & Awale, 2012).

Molecular property prediction has received substantial interest in recent years to accelerate the
drug discovery process (Stokes et al., 2020) and predict the 3D structure of proteins (Jumper et al.,
2021), with models showing potential to solve contemporary problems in materials science (Schmidt
et al., 2019) and quantum chemistry (Dral, 2020). Most early studies utilized canonical compound
representations such as SMILES (Zheng et al., 2019) Morgan fingerprints (Zhang et al., 2019) or
eigenspectrum of Coulomb matrices (Montavon et al., 2012) as low level molecular descriptors.
More recently, variants of Graph Neural Networks (GNN) such as GIN (Xu et al., 2018; Peng et al.,
2020), GAT (Velickovic et al., 2017; Wang et al., 2021) and MPNN (Yang et al., 2019) exhibited
state-of-the-art performance for molecular representation learning across several compound datasets
on bioactivity and molecular property prediction. Despite their success, utilization of GNNs for
molecular property prediction suffers from 2 severe limitations:
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1. Neighborhood information is typically aggregated by permutation invariant, but non-injective
operations such as an average, sum or max. This leads to an oversmoothing problem, where
node embeddings converge to similar values and the information-to-noise ratio of the
message received by the nodes decreases (Chen et al., 2020; Ogawa et al., 2021).

2. GNNs operating on the chemical structure of molecules hold the underlying assumption that
atoms are connected together via chemical electronic bonds (ionic and covalent bonds). In
fact, spatial arrangement of atoms in a molecule is also affected by the ubiquitous but subtle
van der Waals forces between atoms. Although the van der Waals forces are comparatively
weaker forces than ionic and covalent bonds, they play a fundamental role in specifying the
molecular geometry, also known as conformation. A number of studies have shown that
using 3D molecular conformers significantly improves the accuracy of molecular property
prediction (Schütt et al., 2017; Gasteiger et al., 2020; Liu et al., 2021; Gasteiger et al., 2021).
However, generating several low energy stable 3D molecular conformers is computationally
infeasible for large scale applications (Xu et al., 2021; Shi et al., 2021; Ganea et al., 2021).
Some alternative methods extract more 3D information by using bond lengths (Chen et al.,
2019), bond angles (Gasteiger et al., 2020) or torsion angles (Gasteiger et al., 2021) as edge
features.

Our main objective is to investigate whether topological data analysis (TDA) tools, in particular
persistent homology (PH), can overcome the limitations of GNNs for molecular representation
learning. In this paper, we propose utilizing multiparameter persistent homology to produce novel
topological fingerprints of molecules and evaluate their performance as well as suitability for property
prediction on benchmark datasets: Lipophilicity, FreeSolv and ESOL. Persistent homology analyzes
the topological features of a graph at multiple scales, represented by a filtration of the graph. A
filtration is a sequence of nested subspaces of the data, where each subspace includes the previous
ones and adds new elements. The topological features are then calculated for each subspace in the
filtration, and the ones that persist across multiple scales are considered to be significant.

We use the Vietoris-Rips (VR) graph filtration to construct a sequence of simplical complexes of a
molecular graph. VR graph filtration is a simple and effective way, as it only requires specifying a
distance threshold and does not require any prior knowledge of the topology of the data besides the
shortest path distances of all node pairs. In this approach, the number of bonds between two vertices
(atoms) is used as a measure of the distance between them. For example, if there is a direct edge (a
bond) between two vertices, the distance between them is considered to be 1. If there is no direct
edge between two vertices, the distance between them is considered to be infinity. In the VR graph
filtration, a molecular graph is constructed by connecting vertices that are within a specified distance
threshold from each other. This graph represents the first subspace in the filtration. The next subspace
is then obtained by increasing the distance threshold and adding new connections to the graph. This
process is repeated to obtain a sequence of nested graphs, which form the filtration. This results in a
sequence of graphs that capture the topological features of the original graph at different scales.

This paper extends our previous work, namely ToDD, for ligand based virtual screening, which
predicts the binding affinity between a target protein and a small molecule with no prior information
of the 3D structure of the target protein (Demir et al., 2022).

The key contributions of this paper are:

1. We develop a novel method to generate molecular fingerprints using persistent homology,
which reveals hidden structures and relationships in the molecular geometry and uncovers
topological features that persist across multiple scales. The most important advantage of
persistent homology over GNNs is that it provides a more comprehensive and interpretable
characterization of the topology of the data.

2. We extend traditional persistent homology by analyzing topological features that persist
across multiple scales along multiple parameters (atomic mass, partial charge and bond
type). Additionally, these parameters can be augmented using periodic properties such as
ionization energy and electron affinity as well as molecular information such as chirality,
orbital hybridization, number of Hydrogen bonds or number of conjugated bonds at the cost
of computational complexity. Our fingerprinting method based on multiparameter persistent
homology reveals new insights into the molecular structure that are not easily apparent from
a single parameter or scale analysis.
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3. We establish theoretical guarantees for the stability of compound fingerprints extracted by
multiparameter persistent homology.

4. We perform extensive experiments on Lipophilicity, FreeSolv and ESOL datasets to demon-
strate the effectiveness of the proposed compound fingerprints for molecular property
prediction.

2 RELATED WORK

There are 2 main approaches to predict the physical and chemical properties of molecules: 1)
Applying well-known models like support vector machines or gradient boosting regression trees to
expert-engineered descriptors or molecular fingerprints and 2) optimizing the model architecture of
GNNs.

In the first approach, the models are applied to molecular fingerprints, such as the Dragon descrip-
tors (Mauri et al., 2006) or Morgan (ECFP) fingerprints (Rogers & Hahn, 2010). One direction of
improvement in this approach is to use domain expertise and augment the feature representation of
nodes (atoms) with more chemical information. Additionally, some studies have used explicit 3D
atomic coordinates to further improve performance (Schütt et al., 2017; Kondor et al., 2018; Faber
et al., 2017; Feinberg et al., 2018).

In the second approach, the focus is on optimizing the model architecture and improving neighborhood
aggregation. One such model is the Graph Convolutional Neural Network (GCN), which learns the
compound’s feature representation by the convolution operations performed in the spectral domain of
the compound’s 2D graph, which is obtained by transforming the graph into a set of eigenvectors and
eigenvalues. GCN has been shown to be flexible and capable of capturing complex relationships (Wu
et al., 2018). Another one, the Message Passing Neural Network (MPNN) framework presented
in (Gilmer et al., 2017) operates by passing messages between nodes in the graph, updating the
representations of the nodes and edges in the process. The message passing process is performed
multiple times, allowing the model to build up a more complex and informative representation of the
graph.

Recently, conformer generation has become an important step in property prediction because the
physical and chemical properties of a molecule depend on its 3D structure. For example, the solubility
of a molecule depends on its ability to dissolve in a solvent, and this ability can be influenced by
the shape and orientation of the molecule. Similarly, the reactivity of a molecule can be influenced
by the orientation of its functional groups, which can affect its ability to participate in chemical
reactions. Therefore, conformer generation allows us to make a more accurate prediction of molecular
properties (Axelrod & Gomez-Bombarelli, 2020). This is especially important for molecules that have
flexible or non-rigid structures, as they can adopt different conformations in different environments.
3D Infomax (Stärk et al., 2022) pre-trains a 2D network by maximizing the mutual information
(MI) between its representation of a molecular graph and a 3D representation produced from the
molecules’ conformers. The weights of 2D network are then fine-tuned to predict properties.

3 PERSISTENT HOMOLOGY

Here, we introduce single parameter persistent homology. In essence, the process of persistent
homology consists of three steps. The first step is graph decomposition by masking vertices based
on either ascending or descending order of their values, which breaks down a graph into many
smaller subgraphs. In the second step, the persistent homology machinery tracks the changes (on
each subgraph separately) in topological features such as birth and death times as they occur in a
sequence of simplicial complexes. Finally, in the vectorization step, these records can be transformed
into a vector that can be utilized in machine learning models.

Graph Decomposition: For a given unweighted graph (compound) G = (V,E) with V =
{v1, . . . , vm} the set of nodes (atoms) and E = {ers} the set of edges (bonds), we decompose
G into many subgraphs using a function f : V → R with threshold sets I = {αi}mi=1, where α1 =
minv∈V f(v) < α2 < . . . < αm = maxv∈V f(v). For αi ∈ I, let Vi = {vr ∈ V | f(vr) ≤ αi}
(sublevel sets for f ). This defines a hierarchy V1 ⊂ V2 ⊂ · · · ⊂ Vm = V among the nodes with
respect to the function f and yields a nested sequence of subgraphs as illustrated in Figure 1. For
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Figure 1: Graph Decomposition masks some vertices based on the values of the vertices’ parameters and considers only the
remaining vertices and edges. In this dataset, 10 unique atoms (H, C, N, O, F, P, S, Cl, Br, I) were present. Hence, there are 10 subgraphs
created (some subgraphs can be identical in this process). The original compound shown in the last column is lamivudine, an antiviral used to
treat hepatitis B. Vertices with the highest atomic mass are masked first and they are added with respect to ascending values of atomic mass.
Atoms are coded by their color: Gray=Hydrogen, Black=Carbon, Blue=Nitrogen, Red=Oxygen, Yellow=Sulfur. Figure 1 is representative of the
graph evolution along the y-axis in the initial column of Figure 2. Our framework establishes the Vietoris-Rips complexes for every subgraph as
demonstrated along the rows of Figure 2. Subsequently, it computes the rank of the homology groups of dimension 0, 1 for each sequence of
simplicial complexes. We repeat the same process using parameters: partial charge (with respect to the ascending order of decile groups in
partial charge histogram) and bond types (initially, vertices that constitute a ring structure are added, followed by the addition of vertices linked
by triple bonds, double bonds, and ultimately, single bonds). This process of masking vertices and creating subgraphs provides valuable insights
into the relationships between the atom/bond properties and the topological features of the dataset.

molecular machine learning applications, this filtering function f can be atomic mass, partial charge,
bond type, electron affinity, ionization energy or another important function representing chemical
properties of the atoms or bonds. One can also use the natural graph induced functions like node
degree, betweenness, etc.

Vietoris-Rips (VR) Filtration: This section outlines our technique for constructing VR simplicial
complexes for 2D multipersistence, which can be generalized to 3D or higher dimensions, though
such an extension falls beyond the scope of this paper.

Before constructing VR simplicial complexes, we compute the distances between each node in
graph G, i.e., d(vr, vs) = drs is the length of the shortest path from vr to vs where each edge has
length 1. Let K = max drs. Then, for each 1 ≤ i0 ≤ m, define VR-filtration for the vertex set
Vi0 with the distances d(vr, vs) = drs, i.e., ∆i00 ⊆ ∆i01 ⊆ . . . ⊆ ∆i0K (See Figure 2). This gives
m × (K + 1) simplicial complexes {∆ij} where 1 ≤ i ≤ m and 0 ≤ j ≤ K. This is called the
bipersistence module. One can imagine increasing sequence of {Vi} as vertical direction, and induced
VR-complexes {∆ij} as the horizontal direction. In our construction, we fix the slicing direction
as the horizontal direction (VR-direction) in the bipersistence module, and obtain the persistence
diagrams in these slices.

The toy example in Figure 2 shows a small graph G instead of a real compound to keep the exposition
simple. Our sublevel filtration (vertical direction) comes from the degree function. Degree of a node
is the number of edges incident to it. In the first column, we simply see the single sublevel filtration
of G by the degree function. In each row, we develop VR-filtration of the subgraph by using the graph
distances between the nodes. Here, graph distance between nodes means the length of the shortest
path (geodesic) in the graph where each edge is taken as length 1. Then, in the second column, we
add the edges for the nodes whose graph distance is equal to 2. In the third column, we add the (blue)
edges for the nodes whose graph distance is equal to 3. Finally, in the last column, we add the (red)
edges for the nodes whose graph distance is equal to 4. By construction, all the graphs in the last
column must be a complete graph as there is no more edge to add.

After getting the bifiltration, for each 1 ≤ i0 ≤ m, we obtain a single filtration Vi0 = ∆i00 ⊆
∆i01 ⊆ . . . ⊆ ∆i0K in horizontal direction. Each threshold level of VR filtration provides a
persistence diagram PD(Vi0). Hence, we obtain m persistence diagrams {PD(Vi)}. Then we
apply a vectorization, φ, to each persistence diagram and obtain m row vectors of fixed size r, i.e.
φ⃗i = φ(PD(Vi)). This generates a 2D-vector Mφ (a matrix) of size m× (K + 1).
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Figure 2: Vietoris-Rips (VR) Simplicial Filtrations. In this illustration, a bifiltration is provided that combines a
sublevel (vertical) and a Vietoris-Rips (VR) filtration (horizontal) of a simple graph G (top box in the first column). The vertical direction
employs a sublevel filtration based on node degree with thresholds of 1, 2, 3 and 4. The horizontal direction employs a VR-filtration based on
graph distance (geodesic length). The first column displays gray edges between nodes with a graph distance of 1. The second column shows
black edges between nodes with a graph distance of less than or equal to 2. The third column displays blue edges between nodes with a graph
distance of 3, and the last column shows red edges between nodes with a graph distance of 4.

Persistence Diagrams: After VR filtration, we systematically keep track of the evolution of topolog-
ical patterns in the sequence of simplicial complexes {Ĝi}Ni=1. A k-dimensional topological feature
(or k-hole) may represent connected components (0-dimension), loops (1-dimension) and cavities
(2-dimension). For each k-dimensional topological feature σ, persistent homology records its first ap-
pearance in the filtration sequence, say Ĝbσ , first disappearance in later complexes, Ĝdσ with a unique
pair (bσ, dσ), where 1 ≤ bσ < dσ ≤ N . We call bσ the birth time of σ and dσ the death time of σ
and dσ − bσ the life span (or persistence) of σ. Persistence diagram records all these birth and death
times of the topological features. Let 0 ≤ k ≤ D where D is the highest dimension in the simplicial
complex ĜN . Then kth persistence diagram PDk(G) = {(bσ, dσ) | σ ∈ Hk(Ĝi) for bσ ≤ i < dσ}.
Here, Hk(Ĝi) represents the kth homology group of Ĝi which keeps the information of the k-holes
in the simplicial complex Ĝi. We use 0 and 1 dimensional homology features, i.e., PD0(G) and
PD1(G) in our implementation.

Vectorizations (Fingerprinting): While PH extracts hidden shape patterns from data as persistence
diagrams (PD), PDs being collection of points in R2 by itself are not practical for statistical and
machine learning (ML) purposes. Instead, the common techniques are by faithfully representing PDs
as kernels (Kriege et al., 2020) or vectorizations (Hensel et al., 2021). One can consider this step as
converting PDs into a useful format to be used in ML process as fingerprints of the data. We use Betti
curve vectorization (Chung & Lawson, 2022) to transform Persistent Homology (PH) information
represented as Persistent Diagrams (PDs) into a feature vector.

4 MULTIPARAMETER PERSISTENCE (MP) FINGERPRINTS

4.1 STABILITY OF MP FINGERPRINTS

Stability of Single Persistence Vectorizations: A specific persistence diagram vectorization, denoted
as φ, can be thought of as a mapping from the space of persistence diagrams to the space of functions.
The concept of stability refers to the smoothness of this transformation. Essentially, it assesses whether
a slight perturbation in the persistence diagram results in a significant change in the vectorization.
To make this assessment meaningful, it is necessary to establish a metric in the space of persistence
diagrams that defines what constitutes a “slight perturbation”. The most commonly used metric for
this purpose is the Wasserstein distance, also known as the matching distance, which is defined as
follows.

Let PD(X+) and PD(X−) be persistence diagrams two datasets X+ and X− (We omit the dimen-
sions in PDs). Let PD(X+) = {q+j } ∪∆+ and PD(X−) = {q−l } ∪∆− where ∆± represents the
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diagonal (representing trivial cycles) with infinite multiplicity. Here, q+j = (b+j , d
+
j ) ∈ PD(X+)

represents the birth and death times of a topological feature σj in X+. Let ϕ : PD(X+) → PD(X−)
represent a bijection (matching). With the existence of the diagonal ∆± in both sides, we make sure
the existence of these bijections even if the cardinalities |{q+j }| and |{q−l }| are different.

Definition 4.1 Let PD(X±) be persistence diagrams of the datasets X±, and M = {ϕ} represent
the space of matchings as described above. Then, the pth Wasserstein distance Wp defined as

Wp(PD(X+), PD(X−)) = min
ϕ∈M

(∑
j

∥q+j − ϕ(q+j )∥
p
∞

) 1
p

, p ∈ Z+.

Now, let’s define the stability of vectorizations. A vectorization can be viewed as a mapping from the
space of persistence diagrams, P, to the space of functions or vectors Y, for example, Ψ : P → Y.
In particular, if Ψ is the persistence landscape, then Y = C([0,K],R) and if Ψ is the Betti summary,
then Y = Rm. The stability of the vectorization Ψ refers to the continuity of Ψ as a mapping. Let
d(., .) be a suitable metric on the space of vectorizations. The stability of Ψ can then be defined as
follows:

Definition 4.2 Let Ψ : P → Y be a vectorization for single persistence diagrams. Let Wp,d be
the metrics on P and Y respectively as described above. Let ψ± = Ψ(PD(X±)) ∈ Y. Then, Ψ is
called stable if

d(ψ+, ψ−) ≤ C · WpΨ(PD(X+), PD(X−))

In this context, the constant C > 0 is independent of X±. The stability inequality states that the
changes in the vectorizations are limited by the changes in persistence diagrams. The proximity of two
persistence diagrams is reflected in the proximity of their respective vectorizations. A vectorization
φ is referred to as stable if it satisfies this stability inequality for a given d and Wp (Atienza et al.,
2020).

Now, we are ready to show the stability of Multiparameter Persistent Fingerprints. Consider two
graphs, G+ = (V+,E+) and G− = (V−,E−). A stable SP vectorization is represented by φ, and it
satisfies the stability equation,

d(φ(PD(G+)), φ(PD(G−))) ≤ Cφ · Wpφ(PD(G+), PD(G−)) (1)

for some 1 ≤ pφ ≤ ∞. Here, φ(G±) represent the corresponding vectorizations for PD(G±) and
Wp represents Wasserstein-p distance as defined in Definition 4.1.

Now, let f : V± → R be a filtering function with threshold set {αi}mi=1. Then, define the sublevel
vertex sets V±

i = {vr ∈ V± | f(vr) ≤ αi}. For each V±
i , construct the induced VR-filtration

∆±
i0 ⊂ ∆±

i1 ⊂ · · · ⊂ ∆±
iK as before. For each 1 ≤ i0 ≤ m, we will have persistence diagram

PD(V±
i0
) of the filtration {∆±

i0k
}.

The induced matching distance between multiple persistence diagrams is defined as follows,

Dp,f (G+,G−) =

m∑
i=1

Wp(PD(V+
i ), PD(V−

i )). (2)

Now, we define the distance between induced MP Fingerprints as,

Df (Mφ(G+),Mφ(G−)) =

m∑
i=1

d(φ(PD(V+
i )), φ(PD(V−

i ))) (3)

Theorem 4.1 Let φ be a stable SP vectorization. Then, the induced MP Fingerprint Mφ is also
stable, i.e., with the notation above, there exists Ĉφ > 0 such that for any pair of graphs G+ and G−,
we have the following inequality.

D(Mφ(G+),Mφ(G−)) ≤ Ĉφ ·Dpφ({PD(G+)}, {PD(G−)})
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Proof: As φ is a stable SP vectorization, by Equation 1, for any 1 ≤ i ≤ m, we have
d(φ(PD(V+

i )), φ(PD(V+
i ))) ≤ Cφ · Wpφ(PD(V+

i ), PD(V−
i )) for some Cφ > 0 , where Wpφ is

Wasserstein-p distance. Notice that the constant Cφ > 0 is independent of i. Hence,

D(Mφ(G+),Mφ(G−)) =

m∑
i=1

d(φ(PD(V+
i )), φ(PD(V−

i )))

≤
m∑
i=1

Cφ · Wpφ(PD(V+
i ), PD(V−

i ))

= Cφ

m∑
i=1

Wpφ(PD(V+
i ), PD(V−

i ))

= Cφ ·Dpφ(G+,G−)

where the first and last equalities are due to Equation 2 and Equation 3, while the inequality follows
from Equation 1 which is true for any i.

4.2 COMPUTATIONAL COMPLEXITY OF MP FINGERPRINTS

The computational complexity (CC) of the MP Fingerprint Md
ψ depends on the vectorization tech-

nique ψ used and the number of filtering functions d. For a single persistence diagram PDk, CC is
O(N 3), where N is the number of k-simplices (Otter et al., 2017). If r is the resolution size of the
multipersistence grid, then CC(Md

ψ) = O(rd · N 3 · Cψ(m)) where Cψ(m) is CC for ψ and m is
the number of barcodes in PDk, e.g., if ψ is Persistence Landscape, then Cψ(m) = m2 (Bubenik,
2015) and hence CC for MP Landscape with three filtering functions (d = 3) is O(r3 · N 3 ·m2).
Alternatively, for MP Betti summaries, the computation of persistence diagrams is not required.
Instead, the rank of homology groups in the MP module must be determined. As a result, the
computational complexity for MP Betti summary is significantly reduced by utilizing minimal rep-
resentations (Lesnick & Wright, 2019; Kerber & Rolle, 2021). The feature extraction process is
parallelized across the eight cores of an Intel Core i7 CPU (equipped with 100GB of RAM) through
the use of multiprocessing. Further evaluation of the computation time for MP fingerprint extraction
from datasets can be found in Table 2. In comparison to graph-based models that encode compounds
by discovering common molecular fragments (known as motifs) (Jin et al., 2020), all ToDD models
necessitate fewer computational resources during their training phase.

5 EXPERIMENTS

5.1 DATASETS & BASELINES

Lipophilicity1 is a crucial characteristic of drug molecules that impacts both permeability through
membranes and solubility. The dataset, sourced from the ChEMBL database, contains experimental
results for the octanol/water distribution coefficient (logD at pH 7.4) of 4200 compounds.

FreeSolv2 is a compilation of both calculated and experimentally determined hydration free energies
for 642 small molecules in water.

ESOL3 is a collection of 1128 chemical compounds and their corresponding water solubility values.

We thoroughly evaluate the performance of our methods against the 11 state-of-the-art baselines:
Weave (Kearnes et al., 2016), SchNet (Schütt et al., 2017), Node-MPN (Gilmer et al., 2017), Edge-
MPN (Yang et al., 2019) D-MPNN (Yang et al., 2019), MGCN (Lu et al., 2019), OT-GNN (Bécigneul
et al., 2020), MV-GNN (Ma et al., 2020), StructGNN (Lukashina et al., 2020), GRAPHCL (You et al.,
2020) and 3D Infomax (Stärk et al., 2022) on benchmark datasets.

1https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/Lipophilicity.
csv:

2https://deepchemdata.s3.us-west-1.amazonaws.com/datasets/freesolv.csv.
gz:

3https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/
delaney-processed.csv
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5.2 EXPERIMENTAL RESULTS

Table 1: Comparison of RMSE performance between baseline
models and ToDD on molecular property prediction task using
MoleculeNet (Wu et al., 2018), a large scale benchmark for
molecular machine learning. Best score is highlighted in bold,
and the best baseline is underlined.

Model Lipophilicity FreeSolv ESOL

Morgan (radius=4) 0.817±0.045 0.478±0.033 1.255±0.051
Weave 0.813±0.042 2.398±0.250 1.158±0.055
SchNet 0.909±0.098 3.215±0.755 1.045±0.064
D-MPNN 0.646±0.041 1.010 ± 0.064 0.980±0.258
MGCN 1.113±0.041 3.349±0.097 1.266±0.147
Node-MPN 0.672±0.051 2.185±0.952 1.167±0.430
Edge-MPN 0.653±0.046 2.177±0.914 0.980±0.258
MV-GNN 0.599±0.016 1.840±0.019 0.805±0.036
GRAPHCL 0.714±0.011 3.744±0.292 0.959±0.047
3D Infomax 0.695±0.012 2.337±0.227 0.894±0.028

ToDD 0.738±0.025 0.354±0.053 0.612±0.083

We train a Gradient Boosting Regression
Tree (GBRT) model with 1000 boosting
stages using MP Fingerprints, namely
ToDD (Demir et al., 2022) as the in-
put. The maximum depth of the trees
was optimized to 6 through tuning. The
minimum required number of samples to
split a node within the tree was 2. The
Friedman loss function and a learning
rate of 0.1 were utilized for model opti-
mization. The effectiveness of the pro-
posed method was rigorously evaluated
through a 5-fold cross-validation, demon-
strating its competitiveness against state-
of-the-art GNN models as shown in Ta-
ble 1. ToDD is significantly better than
the best MoleculeNet models on Free-
Solv and ESOL, and is not substantially
different on Lipophilicity. These findings suggest that ToDD surpasses the best MoleculeNet models
while avoiding the need for training large-scale GNNs or generating 3D conformations. Furthermore,
both ToDD and Morgan fingerprints exhibit a marked improvement over all GNN baselines on
FreeSolv. However, it is important to note, that FreeSolv is a small scale dataset and the performance
of GNNs can be impacted due to the limited number of training samples. Hypothetically, ToDD can
demonstrate a significant advantage in leveraging domain knowledge to enhance property prediction
scores with relative ease. For instance, it is a well-known observation that introducing nonpolar
groups, such as methyl groups, as new substituents into a molecule can increase its lipophilicity.
ToDD can effectively leverage bond polarity as an additional parameter to extract MP fingerprints,
thereby integrating vital domain information for improved performance in lipophilicity prediction.

Table 2: RMSE scores for single parameter and multiparameter PH fingerprints and clock time performance to
extract Vietoris-Rips persistent homology features.

Atomic Mass Partial Charge Bond Type All Parameters

Dataset RMSE Time RMSE Time RMSE Time RMSE Time

Lipophilicity 0.989±0.027 55 sec 0.989±0.034 42 sec 0.995±0.049 17 sec 0.738±0.025 114 sec
FreeSolv 0.605±0.124 7 sec 0.557±0.099 7 sec 0.894±0.180 2 sec 0.354±0.053 16 sec
ESOL 0.929±0.066 11 sec 0.997±0.103 11 sec 1.340±0.078 4 sec 0.612±0.083 26 sec

5.3 ABLATION STUDIES

We investigate the impact of incorporating additional information about the domain on the model’s
performance. Table 2 shows the results of evaluating the performance of single parameter persistence
using only atomic mass, partial charge, and bond type. Afterwards, the Betti vectorizations from
all the modalities are combined. Our findings indicate that the significance of single parameter
persistence varies across the parameters, but combining the topological fingerprints learned from
each modality into a single representation leads to a significant improvement in the RMSE scores,
due to the complementary nature of the information sources.

6 CONCLUSION

A major challenge in the field of molecular machine learning is the conversion of molecules into
concise fixed-length vectors. To address this issue, ToDD employs multiparameter persistent homol-
ogy to construct a hierarchical topological representation of molecules. Our results indicate that this
method has produced promising outcomes in predicting bioactivity and molecular properties, with
the potential for further improvement through the integration of additional chemical parameters.
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