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ABSTRACT

Clustering is one of the most fundamental tasks in machine learning. Recently,
deep clustering has become a major trend in clustering techniques. Representa-
tion learning often plays an important role in the effectiveness of deep clustering,
and thus can be a principal cause of performance degradation. In this paper, we
propose a clustering-friendly representation learning method using instance dis-
crimination and feature decorrelation. Our deep-learning-based representation
learning method is motivated by the properties of classical spectral clustering.
Instance discrimination learns similarities among data and feature decorrelation re-
moves redundant correlation among features. We utilize an instance discrimination
method in which learning individual instance classes leads to learning similarity
among instances. Through detailed experiments and examination, we show that
the approach can be adapted to learning a latent space for clustering. We design
novel softmax-formulated decorrelation constraints for learning. In evaluations of
image clustering using CIFAR-10 and ImageNet-10, our method achieves accuracy
of 81.5% and 95.4%, respectively. We also show that the softmax-formulated
constraints are compatible with various neural networks.

1 INTRODUCTION

Clustering is one of the most fundamental tasks in machine learning. Recently, deep clustering has
become a major trend in clustering techniques. In a fundamental form, autoencoders are used for
feature extraction, and classical clustering techniques such as k-means are serially applied to the
features. Recent deep clustering techniques integrate learning processes of feature extraction and
clustering, yielding high performance for large-scale datasets such as handwritten digits Hu et al.
(2017); Shaham et al. (2018); Xie et al. (2016); Tao et al. (2018). However, those methods have
fallen short when targets become more complex, as in the case of real-world photograph dataset
CIFAR-10 Krizhevsky et al. (2009). Several works report powerful representation learning leads to
improvement of clustering performance on complex datasets Chang et al. (2017); Wu et al. (2019).
Learning representation is a key challenge to unsupervised clustering.

In order to learn representations for clustering, recent works utilize metric learning which auto-
matically learns similarity functions from data Chang et al. (2017); Wu et al. (2019). They assign
pseudo-labels or pseudo-graph to unlabeled data by similarity measures in latent space, and learn
discriminative representations to cluster data. These works improve clustering performance on real
world images such as CIFAR-10 and ImageNet-10, and indicate the impact of representation learning
on clustering. Although features from learned similarity function and pseudo-labels work well for
clustering, algorithms still seem to be heuristic; we design a novel algorithm which is based on
knowledge from established clustering techniques. In this work, we exploit a core idea of spectral
clustering which uses eigenvectors derived from similarities.

Spectral clustering has been theoretically and experimentally investigated, and known to outperform
other traditional clustering methods Von Luxburg (2007). The algorithm involves similarity matrix
construction, transformation from similarity matrix to Laplacian, and eigendecomposition. Based on
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eigenvectors, data points are mapped into a lower dimensional representation which carries informa-
tion of similarities and is preferable for clustering. We bring this idea of eigenvector representation
into deep representation learning.

We design the representation learning with two aims: 1) learning similarities among instances; and 2)
reducing correlations within features. The first corresponds to Laplacian, and the second corresponds
to feature orthogonality constrains in the spectral clustering algorithm. Learning process integrating
both is relevant to eigendecomposition of Laplacian matrix in the spectral clustering.

For the first aim, we adopt the instance discrimination method presented in Wu et al. (2018), where
each unlabeled instance is treated as its own distinct class, and discriminative representations are
learned to distinguish between individual instance classes. This numerous-class discriminative learn-
ing enables learning partial but important features, such as small foreground objects in natural images.
Wu et al. (2018) showed that the representation features retain apparent similarity among images and
improve the performance of image classification by the nearest neighbor method. We extend their
work to the clustering tasks. We clarify their softmax formulation works like similarity matrix in
spectral clustering under the condition that temperature parameter τ , which was underexplored in Wu
et al. (2018), is set to be a larger value .

For the second aim, we introduce constraints which have the effect of making latent features or-
thogonal. Orthogonality is often an essential idea in dimension reduction methods such as principal
components analysis, and it is preferable for latent features to be independent to ensure that redundant
information is reduced. Orthogonality is also essential to a connection between proposed method and
spectral clustering, as stated in Section 3.4. In addition to a simple soft orthogonal constraint, we
design a novel softmax-formulated decorrelation constraint. Our softmax constraint is "softer" than
the soft orthogonal constraint for learning independent feature spaces, but realizes stable improvement
of clustering performance.

Finally, we combine instance discrimination and feature decorrelation into learning representation to
improve the performance of complex image clustering. For the CIFAR-10 and ImageNet-10 datasets,
our method achieves accuracy of 81.5% and 95.4%, respectively. Our PyTorch Paszke et al. (2019)
implementation of IDFD is available at https://github.com/TTN-YKK/Clustering_
friendly_representation_learning.

Our main contributions are as follows:

• We propose a clustering-friendly representation learning method combining instance dis-
crimination and feature decorrelation based on spectral clustering properties.

• We adapt deep representation learning by instance discrimination to clustering and clarify
the essential properties of the temperature parameter.

• We design a softmax-formulated orthogonal constraint for learning latent features and realize
stable improvement of clustering performance.

• Our representation learning method achieves performance comparable to state-of-the-art
levels for image clustering tasks with simple k-means.

2 RELATED WORK

Deep clustering methods offer state-of-the-art performance in various fields. Most early deep
clustering methods, such as Vincent et al. (2010); Tian et al. (2014), are two-stage methods that apply
clustering after learning low-dimensional representations of data in a nonlinear latent space. The
autoencoder method proposed in Hinton & Salakhutdinov (2006) is one of the most effective methods
for learning representations. Recent works have simultaneously performed representation learning
and clustering Song et al. (2013); Xie et al. (2016); Yang et al. (2017); Guo et al. (2017); Tao et al.
(2018). Several methods based on generative models have also been proposed Jiang et al. (2016);
Dilokthanakul et al. (2016). These methods outperform conventional methods, and sometimes offer
performance comparable to that of supervised learning for simple datasets. Deep-learning-based
unsupervised image clustering is also being developed Chang et al. (2017); Wu et al. (2019); Ji et al.
(2019); Gupta et al. (2020); Van Gansbeke et al. (2020).
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Several approaches focus on learning discriminative representations via deep learning. Bojanowski &
Joulin (2017) found a mapping between images on a uniformly discretized target space, and enforced
their representations to resemble a distribution of pairwise relationships. Caron et al. (2018) applied
pseudo-labels to output as supervision by k-means and then trained a deep neural network. Donahue
et al. (2016) proposed bidirectional generative adversarial networks for learning generative models
that map simple latent distributions to complex real distributions, in order for generators to capture
semantic representations. Hjelm et al. (2018) proposed deep infomax to maximize mutual information
between the input and output of an encoder. Wu et al. (2018) was motivated by observations in
supervised learning that the probabilities of similar image classes become simultaneously high. They
showed that discriminating individual instance classes leads to learning representations that retain
similarities among data.

IIC Ji et al. (2019) and SCAN Van Gansbeke et al. (2020) are two recent works focusing on
image clustering and obtained high performance. IIC Ji et al. (2019) directly learns semantic
labels without learning representations based on mutual information between image pairs. SCAN
Van Gansbeke et al. (2020) focuses on the clustering phase and largely improved performance based
on a given pre-designed representation learning. By contrast, we focus on learning a clustering-
friendly representation space where objects can be simply clustered.

Our method exploits the idea of spectral clustering Shi & Malik (2000); Meila & Shi (2001);
Von Luxburg (2007); Ng et al. (2002). From one perspective, spectral clustering finds a low dimen-
sional embedding of data in the eigenspace of the Laplacian matrix, which is derived from pairwise
similarities between data. By using the embedded representations, we can proceed to cluster the
data by the k-means algorithm in the low-dimensional space. Spectral clustering often outperforms
earlier algorithms such as k-means once pair similarities are properly calculated. Shaham et al. (2018)
incorporated the concept of spectral clustering into deep a neural network structure. Similarities
were calculated by learning a Siamese net Shaham & Lederman (2018) where the input positive and
negative pairs were constructed according to the Euclidean distance.

3 PROPOSED METHOD

Given an unlabeled dataset X = {xi}ni=1 and a predefined number of clusters k, where xi denotes
the ith sample, we perform the clustering task in two phases, namely, representation learning and
clustering. This work focuses on the first phase, which aims to learn an embedding function v = fθ(x)
mapping data x to representation v so that v is preferable for clustering. fθ is modeled as a deep
neural network with parameter θ. We use V = {vi}ni=1 to denote the whole representation set.

3.1 INSTANCE DISCRIMINATION

We apply the instance discrimination method proposed by Wu et al. (2018) to learn clustering-friendly
representations that capture similarity between instances. The objective function is formulated based
on the softmax criterion. Each instance is assumed to represent a distinct class. For given data
x1, . . . , xn, the corresponding representations are v1, . . . ,vn, and data xi is classified into the ith
class. Accordingly, the weight vector for the ith class can be approximated by a vector vi. The
probability of representation v being assigned into the ith class is

P (i|v) = exp(vTi v/τ)∑n
j=1 exp(v

T
j v/τ)

, (1)

where vTj v measures how well v matches the jth class, τ is a temperature parameter that controls the
concentration of the distribution Hinton et al. (2015), and v is normalized to ||v|| = 1.

The objective maximizes the joint probability
∏n
i=1 Pθ(i|fθ(xi)) as

LI = −
n∑
i=1

logP (i|fθ(xi)) = −
n∑
i

log(
exp(vTi vi/τ)∑n
j=1 exp(v

T
j vi/τ)

). (2)

Wu et al. (2018) shows that features obtained by minimizing the objective retain similarity between
image instances and improve the performance of nearest neighbor classification. For clustering, we
note that the parameter τ , which is underexplored in Wu et al. (2018), has a large impact on clustering
performance. The effect of τ is discussed later and experimental results are shown in 4.2.1.

3



Published as a conference paper at ICLR 2021

Figure 1: Pipeline of our method.

3.2 FEATURE DECORRELATION

We define a set of latent feature vectors f and use fl to denote the lth feature vector. Transposition of
latent vectors V coincides with {fl}dl=1, where d is the dimensionality of representations.

The simple constraint for orthogonal features is,

LFO = ||V V T − I||2 =

d∑
l=1

(
(fTl fl − 1)2 +

n∑
j=1,j 6=l

(fTj fl)
2

)
. (3)

Our novel constraint is based on a softmax formulation of

Q(l|f) = exp(fTl f/τ2)∑d
m=1 exp(f

T
mf/τ2)

, (4)

Q(l|f) is analogous to P (i|v). Q(l|f) measures how correlated a feature vector is to itself and how
dissimilar it is to others. τ2 is the temperature parameter. We formulate the feature decorrelation
constraint as

LF = −
d∑
l=1

logQ(l|f) =
d∑
l=1

(
− fTl fl/τ2 + log

d∑
j

exp(fTj fl/τ2)

)
. (5)

Both constrains in Eq. (3) and Eq. (5) aim to construct independent features. Conventionally, it
is preferable for features to be independent to ensure that redundant information is reduced, and
orthogonality is a common technique. Compare Eq. (3) and Eq. (5), we can see that minimizing
LF and LFO can result in a similar effect, fTl fl → 1 and fTj fl → −1 or 0(l 6= j), and both try to
decorrelate latent features.

Our softmax constraint in Eq. (5) shows practical advantages in flexibility and stability. Eq. (3) is
called a soft orthogonal constraint, but is still strict enough to force the features to be orthogonal. If d is
larger than underlying structures that are hidden and unknown, all features are forcibly orthogonalized
and the resultant features may not be appropriate. Softmax formulation allows off-diagonal elements
to be non-zero and alleviates the problem of strict orthogonality.

Partial derivatives of LF and LFO with respect to zjl = fTj fl are calculated as ∂LF

∂zjl
= − 1

τ2
δjl +

1
τ2

exp(zjl/τ2)∑d
j exp(zjl/τ2)

and ∂LFO

∂zjl
= −2δjl + 2zjl, where δjl is an indicator function. Since the derivatives
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nearly equal zero due to zjl = 1 in the case of j = l, we focus on the case of j 6= l. When j 6= l, the
ranges of partial derivatives are 0 ≤ ∂LF

∂zjl
≤ 1

τ2
and −2 ≤ ∂LFO

∂zjl
≤ 2. The monotonicity of LF can

lead to more stable convergence. The advantages of LF are confirmed by experiments in section 4.

3.3 OBJECTIVE FUNCTION AND LEARNING MODEL

Combining instance discrimination and feature decorrelation learning, we formulate our objective
function LIDFD as follows:

LIDFD = LI + αLF , (6)

Where α is a weight that balances the contributions of two terms LI and LF .

Figure 1 shows the learning process for the motif of image clustering. Input images X are converted
into feature representations V in a lower d-dimensional latent space, via nonlinear mapping with
deep neural networks such as ResNet He et al. (2016). The d-dimensional vectors are simultaneously
learned through instance discrimination and feature decorrelation. A clustering method, such as
classical k-means clustering, is then used on the learned representations to obtain the clustering
results.

Optimization can be performed by mini-batch training. To compute the probability P (i|v) in Eq.
(1), {vj} is needed for all images. Like Wu et al. (2018); Xiao et al. (2017), we maintain a feature
memory bank for storing them. For Q(l|f) in Eq. (4), all {fm} of d dimensions in the current
mini-batch can be obtained, we simply calculate the Q(l|f) within the mini-batches.

We combine LI and LFO to formulate an alternative loss LIDFO in E.q. (7),

LIDFO = LI + αLFO. (7)

We refer to representation learning using LIDFD, LIDFO, and LI loss as instance discrimination
and feature decorrelation (IDFD), instance discrimination and feature orthogonalization (IDFO), and
instance discrimination (ID), respectively.

3.4 CONNECTION WITH SPECTRAL CLUSTERING

We explain the connection between IDFD and spectral clustering. We consider a fully connected
graph consisting of all representation points, and the similarity matrix W and degree matrix D can
be written as Wij = exp(vTi vj/τ) and Dii =

∑n
m exp(vTi vm/τ). The loss function of spectral

clustering Shaham et al. (2018) can be reformulated as

LSP = (Tr)(fLf) =
1

2

∑
k

n∑
ij

wij(f
k
i − fkj )2 =

1

2

∑
k

n∑
ij

exp

(
vTi vj
τ

)
||vi − vj ||2, (8)

where L is Laplacian matrix, f are feature vectors. Spectral clustering is performed by minimizing
LSP subject to orthogonal condition of f , and when LSP takes minimum value f become eigen-
vectors of Laplacian L. According to Section 3.2, minimizing LF can approximate the orthogonal
condition. Under this condition, minimizing LI can approximate the minimizing LSP , which is
explained as follows.

According to Eq.(2), minimizing loss LI means maximizing vTi vi and minimizing vTi vj . When i = j,
we have ||vi − vj ||2 = 0, LSP becomes zero. We need consider only the influence on LSP from
minimizing vTi vj . As v are normalized, LSP can be rewritten using cosine metric as

LSP =

n∑
ij

exp

(
cos θ

τ

)
sin2

θ

2
, (9)

then ∂LSP

∂θ can be calculated as

∂LSP
∂θ

=
1

τ
sin θ(τ − 1 + cos θ) exp

(
cos θ

τ

)
. (10)
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According to Eq.(10), we get ∂LSP

∂θ ≥ 0 when τ ≥ 2. This means LSP monotonically decreases
when we minimize vTi vj . Therefore, the impact from minimizing vTi vj is good for minimizing LSP .
Even if τ is a little smaller than 2, because τ controls the scale of derivatives and the range of θ where
the derivative is negative, large τ decreases the scale and narrows the range, resulting in a small
influence on the total loss. From this viewpoint, the effectiveness of minimizing LI using large τ is
approximately the same as that of LSP . By adding feature decorrelation constraints, IDFD becomes
analogous to spectral clustering.

4 EXPERIMENTS

We conducted experiments using five datasets: CIFAR-10 Krizhevsky et al. (2009), CIFAR-100
Krizhevsky et al. (2009), STL-10 Coates et al. (2011), ImageNet-10 Deng et al. (2009), and
ImageNet-Dog Deng et al. (2009). We adopted ResNet18 He et al. (2016) as the neural network
architecture in our main experiments. The same architecture is used for all datasets. Our experimental
settings are in accordance with that of Wu et al. (2018). Data augmentation strategies often used on
images are also adopted in experiments. Details about datasets and experimental setup are given in
Appendix A.

For IDFD, the weight α is simply fixed at 1. Orthogonality constraint weights for IDFO were α = 10
on CIFAR-10 and CIFAR-100, and α = 0.5 on STL-10 and ImageNet subsets. The weight α was
set according to the orders of magnitudes of losses. In the main experiments, we set temperature
parameter τ = 1 for IDFO and IDFD, and τ2 = 2 for IDFD. In order to fully investigate our work,
we also constructed two versions of instance discrimination (ID) that uses only LI loss, ID(original)
with small τ = 0.07 and ID(tuned) with large τ = 1.

We compared ID(tuned), IDFO, and IDFD with ID(original) and six other competitive methods, clus-
tering with an autoencoder (AE) Hinton & Salakhutdinov (2006), deep embedded clustering (DEC)
Xie et al. (2016), deep adaptive image clustering (DAC) Chang et al. (2017), deep comprehensive
correlation mining (DCCM) Wu et al. (2019), invariant information clustering (IIC) Ji et al. (2019),
and semantic clustering by adopting nearest neighbors (SCAN) Van Gansbeke et al. (2020) .We use
three metrics to measure clustering performance: standard clustering accuracy (ACC), normalized
mutual information (NMI), and adjusted rand index (ARI). These metrics give values in [0, 1], with
higher scores indicating more accurate clustering assignments.

4.1 MAIN RESULTS

Table 1 lists the best performances for each method. The results for the four methods AE, DEC, DAC,
and DCCM are cited from Wu et al. (2019), and results for two methods IIC and SCAN are cited
from Van Gansbeke et al. (2020). Comparing these results, we conclude that ID(tuned), IDFO, and
IDFD, clearly outperform these methods excluding SCAN for all datasets, according to the metrics
ACC, NMI, and ARI. For dataset CIFAR-10, ID(tuned), IDFO, and IDFD yielded ACC values of
77.6%, 82.8%, and 81.5%, respectively. For dataset ImageNet-10, ID(tuned), IDFO, and IDFD
achieved ACC values of 93.7%, 94.2%, and 95.4%. The high performance is comparable with that of
supervised and semi-supervised methods. Gaps between the results of ID(tuned) and those of IDFO
and IDFD reflect the effect of the feature constraint term. The performance is improved for all datasets
by introducing feature orthogonalization and decorrelation. Impressively, ID(tuned) significantly
outperformed ID(original) on all datasets, showing strong impact of temperature parameter. This will
be discussed separately in section 4.2.1.

In addition, we note that IDFD differs from SCAN in that IDFD focuses on the representation
leaning while SCAN focuses on clustering by given a representation learning. Both SCAN and IDFD
demonstrate significant improvement on performance compared with other methods. Results of IDFD
and SCAN showed effectiveness of efforts on both representation learning and clustering phases of
deep clustering.

We also examine the learning stability of ID(tuned), IDFO, and IDFD. Figure 2 illustrates the
accuracy on CIFAR-10 running each of ID(tuned), IDFO, and IDFD. We can see that both IDFO
and IDFD obtained higher peak ACC values than ID(tuned). In particular, IDFD yielded higher
performance than ID over the entire learning process. IDFO performed better than the other two
methods and obtained the highest ACC value in earlier epochs. However, the ACC widely fluctuated
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Table 1: Clustering results (%) of various methods on five datasets.
Dataset CIFAR-10 CIFAR-100 STL-10 ImageNet-10 ImageNet-Dog
Metric ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

AE 31.4 23.9 16.9 16.5 10.0 4.8 30.3 25.0 16.1 31.7 21.0 15.2 18.5 10.4 7.3
DEC 30.1 25.7 16.1 18.5 13.6 5.0 35.9 27.6 18.6 38.1 28.2 20.3 19.5 12.2 7.9
DAC 52.2 39.6 30.6 23.8 18.5 8.8 47.0 36.6 25.7 52.7 39.4 30.2 27.5 21.9 11.1

DCCM 62.3 49.6 40.8 32.7 28.5 17.3 48.2 37.6 26.2 71.0 60.8 55.5 38.3 32.1 18.2
ID(original) 44.0 30.9 22.1 26.7 22.1 10.8 51.4 36.2 28.5 63.2 47.8 42.0 36.5 24.8 17.2

IIC 61.7 51.1 41.1 25.7 22.5 11.7 59.6 49.6 39.7 - - - - - -
SCAN 88.3 79.7 77.2 50.7 48.6 33.3 80.9 69.8 64.6 - - - - - -

ID(tuned) 77.6 68.2 61.6 40.9 39.2 24.3 72.6 64.0 52.6 93.7 86.7 86.5 47.6 47.0 33.5
IDFO 82.8 71.4 67.9 42.5 43.2 24.4 75.6 63.6 56.9 94.2 87.1 87.6 61.2 57.9 41.4
IDFD 81.5 71.1 66.3 42.5 42.6 26.4 75.6 64.3 57.5 95.4 89.8 90.1 59.1 54.6 41.3

over the learning process and dropped in later epochs. As analyzed in 3.2, our proposed IDFD makes
performance higher than ID and more stable than IDFO.

4.2 DISCUSSION

4.2.1 ANALYSIS ON TEMPERATURE PARAMETER

Gaps between results of ID(original) and ID(tuned) in Table 1 show strong impact of temperature
parameter. We theoretically and intuitively analyze the essential change caused by the temperature
parameter in this subsection.

First, we consider why instance-level discrimination works and under what conditions. Difference in
the performance of ID(original) and ID(tuned) suggests optimal distribution in latent space changes
with the magnitude of τ . According to empirical investigation and theoretical analysis, we find that
a large τ in LI encourages data points to follow a compact distribution when minimizing the loss,
while a small τ drives them to follow a uniform distribution. This means minimizing LI with a
large τ can reach a good clustering-friendly solution. This property was explained by demonstrating
examples and calculation, details are given in Appendix B.

In the definition of P (i|v) in Eq. (1), when τ is small, we compute softmax on larger logits, resulting
in higher prediction, and obtain a more confident model. From this viewpoint, we can leverage a
small τ to decrease class entanglement if we can learn an accurate class-weight vector. In the general
classification problem, since the weight of each class can be learned according to the real labels,
it is preferable for models to be more confident. Most works therefore recommend setting a small
value, such as τ = 0.07 Wu et al. (2018). In clustering, however, instance-level discrimination is
used to learn similarity among samples, with only one sample in each class. Because the model is
highly confident, each sample tends to be completely independent from each other. Similarity among
samples is seemingly encouraged to approach close to zero, even for samples from the same class.
This clearly deviates from the original intent of adopting instance-level discrimination to learn sample
entanglements under the condition that each sample can be discriminative. A larger τ than that used
for classification is thus needed.

More experiments over different temperature settings on ID and IDFD were conducted on CIFAR-10.
Figure 3 shows the accuracy of ID for τ = {0.07, 0.2, 0.5, 0.8, 1, 2, 5, 10}. We calculated the mean
and standard deviation of ACC values over the last 500 epochs for each experiment. From the results,
we can see that ID can suffer significant performance degradation when τ is too small or too large.
This agrees with our analysis above. We also investigate the impact of τ2 by fixing τ = 1. Figure 4
shows the accuracy of the IDFD for τ2 = {0.1, 0.5, 1, 2, 3, 4, 5, 10}. Experimental results show that
IDFD is relatively robust to the parameter τ2 and enables stable representation learning.

4.2.2 REPRESENTATION DISTRIBUTION AND FEATURE BEHAVIOR

Figure 5 visualizes the results of representations learned in four experiments: (a) ID(original), (b)
ID(tuned), (c) IDFO with τ = 1 and α = 10, and (d) IDFD with τ = 1, τ2 = 2, and α = 1 on CIFAR-
10. 128-dimension representations were embedded into two dimensions by t-SNE (t-distributed
stochastic neighbor embedding) Maaten & Hinton (2008). Colors indicate ground truth classes.
The distributions for the ID(original) and ID(tuned) again show the significant difference between
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Figure 2: ACC values over learn-
ing process.

Figure 3: Accuracy of ID for var-
ious τ settings.

Figure 4: Accuracy of IDFD for
various τ2 settings.

them. Data distribution when τ = 1 is apparently more clustering-friendly than when τ = 0.07.
Furthermore, compared with ID(tuned), IDFO and IDFD can separate samples from different classes
with certain margins. IDFO tended to construct a patch-like distribution within one class. In contrast,
IDFD maintained a tighter connection among samples of the same class and more distinct borders
between different classes.

Figure 5: Distribution of feature representations on CIFAR-10.

Figure 6 shows distribution of feature representations on ImageNet-10 learned by IDFD. We can see
that representations of ImageNet-10 are clustering-friendly and even better than that of CIFAR-10.
This is consistent with the results in Table 1 evaluated by metrics ACC, NMI, and ARI. In addition to
that, we also plot sample images corresponding to points lying near the border between clusters. We
can see that these samples are certainly similar in appearance.

Figure 6: Distribution of feature representations on ImageNet-10 learned by IDFD and samples
corresponding to points in some areas.

We investigate the effects of orthogonal and decorrelation constraintsLFO andLF . Figure 7 illustrates
the feature correlations of ID(tuned), IDFO, and IDFD on dataset CIFAR-10. We see that IDFO
clearly decorrelates features and IDFD retains a moderate level of feature correlation between ID
and IDFD. Taken together with Figure 2, these results suggest that the softmax formulation of IDFD
alleviates the problem of strict orthogonality and enables stable representation learning.

4.2.3 INVESTIGATION FOR PRACTICAL USE

We investigate the dependencies of our method on networks through experiments on other networks:
ConvNet Wu et al. (2019), VGG16 Simonyan & Zisserman (2014), and ResNet34 He et al. (2016).
Performance was evaluated using the CIFAR-10 dataset. Results listed in Table 2 show that IDFD
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Figure 7: Feature correlation matrix on CIFAR-10 with ResNet18

can work on various networks. IDFD outperforms ID(tuned), and FD term shows more obvious
effect on these networks. We also confirm the effect of cooperation between LI and LF from the
viewpoint of spectral clustering, combinations of AE and LF were evaluated in terms of clustering
performance. We found that AE cannot benefit from LF as LI did. This result verified that LF has a
deep relation with LI , and IDFD is not a simple combination. We also investigate the importance
of data augmentation in performance through experiments. Due to the page limit, our extended
experiments are given in Appendix C.

Table 2: Clustering results (%) on various network architectures.
Network ConvNet VGG16 ResNet18 ResNet34
Metric ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

ID(tuned) 26.8 15.0 8.9 39.3 31.6 20.9 77.6 68.2 61.6 80.2 71.1 64.6
IDFD 42.0 32.7 23.2 56.8 46.7 36.5 81.5 71.1 66.3 82.7 73.4 68.4

5 CONCLUSION

We present a clustering-friendly representation learning method combining instance discrimination
and feature decorrelation based on spectral clustering properties. Instance discrimination learns
similarities among data and feature decorrelation removes redundant correlation among features. We
analyzed why instance discrimination works for clustering and clarified the conditions. We designed
a softmax-formulated feature decorrelation constraint for learning the latent space to realize stable
improvement of clustering performance. We also explained the connection between our method and
spectral clustering. The proposed representation learning method achieves accuracies comparable to
state-of-the-art values on the CIFAR-10 and ImageNet-10 datasets with simple k-means. We also
verified IDFD loss works on multiple neural network structures, and our method is expected to be
effective for various kinds of problems.
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APPENDICES

A DATASETS AND EXPERIMENTAL SETUP

Five datasets were used to conduct experiments: CIFAR-10 Krizhevsky et al. (2009), CIFAR-
100 Krizhevsky et al. (2009), STL-10 Coates et al. (2011), ImageNet-10 Deng et al. (2009), and
ImageNet-Dog Deng et al. (2009). Table 3 lists the numbers of images, number of clusters, and
image sizes of these datasets. Specifically, the training and testing sets of dataset STL-10 were jointly
used in our experiments. Images from the three ImageNet subsets were resized to 96× 96× 3.

Table 3: Image datasets used in experiments.
Dataset Images Clusters Image size

CIFAR-10 Krizhevsky et al. (2009) 50,000 10 32× 32× 3
CIFAR-100 Krizhevsky et al. (2009) 50,000 20 32× 32× 3

STL-10 Coates et al. (2011) 13,000 10 96× 96× 3
Imagenet-10 Deng et al. (2009) 13,000 10 96× 96× 3

Imagenet-Dog Deng et al. (2009) 19,500 15 96× 96× 3

We adopted ResNet He et al. (2016) as the neural network architecture in our main experiments. For
simplicity, we used ResNet18, which according to our preliminary experiments yields sufficiently high
performance. The same architecture was used for all datasets except the input layer. In accordance
with the experimental settings of Wu et al. (2018), the dimension of latent feature vectors was set
to d = 128, and a stochastic gradient descent optimizer with momentum β = 0.9 was used. The
learning rate lr was initialized to 0.03, then gradually scaled down after the first 600 epochs using
a coefficient of 0.1 every 350 epochs. The total number of epochs was set to 2000, and the batch
size was set to B = 128. Orthogonality constraint weights for IDFO were α = 10 for CIFAR-10
and CIFAR-100 and α = 0.5 for the STL-10 and ImageNet subsets. The weight for IDFO α was set
according to the orders of magnitudes of the two losses LI and LFO. For IDFD, the weight α was
simply fixed at 1. In the main experiments, we set the default temperature parameter value τ = 1 for
ID(tuned), IDFO, and IDFD, and τ2 = 2 for IDFD.

B OPTIMAL SOLUTIONS OF CLUSTERING AND INSTANCE DISCRIMINATION

In Section 4.2.1, we concluded that minimizing LI under the condition that τ is large can reach
a clustering-friendly solution. Details about the analysis and calculation was demonstrated by a
two-dimensional toy model as follows.

Empirically, we observe that visually similar images tend to get similar assignment probabilities.
Similar images can thus be projected to close locations in the latent space. This also motivated ID
Wu et al. (2018). In the case of ID, similar images xi and xj yield respective highest probabilities pii
and pjj , and also receive relatively high pij and pji values. This property can retain over the process
of approximation to the optimal solution. Because instance-level discrimination tries to maximally
scatter embedded features of instances over the unit sphere Wu et al. (2018), all representations
are thus uniformly spread over the latent space with each representation relatively similar to its
surroundings, we call this uniform case. We also consider another case that yields an optimal
clustering solution where all samples from the same class are compacted to one point and k clusters
are uniformly spread over the space. We call this compact case. Figure 8 shows the representation
distributions in the two cases. Because we normalize v, two-dimensional representations form a
circle.

In the uniform case, n representations are uniformly located on a circle with an angular interval of
θ = 2π/n, and the inner product between two neighboring representations is cos θ. Without loss of
generality, we can start with an arbitrary point vi and orderly mark all samples as vi+j . The cosine
similarity between vi and vi+j can then be calculated by vTi+jvi = cos jθ. Accordingly, the loss

1



Published as a conference paper at ICLR 2021

Figure 8: Two extreme cases of representation distribu-
tions over two-dimensional space. Left: uniform. Right:
compact.

Figure 9: exp(cos θ/τ) with differ-
ent τ settings.

contributed by sample i in the uniform case can be calculated as

Liuniform = − log
exp(1/τ)∑n−1

m=0 exp(cosmθ/τ)
= − log

1
n exp(1/τ)

1
n

∑n−1
m=0 exp(cosmθ/τ)

. (11)

Similarly, in the compact case, n/k data from the same class are exactly compacted to a point
and k corresponding points located on a circle at an angular interval of θ′ = 2π/k. The inner
product between an arbitrary start sample vi and the j-th sample can be calculated as vTi vi+j =
cos lθ′, where l = j mod n/k. The probability of assigning i to the cluster with j becomes pij =

exp(cos θ′/τ)∑k−1
c=0

n
k exp(cos cθ′/τ)

. Accordingly, the loss contributed by sample i in the compact case can be
calculated as

Licompact = − log
exp(1/τ)∑k−1

c=0
n
k exp(cos cθ

′/τ)
= − log

1
n exp(1/τ)

1
k

∑k−1
c=0 exp(cos cθ

′/τ)
. (12)

Comparing Eq. (11) and (12), we see that the difference between Liuniform and Licompact comes
only from the denominator part of the logarithm. These are two discrete forms of the same integral∫
exp(cos θ/τ)dθ. Clearly, Liuniform equals Licompact when k, n → +∞. We therefore need to

consider only the general case where n is sufficiently large and k � n.

Figure 9 shows a plot of function values exp( cos θτ ) with different τ settings over the domain
θ ∈ [0, 2π]. We can see that the curve becomes flatter as τ increases. A flat function f means
that for an arbitrary (θ, θ′) pair in its domain of definition, we have f(θ) ≈ f(θ′). In this situation
even k � n, the difference between the summations of these two discrete functions is not large.
Accordingly, we can say Licompact is approximate to Liuniform for a large τ . In other words,
minimizing LI can approach the compact situation where same-class samples assemble and differing
samples separate. Learning instance-level discrimination for clustering is therefore reasonable.

C EXTENDED EXPERIMENTS

In Section 4.2.3, we have reported some investigations of our method for practical use. Details about
several important experiments are supplemented as follows.

C.1 IMPACT OF NETWORK ARCHITECTURE

As Table 2 shows, IDFD can be applied to various networks, and the performance gaps between
IDFD and ID(turned) on networks like ConvNet Wu et al. (2019) and VGG16 Simonyan & Zisserman
(2014) are more significant than on ResNet He et al. (2016). We added the feature correlation
matrix of VGG16 in Figure 10. IDFD on VGG16 obtained sparse correlations similar to the case of
ResNet18 in Figure 7, while ID on VGG16 obtained denser and stronger correlations than ResNet18,
presumably constructing redundant features that degraded clustering. In the case of VGG16, the
feature decorrelation term LF exhibits a larger effect on clustering performance than that of ResNet.
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Our proposed losses work on all network architectures, and we expect to introduce the losses to
various networks that are suitable for individual problems.

Figure 10: Feature correlation matrix learned by VGG16 on CIFAR-10.

C.2 COMBINATION OF AUTOENCODER AND FEATURE DECORRELATION

In order to further confirm the cooperation effect of instance discrimination and feature decorrelation
from the viewpoint of spectral clustering, a combination of autoencoder and feature decorrelation
was evaluated in terms of clustering performance. Autoencoder has been verified by datasets such as
handwritten digits to be an effective method for deep clustering. In this experiment, we used ConvNet
Wu et al. (2019) for the autoencoder architecture and trained it on the CIFAR-10 dataset. We applied
k-means to representations learned from autoencoder only and autoencoder combined with feature
decorrelation, which are called AE and AEFD, respectively. According to our experiments, the ACC
value of AE was 26.0%, and the ACC value of AEFD was 22.4%. Compared to the improvement
from ID to IDFD (from 26.8% to 42.0% as shown in Table 2), we see that AE cannot benefit from
FD as ID. This result again indicates that FD has a deep relation with ID as we analyzed in Section 3.

C.3 IMPACT OF DATA AUGMENTATION

For reproduction of our results and practical use, we note that data augmentation (DA) has strong
impact on the performance. DA is known to have impact on image classification and representation
learning. Like in Wu et al. (2018), several generic and accepted techniques, such as cropping and
grayscale, were used for data augmenting in this work. The details of the augmentation in the original
code can be linked to Wu et al. (2018). In order to investigate the impact of DA, we conducted
experiments on five datasets with and without DA and compared their clustering results. Table 4
shows the results. We can see that methods without DA suffered significant performance degradations
for clustering, as well as for classification Chen et al. (2020). This reminds us not to ignore the effects
of DA in practical use.

Table 4: Clustering results (%) with or without data augmentation on five datasets.
Dataset CIFAR-10 CIFAR-100 STL-10 ImageNet-10 ImageNet-Dog
Metric ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

ID W/O DA 18.7 9.5 4.1 14.8 10.7 3.2 19.6 9.0 3.7 23.6 14.1 6.2 12.7 4.6 1.9
IDFD W/O DA 23.6 12.1 6.0 16.2 11.6 4.4 24.8 17.6 8.3 37.2 23.8 15.6 15.5 5.5 2.5

ID With DA 76.6 65.7 58.3 36.7 35.7 21.9 57.1 49.0 36.8 85.8 79.1 70.5 29.4 16.0 28.5
IDFD With DA 81.5 71.1 66.3 42.5 42.6 26.4 75.6 64.3 57.5 95.4 89.8 90.1 59.1 54.6 41.3

To further find out main factors affecting the performance, we also executed experiments by removing
each technique used for DA. Take the example of CIFAR-10, techniques used for data augmentation
include: ColorJitter, RandomResizedCrop, RandomGrayscale, and RandomHorizontalFlip. All these
techniques are generic and easy to be implemented. They have been integrated into general deep
learning frameworks such as PyTorch. According to our experimental results as shown in Figure 11,
we find that RandomResizedCrop, RandomGrayscale, and ColorJitter have strong effect on image
clustering.
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Figure 11: Effect of each technique used for DA on CIFAR-10.

For practice, we also applied IDFD to our private images produced by manufacturing process. Generic
DA like above were used to these images. IDFD showed good performance on these images according
to our experiments. This indicates that our method can be simply applied to practical images. For
other types of data such as text and time series, corresponding data augmentation techniques are
needed to cooperate with our method.
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