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Abstract

Self-supervised learning has become a cornerstone in various areas, particularly histopatho-
logical image analysis. Image augmentation plays a crucial role in self-supervised learning,
as it generates variations in image samples. However, traditional image augmentation tech-
niques often overlook the unique characteristics of histopathological images. In this paper,
we propose a new histopathology-specific image augmentation method called stain recon-
struction augmentation (SRA). We integrate our SRA into various self-supervised learning
models. We demonstrate that our SRA always improves the standard models across vari-
ous downstream tasks and achieves superior performance to a state-of-the-art foundation
model pre-trained on significantly larger histopathology datasets.

Keywords: image augmentation, histopathological image, self-supervised learning, con-
trastive learning

1. Introduction

In this paper, we propose a novel image augmentation method on H&E stained histopatho-
logical images called stain reconstruction augmentation (SRA). Through experiments, we
demonstrate that our SRA further improves the original self-supervised learning (SSL)(Chen
et al., 2021; Caron et al., 2021) models based on performances in various downstream tasks.

2. Stain Reconstruction Augmentation (SRA)

As shown in Figure 1, for an H&E image, we first perform stain separation using the
algorithm from (Macenko et al., 2009) to obtain single-stain images. For each whole
slide image (WSI), the RGB pixel values are mapped into Optical Density (OD) space
(ODR, ODG, ODB) according to the Beer-Lambert law (Beer, 1852; Lambert, 1760), where
higher OD values indicate stronger stains:

ODC = log10(I0,C/IC) (1)

∗ Contributed equally
† Corresponding author

© 2025 CC-BY 4.0, H. Manoochehri, B. Zhang, B.S. Knudsen & T. Tasdizen.

https://orcid.org/0009-0005-0478-7925
https://orcid.org/0000-0001-9815-0303
https://orcid.org/0000-0002-7589-7591
https://orcid.org/0000-0001-6574-0366
https://creativecommons.org/licenses/by/4.0/


Manoochehri Zhang Knudsen Tasdizen

Coef. H = 0.0

Co
ef

. E
 =

 0
.0

Coef. H = 1.0 Coef. H = 2.0 Coef. H = 2.5Coef. H = 0.2Coef. H = 0.1 Coef. H = 0.5

Co
ef

. E
 =

 0
.1

Co
ef

. E
 =

 0
.2

Co
ef

. E
 =

 0
.5

Co
ef

. E
 =

 1
.0

Co
ef

. E
= 

2.
0

Co
ef

. E
 =

 2
.5

Stain
Reconstruction

Stain
Separation

Original Patch
 (RGB)

Reconstructed
Patch (RGB)

Augmented Hematoxylin 
Channel

RGB OD ODRGB

RGB OD ODRGB

Hematoxylin Stain
Channel

Augmented Eosin 
Channel

Eosin Stain
Channel

p/2

p/2

1-p

(a)

(b)

Figure 1: (a) Examples of augmentations by SRA with different target strengths of H chan-
nel and E channel (b) Pipeline of stain reconstruction augmentation (SRA).

The channel C is red, green, or blue channel. The I0,C denotes background intensity, which
is usually 255. IC is the intensity in channel C in current pixel. All pixels are mapped to the
same OD space. Based on the distribution of these pixels in OD space, three unit vectors,
VH , VE , and VResidual, are derived, which allow for the decomposition of OD values:

(ODR, ODG, ODB) = αVH + βVE + γVResidual (2)

In each slide, we calculate the values of α and β for each tissue pixel, where α represents
the proportion of Hematoxylin stain and β represents the proportion of Eosin stain for each
pixel. For each WSI, we define Hmax as the maximum intensity of all α values in the tissue
pixels of the slide and similarly define Emax for the maximum intensity for β.

In the first step of implementing our SRA, we predefine global target ranges for each
stain after augmentation. For each training image, following the stain separation process,
we independently and randomly select coefficients coefH and coefE from within the target
ranges. We then multiply α by coefH/Hmax and β by coefE/Emax to randomly adjust the
stain strength. Furthermore, inspired by the previous work of contrastive learning between
pure Hematoxylin images and pure Eosin images, (Zhang et al., 2022a, 2023) we introduce a
hyperparameter p, which defines the probability of randomly setting either coefH or coefE
to zero during stain reconstruction augmentation, thereby creating additional variations.
Finally, after all processes are complete, we reconstruct the images back into RGB space
from OD space, based on the new proportions of Hematoxylin and Eosin stains. Our SRA
is an unsupervised method that does not use any labels to apply the algorithm.

3. Experiments

We conducted our experiments on three datasets: The Cancer Genome Atlas Kidney Renal
Clear Cell Carcinoma (TCGA KIRC) dataset (National Cancer Institute, 2023), the Utah
KIRC dataset (Zhang et al., 2023), and the Utah Renal Vein Thrombus (RVT) dataset
(Zhang et al., 2025). The TCGA KIRC dataset and Utah KIRC dataset provide 300 slides
(cropped to 1,646,665 patches) and 32 slides (cropped to 208,291 patches), separately, for
self-supervised learning, as well as additional patches with patch-level labels for downstream
patch classification tasks. The Utah RVT dataset is only used for multiple instance learning
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in downstream tasks. We ran each setting 3 times to calculate the mean and standard
deviation. (More details about datasets can be found in Appendix C.1)

We first evaluated SRA by performing self-supervised pre-training and downstream clas-
sification on the same datasets (TCGA KIRC or Utah KIRC). Results in Table 1 show that
our SRA greatly enhances original MoCo v3 (Chen et al., 2021) during pre-training. We
call the new model SRA-MoCo v3. For reference, we also compared the classification results
with a state-of-the-art foundation encoder model - Prov-GigaPath (Xu et al., 2024).

Model
TCGA KIRC (20X) Utah KIRC (10X)

Pre-trained
Dataset

Balanced
Accuracy (%)

Pre-trained
Dataset

Balanced
Accuracy (%)

ResNet50 ImageNet 69.97 ± 5.59 ImageNet 87.76 ± 0.10

Prov-GigaPath
>170,000 Slides

>1,000,000,000 patches
77.88 ± 1.22

>170,000 Slides
>1,000,000,000 patches

95.28 ± 1.02

MoCo v3 TCGA KIRC
300 Slides

1,646,665 patches

79.37 ± 1.18 Utah KIRC
49 Slides

208,291 patches

93.77 ± 0.86
MoCo v3 + TSA 81.50 ± 0.23 94.00 ± 0.26
SRA-MoCo v3 83.62 ± 0.28 95.85 ± 0.34

Table 1: Comparison of pre-trained models’ performance on TCGA KIRC (20X magnifica-
tion) and Utah KIRC (10X magnification). TSA means traditional stain augmen-
tation methods (Tellez et al., 2018a,b). (Differences are shown in Appendix B.)

To evaluate in a transfer learning setting, we pre-trained encoders on the TCGA KIRC
dataset and subsequently evaluated the encoders on the Utah KIRC and the Utah RVT.
Based on Table 2, we observed 2.8% improvement on Utah KIRC and 3.7% improvement
on Utah RVT with SRA-MoCo v3 compared to MoCo v3 on balanced accuracy.

Model
Utah KIRC

Balanced Acc.
Utah RVT

Balanced Acc.
Utah RVT
F1-score

Utah RVT
AUC

Prov-GigaPath 95.28 ± 1.02 70.96 ± 1.40 64.77 ± 1.66 0.7576 ± 0.0101

DINO (TCGA KIRC) 95.49 ± 0.24 67.51 ± 1.96 62.54 ± 1.29 0.7206 ± 0.0154
SRA-DINO (TCGA KIRC) 96.37 ± 0.21 69.70 ± 1.01 63.98 ± 0.33 0.7323 ± 0.0152

MoCo v3 (TCGA KIRC) 95.32 ± 0.30 71.80 ± 2.12 66.51 ± 2.80 0.7677 ± 0.0307
MoCo v3 + TSA (TCGA KIRC) 94.17 ± 0.82 73.40 ± 3.36 67.74 ± 3.26 0.7609 ± 0.0776
SRA-MoCo v3 (TCGA KIRC) 98.12 ±0.15 75.50 ±7.08 71.11 ± 7.700.8013 ± 0.0337

Table 2: Performance of pre-trained models on Utah KIRC and Utah RVT dataset.

Lastly, we conducted ablation studies to analyze the impact of hyperparameter settings
in SRA. Based on the experimental results (in Appendix C.3), the best performance was
achieved with target ranges of [0.1, 2.5]. Both narrower and wider ranges negatively affected
the performance of the SRA model. Even though effective, if the possibility p that only a
single channel is adopted is too large, it produces a harmful effect on the training. In exper-
iments, we abandoned the residual part during stain reconstruction as keeping residual part
does not provide benefits. We also found that both SRA and standard color augmentations
are beneficial, so we kept both of them in SRA-MoCo v3. We made our SRA-MoCo v3 code
publicly available at github.com/hamidmanoochehri/Paper_SRA
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil
Khalidov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido
Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen
Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Je-
gou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2:
Learning robust visual features without supervision. Transactions on Machine Learning
Research, 2024. ISSN 2835-8856.

Zekun Qi, Runpei Dong, Guofan Fan, Zheng Ge, Xiangyu Zhang, Kaisheng Ma, and Li Yi.
Contrast with reconstruct: contrastive 3d representation learning guided by generative
pretraining. In Proceedings of the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

A C Ruifrok and D A Johnston. Quantification of histochemical staining by color deconvo-
lution. Anal. Quant. Cytol. Histol., 23(4):291–299, August 2001. ISSN 0884-6812.

Yiqing Shen, Yulin Luo, Dinggang Shen, and Jing Ke. RandStainNA: Learning stain-
agnostic features from histology slides by bridging stain augmentation and normalization.
In Lecture Notes in Computer Science, Lecture notes in computer science, pages 212–221.
Springer Nature Switzerland, Cham, 2022. ISBN 9783031164330,9783031164347. doi:
10.1007/978-3-031-16434-7\ 21.

David Tellez, Maschenka Balkenhol, Nico Karssemeijer, Geert Litjens, Jeroen van der Laak,
and Francesco Ciompi. H and E stain augmentation improves generalization of con-
volutional networks for histopathological mitosis detection. In John E. Tomaszewski
and Metin N. Gurcan, editors, Medical Imaging 2018: Digital Pathology, volume 10581,
page 105810Z. International Society for Optics and Photonics, SPIE, 2018a. doi:
10.1117/12.2293048. URL https://doi.org/10.1117/12.2293048.

David Tellez, Maschenka Balkenhol, Irene Otte-Holler, Rob van de Loo, Rob Vogels, Peter
Bult, Carla Wauters, Willem Vreuls, Suzanne Mol, Nico Karssemeijer, Geert Litjens,
Jeroen van der Laak, and Francesco Ciompi. Whole-slide mitosis detection in H&E
breast histology using PHH3 as a reference to train distilled stain-invariant convolutional
networks. IEEE Trans. Med. Imaging, 37(9):2126–2136, September 2018b. ISSN 0278-
0062,1558-254X. doi: 10.1109/TMI.2018.2820199.

Luyang Wang, Feng Liang, Yangguang Li, Honggang Zhang, Wanli Ouyang, and Jing Shao.
Repre: Improving self-supervised vision transformer with reconstructive pre-training. In
International Joint Conference on Artificial Intelligence, 2022.

Hanwen Xu, Naoto Usuyama, Jaspreet Bagga, Sheng Zhang, Rajesh Rao, Tristan Naumann,
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Appendix A. Introduction of related models

A.1. Self-supervised learning and contrastive loss

Recent advancements in self-supervised learning (Zbontar et al., 2021; Grill et al., 2020)
have introduced novel frameworks for learning robust and accurate features across various
datasets. Barlow Twins (Zbontar et al., 2021) encourages two augmented views of the
same input to produce similar but decorrelated representations by minimizing the cross-
correlation between them. DINO (Caron et al., 2021; Oquab et al., 2024; Darcet et al.,
2024) employs a student-teacher framework within a vision transformer architecture, with-
out requiring labeled data. In DINO, the student encoder attempts to mimic the teacher
encoder, which is updated based on an exponential moving average (EMA). Unlike the
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student encoder, which processes both global and local views of the images, the teacher
encoder only receives global views. Building on the DINO framework, PathDino (Alfasly
et al., 2024) combines lightweight transformers with a novel 360° rotation augmentation
(HistoRotate), achieving robust performance across 12 diverse pathology datasets.

Contrastive learning is one of the most widely used and fundamental approaches in self-
supervised learning pipelines. For instance, the SimCLR framework (Chen et al., 2020b,a)
utilizes NT-Xent loss on strongly augmented views of images, aiming to minimize the dis-
tance between different views of the same image while maximizing the distance between
views of different images. In contrast, SwAV (Caron et al., 2020) employs a cluster-based
contrastive learning approach rather than a pairwise one, using a swapped prediction mech-
anism to encourage the features of the same cluster to be as invariant as possible. Other
popular contrastive learning methods include iBOT (Zhou et al., 2022), RePre (Wang et al.,
2022) and RECON (Qi et al., 2023).

A.2. Pathology-specific augmentation

In the context of pathology-specific augmentations, various methods have been proposed to
address domain-specific challenges and variations in histopathological images. Shen et al.
(Shen et al., 2022) introduced RandStainNA, which generates random template slides for
color normalization and augmentation in HSV, LAB, and HED color spaces to tackle varia-
tions in staining and colors across different slides and datasets. Additionally, Gullapally et
al. (Gullapally et al., 2023) addressed inter-laboratory and scanner variability through Scan-
ner Transform (ST) and Stain Vector Augmentation (SVA), enhancing out-of-distribution
performance on tasks such as tissue segmentation.

A fundamental operation for many pathology-specific augmentations is stain separation,
which isolates single-channel images in Optical Density (OD) space based on the Beer-
Lambert law (Lambert, 1760; Beer, 1852). In (Yang et al., 2022), perturbations are applied
to the stain separation matrix to deal with the errors in separation matrix calculation. In
(Tellez et al., 2018a,b), each channel is randomly scaled and biased within a narrow range
before converting back to RGB space. However, the maximum possible intensity after
augmentation is still influenced by the original image’s maximum intensity. (Chang et al.,
2021) also utilizes this method, along with random stain matrix interpolation, to handle
domain variations across datasets by incorporating information from both source and target
data.

Appendix B. Integration of SRA into MoCo v3 (An overview of
SRA-MoCo v3)

Figure 2 shows the overall workflow of SRA-MoCo v3. First, all pixels within the tissue
regions of an H&E whole slide image (WSI) are collected to analyze the max intensity
(strength) of each stain, where the intensity is measured on Optical Density (OD) space
after stain separation (Ruifrok and Johnston, 2001) process. To perform stain reconstruction
augmentation, we predefine an absolute range for the target strength of each stain and map
the real strength of each stain to a random value in this target range. Unlike the approach
in (Tellez et al., 2018a,b; Chang et al., 2021), which only slightly adjusts the strength of
each stain within a relative range by multiplying a random factor between 95% and 105%,
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Figure 2: The pipeline of our SRA-MoCo v3. We integrate our Stain Reconstruction Aug-
mentation (SRA) as well as additional contrastive loss term (CL3) into MoCo v3.
The f in the figure shows the output features from the encoders.

where the augmented images are statistically affected by the intensities of original stain
channel images, our SRA directly defines a much broader absolute range for target strength
of each stain channel. For instance, if the target range is set to [0.1, 2.5], and the original
strength of a particular stain in a WSI is 2.5, which indicates a deeply stained image.
Augmenting this stain channel only makes the new maximum intensity fall inside [0.1, 2.5],
without surpassing the original strength since original image is already a deepest stained
image in our defined range. While the traditional augmentation makes the new maximum
intensity fall between 2.375 and 2.625. Our method allows for more extensive and stronger
augmentations while ensuring the strength remains within an appropriate range. Moreover,
inspired by multi-modal contrastive learning (Chai and Wang, 2022; Zhang et al., 2022a), we
create probability p for excluding one stain channel, allowing only the other stain channel
to remain after augmentation. Figure 3 shows the differences between traditional stain
augmentation and our SRA.

After stain reconstruction augmentation, additional general image augmentation meth-
ods are applied to introduce further variations. MoCo v3 is used as the backbone for
histopathology image representation learning. In MoCo v3, the contrastive loss is com-
puted between queries from the query encoder and keys from the momentum encoder using
different augmentations. However, there are no loss term that specifically focus on con-
trastive learning between different augmentations from the same query encoder. Given
the substantial variations introduced by stain reconstruction augmentation, we further ex-
plored the addition of this contrastive loss term that focuses solely on augmentations. This
additional loss was only designed for query encoder on MoCo framework, as there is no
gradient’s backpropagation on momentum encoder.
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Figure 3: Comparisons between traditional stain augmentation (TSA) and our stain recon-
struction augmentation (SRA). The blue rectangles show the range of augmenta-
tions. If the probability p for excluding one stain channel is not zero, then SRA
further introduces new augmentation results shown in red rectangles.

Utah RVT

Normal Cases RVT Cases

Figure 4: Patch examples from different classes and different datasets.

Appendix C. Additional information in experiments

C.1. Datasets details

We conducted all main experiments 1 on three datasets: The Cancer Genome Atlas Kidney
Renal Clear Cell Carcinoma (TCGA KIRC) dataset (National Cancer Institute, 2023),

1. The experiments were funded by NIH/NCI R21CA277381, DoD HT94252410186, and Department of
Veterans Affairs I01CS002622. Part of the results presented in this paper are based upon data generated
by the TCGA Research Network: https://www.cancer.gov/tcga
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the Utah KIRC dataset (Zhang et al., 2023), the Utah Renal Vein Thrombus (RVT)
dataset(Zhang et al., 2025), all of which consist of H&E stained kidney WSIs. In abla-
tion studies, we also include the Camelyon 16 breast cancer dataset (Ehteshami Bejnordi
et al., 2017, 2023). Patch examples are shown in Figure 4.

The TCGA KIRC dataset includes 420 WSIs in total, with 300 slides used for self-
supervised pre-training. The 300 slides provide 1,646,665 tissue patches of size 400x400 if
cropped at 20X resolution. Patch-level labels are also provided in the remaining slides for
downstream patch-level 3-class classification tasks. More details are provided at Table 3.

In the Utah KIRC dataset, there are 49 slides from different patients, with 32 slides for
self-supervised pre-training. In total, the 32 slides provide 208,291 tissue patches of size
400x400 at 10X resolution. During downstream 4-class patch classification tasks, the 32
slides also provide a small portion of patches that have patch-level labels. The remaining
17 slides provide patches with labels for validation and test. More details can be found at
Table 3.

Task TCGA KIRC Utah KIRC

S
S
L Total Unlabeled Patches

1,646,665
Total Unlabeled Patches

208,291

D
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w
n
st
re
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C
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ss
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c
a
ti
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n

(E
v
a
lu
a
ti
o
n
) Set

Normal/
Benign

Cancer Necrosis Total
Normal/
Benign

Low-Risk
Cancer

High-Risk
Cancer

Necrosis Total

Train 84,578 180,471 7,932 272,981 28,497 2,044 2,522 4,115 37,178

Val. 19,638 79,382 1,301 100,321 5,472 416 334 2,495 8,117

Test 15,323 62,565 6,168 84,056 7,263 598 389 924 9,174

Table 3: Summary of the number of patches for each category in each set on the TCGA and
Utah KIRC datasets. The training sets include labeled and unlabeled patches.

The Utah RVT dataset is for multiple instance learning (MIL) tasks. Instead of slide-
level labels in most of MIL tasks, only case-level (patient-level) labels are provided, while a
case could contain multiple slides. In summary, there are 74 negative cases and 31 positive
cases of Renal Vein Thrombus in the training set, with 12 negative cases and 8 positive cases
in the validation set, as well as 18 negative cases and 11 positive cases in the test set. The
total number of slides in training set is 862. The total number of patches in the training
set is 2,214,311. In experiments, the patch features are generated by encoders pre-trained
on TCGA KIRC dataset to evaluate different self-supervised learning methods in a transfer
learning setting.

Camelyon 16 is another public dataset consisting of breast cancer slides for multi-
instance learning. It provides only slide-level labels for binary classification between Normal
and Tumor. The training set contains 159 Normal slides and 111 Tumor slides, while the
test set includes 80 Normal slides and 49 Tumor slides. We randomly selected 10% of the
training slides to create a validation set. We followed the standard procedure as other
papers (Zhang et al., 2022b) to crop patches in the 20X resolution. Similar to Utah RVT
dataset, the patch features are also generated by encoders pre-trained on TCGA KIRC
dataset in experiments.
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Figure 5: Distributions of strengths of Hematoxylin stain and Eosin stain in Optical Density
(OD) space on TCGA training set and Utah training set.

C.2. Experiment settings

In experiments, we began by pre-training encoders using self-supervised feature represen-
tation learning, followed by testing the pre-trained encoders on downstream tasks. Be-
fore pre-training, we performed a one-time operation to calculate stain separation matrix
for each slide following the code from https://github.com/BzhangURU/Paper_CLASS-M/

tree/main/Section2_get_stain_separation_matrices. The computational overhead of
SRA during pre-training is negligible.

For stain reconstruction augmentation, we first predefined a range for the target strengths
of the Hematoxylin and Eosin stains. We calculated the distributions of Hmax and Emax

across all training slides in both TCGA KIRC and Utah KIRC datasets. As shown in Fig-
ure 5, the stain strengths Hmax and Emax varies across different slides in both datasets. In
our experiments, we mainly tested two sets of target ranges. The first set marginally covers
the distribution of stain intensities in TCGA KIRC, with a target range of [0.5, 2.0] for
new Hmax and [0.2, 2.0] for new Emax. The second set has wider target ranges to introduce
stronger augmentations, with both new Hmax and new Emax set to [0.1, 2.5] after discussion
with pathologists. We selected this range because further widening would cause saturation
when reconstructing images from Optical Density (OD) space back to RGB space.

After applying stain reconstruction augmentation, we followed the standard MoCo v3
training procedure with batch size as 512, including additional general augmentations, with
ResNet50 (He et al., 2015) as backbone. We also included an option in our code to add
the augmentation contrastive loss, CLaug, as mentioned before. For the downstream tasks
on the Utah RVT dataset and Camelyon 16 dataset, we employed DTFD-MIL (Zhang
et al., 2022b). Stain reconstruction augmentation was only applied during pre-training, not
in any downstream tasks. All experiments were conducted using Python 3.11.4, PyTorch
2.0.1, torchvision 0.15.2, and CUDA 11.8 on NVIDIA RTX A6000 GPUs.
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Range
coefH

Range
coefE

p(only
H or E)

Extra
Loss

Balanced Acc.
Utah KIRC

F1-score
Camelyon16

Accuracy
Camelyon16

Balanced Acc.
Camelyon16

N/A N/A 0 − 95.32 ± 0.30 80.75 ± 1.35 85.79 ± 1.79 84.33 ± 0.89
N/A N/A 0 CLaug 95.34 ± 0.41 84.57 ± 2.53 88.11 ± 1.19 87.78 ± 2.44

[0.5, 2.0] [0.2, 2.0] 0 − 96.51 ± 0.37 82.44 ± 0.47 87.34 ± 0.45 85.58 ± 0.42
[0.1, 2.5] [0.1, 2.5] 0 − 96.95 ± 0.76 84.94 ± 1.54 89.67 ± 0.89 87.19 ± 1.25
[0.5, 2.0] [0.2, 2.0] 0 CLaug 96.86 ± 0.17 83.41 ± 0.60 88.37 ± 0.78 86.15 ± 0.33
[0.1, 2.5] [0.1, 2.5] 0 CLaug 98.09 ± 0.12 85.96 ± 2.13 89.15 ± 2.05 88.75 ± 1.40
[0.5, 2.0] [0.2, 2.0] 10% CLaug 97.41 ± 0.08 90.79 ± 1.50 93.28 ± 1.18 92.08 ± 1.02
[0.1, 2.5] [0.1, 2.5] 10% CLaug 98.12 ± 0.15 92.07 ± 0.84 94.31 ± 0.44 92.91 ± 0.95

Table 4: Ablation study results showing the impact of each component of SRA-MoCo v3
on Utah KIRC dataset and Camelyon 16 dataset.

Figure 6: Systematic analysis of hyperparameters of SRA on Utah KIRC dataset.

C.3. Ablation studies

We also conducted ablation studies to analyze the impact of components in SRA-MoCo v3.

The ablation studies for transfer learning from the TCGA KIRC dataset to the Utah
KIRC dataset are presented in Table 4. From the results, we found that simply adding the
extra augmentation contrastive loss to MoCo v3 does not yield any improvement. However,
this loss becomes effective when combined with stain reconstruction augmentation. Using
a wider target range for stain strength and incorporating the possibility of generating pure
Hematoxylin or pure Eosin images in stain reconstruction augmentation also proved bene-
ficial. In summary, SRA-MoCo v3 addresses domain shift by generating highly augmented
images that are also clinically meaningful. The Figure 6 more systematically analyzed the
impact of hyperparameters’ selections to the performance. Figure 6(a) shows that target
ranges that are too narrow or too wide both have negative impacts to the SRA model. Ac-
cording to Figure 6(b), if the possibility p that only a single channel is adopted is too large,
it produces a harmful effect on the training. In experiments, we abandoned the residual part
during stain reconstruction. As shown in Figure 6(c), keeping residual part does not provide
benefits. In Figure 6(d), we tried to remove standard color-related augmentations like color
jitterring. We found that both SRA and standard color augmentations are beneficial, so we
kept both of them in SRA-MoCo v3.

Lastly, we evaluated the contribution of each component in SRA-MoCo v3 through
downstream tasks on the Camelyon 16 dataset. We observed that both the augmentation
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contrastive loss and stain reconstruction augmentation independently improve performance.
When combining the augmentation contrastive loss with stain reconstruction augmentation,
we achieved a 4.42% improvement in balanced accuracy. Also, we observed a 4.16% increase
in balanced accuracy on Camelyon 16 by simply adjusting p from 0 to 0.1, which implies
that stronger augmentations are more beneficial on cases with stronger domain shift.
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