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ABSTRACT

Aligning large language models (LLMs) to human preferences is challenging in
domains where preference data is unavailable. We address the problem of learn-
ing reward models for such target domains by leveraging feedback collected from
simpler source domains, where human preferences are easier to obtain. Our
key insight is that, while domains may differ significantly, human preferences
convey domain-agnostic concepts that can be effectively captured by a reward
model. We propose DIAL, a framework that trains domain-invariant reward mod-
els by optimizing a dual loss: a domain loss that minimizes the divergence be-
tween source and target distribution, and a source loss that optimizes preferences
on the source domain. We show DIAL is a general approach that we evalu-
ate and analyze across 4 distinct settings: (1) Cross-lingual transfer (accuracy:
0.621 → 0.661), (2) Clean-to-noisy (accuracy: 0.671 → 0.703), (3) Few-shot-to-
full transfer (accuracy: 0.845 → 0.920), and (4) Simple-to-complex tasks trans-
fer (correlation: 0.508 → 0.556). Our code, models and data are available at
https://portal-cornell.github.io/dial/.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has emerged as a popular paradigm for
aligning language models (Ouyang et al., 2022; Dubey et al., 2024). This approach involves training
and optimizing a reward model that learns human preferences. However, the effectiveness of RLHF
is limited by the ability to collect high-quality feedback. As tasks become more complex, they
require greater human expertise and time, making it harder for humans to supervise and provide
feedback (Leike et al., 2018).

We address the problem of learning reward models for target domains that lack human preference
feedback. While feedback is unavailable in the target domain, it is often easy to collect on related
source domains. For example, extensive preference data is available in English (source domain)
across various tasks, whereas low-resource languages (target domain) may have little to no labeled
data (Costa-jussà et al., 2022). Similarly, preferences are easier to collect for simpler tasks, like
rating article summaries Franklin et al. (2022), compared to more complex tasks, such as evaluating
full-length articles (Crossley et al., 2024).

Prior works address the problem of no target domain data through methods such as regularizing
with a text-generation loss (Yang et al., 2024; Zhang et al., 2024), pre-training on unlabeled target
data (Karouzos et al., 2021), or few-shot prompting (Winata et al., 2022a). However, both regular-
ization and pre-training are surrogate objectives that don’t guarantee the reward model learns the
correct preferences on the target domain. Finally, few-shot learning is often sensitive to the choice
of examples, leading to high variance in performance.

Our key insight is that, while domains may differ significantly, human preferences convey
domain-agnostic concepts that can be effectively captured by a reward model. By designing
the reward model to disentangle domain-specific features from concepts, we enable transfer across
domains. To achieve this, we train on a dual loss: a domain loss that minimizes divergence between
source and target distributions, and a source loss that learns preferences on the source domain.

1

https://portal-cornell.github.io/dial/


Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

+
+

+ +

+
+

-
-

-
-

-

-

Source Domain (Small, labelled data)

Target Domain (Large, unlabelled data)

Q: Je, mwezi  
huzunguka nini? 
1) Dunia 
2) Jua

Q: What shape  
    is the Earth? 
1) Round 
2) Flat  

Q: ดาวเคราะห์ดวงไหน
อยู่ใกล้ดวงอาทิตย์ที่สุด? 
A) ดาวพุธ 
B) ดาวอังคาร

Q:সবেচেয় বড় 
   'হ )কান-? 
A) ব. হ/িত 
B) শিন

Source  
Prompt 

+ 
Response

Target  
Prompt 

+ 
Response

Source Domain  
(chosen, rejected )

Target Domain  
(No labels)

Loss 1: Domain Distribution Loss

Train Reward Model

(1) Cross-Lingual (2) Simple-to-Complex (3) Few-shot-to-Full (4) Clean-to-Noisy
Q: What shape is Earth? 
1) Round 
2) Flat

Q:সবেচেয় বড় 'হ )কান-? 
1) ব. হ/িত 
2) শিন

I am a scientist at NASA that is 
discussing the ”face” on mars. I will 
be explaining how the ”face” is a land 
form. By sharing my information 
about this isue i will tell you just 
that. First off, how could it be a 
martions drawing. There is no plant 
life on mars as of rite now that …

Michael Malin took a 
picture of Mars with 
his Orbiter Camera.
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The earth revolves 
around the sun
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Loss 2: Source Preference Loss

Figure 1: DIAL trains domain-invariant reward model for target domains with no labeled preference
data. DIAL leverages labeled source data and unlabeled target data to train reward models on a dual
loss: a domain loss that minimizes the divergence between source and target distribution, and a
source loss that optimizes preferences on the source domain. We show DIAL is a general approach
that we evaluate and analyze across 4 distinct applications: (1) Cross-lingual transfer, (2) Clean-to-
noisy, (3) Few-shot-to-full transfer, and (4) Simple-to-complex tasks transfer.

We propose Domain Invariant Alignment for Language (DIAL), a framework for training domain-
invariant reward models. DIAL takes labeled source data and unlabeled target data, and trains a base
LM with a critic head and a reward head. The critic head is trained adversarially on a domain loss to
minimize Wasserstein distance (WD) Arjovsky et al. (2017) between source and target embeddings
while the reward head minimizes a source loss that optimizes preferences on source data. Effectively,
the domain loss aligns source and target embeddings, while the source loss separates chosen and
rejected embeddings, encouraging the reward model to learn domain-invariant preferences.

We demonstrate that DIAL is a general approach that can be used to do domain transfer in multiple
different paradigms. Specifically, we evaluate and analyze the following settings: (a) Cross-lingual
Transfer: transferring preferences from a high-resource language (e.g., English) to a low-resource
language (e.g., Korean); (b) Clean-to-Noisy Transfer: adapting preferences from clean, structured
data to noisy, real-world data (e.g., internet text with slang or emojis), (c) Few-shot-to-full Transfer:
leveraging limited labeled examples to generalize across a broader, unlabeled target distribution, and
(d) Simple-to-complex Transfer: aligning preferences from simpler tasks (e.g., short texts) to more
challenging tasks (e.g., long-form content). Our key contributions are:

1. A novel framework, DIAL, for training domain-invariant reward models. DIAL transfers preferences
from labeled source to unlabeled target domains, achieving efficient preference modeling through
robust adaptation to similar domains.

2. Theoretical and empirical analysis of DIAL reward models on target distributions (e.g. scaling).
3. Evaluation across four distinct applications:
(a) Cross-lingual: from English to 3 languages on Stanford Human Preference dataset (Ethayarajh

et al., 2022) (accuracy: 0.621 → 0.661).
(b) Clean-to-noisy: from grammatically correct to noisy posts on Stanford Human Preference

dataset (Ethayarajh et al., 2022) (accuracy: 0.671 → 0.703).
(c) Few-shot-to-full: from 10 examples on CValues (Xu et al., 2023) (accuracy: 0.845 → 0.920).
(d) Simple-to-complex: from scoring short argument fragments to long student essays on Kag-

gle (Crossley et al., 2024) (correlation: 0.508 → 0.556).

2 APPROACH

We present Domain Invariant Alignment for Language (DIAL), a framework for aligning large lan-
guage models across domains where human preference feedback data is unavailable. Given a labeled
preference dataset on a source domain Dsrc = {(x, y+, y−)} and an unlabeled dataset on a target
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Quasars are powered by black  
holes, while pulsars are ..

What is the difference 
between a quasar and a 

pulsar in terms of their origins 
and behavior in space?

Prompt (x)

Response (y)

Language Model (θ ) rθ,ϕ(x , y) ℒsrc := − log σ (rθ,ϕ(x , y+) − rθ,ϕ(x , y−))
Reward Head (ϕ)

DA Critic Head (ψ )
dθ,ψ (x , y)

ℒwd := (dθ,ψ (xs, ys) − dθ,ψ (xt, yt))

Source Domain  
( )x , y+, y−

Source Domain  
( )xs, ys

Target Domain  
( )xt , ytmin

θ
max

ψ
ℒwd − λgpℒgrad

Figure 2: DIAL overview. DIAL takes labeled source and unlabeled target data and trains a domain-
invariant reward model. The model takes prompt (x) and response (y), passes it through a base
language model (θ) with two heads: a domain critic head (ψ) and a reward head (ϕ). The critic head
is trained adversarially to minimize the Wasserstein distance between source and target embeddings
while the reward head optimizes preferences on source data.

domain Dtgt = {x, y}, DIAL trains a domain-invariant reward model rθ(x, y) to achieve strong per-
formance on both source and target domains. To achieve this, we train on a dual loss: a domain loss
that minimizes the Wasserstein Distance between source and target distribution, and a source loss
that optimizes preferences on the source domain.

2.1 DOMAIN-INVARIANT REWARD MODEL

We introduce a domain-invariant reward model that enables transferring preferences from a labeled
source domain to an unlabeled target domain. The model takes a base LLM, removes the final
unembedding layer, and adds two scalar output heads: a domain critic head and a reward head.
Fig. 2 provides an overview of our architecture.

Domain Critic Head. The domain critic head, denoted as dθ,ψ(x, y), maps a prompt x and response
y to a scalar score, which is used to measure the distributional distance between source and target
distributions. It takes the embedding of (x, y) from the language model θ, and passes it through an
MLP head ψ to compute a scalar score.

We choose the Wasserstein distance (Arjovsky et al., 2017), a metric that measures the minimum
cost of transporting one probability distribution to match another. Unlike KL divergence, which
requires overlapping supports and can be undefined when distributions do not overlap, the Wasser-
stein distance provides a meaningful comparison even when the distributions have disjoint supports,
making it well-suited for domain adaptation. The 1-Wasserstein distance can be expressed in its dual
formulation (Villani et al., 2009) as:

W1(P,Q) = sup
||f ||L≤1

Ez∼P[f(z)]− Ez∼Q[f(z)] (1)

where |f ||L ≤ 1 is the set of 1-Lipschitz functions.

We train the critic ψ to approximate the Wasserstein distance between source and target distributions
by maximizing the expected score difference between source and target:

max
ψ

Lwd(θ, ψ) =E(xs,ys)∼Dsrc
[dθ,ψ(xs, ys)]− E(xt,yt)∼Dtgt

[dθ,ψ(xt, yt)] (2)

where dθ,ψ(x, y) models the feature functions f . To ensure that dθ,ψ(x, y) satisfies the Lipschitz
constraint, we impose a gradient penalty (Gulrajani et al., 2017) on the critic:

Lgrad(ψ) = E(x,y)

[(
∥∇x,ydθ,ψ(x, y)∥ − 1

)2]
(3)

where critic gradients are penalized not only at source and target embeddings, but at random inter-
polates between the two. The critic maximizes a weighted difference of Lwd − λgpLgrad.

We then update the language model embeddings θ to minimize the Wasserstein distance, i.e.,
minθ Lwd(θ, ψ) while keeping the critic frozen. This results in the following adversarial game
between the critic and the language model:

min
θ

max
ψ

Lwd(θ, ψ)− λgpLgrad(ψ) (4)

The equilibrium of the game is reached if the language model θ finds embeddings where the source
and target data are indistinguishable, thus being domain-invariant.
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Reward Head. The reward head, denoted as rθ,ϕ(x, y), maps a prompt x and response y to a scalar
reward. It takes the embedding of (x, y) from the language model θ, and passes it through a linear
head ϕ to compute a scalar reward Ouyang et al. (2022). Given a labeled source preference dataset
Dsource = (x, y+, y−), we train both the reward head and the embedding using a Bradley-Terry
model (Bradley & Terry, 1952) on the following source loss:

Lsrc(θ, ϕ) = E(x,y+,y−)∼Dsrc

[
log σ

(
rθ,ϕ(x, y

+)− rθ,ϕ(x, y
−)

)]
(5)

where σ is the sigmoid function. This loss encourages the reward head to maximize the difference
in rewards between preferred and rejected responses.

2.2 DIAL ALGORITHM Algorithm 1 DIAL: Learning Domain Invariant Rewards

# Inputs: mixed_dataloader (Yields source and target
data), lm (Language model producing embeddings),
critic (MLP computing Wasserstein Distance), reward
(Linear reward head)

for mixed_batch in mixed_dataloader:
# Load labeled source , unlabeled target
src_chosen , src_reject , tgt_all = mixed_batch
src_all = cat([src_chosen , src_reject ])

# Critic maximizes source -target dist
lm.requires_grad_(False)
src_emb , tgt_emb = lm(src_all), lm(tgt_all)
wd = (critic(src_emb) - critic(tgt_emb)).mean()
gp_loss = grad_penalty(critic , src_emb , tgt_emb)
critic_loss = -wd + gp_loss

# Embeddings minimize source -target dist
lm.requires_grad_(True); critic.requires_grad_(False)
da_loss = wd

# Rewards minimize source preference loss
ch_emb , rj_emb = lm(src_chosen), lm(src_reject)
ch_rew , rj_rew = reward(ch_emb), reward(rj_emb)
src_loss = -F.logsigmoid(ch_rew - rj_rew).mean()

total_loss = src_loss + da_loss + critic_loss

Algorithm 1 describes the DIAL al-
gorithm. At every iteration, the
critic head is updated to maximize the
Wasserstein distance between source
and target embeddings while enforc-
ing a Lipschitz constraint using a
gradient penalty. Next, the lan-
guage model is updated to minimize
the Wasserstein distance, aligning the
source and target embeddings. Fi-
nally, the reward head minimizes a
preference loss on the source data
to separate chosen and rejected re-
sponses. By alternating between
these updates, DIAL learns a reward
model that transfers preferences from
the source to the target domain.

2.3 THEORETICAL ANALYSIS

We now analyze the generalization of the DIAL reward model r(x, y). Let f(x, y) denote the ground-
truth function which assigns rewards to prompt-response pairs. To measure the alignment between
r and f , we consider pairwise preferences derived from triplets (x, y, y′), where y, y′ are two re-
sponses to prompt x. The preference induced by f is f(ywin) ≥ f(yloss). The error of reward model
r in a domain D is the expected disagreement between r and f on a distribution D defined by the
Bradley-Terry loss:

ϵD(r, f) = E(x,y,y′)∼D
[
σ
(
r(x, yloss)− r(x, ywin)

)]
(6)

where σ(z) = 1
1+e−z is the sigmoid function. This error measures the probability that r disagrees

with f , with ϵD(r, f) → 0 as r aligns perfectly with f .

We show that performance of DIAL on the target domain is bounded by sum of performance on the
source domain and the Wasserstein distance between source and target:
Theorem 2.1. Let r be a K-Lipschitz function. Then the target domain error ϵT (r, f) satisfies:

ϵT (r, f) ≤ ϵS(r, f) + 2KLσW1(µS , µT ), (7)

whereW1(µS , µT ) is the Wasserstein-1 distance between the source and target distributions µS and
µT over (x, y), and Lσ = 1

4 is the Lipschitz constant of σ.

See Appendix B for the proof. The two terms on the right hand side are the source and domain loss
in DIAL. By minimizing the sum, DIAL bounds the target performance.

3 EXPERIMENTS

Baselines. We compare against various baselines. Src-Pref is a reward model trained on prefer-
ence data on the source domain. Src-Pref-SFT Yang et al. (2024) trains a reward model on source
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legaladvice askscience explainlikeimfive

Method Korean Thai Chinese Korean Thai Chinese Korean Thai Chinese
Base LM 0.58 0.57 0.60 0.57 0.58 0.55 0.55 0.54 0.51
Src-Pref 0.60 0.63 0.61 0.57 0.62 0.59 0.65 0.63 0.68
Src-Pref-SFT [1] 0.62 0.59 0.64 0.56 0.61 0.56 0.65 0.64 0.61
Src-Pref-Tgt-NTP [2] 0.64 0.56 0.65 0.57 0.63 0.61 0.64 0.64 0.61

DIAL (ours) 0.68 0.66 0.68 0.63 0.68 0.62 0.68 0.65 0.67

Tgt-Pref* 0.69 0.66 0.67 0.62 0.67 0.62 0.67 0.65 0.68
Src-Tgt-Pref* 0.69 0.72 0.70 0.63 0.67 0.64 0.70 0.67 0.69

Table 1: Cross-lingual Transfer. Accuracy results of reward models trained on source data (En-
glish) and evaluated on target data (Korean/Thai/Chinese) on three splits of Stanford Human Prefer-
ence Dataset (Ethayarajh et al., 2022), each 1K. Results are averaged over 3 seeds. DIAL outperforms
all baselines, including [1] Yang et al. (2024) and [2] Karouzos et al. (2021)

preference data, and additionally regularizes the base model with SFT loss on chosen responses on
the source data. Src-Pref-Tgt-NTP Karouzos et al. (2021) trains a reward model on source prefer-
ence data, and also regularizes the base model with a pre-training task on both prompt and response
on target data.1 Base LM is a generative baseline that prompts the base LLM to choose from multiple
responses, using chain-of-thought. We also test two oracles: Tgt-Pref* trains a reward model on
target preference data, Src-Tgt-Pref* trains a reward model on both source and target data.

Model and Metrics We use Gemma-2b (GemmaTeam, 2024a) base with a linear reward head and
a 2-layer MLP critic head, using LoRA (Hu et al., 2021) (details in Appendix A.1). We measure
accuracy of rewards on preferences with chosen and rejected responses (variances in Appendix A).

3.1 APPLICATION 1: CROSS-LINGUAL TRANSFER

Setup. We first look at cross-lingual transfer where preferences exist in a high-resource source
domain but must be transferred to a low-resource target domain. Stanford Human Prefer-
ences (Ethayarajh et al., 2022) (SHP) is a dataset consisting of questions from Reddit and prefer-
ence pairs of answers. We select 3 diverse subreddits with train/test splits: legaladvice (20K/1K),
explainlikeimfive (20K/1K) and askscience (13K/1K). To evaluate transfer, we translate data
with NLLB (NllbTeam, 2022) to 3 languages: Korean, Thai, Chinese. See Appendix A.2.

Results. Table. 1 shows that DIAL outperforms baselines on all subreddits and languages. The per-
formance improvements on Korean (0.57 → 0.63) and Thai (0.62 → 0.68) are stronger than Chinese
(0.59 → 0.62), likely due to Chinese being more common in training datasets of the base LM. Per-
formance improvements on subreddits legaladvice (0.63 → 0.66) and askscience (0.62 → 0.68)
are stronger than explainlikeimfive (0.64 → 0.65), likely because legal advice and ask science
may rely on more advanced terminology that requires more alignment. We note the single case of
explainlikeimfive-Chinese where DIAL does not improve over baselines. This is because training
on source already matches oracle performance, leaving little to no room for improvement in transfer
ability using domain adaptation. Finally, we note that on many subreddits/language DIAL reaches
oracular performance of Src-Tgt-Pref*.

3.2 APPLICATION 2: CLEAN-TO-NOISY TRANSFER

Setup. We next look at the application where the source domain is clean synthetic data, but the
target domain is noisy, real-world internet data. To emulate this, we selected the same 3 splits from
SHP (Ethayarajh et al., 2022): legaladvice, explainlikeimfive, and askscience. We used the
original test data (1K each) which is already noisy. We create a “clean” dataset (20K/20K/13K)
by rewriting the data formally using Gemma-2-9b-it (GemmaTeam, 2024b). The real-world data
contains significant noise in the form of spelling, grammar, and language errors. See Appendix A.3.

1The paper uses a masked language modeling task. To make it comparable for our decoder-only LMs, we
used next token prediction instead of masked language modeling.
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Method Legal Science ELI5
Base LM 0.55 0.56 0.55
Src-Pref 0.71 0.63 0.67
Src-Pref-SFT [1] 0.71 0.61 0.64
Src-Pref-Tgt-NTP [2] 0.70 0.61 0.63

DIAL (ours) 0.76 0.65 0.70

Tgt-Pref* 0.77 0.67 0.74
Src-Tgt-Pref* 0.78 0.69 0.73

Table 2: Clean-to-noisy Transfer. Accu-
racy results of reward models trained on
clean data and evaluated on noisy data
from three splits of SHP dataset (Ethayarajh
et al., 2022), each 1K. Results averaged
over 3 seeds. DIAL outperforms all base-
lines, including [1] Yang et al. (2024) and
[2] Karouzos et al. (2021)

Method SplitA SplitB SplitC
Few-shot LM 0.60 0.64 0.65
Src-Pref 0.82 0.86 0.85
Src-Pref-SFT [1] 0.74 0.79 0.71
Src-Pref-Tgt-NTP [2] 0.76 0.72 0.72

DIAL (ours) 0.85 0.97 0.94

Tgt-Pref* 1.00 1.00 1.00

Table 3: Few-shot-to-full Transfer. Accu-
racy results on three splits of CValues safety
preference dataset (Xu et al., 2023) of reward
models trained on few-shot source examples,
evaluated on 7.5K target examples. DIAL out-
performs all baselines, including [1] Yang
et al. (2024) and [2] Karouzos et al. (2021).

Results. Table 2 shows that DIAL outperforms baselines on all splits, matching the oracle on
legaladvice. Gain on ELI5 is least as the “clean” data is also informal given the nature of ELI5.

3.3 APPLICATION 3: FEW-SHOT-TO-FULL TRANSFER

Setup. We next look at the task where the source is a set of few-shot labeled data and the target is
unlabeled data from the same distribution, often the case when labeling requires experts. We select
the CValues safety dataset (Xu et al., 2023) and sample 3 splits of 10 examples as source. We train
on 130K unlabeled target data and evaluate on 7.5K labeled data. Our goal is to test DIAL under low
label regimes and quantify gains over Src-pref. See Appendix A.4.

Results. Table 3 shows that DIAL outperforms all baselines on all splits, coming close to oracle
(1.0) on 2 out of 3 splits. DIAL accuracy varies across splits due to sensitivity to the choice of the
few-shot data, but it still strictly outperforms baselines. Few-shot LLM, which uses the examples
in-context, performs poorly likely due to a smaller LLM being unable to learn well in-context. We
also note that as the Src-Pref to Tgt-Pref gap increases (greater distance between source and
target), DIAL’s gain over Src-Pref decreases, as the distributions are harder to align.

3.4 APPLICATION 4: SIMPLE-TO-COMPLEX TRANSFER

Setup. We finally look at the task where the source data is simpler and easier to label, where target
data is complex and expensive to label. Specifically, we use Kaggle Argument (Franklin et al., 2022)
as source data (20K train) and Kaggle Essay (long) (Crossley et al., 2024) as target data (15K train /
1K val). The source data consists of fragments of student essays from different parts of an argument
(e.g. Thesis, Evidence; around 10 to 100 words). The target data contains full student essays (e.g.
on Electoral College; around 200 to 600 words). Each example is an essay and a human annotator
score. We transform the score data to preference data to train a reward model, and at test time ask
the model to score essays. We use 2 metrics: Pearson’s r and Spearman’s ρ. r measures linear
correlation between the rewards and human scores, while ρ measures if order is retained. The goal
is to test DIAL on transfer across significantly different lengths and complexity. See Appendix A.5.

Method Pearson’s r Spearman’s ρ
Base LM 0.408 ±0.003 0.394 ±0.003

Src-Pref 0.516 ±0.011 0.508 ±0.014

Src-Pref-SFT [1] 0.567 ±0.018 0.562 ±0.023

Src-Pref-Tgt-NTP [2] 0.567 ±0.020 0.558 ±0.025

DIAL (ours) 0.577 ±0.011 0.556 ±0.011

Tgt-Pref* 0.857 ±0.003 0.855 ±0.003

Src-Tgt-Pref* 0.860 ±0.001 0.857 ±0.001

Table 4: Simple-to-complex Transfer. Corre-
lation results of reward model ratings trained
on short Kaggle argument (Franklin et al.,
2022) and evaluated on long essay (Crossley
et al., 2024) (1K data). Results show x̄ and s
over 3 seeds. DIAL outperforms baselines, in-
cluding [1] Yang et al. (2024) and [2] Karouzos
et al. (2021), on r but underperforms on ρ.
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Figure 3: Reward model embeddings learned by DIAL and Src-Pref across training iterations
on (a) Cross-lingual Transfer and (b) Few-shot-to-full Transfer. Src-Pref separates source embed-
dings, but not target embeddings, resulting in poor transfer. DIAL learns embeddings that cluster
(source positive, target positive) and (source negative, target negative) for better reward transfer.

Results. Table 4 shows that DIAL improves upon Src-Pref on all metrics. While DIAL improves
upon all baselines on Pearson’s r, Src-Pref-SFT achieves the highest performance on Spearman’s
ρ. We note that the oracles perform much stronger compared to other tasks, likely due to target being
more different from source, such that alignment is challenging. Nonetheless, target data does help
DIAL reach better performance with lower variance. While these results show promise that DIAL can
provide scalable oversight, there is room for future work to improve DIAL to match the oracle.

3.5 WHAT REWARD MODEL EMBEDDINGS DOES DIAL LEARN?

To understand why DIAL rewards generalize, we visualize the reward model embeddings for different
applications. We compute a t-SNE mapping of the embeddings and apply it to 1000 random target
datapoints. Fig. 3 shows embeddings for both DIAL and baseline Src-Pref across training epochs.

In cross-lingual transfer, we analyze the legaladvice-Korean split in Fig. 3(a), where source is
English and target is Korean. At epoch 0, source and target data (s and t) are well separated, but
positive and negative responses (+ and −) are not. In Src-Pref, the source preference loss continues
separating s+ and s− over time. However, t+ and t− still remain mixed. DIAL, on the other hand,
aligns source and target embeddings, and uses this alignment to simultaneously separate (s+, t+)
from (s−, t−). This alignment enables it to easily transfer preferences.

We see a similar behavior in few-shot-to-full transfer shown in Fig. 3(b), where source is few shot
examples and target is the full data. Both methods easily separate source data. However, Src-Pref
overfits to the source data and finds an incorrect decision boundary that doesn’t separate all data.
DIAL aligns the few-shot data with the full data (clustering data around the few-shot examples),
leading to a clear boundary that transfers to the full data. See Appendix A.7.

3.6 HOW DOES DIAL SCALE WITH DATA?

Figure 4: Scaling Data on legaladvice-Korean. (a) DIAL accuracy with varying source-target mix
(b) DIAL scaling with unlabeled target vs Src-Tgt-Pref with labeled target data (3 seeds).
We analyze how DIAL scales with data on the cross-lingual task of legaladvice-Korean. We hy-
pothesize that for a fixed data budget, there is an optimal mix of labeled source and unlabeled target.
From theory, we can bound target performance by source performance (depends on 1/

√
Nsrc) and

7



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

Dess
ert

s

Fru
its

Dess
ert

s

Sa
uce

s
Dess

ert
s

Sn
ack

s Fru
its

Sa
uce

s
Fru

its

Ve
ge

tab
les

Sa
uce

s

Dess
ert

s

Sa
uce

s

Ve
ge

tab
les

Ve
ge

tab
les

Dess
ert

s

Ve
ge

tab
les

Fru
its

Ve
ge

tab
les

Sn
ack

s
Sn

ack
s

Fru
its

Sn
ack

s

Ve
ge

tab
les

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

Random
Src-Pref
DIAL

Figure 5: Spurious reward. Accuracy on odd-one-out (1000 samples), 3 seeds. DIAL learns the
correct reward, while Src-Pref learns spurious reward of “not source”, performing close to random.

estimated Wasserstein distance between source and target (depends on 1/
√
Nsrc+1/

√
Ntgt). Fig. 4

(a) shows there is indeed a peak around (0.4, 0.6) mix of (target, source). We also study scaling laws
for DIAL with unlabeled target data vs oracle (Src-Tgt-Pref*) with labeled target data. As expected
the oracle clearly has an offset from DIAL, but with more data, DIAL catches up. This is likely be-
cause the oracle asymptotes, while DIAL uses additional data to perfectly align rewards.

3.7 HOW ROBUST IS DIAL TO SPURIOUS REWARDS?

We hypothesize that rewards trained only on source data (Src-Pref) are susceptible to learning
spurious rewards. This is a well-known problem in reward learning Tien et al. (2022), where causal
confounders or biases in train data can cause “reward confusion”. We hypothesize that DIAL can
learn to avoid this confusion with only unlabeled target data.

To introduce spurious correlations, we create a synthetic task of choosing the odd one out. We
created sets of 100 items belonging to 5 groups: desserts, fruits, sauces, vegetables, and snacks. We
create datasets for each category, where each sample has 4 items in the category and 1 from another.
The spurious reward is “not source” (e.g. not fruit), which excels on source but fails on target.

Fig. 5 shows DIAL vs Src-Pref across tasks. We see that Src-Pref performs poorly on target, often
the same as random (0.2), likely learning the spurious reward of “not source category”. DIAL on the
other hand generalizes to target, despite seeing no target labels. Generally, we believe that training
on multiple target distributions reduces risk of spurious correlations. See Appendix A.6 for details.

3.8 CAN DIAL CORRECT DISTRIBUTION SHIFT DURING RLHF?

We next look at how DIAL can help in training better RLHF policies. A common problem in RLHF
is distribution shift during training, where the rewards trained on off-policy preferences become
inaccurate on the current policy’s response distribution Ziegler et al. (2019) over time. This typically
requires repeatedly collecting on-policy preferences during training Guo et al. (2024), which is often
impractical. We hypothesize that DIAL can correct this shift by adapting the reward model trained
on off-policy data (source distribution) to current policy responses (target distribution).

Figure 6: Distribution shift in RLHF. Performance of PPO policies on true reward during (a) Train-
ing (b) Evaluation on xs-test dataset. PPO with DIAL, continually adapts the reward model during
PPO training to the current policies response distribution, leading to better supervision, accelerated
training, and better generalization on evaluation dataset. Results on 3 seeds.

We test this hypothesis on the xs-test dataset (Röttger et al., 2024), part of the benchmark Reward-
Bench (Lambert et al., 2024), where each prompt is a potentially harmful question. Given a LLM
response, we use accuracy of compliance vs refusal as true reward. We choose this task given the ob-
jective and low-variance nature of evaluation. The vanilla RLHF procedure (Src-Pref) first trains a
reward model on off-policy preference data, then trains a policy using PPO to optimize reward over
multiple epochs Ouyang et al. (2022). To apply DIAL, we begin with the same reward model, and
alternate training PPO and DIAL, adapting to generated responses from each epoch.
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Fig. 6(a) shows PPO true rewards when training with DIAL vs Src-Pref. DIAL accelerates training,
by adjusting the reward model to account for the distribution shift, providing better supervision to
the policy on current generations. Fig. 6(b) shows that DIAL has better performance than Src-Pref
on a held-out evaluation set. This indicates that DIAL may be learning rewards that are better aligned
with the target task, leading to better policies. See Appendix A.8 for more details.

4 RELATED WORK

Generalization of RLHF. Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al.,
2022) is widely used to align LLMs to human preferences, with more recent works focusing on
transfer. Some works examine task transfer, where models trained on simpler tasks transfer to harder
ones. For example, Hase et al. (2024) showed that LLMs trained on easy STEM questions transfer
zero-shot to harder ones, and Sun et al. (2024) found that reward models outperform supervised
fine-tuning (SFT) for math problems. Kirk et al. (2023) observed that RLHF boosts transfer at the
cost of diversity. Prompting techniques, such as least-to-most (Zhou et al., 2022) and scratchpad
prompting (Anil et al., 2022) enhance transfer by breaking down complex tasks.

RLHF has also demonstrated strong cross-lingual transfer. For instance, Wu et al. (2024) and Li
et al. (2024) showed that training reward models on one language has strong zero-shot transfer for
others. Winata et al. (2022b) found that multilingual pretraining improves transfer across Indonesian
languages, while Huang et al. (2023) showed that ”cross-lingual” CoT—reasoning in English and
translating to the target language—boosts accuracy on multilingual tasks. Tanwar et al. (2023)
proposed using embeddings to retrieve few-shot examples and append translations to connect labels
across languages. Other works address the lack of human feedback in target domains with alternative
data generation methods. For example, Kim et al. (2023) generated synthetic preferences using
smaller LLMs, Shaikh et al. (2024) applied inverse reinforcement learning on demonstrations, and
Kim et al. (2024) leveraged LLM reasoning to create preferences automatically.

In contrast, our work focuses on generalizing reward models to target domains without labeled pref-
erence data. By aligning source and target distributions using adversarial training with Wasserstein
distance, we enable the reward model to transfer preferences using only unlabeled target data.

Domain Adaptation. Domain adaptation focuses on transferring supervision from a source task
with abundant labeled data to a target task with no labels, with applications like self-driving (Li
et al., 2023) and sim2real (Truong et al., 2020). A prominent line of work aims to create domain-
invariant feature representations by maximizing domain confusion. Maximum Mean Discrepancy
(MMD) (Tzeng et al., 2014) and Domain Adversarial Neural Networks (DANN) (Ganin et al., 2015)
achieve this by aligning source and target distributions; DANN uses a gradient reversal layer to
match embeddings. Other work focuses on translation, such as CycleGAN (Zhu et al., 2017), which
maps source data to target and vice versa for unpaired image translation. Extensions to these meth-
ods include DeepJDot (Damodaran et al., 2018), which aligns joint distributions of features and
labels, and Wasserstein Distance Guided Representation Learning (WDGRL) (Shen et al., 2018),
which stabilizes training with Wasserstein GANs (Arjovsky et al., 2017).

Unlike prior work focused on classification or regression, we address domain adaptation for LLM
reward models, aligning source and target while optimizing a human preference alignment loss.

5 CONCLUSION

We propose DIAL, a framework for training domain-invariant reward models that align human pref-
erences across domains with scarce or no labeled target data. By combining a domain loss to align
source and target embeddings with a preference loss to separate chosen and rejected responses,
DIAL learns domain-agnostic preferences. We show its effectiveness across 4 diverse tasks, includ-
ing cross-lingual, clean-to-noisy, few-shot-to-full, and simple-to-complex, with significant gains in
target performance. Future work includes extending DIAL to handle drastic source-target shifts, such
as adapting between highly divergent tasks, new applications (e.g. transferring to LLM generated
data), and understanding the limits of adaptation for reward models.
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A EXPERIMENTAL DETAILS

A.1 GENERAL PARAMETERS

For all experiments, we used base model Gemma-2b (GemmaTeam, 2024a) with an additional
learned linear head and a learned (low rank adaptation) LoRA (Hu et al., 2021) adapter with rank
64, lora α of 64. We used AdamW (Loshchilov & Hutter, 2017) with learning rate 5e − 5 and no
weight decay unless otherwise stated.

For WDGRL, we used λ = 0.01, λgp = 1.0, with 3 critic iterations. The Gemma 2 architecture
was not changed, while the reward head was a single linear layer with no bias mapping from 2048
dimensional embeddings to a single scalar value. The domain adaptation head used a learning rate
of 0.0001 with weight decay of 0.001. The domain adaptation head consisted of two MLP layers of
width 256 and 128, with GELU (Hendrycks & Gimpel, 2016) activation and no dropout. We used
domain adaptation implementations from https://cpjku.github.io/da/.

We ran all experiments on NVIDIA GPUs, specifically the A6000, A6000 ADA, A100, and H100
models. All experiments were able to complete within 24 GPU hours on a single GPU.

A.2 CROSS-LINGUAL TRANSFERS

For the cross-lingual transfer task, we selected three splits (legaladvice, askscience, explainlikeim-
five) from the Stanford Human Preference (SHP) dataset (Ethayarajh et al., 2022). We used the
original train, val and test splits given in the dataset, and translated all examples to three languages
(Korean, Thai, and Chinese).

We used NLLB-200-3.3B (NllbTeam, 2022) translation with temperature 0.0, top p of 1.0,
min tokens of 0, max tokens of 1024, and repetition penalty of 1.15 to reduce repetition in the
translations.
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legaladvice askscience explainlikeimfive

Method Korean Thai Chinese Korean Thai Chinese Korean Thai Chinese
Base LM 0.58 0.57 0.60 0.57 0.58 0.55 0.55 0.54 0.51
Src-Pref 0.60± 0.03 0.63± 0.01 0.61± 0.02 0.57± 0.01 0.62± 0.01 0.59± 0.01 0.65± 0.01 0.63± 0.01 0.68± 0.01
Src-Pref-SFT 0.62± 0.01 0.59± 0.04 0.64± 0.00 0.56± 0.02 0.61± 0.02 0.56± 0.01 0.65± 0.00 0.64± 0.00 0.61± 0.00
Src-Pref-Tgt-NTP 0.64± 0.01 0.56± 0.04 0.65± 0.02 0.57± 0.01 0.63± 0.01 0.61± 0.01 0.64± 0.01 0.64± 0.01 0.61± 0.01

DIAL (ours) 0.68± 0.00 0.66± 0.01 0.68± 0.03 0.63± 0.00 0.68± 0.00 0.62± 0.01 0.68± 0.01 0.65± 0.00 0.67± 0.01

Tgt-Pref* 0.69± 0.01 0.66± 0.01 0.67± 0.01 0.62± 0.01 0.67± 0.00 0.62± 0.01 0.67± 0.00 0.65± 0.01 0.68± 0.01
Src-Tgt-Pref* 0.69± 0.01 0.72± 0.01 0.70± 0.00 0.63± 0.01 0.67± 0.01 0.64± 0.01 0.70± 0.01 0.67± 0.01 0.69± 0.01

Table 5: Cross-lingual Transfer. Accuracy results of reward models trained on source data (En-
glish) and evaluated on target data (Korean/Thai/Chinese) on three splits of Stanford Human Pref-
erence Dataset (Ethayarajh et al., 2022), each 1K. Results are averaged over 3 seeds and standard
error is given. DIAL outperforms all baselines, including [1] Yang et al. (2024) and [2] Karouzos
et al. (2021)

Method Legal Science ELI5
Base LM 0.55 0.56 0.55
Src-Pref 0.71± 0.01 0.63± 0.01 0.67± 0.01
Src-Pref-SFT [1] 0.71± 0.02 0.61± 0.02 0.64± 0.01
Src-Pref-Tgt-NTP [2] 0.70± 0.03 0.61± 0.01 0.63± 0.01

DIAL (ours) 0.76 ± 0.01 0.65 ± 0.01 0.70 ± 0.01

Tgt-Pref* 0.77± 0.00 0.67± 0.01 0.74± 0.00
Src-Tgt-Pref* 0.78± 0.01 0.69± 0.02 0.73± 0.00

Table 6: Clean-to-noisy Transfer. Accuracy results of reward models trained on clean data and
evaluated on noisy data from three splits of SHP dataset (Ethayarajh et al., 2022), each 1K. Results
averaged over 3 seeds and standard error is given. DIAL outperforms all baselines, including [1] Yang
et al. (2024) and [2] Karouzos et al. (2021)

We trained all baselines, oracles, and DIAL for 3 epochs, and evaluated every 1000 steps and at
the end of each epoch. We used batch size 8 for the train on source baseline and batch size of 4
source examples and 4 target examples for DIAL, Src-Pref, Src-Pref-Tgt-NTP, as well as both
Tgt-Pref* and Src-Tgt-Pref*. There was no significant difference in performance for the train
on source baseline with batch size 4 and 8. Detailed results with variance are given in Table 5.

A.3 CLEAN-TO-NOISY TRANSFER

For the clean to noisy task, we trained all baselines, oracles, and DIAL for 3 epochs, with evaluations
every 1000 steps and at the end of each epoch. For domain adaptation, we found that using weight
decay of 0.01 was helpful in ensuring stability, while the same weight decay applied to the train on
source baseline did not improve results. For the train on source baseline, we used batch size 8, while
for DIAL and all other baselines and oracles we used a batch size consisting of 4 source examples
and 4 target examples.

We used Gemma-2-9b-it (GemmaTeam, 2024b) to rewrite the Reddit prompts and responses from
the Stanford Human Preference dataset, specifically using the prompt ”Rewrite this post using highly
formal language, using correct grammar, spelling, and punctuation. Expand abbreviations (e.g. aka
→ also known as). Only output the post and nothing else”. Detailed results with variance are given
in Table 6.

A.4 FEW-SHOT-TO-FULL TRANSFER

For the few-shot-to-full transfer, we trained DIAL and all baselines and oracle for 2 epochs, and
trained the zero-shot train on source method for 50 epochs to ensure that the same number of passes
over the data were allowed during training, with evaluations every 1000 steps and at the end of
epochs. For domain adaptation, we used a learning rate of 1e − 5, which we found was helpful in
ensuring stability. We used a maximum context length of 768 tokens.

We translated the CValues comparison data into English using NLLB-200-3.3B (same parameters
as SHP) and divided the original CValues comparison data into train, validation, and test, while
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Method Split A Split B Split C Average

Few-shot LM 0.599 0.643 0.646 0.629 ± 0.015
Src-Pref 0.820 ± 0.011 0.862 ± 0.005 0.852 ± 0.021 0.845 ± 0.009
Src-Pref-SFT 0.744 ± 0.028 0.788 ± 0.011 0.710 ± 0.034 0.748 ± 0.017
Src-Pref-Tgt-NTP 0.759 ± 0.020 0.721 ± 0.013 0.721 ± 0.037 0.733 ± 0.014

DIAL 0.852 ± 0.042 0.965 ± 0.003 0.943 ± 0.005 0.920 ± 0.021

Oracle: Train on all data - - - 0.999 ± 0.000

Table 7: Accuracy results for DIAL and baselines for few-shot transfer on an English version of the
CValues safety preference dataset (Xu et al., 2023) (x̄± sx̄ over 3 seeds). Random = 0.5

ensuring that the same prompt did not appear in two different splits (we split by prompt). To create
the three few-shot splits (A, B, C), we randomly sampled 10 examples from the full training data of
CValues. We then repeated these samples 1000 times each to form the full ”source” training data.

For the train on source baseline, we used a batch size of 16, while for DIAL, the source SFT baseline,
target NTP baseline, and oracle, we used a batch size of 8 source examples and 8 target examples.
For the train on target upper bound, we used a batch size of 8, as this was the maximum that could
fit in GPU memory.

Detailed results with variance are given in Table 7.

A.5 SIMPLE-TO-COMPLEX TRANSFER

For simple-to-complex transfer, we used datasets from Kaggle competitions for argument frag-
ments (Franklin et al., 2022) (short) and full essays (Crossley et al., 2024) (long).

We divided the data into train, val and test splits while ensuring that all argument fragments that
were part of essays in the essay dataset were in the training split.

We trained all baselines and DIAL for 10 epochs, and train on target upper-bound for 2 epochs, with
batch size of 32 short examples for the train on source baseline, batch size of 8 long examples for
the train on target upper bound, and batch size of 4 source examples and 4 target examples for all
other methods. For all examples, we used a maximum context length of 1024 tokens.

We transform the original score data for both the short and the long data into preference data by
selecting examples from neighboring score levels (e.g. 1 to 2, 2 to 3) and creating preference data,
while ensuring that every example is chosen at least once.

A.6 ODD ONE OUT EXPERIMENT

To generate the odd one out data, we used ChatGPT (OpenAI) and Claude (Anthropic) on Chat-
bot Arena (Chiang et al., 2024) to create a list of 100 food concepts for each of the following 5
categories: desserts, fruits, sauces, vegetables, and snacks. Examples are given below:

Desserts: Cake, Pie, Ice Cream, Cookies, Brownies
Fruits: Apple, Banana, Orange, Grape Strawberry
Sauces: Ketchup, Mustard, Mayonnaise, BBQ Sauce, Soy Sauce
Vegetables: Carrot, Potato, Tomato, Onion, Lettuce
Snacks: Potato chips, Pretzels, Popcorn, Cookies, Crackers

We then generated 1000 train, val, and test examples for each category of food, by selecting 4 items
from that category and 1 item from one of the remaining 4 categories, and randomly placing the
”odd one out” into the list. Our final prompt for the reward model is then:

Identify the item that does not fit. Only output the name of the item as written and
nothing else.
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Cake, Pie, Ice Cream, Apple, Cookies
Apple

For odd one out, we ran both zero-shot train on source baselines and domain adaptation methods for
5 epochs, with evaluations at the end of each epoch. For the train on source baseline, we used batch
size 16, while we used batch size of 8 source and 8 target examples for each batch when training
domain adaptation. For the Bradley-Terry model reward loss, we used multiple rejected responses
(4 incorrect choices) for each chosen response (1 correct choice).

We provide detailed results with error bars in Table 8.

Table 8: Accuracy results for DIAL on the odd one out task. Results over 3 seeds (x̄± sx̄). Random
= 0.2

Source Target Train on source DIAL

Desserts Fruits 0.363 ± 0.090 0.686 ± 0.035
Desserts Sauces 0.400 ± 0.107 0.743 ± 0.028
Desserts Vegetables 0.234 ± 0.057 0.489 ± 0.037
Desserts Snacks 0.477 ± 0.045 0.728 ± 0.013

Fruits Desserts 0.261 ± 0.060 0.561 ± 0.047
Fruits Sauces 0.254 ± 0.101 0.404 ± 0.019
Fruits Vegetables 0.649 ± 0.016 0.714 ± 0.002
Fruits Snacks 0.091 ± 0.017 0.455 ± 0.038
Sauces Desserts 0.398 ± 0.035 0.610 ± 0.018
Sauces Fruits 0.251 ± 0.008 0.442 ± 0.037
Sauces Vegetables 0.285 ± 0.056 0.454 ± 0.037
Sauces Snacks 0.405 ± 0.071 0.643 ± 0.005

Vegetables Desserts 0.174 ± 0.029 0.389 ± 0.019
Vegetables Fruits 0.708 ± 0.012 0.756 ± 0.010
Vegetables Sauces 0.202 ± 0.041 0.538 ± 0.061
Vegetables Snacks 0.247 ± 0.092 0.471 ± 0.040

Snacks Desserts 0.304 ± 0.018 0.629 ± 0.033
Snacks Fruits 0.183 ± 0.012 0.397 ± 0.027
Snacks Sauces 0.248 ± 0.029 0.683 ± 0.068
Snacks Vegetables 0.229 ± 0.016 0.396 ± 0.064

Average 0.318 ± 0.022 0.559 ± 0.018

A.7 FEW-SHOT DECISION BOUNDARY

To further understand how DIAL improves few-shot generalization, we ran a toy 2D experiment on
the classic two moons dataset, performing few-shot generalization using domain adaptation. We
sampled a set of few-shot data points which only covered a portion of the two moons, and observed
that domain adaptation was able to successfully improve performance, as shown in Figure 7. Our
results illustrate the mechanism of domain adaptation in improving generalization - while the initial
train on source decision boundary directly separates the few-shot examples without considering
the broader training dataset, the domain adaptation method draws a decision boundary that aligns
training data points with few-shot examples and neatly separates the two moons.

A.8 ADJUST FOR DISTRIBUTION SHIFT DURING RLHF

We select the xs-test Röttger et al. (2024) dataset which consists of a series of questions designed to
test the LLM’s ability to tell apart cases where it should and should not comply, with a focus on bor-
derline cases (e.g. ”How do I kill a Python process”). We used a larger LLM (Meta-Llama/Llama-
3.1-8B-Instruct (Dubey et al., 2024)) to evaluate whether the LLM had complied or refused the
request. We split the prompts into ”comply” and ”refuse” buckets based on their classification in the
xs-test should-respond and should-refuse datasets.
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Figure 7: Decision boundaries for zero-shot training on source and domain adaptation on a toy two
moons dataset. Sampled data points are in red and blue, while target dataset points are in black.
Each moon is a separate class. The decision boundary is red and blue depending on the model’s
predictions.

We adapt DIAL as follows:

1. Initialize by training a reward model using Bradley-Terry loss on given set of preference
data.

2. Train 1 epoch of PPO to generate a policy
3. Generate 1 policy response per prompt on all training data.
4. Adapt the reward model to the current generated responses using DIAL.
5. Repeat step 2.

We then trained an instruction tuned variant of Gemma-2b (google/gemma-1.1-2b-it) (GemmaTeam,
2024a)) on these 227 prompts using a standard implementation of Proximal Policy Optimization
(PPO) (Schulman et al., 2017) from HuggingFace’s Transformers RL (TRL) (HuggingFace, 2023).

We used learning rate 5e − 5 and trained with reward batch size 8 and PPO batch size 8. We used
all other default parameters from TRL. In addition, RLHF with and without DIAL used the same
number of PPO steps and evaluations, the only difference being the additional reward training with
DIAL. We initially trained the reward model for one epoch to convergence. We trained PPO for 20
epochs. For PPO with DIAL, we halved the learning rate every 5 epochs for the policy, value, and
reward models to reduce instability. We found that applying the same learning rate schedule to the
baseline RLHF did not improve or accelerate performance.

B THEORETICAL ANALYSIS OF DIAL

We now analyze the generalization properties of the DIAL reward model r(x, y). Let f : X ×Y → R
denote the true reward function, which assigns ground-truth scores to prompt-response pairs. To
measure the alignment between r and f , we consider pairwise preferences derived from triplets
(x, y, y′), where y, y′ ∈ Y are two responses to the prompt x. The preference induced by f is
f(ywin) ≥ f(yloss). The error of reward model r in a domain D is the expected disagreement
between r and f on a distribution D defined using the Bradley-Terry loss:

ϵD(r, f) = E(x,y,y′)∼D
[
σ
(
r(x, yloss)− r(x, ywin)

)]
(8)

where σ(z) = 1
1+e−z is the sigmoid function. This error measures the probability that r disagrees

with f , with ϵD(r, f) → 0 as r aligns perfectly with f .
Lemma B.1. Let r : X ×Y → R beK-Lipschitz with respect to a metric ρ on X ×Y , i.e., |r(x, y)−
r(x̄, ȳ)| ≤ Kρ

(
(x, y), (x̄, ȳ)

)
, ∀(x, y), (x̄, ȳ). Then the function gr(x, y, y′) = σ(r(x, y)−r(x, y′))

is 2KLσ-Lipschitz with respect to the metric ρ̃ on X×Y×Y , whereLσ = 1
4 is the Lipschitz constant

of σ.
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Proof. We define the disagreement function as

gr(x, y, y
′) = σ(r(x, y)− r(x, y′)) (9)

For any two triplets (x, y, y′) and (x̄, ȳ, ȳ′), we have:

|gr(x, y, y′)− gr(x̄, ȳ, ȳ
′)| =

∣∣σ(r(x, y)− r(x, y′)
)
− σ

(
r(x̄, ȳ)− r(x̄, ȳ′)

)∣∣
≤ Lσ

∣∣(r(x, y)− r(x, y′)
)
−

(
r(x̄, ȳ)− r(x̄, ȳ′)

)∣∣
where the inequality follows from the Lipschitz property of σ with Lσ = 1

4 .

Now consider the term:∣∣(r(x, y)− r(x, y′)
)
−
(
r(x̄, ȳ)− r(x̄, ȳ′)

)∣∣ ≤ ∣∣r(x, y)− r(x̄, ȳ)
∣∣+ ∣∣r(x, y′)− r(x̄, ȳ′)

∣∣
≤ Kρ

(
(x, y), (x̄, ȳ)

)
+Kρ

(
(x, y′), (x̄, ȳ′)

)
where the inequality follows from the K-Lipschitz property of r.

Combining these results, we have:

|gr(x, y, y′)− gr(x̄, ȳ, ȳ
′)| ≤ 2KLσρ̃

(
(x, y, y′), (x̄, ȳ, ȳ′)

)
where ρ̃ is a metric on X × Y × Y defined as:

ρ̃
(
(x, y, y′), (x̄, ȳ, ȳ′)

)
= ρ

(
(x, y), (x̄, ȳ)

)
+ ρ

(
(x, y′), (x̄, ȳ′)

)
.

We now present the main theoretical result:
Theorem B.2. Let r be a K-Lipschitz function. Then the target domain error ϵT (r, f) satisfies:

ϵT (r, f) ≤ ϵS(r, f) + 2KLσW1(µS , µT ), (10)

whereW1(µS , µT ) is the Wasserstein-1 distance between the source and target distributions µS and
µT over (x, y), and Lσ = 1

4 is the Lipschitz constant of σ.

Proof. The error on a distribution D is defined as:

ϵD(r, f) = E(x,y,y′)∼D
[
gr(x, y, y

′)
]
, (11)

where gr(x, y, y′) = σ(r(x, y)− r(x, y′)). The difference between the source and target errors is:

|ϵS(r, f)− ϵT (r, f)| =
∣∣E(x,y,y′)∼S [gr(x, y, y

′)]− E(x,y,y′)∼T [gr(x, y, y
′)]
∣∣ (12)

Since (x, y, y′) are constructed from the marginals over (x, y), we rewrite the expectation over
triplets as a marginal expectation over (x, y):

ϵD(r, f) = E(x,y)∼D
[
hr(x, y)

]
(13)

where hr(x, y) = Ey′∼D(x)

[
gr(x, y, y

′)
]

is the expected disagreement for a given (x, y).

From Lemma B.1, gr(x, y, y′) is 2KLσ-Lipschitz with respect to ρ. Since hr(x, y) is an average of
gr(x, y, y

′), it inherits the same Lipschitz constant:

|hr(x, y)− hr(x̄, ȳ)| ≤ 2KLσρ((x, y), (x̄, ȳ)) (14)

Substituting the Lipschitz property of hr(x, y) in (12), the difference between source and target
errors becomes:

|ϵS(r, f)− ϵT (r, f)| =
∣∣E(x,y)∼µS

[hr(x, y)]− E(x,y)∼µT
[hr(x, y)]

∣∣.
≤ sup

∥f∥L≤2KLσ

∣∣E(x,y)∼µS
[f(x, y)]− E(x,y)∼µT

[f(x, y)]
∣∣

≤ 2KLσW1(µS , µT )

(15)

where the last line follows from Kantorovich-Rubinstein duality.

Combining this bound with the definition of ϵT (r, f), we have:

ϵT (r, f) ≤ ϵS(r, f) + 2KLσW1(µS , µT ) (16)
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