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ABSTRACT

Long-tailed distributions are prevalent in real-world semi-supervised learning
(SSL), where pseudo-labels tend to favor majority classes, leading to degraded
generalization. While many long-tailed semi-supervised learning (LTSSL) meth-
ods have been proposed, the mechanisms by which they implicitly debias logits
remain poorly understood. In this work, we revisit LTSSL through the lens of
learning dynamics and provide a theoretical characterization of logits debiasing.
Specifically, we derive a step-wise decomposition of the logits updates, showing
that predictions are dominated by class-imbalance bias that reliably reflects label
priors. To expose this effect, we use the logits of a task-irrelevant baseline image
as an indicator of accumulated bias and prove that they converge to the class prior.
This provides a unified view where LTSSL remedies such as logit adjustment,
reweighting, and resampling correspond to reshaping gradient dynamics. Based
on this insight, we propose DyTrim, a principle-based dynamic pruning frame-
work that reallocates gradient budget through class-aware pruning on labeled data
and confidence-based soft pruning on unlabeled data. We provide theoretical guar-
antees that DyTrim reduces class bias and improves generalization. Extensive
experiments on standard LTSSL benchmarks show consistent gains across archi-
tectures and methods.

1 INTRODUCTION

Semi-supervised learning (SSL), exemplified by FixMatch (Sohn et al.,, 2020) and ReMix-
Match (Berthelot et al., 2019), has been proven to demonstrate significant generalization advantages
over supervised learning, particularly in deep neural networks (Li et al., 2025). However, many ex-
isting SSL variants, e.g. FlexMatch (Zhang et al., 2021), FreeMatch (Wang et al., 2023b) implicitly
assume that both labeled and unlabeled data are drawn from a balanced class distribution, i.e., class
imbalance. In practice, real-world datasets commonly exhibit a long-tailed label distribution, lead-
ing to biased pseudo-label toward majority classes. This discrepancy poses significant challenges to
the effectiveness of SSL algorithms on real-world datasets.

Recent studies on long-tailed semi-supervised learning (LTSSL) have emerged to mitigate the bias
introduced by class imbalance in both labeled and unlabeled data. These methods range from distri-
bution alignment (Wei et al., 2021; Kim et al., 2020), data rebalancing (Fan et al., 2022; Lee et al.,
2021), logit adjustment variants (Wei & Gan, 2023; Zhou et al., 2024), to foundation model-based
methods (e.g., LADaS; Zheng et al., 2025). In particular, the approach employs a baseline image
introduced by Lee & Kim, 2024 as a simple yet effective tool for quantifying classifier bias, which
has garnered significant attention in the community (Xing et al., 2025; Yi et al., 2025). Despite
these advancements, the underlying mechanisms of how class bias emerges and why existing ap-
proaches can mitigate it remain largely unexplored and poorly understood. That also prevents us
from exploring a principle-based method to improve performance.

In this paper, we analyze the underlying mechanisms of class debiasing through the lens of learning
dynamics in long-tailed semi-supervised learning (LTSSL), investigating how inputs, the classifier,
and pseudo-labels interact and recursively shape one another during training. Specifically, we de-
rive a stepwise decomposition of logit updates in SSL, showing that class imbalance dominates
the predictions and prevents the model from leveraging inter-sample similarity, thereby impairing
generalization. We further point out that in the learning dynamics of LTSSL, the logits of the base-
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line image serve as an indicator of the accumulated influence of the network’s bias. Building on
this framework, we offer a unified view of existing debiasing methods, including logit adjustment
(LA) (Menon et al., 2021), reweighting (Wang et al., 2017), and resampling (JAPKOWICZ, 2000),
which can all be understood through the lens of learning dynamics.

As a side product of this analysis, we propose a pruning-based debiasing framework for long-tailed
remedies, named DyTrim. For labeled data, we compute class-wise pruning ratios to rebalance
samples. For unlabeled data, we apply a label-agnostic criterion that prunes low-confidence, incon-
sistent samples. Beyond empirical improvements, we provide theoretical guarantees demonstrating
how our method alleviates class bias and improves generalization. Extensive experiments demon-
strate that our method consistently improves LTSSL performance across standard benchmarks and
various backbone architectures.

2 PRELIMINARIES

Notions. We consider a labeled dataset X = {(z",y™) éfv:l with N samples and an unlabeled
dataset U = {u™}M_, with M samples, where 2" € R? is the n-th labeled sample with label

y" € [C] = {1,...,C}, and u™ € R? is the m-th unlabeled sample. Let N, and M, denote the

number of labeled and unlabeled samples in class ¢, such that Zle N.= N and Zle M.= M.
If classes are sorted by size, we have Ny > Ny > --- > N¢, and define the imbalance ratios as
v = M/N. > 1 and v, = max{Mi}/min{nM;} > 1, respectively. We denote the classifier by fy :
R? — 1,...,C with parameters 6, and its logits by go(z) € R®, where fy(x) = arg max. go(z).
and (-). denotes the c-th component. For each iteration of training, we sample minibatches MX =
{(z},yp):be(1,...,B)} C Xand MU = {(u*) : b e (1,...,uB)} C U from the training
set, where B denotes the minibatch size and p denotes the relative size of MU to MX. For brevity,
when clear from context we drop the superscript on uy* (") and simply write uy, (23).

Base SSL algorithms. We use FixMatch (Sohn et al., 2020) as the base SSL algorithm, follow-
ing other LTSSL studies. Specifically, FixMatch first predicts the class probability of a weakly
augmented unlabeled data point «(uyp) as g, = 7 (y|a(up)) and then generates hard pseudo-label
Gp = argmax,(qs,.), where my(y|-) = Softmax(gg(-)). For consistency regularization, FixMatch
uses a hard pseudo-label §, only when max.(gp.) > 7, where 7 denotes a predefined confidence
threshold, to improve the quality of the pseudo-labels used for training. We express the training
losses of FixMatch L as:

‘C(xba Up, qAa T; 0) = £sup(a(xb); 0) + £c0n<A(ub)a (jbv 5 0)7 (1)

where x;, (up) denotes the b-th labeled (unlabeled) samples in a minibatch MX (MU). A(up)
denotes the strongly augmented of u;. The losses and other SSL algorithms, i.e. FlexMatch (Zhang
et al., 2021) and FreeMatch (Wang et al., 2023b), are detailed in Appendix B.1 to B.3.

Learning dynamics and its per-step decomposition. Inspired by Ren & Sutherland (2025), we
study how a single gradient update changes the model’s confidence on an observation x,. With
mo(y | ) denoting the predicted class probability distribution, the learning dynamics become,

DG LG 6" =~ VL(folws).ys);  Alogn(yla,) 2 log moess (y],) — log moe (ylro). (2)
where the update of 6 during step t — ¢t + 1 is given by one gradient update on the sample pair
(zp,yp) with learning rate 7). £ is the loss function, we use the cross-entropy loss H in our setting.

Proposition 1 (Per-step decomposition of learning dynamics; Ren & Sutherland 2025). Let m =
Softmax(z) with z = go(x). Then the one-step learning dynamics decompose as

Alogm(y | wo) = =0T (26)K" (20, 23)G" (x5, 35) + O (n*[|Voz(zs)|3,) - 3)

where T'(z,) = V,logmp:(x,) = I — 1mj.(z,) only depends on the model’s current pre-
dicted probability, K! (x,, zp) = (Vez(xo) et ) (Vez(xp)|et) | is the empirical neural tangent kernel
(eNTK, Jacot et al. 2018) of the model, the product of the model’s gradients with respect to x, and
. G (20, yp) = VoL (b, yp) |z is the loss gradient. ||-||2, denotes the spectral norm, which bounds
the second-order remainder term.

This decomposition characterizes how each update at (z3, y;) influences predictions at x,, forming
the basis for our SSL analysis under class imbalance.
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3 LEARNING DYNAMICS OF LONG-TAILED SEMI-SUPERVISED DEBIASING

3.1 LEARNING DYNAMICS OF SEMI-SUPERVISED LEARNING

In this section, we characterize the learning dynamics of the semi-supervised version of gradient
descent (GD) for the FixMatch algorithm Eq. (1),

AG2 0 — 0" = —n - (VLsup(fola(@)), y6) + VLeon (fola(up)), fo(Alup)));
Af(xO) £ f9f+1<330) — for(xo)-

where z,, denotes the observation data point, the update of 6 during step t — ¢ + 1 is given by one
gradient update on the labeled sample pair (xp, yp) and unlabeled sample (u;) with learning rate
7. Previous work (Ren & Sutherland, 2025) showed how a single gradient update influences model
predictions in supervised learning. We now examine whether such characterization extends to the
semi-supervised setting. Since FixMatch (Sohn et al., 2020) update naturally consists of a supervised
part L., and a consistency part L., the gradient update can be decomposed accordingly. For an
unlabeled sample u;, with target §j = argmax. qj ., where ¢j = mg:(- | a(up)). The per-step
learning dynamics of semi-supervised learning become

4)

t,sup t,con

Alog ' (ylzo) £ Alogmy™™P (y | wo; as) + Alog my ™ (y | o up) (5)

where A7*"P denotes the influence caused by 2, and Ay denotes the influence caused by uy,
respectively. Inspired by Definition 1, we now state the decomposition of the per-step influence in
semi-supervised learning below:

Proposition 2. For an labeled (unlabeled) sample xy, (up) with target yp ( Q,t) ). The one-step learning
dynamics of SSL decompose as

Alog g™ (y | wos @) = =0T (20)K' (2o, al3))Giup (@(@s), o) + O (17| Voz(a(ze))l3,)
Alog g (y | wosup) = =0T (20)K' (o, A(up))Geon(A(us), d5) + O (1| Voz(Alus)) 5)
where K(z,,a(xp)) and K'(z,, A(up)) are eNTK evaluations of the logit network z(-) =

go(+), with different inputs. géup(a(mb),yb) = VioLsup(a(zp), yp)|at and Gty (o, Alup)) =
VzLecon (Go, A(up))|4t, respectively.

(6)

As shown in Proposition 2, each update of 6 in FixMatch decomposes into a supervised part driven
by (zp,ys) and a consistency part driven by (us, gf). While this decomposition captures the per-
step influence on 7y (y | «,), in practice training consists of many such steps, and the accumulated
effect is governed by the iterative interaction between labeled and unlabeled updates. The detailed
technical proofs are deferred to Appendix C.1.
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Figure 1: Accumulated influence in the MNIST experiment using a labeled sample x;, = 0 and an
unlabeled sample u;, = O for training, with z, = 4 for testing. (a) and (b) shows results from the
Balanced experiment (MNIST), (c) and (d) from the Imbalanced experiment (MNIST-LT). (a) and
(c) show the influence with accurate pseudo-labels, (b) and (d) with inaccurate pseudo-labels. In (a)
and (b), the cumulative influence of pseudo-label authenticity is evident, with the false pseudo-label
affecting predictions for similar samples (e.g., probability of 9, 7 and 4). In (c) and (d), the class
imbalance masks the influence of false pseudo-label authenticity due to class bias.

Accumulated influence and a demonstration on MNIST. To demonstrate this, we train a WRN-
28-2 on MNIST and visualize the accumulated influence in Figure 1. In Figure 1(a), when ¢ is
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correct, the consistency term reinforces the supervised signal, gradually pulling the prediction of z,,
toward the correct class, i.e., 0,44 and g9 B consistent with the constructive dynamics implied by
Eq. (6). In contrast, when ¢ is incorrect (Figure 1(b)), the consistency update exerts the opposite ef-
fect, i.e., qpa 1 o7y and gp o I systematically reducing the correct probability of z,. This illustrates
how pseudo-label errors, even if small at each step, can accumulate across iterations into a negative
loop. The Figure 1(c) and (d) show that under class imbalance, such accumulated influence can
drive the classifier to consistently predict the majority class (here q; 0 > ¢ 4), regardless of the true
label. This confirms the implication of our dynamics analysis: in SSL, the imbalance influence of
labeled data is passed to the pseudo-labels through the classifier, so imbalance bias can be amplified
rather than averaged out, leading to catastrophic bias.

3.2 LEARNING DYNAMICS ANALYSIS OF ACCUMULATED BIAS UNDER CLASS IMBALANCE

The aforementioned phenomenon, together with the learning dynamics of the semi-supervised
framework, illustrates how class imbalance accumulates into systematic bias. While per-update
dynamics capture the influence of individual samples on predictions, they fall short of reflecting the
global effect of imbalance. This motivates the search for an indicator that bridges class-imbalance
bias with the underlying learning dynamics. Replacing the inputs z,, with a task irrelevant baseline
image Z, we can regard the Eq. (6) as such an attributing indicator (Sundararajan et al., 2017). To
justify this choice, we analyze its theoretical properties in both linear and deep settings, and then
incorporate it into the per-step influence decomposition.

Baseline image and its invariance property. For simplicity, we first consider a two-layer MLP
with no bias in the first layer and a bias vector b € R in the output layer h(x) = h(?) o h(V)(z),
where h") (z) = o(W1z) and h(?) = Wax + b. This setting allows us to isolate and examine the
predicted class probability 7 (Z) of a baseline image. For a baseline image Z € R, we have

h(Z) = WohM(T) + b. (7)

In modern neural networks, the explicit bias term b is often absorbed into the normalization layer,
e.g., BatchNorm, LayerNorm, with other layers typically set without bias. Without loss of gener-
ality, we take BatchNorm as an example for analysis. Since the BatchNorm transformation can be
equivalently viewed as an affine linear layer with learnable parameters, we may replace h(?) with a
BatchNorm(-) layer, i.e.,
MW7) — E[LD
nMT) = BatchNorm(h(l)(I)) _h @) —Elh @) Ws +b. 8)
Var[h(D(Z)] + €

where € is a small positive constant that ensures numerical stability. The baseline image is typically
a solid color image, which inherently lacks task-related patterns, see Appendix D.1 for more dis-
cussions. This representation shows that, for baseline images, the dependence of h(Z) on the input
is effectively controlled only through the affine parameters (W5, b) of the normalization layer. We
now state the main results regarding the prediction 7y (Z) for such baseline images:

Proposition 3 (Invariance of baseline image under affine normalization). Let Z = k - 14 be a solid
color image, where k € {0,1,...,255} and 14 € R? is an all-one vector. Suppose the output of the
first hidden transformation is normalized by a normalization layer (e.g., BatchNorm, InstanceNorm,
or GroupNorm) with affine parameters (W, b). Then the logits h(Z) are independent of k and
reduce to

hZ)=0b, me(T)= Softmax(b). )

One can immediately notice that my(Z) in Eq. (9) does not contain any term related to the pixel
value k of Z. This observation implies that the representation 7g(Z) of a baseline image is entirely
determined by the BatchNorm bias term b, and is invariant to the actual pixel value k. The detailed
technical proofs are deferred to Appendix C.2.

Building upon this invariance, we now establish a direct connection between the baseline image and
the underlying class distribution. Specifically, for the classifier formulation in Eq. (8) and Eq. (9),
we show that the logits of the baseline image encode the class-imbalance ratio present in the train-
ing data, thus providing a direct bridge between 7y (Z) and the class prior induced by the long-tailed
distribution in training. We empirically validate this connection on CIFAR10-LT by analyzing the
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distribution of baseline logits: as shown in Figure 2, the baseline logits closely align with the em-
pirical class prior. When we remove the bias term in our ablation model, this alignment vanishes,
indicating that the baseline logits lose their responsiveness to the class prior.
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Figure 2: Class distributions and measured biaseddegree under v; = 100 and ~,, = 100. The bar
plots show the class distributions for (a) labeled, (b) unlabeled, and (c) full datasets.

Theorem 1 (Bias as the conditional distribution prior). Assume the model h(x) as characterized in
Eq. (8) is trained using cross-entropy loss:

L=E,, |-y logsoftmax(h(z))]. (10)

At a population risk minimizer (W5, b*) we have

Ax () ST — *) — K@) -ERV(@D)] _

p*(x) =Py | x), p*(I) = softmax(b*) = P(y| OO 0). (11)
For the baseline image T in Proposition 3, the baseline prediction thus coincides with the conditional
class distribution at the normalized-zero feature state, capturing the class prior induced by the long-
tailed training distribution. See the detailed to Appendix C.3.

Thus, 7y(Z) serves as a natural proxy for the accumulated bias of the model, bridging the class
imbalance in the training set to the learning dynamics of the classifier.

Per-step influence decomposition of the baseline image. Let 7y(y|-) denote the estimate of
the underlying class prior. Then we can track the change in the model’s confidence by observing
log 79 (y|Z). Then the learning dynamics on the baseline image become,

Alog wt(y|T) £ log mpesr (y|T) — log moe (y|T). (12)

Proposition 4. Ler 7 = Softmax(z) and z = gg(x). The one-step dynamics on the baseline image
decompose as

Alogmy(y | Tyz) = —nT (T)K'(Z,2)G (z,y) + O (n*(|Voz()]|2,) (13)

where T'(T) = V,logn!(Z) = I — 1n}.(T), KY(T,z) = (ng(Z)|0t) (ng(x)bt)T is the eNTK
of the logit network z, x can be a(xy,) or A(uy), y can be y, and o(up). See Appendix C.4 for more
details.

Compared with Proposition 2, the main difference is that the 7¢(Z) and K*(Z, x) term. Since the
baseline image 7 lies far from the data manifold, the coupling kernel K!(Z, z) is typically small.
Thus, the learning dynamics in Eq. (13) are mainly governed by the output-sensitivity term 7*(Z)
and the gradient signal G*, with the latter providing both the energy and direction for the model’s
adaptation. Under this formulation, the baseline image Z serves as an indicator that isolates the
model’s global bias state. Tracking 75 (Z) over training therefore provides a direct and interpretable
measurement of how class-level bias accumulates during semi-supervised learning. Therefore, as the
number of labeled and unlabeled samples from the majority class increases, the output of 7} (Z) will
be progressively squeezed into a biased long-tailed distribution. Even with G* guiding the adaptation
direction, this process can still be steered by the biased state encoded in 7)) (Z), further amplifying
the long-tailed shift, as illustrated in Figure 3.
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Figure 3: The change of logits’s probability distribution 7y (Z) for the baseline image on CIFAR-10-

LT. The left three panels depict the dynamics of reference logits under FixMatch: at epoch 1, epochs
1-10, and full epochs. The rightmost panel illustrates the dynamics after removing all bias terms.

4  ANALYSIS THE DYNAMICS OF LOGITS DEBIASING IN SEMI-SUPERVISED
LEARNING

Analyzing the dynamics of logits debiasing methods in long-tailed semi-supervised learning is chal-
lenging because different algorithms such as Logits Adjustment, Reweighting, and Resampling em-
ploy distinct formulations. In this section, we propose a unified framework based on the per-step
influence decomposition (Proposition 4). This framework enables us to analyze how these methods
modify the update gradient flow, thereby influencing the model’s bias evolution during training. We
also introduce a pruning-based method, DyTrim, as a byproduct of our analysis. It can be integrated
in a plug-and-play manner with other logits debiasing methods.

4.1 PER-STEP DECOMPOSITION OF LOGITS ADJUSTMENT

The typical logits debias method used during long-tail semi-supervised learning is logits adjustment
(LA) (Menon et al., 2021), which introduces a class-dependent shift in the logits, expressed as:

o(ylz) = Softmax(z(x)),  2(r) = go(x) — A, (14)

where A > 0 controls the adjustment strength and ¢ € R is estimates of the class priors. Thanks
to the z implemented in CDMAD (Lee & Kim, 2024), the resulting logits adjustment is almost
identical to such simple subtraction, i.e., Z(x) = gg(x) — log , where m = my(Z). Thus, the change
of the model’s prediction on the baseline image Z can be represented as,

Alog#y(y | Z; @) = —n THZ) KHT, @) Grale,y) + O([Vez(zo)l) . (15)

where Gra(z,y) = mh(a(up)|A(up)) — 7 represents the influence of the adjusted logits. Compared
with Proposition 4, the main difference is that the gradient term has been modified by class prior
m, which allows us to answer how does learning with debiasing affect the gradients for unlabeled
samples? When adjusting the model’s logits by class prior, the gradient flow will ensure that the
model compensates for the class imbalance during training. See more discussions in Appendix C.5.
We also conducted experiments on CIFAR10-LT to demonstrate the effectiveness of this debiasing,
as illustrated in Figure 3, which illustrates that the bias measured in the baseline image after applying
LA to the CDMAD method is alleviated.

4.2 PER-STEP DECOMPOSITION OF REWEIGHTING

Reweighting is another prevalent debiasing technique in long-tail semi-supervised learning (Lai
et al., 2022), which introduces class-dependent weights in the loss function, expressed as:

C C
Loy = Zwé‘csup(a(xlgﬁ 0); Lion = szﬁcon(A(u’bﬁ% v, 73 0); (16)
k=1 k=1

where wfc (wy) is the weight of the k-th class in labeled (unlabeled) samples. For simplicity, we
assume the class weight distributions are consistent between labeled and unlabeled data, i.e., wfc
and wy; follow the same proportional relationship and remain fixed during training. Under this

reweighting scheme, the gradient signals for both supervised and consistency terms are scaled by
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their respective class weights. Hence, we can decompose the learning dynamics for reweighting
similarly to Eq. (15),

Alogmy™ (y | Ty 2) = =0T (T)Kr (T, 25 w°) Gl (, y; wC) + O (0°|VOz(x)|op”) (17)
where KL, (Z, z;w®) = wKL,(Z,x) and G, (z,y; w®) = w°G'(x,y). Thus, reweighting acts
by scaling both the similarity kernel and the gradient term with the class weight w®. Intuitively,
this modulates the strength of interaction between samples and the magnitude of their gradients
in a class-dependent manner: samples from classes with larger w® exert a stronger influence on
the update of #, while those from classes with smaller w® contribute less. When w€ is designed
as a function of class frequency (e.g., inverse frequency), this mechanism increases the effective
contribution of under-represented classes and attenuates that of head classes. See more discussions
in Appendix C.5.

4.3 DYTRIM: A BASELINE IMAGE GUIDED DATA PRUNING FRAMEWORK FOR LTSSL

Under the per-step influence framework of Proposition 4, logits adjustment and reweighting reshape
the gradient flow by modifying the update direction or magnitude, while resampling acts directly on
the data distribution by changing the frequency with which different classes enter training. Yet all
these methods leave the sample set itself intact at each step and ignore the heterogeneous per-step
utility of individual samples, allowing redundant head-class examples to continue dominating the
learning dynamics. This motivates debiasing at the data-selection level, where dynamically con-
trolling which samples participate in each update provides a more direct mechanism for mitigating
accumulated bias in LTSSL, as illustrated in Figure 5.

Per-step decomposition of dynamic pruning. Differs from logits adjustment, reweighting, or re-
sampling, dynamic pruning directly alters the set of samples that participate in each gradient update,
instead of modifying the loss or sampling distribution. We define step-dependent scoring func-
tions H!(-) for labeled samples X’ and H!(-) for unlabeled samples I/, which dynamically quantify
sample utility at training step t. For the dynamic pruning process, samples are discarded by the
step-dependent pruning probabilities P} and P}

Pilw; Hy) = L(Hi(x), H):  and Pf(us Hy) = L(H (u), HY), (18)

where H} and H are adaptive thresholds, 1(-,-) is the indicator function. Under this dynamic
pruning mechanism, the one-step decomposition of dynamic pruning decomposes as

Alogmy™"*(y | I;z) = —nT"(Z)K"(Z, 2)Gayer (x,y) + O (n*|V6z(z)|op?)

< 19)
gfiytr(:v7 y) = Pt (x)gt(l? y)

where

_ [ PlwHy)  wex,
Pul=) = { PruwHy) wel, 20

This decomposition shows that dynamic pruning reshapes the update dynamics by gating sam-
ple participation through P! and P}, effectively zeroing out the kernel-gradient interactions
KY(Z,z)G!(z,y) of low-utility samples. In contrast to logits adjustment and reweighting, which
only alter gradient signals, or resampling, which changes the sampling measure, pruning directly
removes redundant head-class examples and underlearned unlabeled ones from the optimization
path, thereby reallocating the model’s effective update budget toward samples that meaningfully
influence bias correction. Although the kernel K'(Z, z) itself remains unchanged, its operational
contribution becomes E,.,[P;(2)K!(Z, z)), selectively amplifying informative interactions while
suppressing those that drive long-tailed drift. This sample-level intervention yields a more direct
and fine-grained control of the learning dynamics than existing debiasing strategies.

Building on this perspective, we now instantiate how dynamic pruning is implemented in practice.
We introduce DyTrim, a baseline-guided dynamic pruning framework designed to accommodate
the distributional mismatch that real-world LTSSL typically exhibits between labeled and unlabeled
data. Since such mismatch renders a single participation rule inadequate, DyTrim employs two
complementary pruning mechanisms, one tailored to the long-tailed labeled set and the other to the
noisy and imbalance-unknown unlabeled set. See more details about Appendix C.6.
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Dynamic pruning for labeled data. Since the labeled data follow a long-tailed class distribution,
we design a class-aware pruning policy P! guided by 74(Z). Critically, the classifier’s pseudo-
labels are primarily influenced by the labeled samples, which introduce bias toward majority classes.
Since Proposition 3 shows that the baseline image has invariance to solid-color intensity, from first
principles, we leverage the logits from a black image 7 to calibrate pruning probabilities. Given
the labeled dataset X" in the ¢-th epoch, a class-aware pruning probability is assigned to each sample
based on its score, which is formulated as:

1 Hi(xp) € H!
rPl ") = { t E’;I <7re,t?
W=V wi@p) ¢ HL
where H Lmt denotes the 7. x N, smallest scoring values of the class c and . = 7y (Z).. is the class-

aware pruning probability. The labeled scoring function #. («}) is defined using the supervised loss
Lsup(xy, yt) to quantify sample utility. See more details about Appendix E.1.

2

Dynamic pruning for unlabeled data. While the distribution of the label of the unlabeled data
and its imbalance ratio ~, are unknown. To address the uncertainty and bias of pseudo-labels, we
design a label-insensitive soft pruning policy P;* inspired by (Qin et al., 2024), which introduces
randomness and gradient scaling into the pruning process. Specifically, for an unlabeled dataset
U at the t-th epoch, a pruning probability is assigned to each sample based on its score, which is
formulated as: _

prury =4 T M) <M andpr(uit) > 7,

£ 0 Hi(up) > Hi orp*(uy’) <,

where 7 is the adaptive threshold and 7 is a randomized pruning rate, 7 is the confidence threshold

7 and p*(up") = max(softmax(g;(a(uy’)))) denote the debiased pseudo-label confidence. See
more details about Appendix E.2.

Table 1: Comparison of bACC/GM on CIFAR-10-LT under different imbalance ratio v = 7y, = ,,
where 7, is assumed to be known. “*” indicates our own implementation.

(22)

Base SSL | Debiasing ~ =50 ~ =100 ~ =150
Algorithm Strategy bACC GM bACC GM bACC GM
Vanilla | 6524005 61.140.09 | 58.840.13 58.2+0.11 | 55.6+0.43 44.0+0.98
Re-sampling 6434048 60.6+0.67 | 5584047 45.1£030 | 522+£0.05 38.2+1.49
LDAM-DRW 68.9+0.07 67.0+0.08 | 62.8+0.17 58.9£0.60 | 57.9£020 50.4+0.30
cRT 67.840.13  66.3+0.15 | 63.24045 59.9£0.40 | 59.3+£0.10 54.6+0.72

FixMatch 79.240.33 77.8+0.36 | 71.5+£0.72 66.8+1.51 | 68.4+0.15 59.940.43
DARP+cRT | 85.8+0.43 85.6+0.56 | 82.4+0.26 81.8+0.17 | 79.6+0.42 78.940.35
CReST+LA | 85.6+£036 81.9+045 | 81.2+0.70 74.540.99 | 71.94+2.24 64.4+£1.75

ABC 85.6+£0.26 85.2+0.29 | 81.1+1.14 80.3+1.29 | 77.34+1.25 75.6£1.65
CoSSL 86.8+£0.30 86.6+0.25 | 83.2+0.49 82.7+0.60 | 80.3+0.55 79.6+0.57
SAW+LA 86.2+£0.15 83.9+0.35 | 80.7+0.15 77.540.21 | 73.74+0.06 71.2+0.17
FixMatch | Adsh 83.4+0.06 82.9+0.13 | 76.5+0.35 74.8+0.34 | 71.54+0.30 68.8 £0.35
DebiasPL 85.64+020 85.2+0.23 | 80.6+0.50 79.9+0.57 | 76.6+0.12 75.8+0.71
UDAL 86.5+0.29 86.2+0.26 | 81.4+0.39 80.6+0.38 | 77.94+0.33 75.8 £0.71
L2AC 86.6 £0.31 86.7+0.30 | 82.1+0.57 81.540.64 | 77.6+0.53 75.8+0.71

CDMAD 87.3+£0.12 87.0+0.15 | 83.6+0.46 83.1+0.57 | 80.8+0.86 79.9£1.07
DyTrim 88.0+0.31 87.8+0.32 | 84.8+0.48 84.4+0.51 | 82.04+0.09 81.3+0.03

FlexMatch* | 72.6 £0.72 70.2+0.88 | 67.7+0.73 63.6+1.27 | 62.6+0.63 56.1 £1.13
FlexMatch | CDMAD* 7444082 73.0+£1.12 | 68.4+046 66.8+0.53 | 67.0+0.52 63.24+0.44
DyTrim 77.2+042 76.2+0.44 | 70.7+0.49 67.8+0.70 | 68.6 £0.22 66.3 £0.07

FreeMatch* | 71.9+0.24 69.4+0.61 | 65.7+0.18 60.9+0.69 | 62.5+0.12 57.340.53
FreeMatch | CDMAD* 74.74+0.64 73.6+£1.23 | 69.9+£0.65 68.2+0.74 | 66.2+0.27 63.24+0.44
DyTrim 76.9 £0.45 75.9+0.52 | 72.3+0.12 71.4+0.57 | 69.4+0.35 67.5+0.63

5 EXPERIMENT

In this section, we conducted comprehensive experiments to verify the effectiveness of the pro-
posed DyTrim on CIFAR10-LT, CIFAR100-LT (Cui et al., 2019), STL10-LT (Kim et al., 2020), and
ImageNet-127 (Deng et al., 2009; Huh et al., 2016) datasets. Due to limited space, we defer the
detailed experimental settings and additional experiments to the Appendix G.
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5.1 RESULTS ON CIFAR10/100-LT, STL10-LT AND IMAGENET-LT

Under the consistent condition where .,
is known and matched to +;, the re-
sults in Table 1 show that CISSL al-
gorithms consistently outperform their
vanilla SSL counterparts by mitigat-
ing class imbalance while effectively
exploiting unlabeled data. Among
them, the proposed DyTrim achieves
the best performance across all imbal-
ance ratios. Compared with the state-
of-the-art CDMAD, DyTrim improves
bACC by 1.2% and GM by 1.4% on
average, without incurring additional
computational overhead. Furthermore,
when integrated into FlexMatch and
FreeMatch, DyTrim yields substantial
improvements, boosting bACC/GM by
2-3% on average.

Table 2 evaluates the methods on
CIFAR-100-LT, which involves more

Table 2: Comparison of bACC on CIFAR-100-LT un-
der different imbalance ratio, where +,, is assumed to be
known. “*” indicates our own implementation.

Base SSL

Debiasing

Alogrithm Strategy ‘ =20 v =50 v =100
FixMatch 49.6+0.78 42.14+0.33 37.6+0.48
DARP 50.8+0.77 43.1+0.54 3834047
DARP+cRT | 51.4+0.68 4494054 40.440.78
CReST 51.84+0.12 44.940.50 40.1+0.65
CReST+LA | 52.9+0.07 47.340.17 42.7+0.70
FixMatch | ABC 5334079  46.7+026 41.2+0.06
CoSSL 53.94+0.78 47.6+£0.26 43.0+0.61
UDAL 54.1+0.23 48.0+0.56 43.7+0.41
CPE 52.4+0.17 45.64+0.68 39.9 £0.40
CDMAD 54.3+044 48.8+0.75 44.140.29
DyTrim 55.5+0.53 50.8+0.80 44.8+0.27
FlexMatch* | 36.5+0.51 29.6+0.35 25.8+0.79
FlexMatch | CDMAD* 39.2+047 3191046 27.0+0.66
DyTrim 40.9+0.09 33.54+021 29.8+0.67
FreeMatch* | 35.9+0.69 31.3+0.65 24.5+0.66
FreeMatch | CDMAD#* 36.9+0.96 32.8+0.93 28.0+0.68
DyTrim 39.0+0.61 33.440.70 29.8+0.09

classes and a stronger imbalance. The results demonstrate that DyTrim consistently outperforms
all competing approaches under this more challenging setting.

As shown in Table 3, DyTrim consistently outperforms prior
techniques such as CDMAD on the large-scale ImageNet-LT
benchmark (Liu et al., 2019), demonstrating its complemen-
tary benefits rather than merely overlapping with existing re-

Table 3: Comparison of bACC on
ImageNet-LT.

balancing approaches. See more details about Appendix H.4.
Under the inconsistent condition where ,, was unknown and

mismatched to ~;, the results in Table 4 show that DyTrim re-

Algorithm ImageNet-LT
FixMatch* 20.0
w/+CDMAD* 35.4
w/+DyTrim 37.2

mains the most effective method overall. When the labeled and unlabeled data distributions deviate,
DyTrim consistently outperforms CDMAD on both CIFAR-10-LT and STL-10-LT.

5.2 RESULTS ON VIT BACKBONES

In addition, Table 5 highlights the performance of various algorithms under both consistent and in-
consistent imbalance settings with ViT backbones. On CIFAR-10-LT, DyTrim yields the best results,
improving bACC 0.6% over CDMAD and nearly 4% over FixMatch when ~; = =, = 100. Under
the inconsistent condition, DyTrim maintains a clear margin, surpassing CDMAD almost 2%. On

Table 4: Comparison of bACC/GM on CIFAR-10-LT and STL-10-LT under different imbalance
ratio y; # ., where -, is assumed to be unknown. “*” indicates our own implementation.

Base SSL | Debiasing

CIFAR-10-LT (v; = 100, v, = Unknown)

STL-10-LT (+y,, = Unknown)

. ~Yu =50 ~w =150 ~ =10 ~ =20
Algorithm | - Strategy bACC GM bACC GM bACC GM | bACC GM
FixMatch | 73.94025 7054052 | 69.6£0.60 6264111 | 7294009 69.6001 | 6342021 52.6-009
DARP 77.34+£0.17 75.5+0.21 7294024 69.5+0.18 | 77.84+033 76.5+040 | 69.9+1.77 65.4+3.07
DARP+LA 82.34+032 81.5+0.29 | 7894023 77.7+0.06 | 78.6+£030 77.4+0.40 | 71.94+£049 68.7 £0.51
DARP+cRT | 82.74+021 82.34+0.25 | 80.74+0.44 80.2+0.61 | 79.34+0.23 78.7+0.21 | 74.1+0.61 73.1+1.21
ABC 82.74+0.64 82.0+0.76 | 78.44+087 77.2+£1.07 | 79.1+£0.46 78.1£0.57 | 73.8+0.15 72.1£0.15
FixMatch SAW 79.84025 79.14+£0.32 | 7454097 72.5+1.37 | 7834025 77.0+0.19 | 71.94+£0.81 69.0+0.81
SAW+LA 82.9+038 82.640.38 | 79.1+£0.81 78.64+091 | 79.44+0.26 78.4+0.17 | 73.9+£091 71.84+0.99
SAW+cRT 81.64+038 81.3+0.32 | 77.6+0.40 77.1+£0.41 78.9+0.22 77.840.14 | 72.3+0.86 69.540.83
CPE 86.24026 8594033 | 82.44049 82.1+0.53 | 79.0+£0.05 78.7+0.54 | 77.0+£0.73 76.1 £0.68
CDMAD 85.7+036 85.3+0.38 | 82.3+0.23 81.8+£0.29 | 79.9+0.23 78.9+0.38 | 75.2+0.40 73.5+0.31
DyTrim | 8644043 8604043 | 8381034 8344033 | 8074064 79.8-070 | 7794104 76.7 126
FlexMatch* | 67.74+0.67 62.8+0.65 | 63.0+£0.77 56.3+£1.70 | 62.1+£029 60.8+043 | 56.94+090 51.4+0.81
FlexMatch | CDMAD* | 6924022 67.040.11 | 67.041.60 6344091 | 6554105 6374102 | 6244105 60.5-099
DyTrim 72.5+039 70.7+045 | 70.3+£1.01 67.4+021 | 68.0 094 66.4+0.85 | 63.9+0.16 61.7+0.28
FreeMatch* | 69.34+0.99 65.4+1.45 | 63.54+0.76 55.7+0.77 | 63.94+£0.77 62.0+£0.90 | 59.0+£1.43 57.6 +0.67
FreeMatch | CDMAD* 71.04+£098 69.0+£1.05 | 67.1+£096 64.3+£0.99 | 66.1+032 63.8+0.97 | 61.5+047 59.5+0.63
DyTrim 72.3+0.69 71.1+1.23 | 69.9+0.15 67.4+037 | 68.0+0.64 66.5+1.20 | 64.6+0.77 62.7+1.16
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Figure 4: (a), (b) and (c) present the change of 7y(Z) for the baseline image on CIFAR-10-LT with
1 = 7y, = 100 across different methods. (d) present the bACC and GM on those methods.
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CIFAR-100-LT, although the absolute accuracies are lower due to the increased difficulty, DyTrim
still matches or slightly improves upon CDMAD, while consistently outperforming FixMatch. Ad-
ditional experimental results are provided in Appendix H.

Table 5: Comparison of bACC/GM on CIFAR-10-LT and CIFAR-100-LT with TinyViT under dif-
ferent imbalance ratio, where -, is assumed to be known. “*” indicates our own implementation.

Base SSL | Debiasing \ _ CIFAR-0-LT (3 = 100)_ \ CIFAR-100-LT (7, = 100)
Algorithm | Strategy ‘ Ju =100 ‘ Tu =150 ‘ = 100
bACC GM bACC GM bACC GM
FixMatch* | 45.5+0.14 30.0+0.41 | 453+0.12 28.9+0.96 | 23.2+0.13 5.74+0.33
FixMatch | CDMAD* | 48.7+0.49 40.540.26 | 45440.13 39.9+0.10 | 24.0+0.15 9.0 £0.77
DyTrim 49.3+047 40.3+036 | 47.34+0.12 39.7+0.57 | 24.140.22 8.9 +0.15

5.3 SCALABILITY EVALUATION OF DYTRIM

DyTrim exhibited robust extensibility as a universal plug-in component, consistently boosting per-
formance across diverse SSL frameworks (CDMAD/CCL), datasets (CIFAR/STL10-LT), and im-
balance ratios (7 = 1 ~ 150), as shown in Table 6. Notably, it achieved up to +1.4% (CDMAD on
CIFAR10-LT) and +2.7% (STL10-LT, v,=20) gains without architecture-specific tuning, validating
its versatility in semi-supervised long-tailed scenarios. To further validate the balanced classifica-
tion effect of DyTrim, we visualized the dynamics of baseline image logits during training as shown
in Figure. 4 (a), (b) and (c). The results clearly showed that DyTrim significantly reduced classifier
bias induced by class imbalance.

Table 6: Comparison of bACC with two state-of-the-art CISSL algorithms with and without DyTrim

on CIFAR-10, CIFAR-100, and STL-10. land Trespectively indicate improvements or degradations
over the baseline CDMAD.

Dataset Imbalance ratio FixMatch+ FixMatch+
CDMAD CDMAD+DyTrim Gain CCL CCL+DyTrim Gain
Y = Yu = 100 83.6+£0.46 84.8+0.48 +1.2 86.240.35 86.7 £0.39 0.5
CIFARIO-LT 7V = Yu =150 80.8 £0.86 82.0 £0.09 t1.2 84.040.21 84.0 £0.26 10.0
v =100,7v, =1 87.5+0.46 88.9 +0.88 1.4 93.940.12 94.1 +0.17 +0.2
CIFARIO0-LT v =7, =20 54.340.44 55.54+0.53 t1.2 57.540.16 58.1+£0.49 10.6
STL10.LT Y =10 79.9 £0.23 80.7 £0.64 112 848+0.5  85.1+033 103
v =20 75.2 £0.40 77.9 +1.04 2.7 83.140.18 83.3+0.40 10.2

6 CONCLUSION

In this work, we provide a theoretical characterization of class bias in long-tailed semi-supervised
learning (LTSSL) through an in-depth analysis of the learning dynamics. We derive a step-wise
decomposition of logit updates, demonstrating how class imbalance dominates predictions and how
debiasing methods, such as logit adjustment, reweighting, and resampling. Our theoretical insights
bridge the gap between existing methods and their effect on gradient dynamics, highlighting the crit-
ical role of sample-level interventions. Based on this foundation, we introduce DyTrim, a dynamic
pruning framework that mitigates class imbalance by reallocating gradient budgets. Empirical re-
sults across multiple benchmarks and SSL methods demonstrate that DyTrim consistently improves
performance.

10
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APPENDIX

A  RELATED WORK

A.1 MORE ABOUT MECHANISMS OF LONG-TAILED DEBIASING

This paper considers learning dynamics to study the debiasing mechanisms of SSL algorithms. We
briefly introduce differences between the settings considered here and those in previous works. For
debiasing on long-tailed learning, Menon et al. (2021) considered a unified framework for debiasing
from the perspective of logits adjustment, which requires statistical label frequency. CCL (Zhou
et al., 2024) considered debiasing from an information-theoretical lens. LCGC (Xing et al., 2025)
used gradient flow to analyze the debiasing process. However, these methods only elucidate the
model’s behavior from an ad hoc perspective. We aim to develop a more comprehensive framework
that enables a principle-based lens of the bias generation mechanisms inherent in long-tailed semi-
supervised learning.

A.2 MORE ABOUT SEMI-SUPERVISED LEARNING

Modern SSL methods typically integrate diverse strategies for exploiting unlabeled data, such as
entropy minimization (Zhou et al., 2024), consistency regularization (Sohn et al., 2020), and con-
trastive learning (Zhou et al., 2024; Lee et al., 2022). Among them, most SSL approaches rely
on selecting reliable pseudo-labels during training. FixMatch (Sohn et al., 2020) adopts a fixed
confidence threshold of 0.95, whereas FlexMatch (Zhang et al., 2021) adapts thresholds per class
based on learning difficulty and training progress. FreeMatch (Wang et al., 2023b) integrates global
and local adjustments with a class-fairness regularizer to promote prediction diversity, while Soft-
Match (Chen et al., 2023) employs a soft thresholding scheme that reweights samples to balance
quantity and quality. In contrast, our method bypasses threshold tuning altogether and directly en-
forces class-balanced pseudo-labeling through dynamic pruning.

A.3 MORE ABOUT LONG-TAILED SEMI-SUPERVISED DEBIASING

Existing debiasing methods for LTSSL dominantly rely on consistent distribution assumptions (Guo
& Li, 2022; Lee et al., 2021) and logit adjustment strategies (Wei & Gan, 2023). Notable ap-
proaches include CReST (Wei et al., 2021), which focuses on minority classes through selective
self-training, and CoSSL (Cai et al., 2021), which balances representations using tail-class feature
augmentation. Recent advances, like BaCon (Feng et al., 2024), utilize contrastive learning for bal-
anced features, while SMCLP (Du et al., 2024) exploits collaborative label-instance correlations,
and CPE (Ma et al., 2024) employs multiple expert classifiers. Innovative methods such as InPL (Yu
et al., 2023) and DebiasMatch (Wang et al., 2022) move beyond traditional pseudo-labeling; InPL
uses energy scores to detect reliable inliers, whereas DebiasMatch applies adaptive debiasing with
a marginal loss to reduce long-tailed pseudo-label bias. Despite these advances, LTSSL techniques
often demand intricate mechanisms or additional modules (Lee et al., 2021), posing challenges in
minimizing bias while maintaining simplicity.

A.4 MORE ABOUT DYNAMIC DATASET PRUNING

To reduce training cost on datasets, dynamic dataset pruning methods (Chen et al., 2024; Killamsetty
et al., 2021; Sagawa et al., 2019; Schaul et al., 2015; Zhang et al., 2024) aim to reduce the number
of training iterations while maintaining performance. Existing methods employ a variety of crite-
ria to guide pruning, among which loss-based (Attendu & Corbeil, 2023; Kawaguchi & Lu, 2020;
Thao Nguyen et al., 2023) method is the most popular. UCB (Raju et al., 2021) applies the cross-
entropy loss with exponential moving average (EMA) smoothing to mitigate noise. Infobatch (Qin
et al., 2024) randomly prunes low-loss samples and amplifies the gradients of retained ones to pre-
serve the expected gradient. SCAN (Guo & Kankanhalli, 2024) categorizes samples as redundant
or ill-matched based on their loss and gradually increases the pruning ratio using cosine annealing.
While thsese methods effectively accelerate training and can yield nearly unbiased results, none
have explored their potential to mitigate class imbalance in SSL by pruning.
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B MORE BASE SSL ALGORITHMS

B.1 MORE ABOUT TRAINING LOSSES OF FIXMATCH

Training losses of FixMatch on a minibatch for the labeled set MAX and a minibatch for the unla-
beled set MU can be expressed as follows:

1
Lup(@p; 0) = B Z H (7o (y|o(zs)) ; po) (23)
rpEMX
with
1 B
Leon(u,4730) = 5 > " L(max(gy) > 7)H(Py(y|A(ws), Gb), (24)
b=1

where ¢ denote the concatenations of gp. L., denotes the supervised loss for weakly augmented la-
beled data points up. L., denotes the consistency regularization loss with the confidence threshold
T.

B.2 MORE ABOUT FLEXMATCH

To overcome the limitation of FixMatch using a fixed threshold 7 across all classes, Flex-
Match (Zhang et al., 2021) introduces the Curriculum Pseudo Labeling (CPL) strategy. The key
idea is to dynamically adjust the confidence threshold according to the learning status of each class.
Specifically, FlexMatch first predicts the class probability for a weakly augmented unlabeled sam-
ple up as g, = mo(y|a(up)), and then estimates the learning effect of each class ¢ by o(c), i.e., the
number of samples predicted as class c that exceed the fixed threshold 7. After normalization, a ratio
coefficient 3;(c) is obtained, which defines the class-adaptive threshold:

Ti(c) = Be(c) - . (25)
In this way, hard-to-learn classes receive a lower threshold to include more samples in training,
while easy-to-learn classes gradually increase their thresholds to ensure pseudo-label quality. The
unsupervised loss is defined as:
1 &
»Ccon (ubv Qa ZTt; 9) = E Z ]]'(max(qb) > CTt(arg maX(Qb))) H((}bv uy; (y|A(ub))) ) (26)
b=1
where ¢, = arg max,. ¢ . denotes the hard pseudo-label, and A(-) is the strong augmentation func-
tion. The overall training objective is
['t = £sup + )\‘CCWV 27
where )\ is weighting hyperparameter.

B.3 MORE ABOUT FREEMATCH

Unlike FixMatch and FlexMatch, which rely on fixed or indirectly adjusted thresholds,
FreeMatch (Wang et al., 2023b) proposes Self-Adaptive Thresholding (SAT) that dynamically deter-
mines thresholds based on the model’s prediction confidence. Specifically, FreeMatch first estimates
a global threshold 7 using an exponential moving average (EMA) of model confidence:

7= preo1+ (1 - Zmax (4v), (28)

and further refines it with class-specific local statistics pt( )
pe(c)
Ti(c) =
(€) maxy pPr(c’)
At the early stage of training, thresholds are low to encourage more unlabeled data utilization and

faster convergence. As the model becomes more confident, thresholds increase to suppress incorrect
pseudo-labels and reduce confirmation bias. The unsupervised loss at iteration ¢ is thus:

uB
5 > Umax(as) > nargmax(as))) Hidn mo(ylA@w). GO
b=1

s Tt (29)

ﬁcon (ubv qA» Tt 9)
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In addition, FreeMatch introduces Self-Adaptive Fairness (SAF) regularization Ly, which dynami-
cally calibrates the prediction distribution to encourage diverse predictions and prevent class collapse
during early training. Concretely, let h; € R® denotes the normalized class histogram of model pre-
dictions at iteration ¢, and let h* € R denotes the target distribution (e.g., a uniform distribution).
The SAF regularization is defined as

Ly = Dgr(he || h"), (€20
where Dkp (+]-) is the Kullback-Leibler divergence. The final training objective is:
L= Esup + wyLeon + UJfEf, (32)

where w,, and wy are weighting hyperparameters.

C PROOF FOR SECTION 3 AND SECTION 4.

C.1 PROOF OF PROPOSITION 2

Proposition 1. For an labeled (unlabeled) sample xy, (up) with target yy, ( q}’i = arg max. q{w ),
where g, = ot (y|a(up)). The one-step learning dynamics of SSL decompose as

6" | wo;we) = =0T (20)K' (w0, a(@y))Glup (@), 1) + O (*[[Voz(a(as))l[ap)
Alogmy ™ (y | wosup) = =0T (20)K' (o, A(us))Geon (A(us), G) + O (1°[|Voz(Alus))ll3)

Alogm
(0)

where K'(z,,a(zp)) and K'(z,, A(up)) are eNTK evaluations of the logit network z(-) =
go(-), with different inputs. ggup(a(xb)7yb) = VL (a(zp),yp)|z and G, (Go, Aup)) =
VaLcon (Gos A(up))|4t, respectively.

Proof. We aim to derive the one-step learning dynamics of SSL for both supervised and contrastive
terms. Suppose that we want to observe the model’s prediction on an “observing example” x,
Starting from Eq. (5), we first approximate log 7'*1(y|z,) using first Taylor expansion (with a
slight abuse of notation, we write 7' for 7}):

t+1(

log 7 (y|z,) = log 7 (y|zo)+ < Viog ' (y|z,), 07 — 6" > +O(||0"+! — 6°|%).

Then, assuming the model updates its parameters using SGD calculated by a “labeled updating
example” (3, yp,) and an “unlabeled updating example” (A(up), Gf).
Thus, for for supervised learning dynamics, we have, we have

t+1,sup( t+1,sup(

y | woiap) —log P (y | xo;2s)
(0" — 6"+ O(|0" - 6")7)

Alogm y | 203 2p) = logm

= Vylog ﬂ—t(y ‘ x0)|9t

Assuming this step is driven solely by supervised loss, we plug in the definition of SGD and repeat-
edly use the chain rule:

| (071 = 6Y) = Vg log mh (2,)] 0 (—1V0Lsup(@(@0))]y.) "
:(Vzlogﬂ'e(xO)‘ZtVGZ ’gt)( nvGﬁsup(a(mb))‘gz)

=V, ]ogﬂé(aj()”ztvezt(l‘o”m ( - U(Vz[zsup( ( ))| VGZ ( b))|(9t)>—r
= -1V, logﬁé(ﬂﬁo)‘ [Vez To |et (Vozt(a(xb))‘gt) }(Vz‘csup(a(mb))|zt)—r
= _nﬁ(xo)lct(xmO‘(xb))gt(a(xb)’yb)'

Similarly, for consistency learning dynamics, the only difference is that the update sample is
changed from () to A(up), and the loss is changed from Ly, to Leon(A(up), Gh). Note that
¢y = arg max, qg,c is treated as a constant in this small step (stop-grad), so the gradient can still be
directly calculated w.r.t. z. Thus,

pitl — gt — NVoLeon(A(up), ‘jlt))|0t'

Vologmh(y | o)
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Parallel to the above derivation, we obtain

con T A
Alog 772’ (y | Loj; ub) - 7777%(1:0) VOZt(IO)|9f, (VOZt(A(ub))|9t) vzﬁcon(qlt)v A(ub))|zt
Kt (zo,A(up)) Glon(A(up),dp)
+0O (1P|Voz(Alup))3,) -

C.2 PROOF OF PROPOSITION 3

Proposition 2.  (Invariance of baseline image under affine normalization) Let Z = k - 14 be
a baseline image, where k € {0,1,...,255} and 14 € R? is an all-one vector. Suppose the
output of the first hidden transformation is normalized by a normalization layer (e.g., BatchNorm,
LayerNorm, InstanceNorm, or GroupNorm) with affine parameters (Wo, b). Then the logits h(T)
are independent of k and reduce to

hZ)=0b, me(ZT)= Softmax(b). )

Proof. Consider a neural network with two layers: the first layer is a linear transformation, and the

second layer is a normalization layer followed by an affine transformation. For an input Z € R,

assume the model has the following structure:

_ () —ERD(I)]
Var[h(D)(Z)] + €

hY(T) = 6o(W1Z); h(Z) = BatchNorm(h(Y(Z)) -Ws + b,

Let the baseline image Z = k - 14, where 1, is a vector of ones, and k is a scalar. Our goal is to
show that the output /(Z) for the baseline image is independent of &k and depends only on the bias
term b. For the baseline image 7 = k - 1,4, the output of this neural network is:

PO(T) = o(Wy - (k- 1q)) = o(k - Wilg) = o(k - w).

where w = W31, € R™, which is a constant vector. We see that the output of the first layer depends
on k and the constant vector w, and it is passed through the activation function . Now, consider
the effect of the BatchNorm layer. For the baseline image Z = k - 14, since R (Z) = o(k - w) is
a constant vector, the mean E[1(1)(Z)] and variance Var[h(!)(Z)] are constants that depend only on
w.From first principles, we can set k = 0 O

Note that if the input Z is random Gaussian noise or a batch mean, The situation would be different.

+ Gaussian Noise. Let Z,, ~ N (0,02) € R? be a random Gaussian noise vector. After normaliza-
tion:

RM(T,) — E(h(Z,
wz,) — VT ~EGO(T)
VVar[hW(Z,)] + e
Since the input pixel values are random, the mean and variance of the first-layer output depend on
the noise distribution characteristics. These statistics fluctuate with the randomness of the input,

in contrast to the baseline image, where the normalized output is solely determined by the bias
term b.

Wy +b

* Batch Mean. Let 7, = & Zf;l z; € RY be the batch mean vector. After normalization, the
affine transformation:
WO(T,) — E(hV(Z,))

hZu) = VVarlhMW(Z,)] + e Watb

Unlike Gaussian noise images, the mean input of data within a batch does not contain complete
randomness; the mean and variance are relatively stable but still do not solely depend on the b.
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C.3 PROOF OF THEOREM 1

Theorem 1. (Bias as the conditional distribution prior) Assume the model h(x) as characterized in
Eq. (8) is trained using cross-entropy loss:

L=Eg,[- y ' log Softmax(h(z))]. (10)

At a population risk minimizer (W, b*) we have

- - . W (7)—ERD
p*(x) = Py | ©), p*(Z) = softmax(b*) = P(y | W =0). (33)

For the baseline image T in Proposition 3, the baseline prediction thus coincides with the conditional
class distribution at the normalized-zero feature state, capturing the class prior induced by the long-
tailed training distribution.

Proof. Consider the two-layer network fy(x) = % - + B, where hV) (z) = Wya.

The cross-entropy loss is given by:
L=E,, [~y logsoftmax(h(z))].
Minimizing the population risk results in p*(x) = Softmax(h(z)) = P(y | x).
For the baseline image Z, we analyze the model’s output:
p*(Z) = Softmax(b*).

(1) B[R (D))

v/ Var[h(1) ()]
mined solely by b*.

Since — 0 for a baseline image with no input signal, the model’s output is deter-

Thus, we have:

p(y M@ - ERO@)
Yy

Var[h()(Z)] + €

Finally, we conclude that the baseline prediction corresponds to the conditional class distribution at

the normalized-zero feature state, capturing the class prior induced by the long-tailed distribution.
O

= 0) = Softmax(b*).

C.4 PROOF OF PROPOSITION 4
Proposition 3. Let m = Softmax(z) and z = go(x). The one-step dynamics decompose as
Alogn'(y | Z) = —nTHIT)KNL, 2)G" (z,y) + O(n*[|Ve2(2)|3,), (13)

where TH(I) =V, log.«(Z) = I-1n}.(T), K{(Z,z) = (Voz(L)|e:)(Voz(z)|p: )T is the empirical
neural tangent kernel of the logit network z, and Gt (z,y) = V. L(z,y) |.+.

Proof. Inspired by the analysis of the learning dynamic of (Ren et al., 2022; Ren & Sutherland,
2025). In this work, we want to observe the classifier’s prediction on the baseline image Z. Starting
from Eq (12), we first approximate log 7'+ (y | Z) using first-order Talyor expansion, with slightly
abused symbols, we use 7" to represent mp:+1, 2 to represent labeled sample z}' and u to represent
unlabeled sample u;":

log 7+ (y|T) = log 7' (y|T)+ < Vlog'(y|T), 0" — 0" > +O(||0"+" — 0"||*)

Then, assuming the model updates its parameters using SGD calculated by an “updating labeled
example” (z,y) or an “updating unlabeled example” u, we can rearrange the terms in the above
equation to get the following expression:

Alogn'(y|T) = log 7'+ (y|Z) ~log 7' (y|T) = Vo log 7' (y|Z)]e: (0" —0°) +O(|0" T —0"]]*),
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To evaluate the leading term, we first take a labeled sample as an example plug in the definition of
SGD, and repeatedly use the chain rule:

Vo logm' (y|T)]ge (07" — 0") = (V2 log 7 (Y|T) =) (=0 Vo L(@)]oe) "
= (V2 log 7 (y|T) | ) (=0 Vo L(@)| e — Vo' (2)]or)"
= V. log 7' (T)|-,[Voz(D)|ot (Voz(x) o) TN (V. L(x)|20)T
= —nTHDKNZ, x)G" (x,y)

(34)

C.5 MORE ABOUT ANALYZING THE DYNAMICS OF THE LOGITS DEBIASING ALGORITHM
C.5.1 PER-STEP DECOMPOSITION OF RESAMPLING

Resampling is another widely used strategy for mitigating class imbalance in long-tail semi-
supervised learning. Instead of modifying the loss, resampling adjusts the data distribution by al-
tering the frequency with which each class is drawn. Let Pys(z € ¢) = r¢ denote the (possibly
normalized) sampling ratio for class ¢, which determines the probability of selecting samples from
that class during training. Then the per-step update of the log-posterior under resampling becomes

Alogmy™(y | T;x) = —n TH(Z) Kio(Z, 2;7°) Grs(a, y;v) + O (0| Vez(2)]12,) (35)

whereK! (Z,2;7¢) = Epre[KNZ, )], GLy(2,y;7¢) = Egpere[G'(z,y)]. This decomposition
highlights that resampling influences learning solely through changing the expectation measure.
The modified kernel !, reshapes how training samples transfer influence to the test input, while
the modified residual term G!_ reweights the magnitude of each update. Increasing the sampling
ratio of tail classes therefore amplifies their effective contribution at every step, accelerating their
representation and decision boundary updates to match those of head classes, i.e. offering a direct
dynamical explanation for the effectiveness of resampling in long-tail regimes.

C.5.2 PER-STEP DECOMPOSITION OF CDMAD

In this section, we use the loss function of a specific method in logits adjustment, CDMAD (Lee &
Kim, 2024), as a case study and integrate it into the learning dynamics framework we propose. The
consistency loss of CDMAD as:

1 B
Econ(uln qu 5 9) = E Z ]l(max((jb> Z T)H(P9<y|-’4(ub)a qu)a (36)
b=1

where H is cross-entropy loss, ¢; = arg max(mg(y|a(up)) — me(y|Z)). Our framework reveals that
CDMAD operates through two complementary dynamical mechanisms:

Alogmy(y | T) = —nT ()K" (Z, o)) Geup (x(n), )+

K*(Z, A6 (), ala2))) + O Gy

According to the analysis of Xing et al. (2025), G using the baseline image enhances the
balance of the base SSL model implicitly utilizing the integrated gradient flow VgLcon =
> (ijl IntegratedGradsi(ub)) Vo + > a4 a%f;’b. We now place VLo, directly into G

t
con

to capture the influence of the consistency loss on the model’s update dynamics. The updated G,
is:

d
0
Glon(A(up), a(zy)) = Z (Z IntegratedGradsi(ub)) Vg, + zb: qab qa“g’b. (38)

b i=1

The term G’ (A(up), a(up)) now explicitly includes the consistency loss gradient Vg Lcon, which
involves the Integrated Gradients over the perturbations w; as well as the change in model output

probabilities.
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Table 7: Comparison of bACC/GM on CIFAR-10-LT under different baseline images.

FixMatch+DyTrim CIFAR-10-LT

Type of baseline Y = Yo = 100 v = 100, v, = 150
Noise 77.7176.8 76.7/75.8
Batch means 78.0/76.1 76.7174.2
Red 83.5/83.2 82.2/81.7
Green 83.7/83.3 81.5/81.0
Blue 84.5/84.2 83.1/82.6
Gray 84.1/83.7 82.3/81.9
White 84.2/83.8 82.4/82.0
Black 84.8/84.4 83.8/83.4

C.6 EFFECT OF THE BASELINE IMAGE FOR GUIDING DATA PRUNING

The training objective can be interpreted as the minimization of the empirical risk £. Assuming
that all labeled samples z; from X and unlabeled samples vy from I/ are drawn from continuous
distributions p!(z}) and p*(u}"), respectively, the training objective can be formulated as:

argmin B LG 0] = [ Lop(af O @i)dap 4 [ Lo 00 ()
feo TrEXuleld an up
(39)

After applying a data pruning policy, we sample x} and u;" to obtain the labeled pruned subset St
and the unlabeled pruned subset S, according to the labeled pruning probabilities P} (x}) and un-
labeled pruning probabilities P (u}"), respectively. For the labeled samples, we directly optimize
over the pruned subset S} without reweighting the loss terms. Notably, the class-aware pruning
probability r, = 7y (Z).. inherently adjusts S! toward an asymptotically balanced class distribution.
By retaining more samples from minority classes (lower 7.) and pruning more samples from major-
ity classes (higher 7.), the pruned subset S! naturally mitigates class imbalance. As a result, even
without explicit rescaling, the empirical risk over S} approximates:

: n 1- ,Pé (Z‘g) n n n
argmin B [Loyp(xy,0)] o ———> [ Loup(zy, 0)pi(zy)dry, (40)
0cO xfESi Cy z
1
where ¢} = Eqnp, [1 — Pf(z})]. The term %f(z) acts as an implicit reweighting due to the class-
t
aware pruning policy. For unlabeled samples, pruning with uniform probability r and rescaling

losses by 7v;(u) = #ﬂu) yields

: m m 1 m m m
argmin = B [vi(up") Leon(up', 0)] < — /ﬁcon(ub ,0) ol (u)dul, 41
fce Uy ES] Ct J,

where ¢ = Eypmap, [1 — Py(ug')]. Crucially, even with uniform pruning rates, the interplay of
consistency regularization and confidence thresholding ensures S} to be implicitly balanced, thus
training on S;* with rescaled factor 7, (uj") could achieve a better result as training on the U/.

D MORE ABOUT THE BASELINE IMAGE

D.1 MORE DETAIL ABOUT THE SELECTION OF BASELINE IMAGE

Sensitivity of different baseline images Z. We further examined the sensitivity of DyTrim to the
choice of baseline image by conducting ablation studies on CIFAR-10-LT with different types of
inputs, including noise, dataset means, and solid colors. Table 7 shows that solid-color images con-
sistently outperform noise or mean-based baselines. Among them, white and black images deliver
the strongest results.
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Figure 5: Illustration of the proposed DyTrim framework. DyTrim mainly consists of two opera-
tions, named labeled pruning and unlabeled pruning. H L,,.C‘t and H}* denote the adaptive thresholds
of scores of labeled samples and unlabeled samples, with slight abuse of symbols. S%_ denote the
low confidence unlabeled sample which p*(u}*) > 7. Labeled pruning provides a class-aware prun-
ing policy for each sample from class c. Unlabeled pruning provides a random pruning policy from
the original unlabeled { and uses a gradient rescaling strategy (x1/(1 — r) for which samples from
s{ is selected to pruning) to keep the approximately same gradient expectation.

D.2 DETAIL OF THE BIAS TERM AND RUNNING STATISTICS

Effects of bias term. When the bias term (3 of the BN layer is frozen and equal to 0, A(Z) becomes
v * ((w, k) — E[(w, k)])/+/Var[(w, k)] which is the same as the Eq.(7) except for a bias term.
Ignoring the running statistics strategy, the form of h(Z) only depends on the 8. As a result, h(Z)

becomes h(Z) — 0 during training and h(Z) — — * Eppom [(W, 25)]/v/ Valmom [(W, 2p)] during
testing. This shows that the g, operation has no effect in the training phase and only eliminates the
impact of the unbalanced running means in the testing phase. This will affect the ability to benefit i
from g, as shown in Table. 8.

Effects of running statistics. When we do not keep running estimates, batch statistics are instead
used during evaluation time as well. The form of h(Z) becomes h(Z) — S both training and

testing. We can rewrite gj (x;) = v * (W, z) — E[{(w, z¢)])/+/Var[(w, ;)]. On the other hand, as
h(Z) — 0, the benefit of gj is also vanishes, also shown in Table. 8.

We then extend our results to a non-linear neural network, thus we have the following corollary:

Table 8: Comparison of bACC/GM on CIFAR-10-LT.

Metric ~ With original g; gp without 3 gp without X,0m  gp Without 8 & Xpom

bACC 83.6 £0.46 80.92+0.02/2.68 71.63+0.35/11.97 64.01 £0.14/19.59
GM 83.1+£0.57 80.37 +£0.23]2.73  67.85 +0.51]15.25 54.48 £ 0.36/28.62

E MORE DETAILS ABOUT DYTRIM

E.1 MORE ABOUT LABELED PRUNING

Specifically, we exploit the pruning policy to prune samples based on their scores. Then, for the
pruned labeled samples, their scores remain unmodified as previously. For the remaining samples,
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their scores are updated by the losses in the current epoch. To ensure dynamic adaptation:

HL ,(x7) P € AnS'
H o (2]) = { oty b b ’ (42)
,t+1( b) [-"sup(xb) 7 c Sl.
where S' denotes the pruned subset formed for labeled datasets.

E.2 MORE ABOUT UNLABELED PRUNING

For a remaining sample with score H}'(u}") < H", whose corresponding pruning probability
is r, its gradient is scaled to 1/(1 — r) times of the original, otherwise the gradient remains
unchanged. The score Hj' ;(u;*) is derived from the consistency regularization loss values
Leon(a(up*), A(u}*)) for unlabeled data points. To enhance pseudo-label reliability, we further
apply a confidence threshold 7, where only samples with p*(u}*) > 7 contribute to L., Where
Loon = % S L(p* (up) > TYH(Py(y|A(ug), §). Thus, we formulate the update of M (uy)
as:

u () = Hi () up® € UnS™,

RN Econ(uzn) Ugn e s™.
where S* denotes the pruned subset formed for labeled datasets. Initialization: att = 0, scores H}'
and H! are all set to {1}, as no prior loss is available.

(43)

F PSEUDO CODE OF THE PROPOSED ALGORITHM

The pseudo-code that describes the DyTrim is presented in Algorithm 1 and Algorithm 2.

Algorithm 1 DyTrim for Labeled Data Selection

Input: Labeled set of N samples X = {(z",y")}_,, score set of the samples V!, number of
classes n., biased degree b
Output: Labeled pruned set S' (S! C &, |S!| <= | X))
1: St > Initialize the labeled pruned set
2: forc=0ton.—1do
3: I+ {ilyi=c}

4 Vi {Vll |ie Ic} > Select scores of class ¢ samples
5 ke < [(1 —b.) - |X|| > Compute target pruned set size of class ¢ based on biased degree
6 T < TopK(Z., V!, k.) > Select indices of top-k. scored samples
7. Sl SuzZ”?

8: end for

9: return S

G EXPERIMENTAL SETTINGS

G.1 MODELS

Unless otherwise specified, we adopt Wide ResNet (WRN) (Zagoruyko & Komodakis, 2016) as the
default backbone following common practice in semi-supervised learning. Additionally, we also
evaluate Tiny Vision Transformers (TinyViT) (Wu et al., 2022) on CIFAR-10-LT and CIFAR-100-
LT. For ImageNet-127, we employ ResNet-50 (He et al., 2016) as the backbone to ensure scalability
on large-scale datasets.

G.2 IMPLEMENTATION DETAILS

All experiments are trained for 500 epochs with 500 steps per epoch, resulting in a total of 250,000
iterations. We use Stochastic Gradient Descent (SGD) (Bottou, 2012) with a fixed learning rate of
1 = 0.0015 and a batch size of 32. The pruning ratio of the unlabeled dataset is set to 0.7, and the pa-
rameter ¢ is aligned with InfoBatch (Qin et al., 2024), fixed at 0.875. For CIFAR-10-LT, the largest
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Algorithm 2 DyTrim for Unlabeled Data Selection

Input: Unlabeled set of M samples U = {(u™)}*_,, score set of the samples V*, pruning ratio 7,
weight of samples w
Output: Unlabeled pruned set S' (S! C U, |S¥| <= |U])

1 S*« 0 > Initialize the unlabeled pruned set
2 Ip « {i | V' =0} > Select low confidence samples
3t Lo+ {i | V' # 0} > Select high confidence samples
4: S+ S"UI

5: o Mean({V}* |t € T0})

6: Lyen < {1 € Izo | V' < p} > Select well-learned samples
7 Zpoor < L0 \ Zwen > Select poorly-learned samples
8: §¥ < 8" ULpoor

9: Zselect < Randomly select | (1 — ) - |Zyen|| samples from Zyey

10: 8Y < 8% U Zgeteet

1w, 1, Vie{l,...,M} > Reset weights
12: w; 1i7,, Vi € Tselect > Rescaling
13: return S"

labeled class contains 1,500 samples, while the largest unlabeled class contains 3,000 samples. For
CIFAR-100-LT, the largest labeled and unlabeled classes contain 150 and 300 samples, respectively.
For STL-10-LT, the largest labeled class contains 450 samples. To assess classification performance,
we adopt balanced accuracy (bACC) (Huang et al., 2016) and geometric mean (GM) (Kubat, 1997)
for CIFAR-10-LT and STL-10-LT. For CIFAR-100-LT and ImageNet-127, evaluation is conducted
solely using bACC. Each experiment is repeated three times on RTX 4090 GPUs to ensure repro-
ducibility, and we report both the mean and the standard error.

H ADDITIONAL EXPERIMENTAL RESULTS

H.1 BASELINES

The classification performance of the DyTrim was compared with those of the following algo-
rithms: 1. vanilla algorithm - Deep CNN trained with cross-entropy loss, 2. CIL algorithms -
Resampling (JAPKOWICZ, 2000), LDAM-DRW (Cao et al., 2019), and cRT (Kang et al., 2020),
3. SSL algorithms - FixMatch (Sohn et al., 2020), and 4. CISSL algorithms - DARP, DARP+LA,
DARP+cRT (Kim et al., 2020), CReST, CReST+LA (Wei & Gan, 2023), ABC (Lee et al., 2021),
CoSSL (Fan et al., 2022), DASO (Oh et al., 2022), SAW, SAW+LA and SAW+cRT (Lai et al., 2022)
combined with FixMatch. Adsh(Guo & Li, 2022), DebiasPL (Wang et al., 2022), UDAL(Lazarow
et al., 2023) and L2AC (Wang et al., 2023a) combined with FixMatch. We report the performance
of the baseline algorithms reported in Tables of Lai et al. (2022) and Fan et al. (Fan et al., 2022)
when it is reproducible; the performance measured using the uploaded code was reported otherwise.

H.2 ADDITIONAL RESULTS ON CIFAR-10-LT

Following prior works (Xing et al., 2025; Lee & Kim, 2024; Guo et al., 2024), we evaluate under a
more challenging scenario where the unlabeled set is imbalanced in the reverse direction of the la-
beled set (Table 9). Across all settings, DyTrim delivers consistent gains by applying balanced prun-
ing on the labeled data. Notably, when combined with FixMatch, DyTrim surpasses CDMAD by
more than 1% in both bACC and GM. Similar benefits are observed for FlexMatch and FreeMatch:
DyTrim improves FlexMatch by approximately 1.1-1.3% and FreeMatch by around 0.9-1.5%.

We also compared the classification performance of CDMAD with ACR (Xiang et al., 2020) and
BaCon, two recent CISSL algorithms. From Table. 10, we can observe that CDMAD outperforms
both ACR and BaCon.

H.3 RESULTS ON SMALL-IMAGENET-127
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Table 9: Comparison of bACC/GM on CIFAR-10-LT(y; = 100, 7,, = 100(reversed)).

CIFAR-10-LT, v; = 100, v, = 100(reversed)

Algorithm

ABC SAW SAW+LA SAW+cRT CDMAD DyTrim
FixMatch+ 69.5/66.8 72.3/68.7 T74.1/72.0 75.5/73.9 77.1/75.4 78.2/76.7
FlexMatch+ —-/- —/- —/- e 67.2/65.1 68.3/66.4
FreeMatch+ —/- —/- —/- —/- 68.5/66.4 69.4/67.9

Table 10: Comparison of bACC/GM on CIFAR-10-LT

Algorithm/CIFAR-10-LT vy =7, =100 vy =7v,=1

FixMatch+ACR 81.8/81.4 85.6/85.3
FixMatch+BaCon 84.4/84.0 82.0/81.5
FixMatch+CDMAD 83.6/83.1 87.5/87.1
FixMatch+DyTrim 84.8/84.4 87.9/817.5

Table 11: Comparison of bACC on
ImageNet-127 is a naturally long-tailed dataset, widely Small-ImageNet-127.
used to evaluate class-imbalanced semi-supervised learning
(CISSL) algorithms at scale. Following standard protocol, we

Small-ImageNet-127

Algorithm

downsample images to resolutions of 32 x 32 and 64 x 64 us- 32 %32 64 x 64
ing the box interpolation method from the Pillow library, and  ~FixMatch 29.7 123
randomly select 10% of the training samples as labeled data. w/+DARP 30.5 42.5
Under such limited supervision and class imbalance, learn- W;:gﬁRSPT*CRT ggg i}l'g
ing discriminative representations and a balanced classifier is X/ +CR§ST LA 409 55.9
particularly challenging. As reported in Table. 11, DyTrim w/+ABC 46.9 56.1
achieves the highest balanced accuracy (bACC) at both res- w/+CoSSL 43.7 53.8
olutions, outperforming the strongest baseline CDMAD by W;:SPDIIEV[ AD g'i ‘:’Sg
3.0% at 32 x 32 and 1.2% at 64 x 64. These improvements X/ e 50.6 Sk

demonstrate the robustness of our method, especially under
low-resolution and low-resource conditions. The performance gain at lower resolutions suggests
that DyTrim effectively handles the compounded difficulty of reduced visual fidelity and severe la-
bel scarcity. This makes it a promising solution for real-world applications where high-resolution
data and abundant labels are often unavailable.

H.4 MORE RESULTS ON IMAGENET-LT

ImageNet-LT (Liu et al., 2019) is a long-tailed variant of ImageNet, constructed to exhibit a heavy
class-imbalance that better reflects real-world data distributions. To assess the scalability of our
method on large-resolution inputs (224 x 224), we conducted experiments on ImageNet-LT. Due to
hardware constraints, we set the batch size to 2.

As shown in Table 3, CDMAD yields a substantial improvement over the FixMatch baseline, in-
creasing bACC from 20.0% to 35.4%, which highlights the effectiveness of incorporating class-
distribution modeling under long-tailed imbalance. Building upon the same baseline, our method
further pushes performance to 37.2%, achieving the best result among all compared approaches.
Notably, the improvement over CDMAD remains consistent despite their strong performance, sug-
gesting that our approach introduces complementary benefits rather than merely overlapping with
prior re-balancing techniques.

H.5 RESULTS ON DYNAMIC DATA PRUNING EXPERIMENT

Recently, Infobatch (Qin et al., 2024) provides a no-bias dynamic data pruning method. In this
section, we compare it with DyTrim in the framework of CISSL. The experiment is conducted on
the CIFAR-10-LT dataset, comparing the settings of v; = ~,, and 7; # .. Specifically, we directly
apply the pruning policy of InfoBatch to labeled samples and unlabeled samples without distinction,
and the results are shown in the Table. 12 and Table. 13. It can be seen that compared with the
proposed method, the pruning policy directly combined with InfoBatch is not consistently effective
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in all settings. In particular, when ~y; # 7, it will cause a decrease in accuracy, which is caused by
the mismatch in the distribution of labeled samples and unlabeled samples.

Table 12: Comparison of bACC/GM on CIFAR-10-LT.

Algorithm

CIFAR-10-LT (v = v; = Yu, 7« 18 assumed to be known)

v = 507’771 =50

v, = 100, 7, = 100

v, = 150, 7, = 150

FixMatch
w/+CDMAD
w/+InfoBatch*
w/+DyTrim

79.2+0.33/77.8 £0.36
87.3+£0.12/87.0+0.15
87.240.18/86.9 £0.19
88.0 +0.31 / 87.8 £0.32

71.540.72/ 66.8 £1.51
83.6 £0.46 / 83.1 +£0.57
84.1+0.61/83.7 £0.69
84.8 £0.48 / 84.4 £0.51

68.4+0.15/59.9 £0.43
80.8£0.86/79.9 +£1.07
81.6+0.45/80.9 £0.59
82.0+0.09 / 81.3 £0.03

Table 13: Comparison of bACC/GM on CIFAR-10-LT (7; # vu, V4 is assumed to be unknown).

Algorithm

CIFAR-10-LT (v; = 100, v,, = Unknown)

7u:1

Yo = 150

FixMatch
w/+CDMAD
w/+InfoBatch*
w/+DyTrim

68.9+1.95/42.8+8.11
87.5+0.46/ 87.1+0.50
86.4+0.63 /85.9 £0.73
88.9+0.88 / 88.6 £1.03

73.9+£0.25/70.5 +£0.52
85.7+0.36 / 85.3 £0.38
85.5+0.33/85.1 £0.37
86.4 +£0.43 / 86.0 £0.43

69.6 £0.60 / 62.6 +1.11
82.3+£0.23/81.8+0.29
83.34+0.08 / 82.8 +0.11
83.8 +0.34 / 83.4 £0.33

H.6 ABLATION STUDY

Effectiveness of each component. We conducted ablation studies on CIFAR-10-LT to assess the
contribution of each component in DyTrim, varying the hyperparameter v = ~; = ~, across 50,
100, and 150. As shown in Table. 14, the best performance was achieved when both labeled and
unlabeled pruning were combined with rescaling. Removing rescaling led to a bACC drop of 0.8-2.1
points across v values. Excluding either pruning component also reduced performance (e.g., -0.5
and -0.3 at v = 50 without unlabeled or labeled pruning, respectively). Removing both pruning
strategies resulted in the most significant degradation. These results highlighted the complementary
benefits of pruning and rescaling.

H.7 QUALITATIVE ANALYSES

Since the baseline image could implicitly reflect the bias of the classifier, we argued that by cus-
tomizing dynamic data pruning methods for labeled and unlabeled data, DyTrim significantly re-
duced classifier bias while improving performance. To verify this claim, in Figure. 6 (a) and (b), we
analyzed the class probabilities predicted on the baseline image using FixMatch+DyTrim, trained
on CIFAR-10-LT under various settings. We observed that classifiers trained with DyTrim con-
sistently produced more balanced predictions than CDMAD across all settings, with improved ac-
curacy on tail classes. We defined 7 as the probability of pruning an unlabeled sample u;* when

(u) < H™ and max(Py(y|a(ui™))) > 7. In Figure. 7, we evaluated different pruning ratios
for unlabeled samples on CIFAR-10-LT. Results showed that setting > 0.1 yields higher perfor-

Table 14: Ablation study for the proposed algorithm on CIFAR-10-LT.

Labeled Unlabeled Rescaling | % =7 =50 | 1 =7 =100 | v =, =150
Pruning  Pruning | PACC GM | bACC GM | bACC GM
873 87.0 | 83.6 83.1 80.8 79.9

v 875 872 | 844 84.0 81.3 80.6

v v 877 874 | 84.0 83.6 81.4 80.6

v v 872 869 | 83.6 83.1 79.9 79.0

v v v 88.0 878 | 848 84.4 82.0 81.3
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Figure 6: (a) and (b) present the 7y (Z) using the CDMAD and DyTrim. (c) and (d) present the
confusion matrices of the class predictions on test samples on CIFAR-10-LT (v; = ,, = 100).

mance across both architectures, indicating that DyTrim was relatively robust with respect to the
hyperparameter r, with the best performance achieved when r = 0.3.
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Figure 7: Evaluation curves of hyper-parameter  on CIFAR-10-LT under bACC and GM.

H.8 COMPARISON OF CLASS DISTRIBUTIONS BEFORE AND AFTER PRUNING
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Figure 8: Comparison of class distribution before and after pruning across three datasets: (a) Labeled
dataset, (b) Unlabeled dataset, (c) Full dataset.

Figure 8 compares the class distributions before and after applying DyTrim on the labeled, unlabeled
and full training sets. Across all three subsets, pruning consistently reduces the proportion of head
classes while preserving or slightly increasing the relative proportion of tail classes. This produces
a noticeably flatter long-tailed distribution. Unlike traditional pruning methods, which typically
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remove samples that contribute least to training progress, the behavior of DyTrim is different because
the pruning decision is guided by baseline logits and the reliability of pseudo-labels. This tends to
eliminate redundant head-class samples and low-quality unlabeled samples while rarely discarding
the already scarce tail-class data. Consequently, the resulting effective training subset becomes more
balanced without sacrificing essential information from tail classes.

H.9 ANALYSIS OF SAMPLE SELECTION FREQUENCY
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Figure 9: Illustration of per-class maximum, Figure 10: Comparison of class-probability
average, and minimum sample selection fre- distributions with and without scaling.

quencies during training.

Figure 9 reports the maximum, average and minimum sample selection frequencies for each class.
Three observations emerge clearly. First, the maximum frequency remains close to 1 for all classes,
which indicates that each class contains at least a subset of highly informative samples that are
almost always preserved during pruning. Second, the average frequency increases from head to tail
classes, showing that DyTrim removes a larger fraction of redundant samples from majority classes
while retaining more samples in minority classes. This behavior matches the intended effect of
mitigating class dominance through selective pruning. Third, the minimum frequency stays within a
narrow and relatively high range across all classes, suggesting that even the least frequently selected
samples are not entirely discarded. This prevents the severe under-sampling of tail classes that often
occurs in traditional pruning strategies.

H.10 EFFECT OF SCALING STRATEGIES ON CLASS-BIAS

Figure 10 compares the class probability distribu- Typle 15: Comparison of bACC and GM
tions obtained with and without the proposed scaling ,, CIFAR-10-LT on fixed and dynamic

strategy. Although the two curves differ for several

) scaling factors.
head and mid-frequency classes, the overall decay pat-

tern remains consistent, and the probabilities of head CIFAR-I0.LT

classes do not increase when scaling is applied. This  Alecrithm = 100,7, = 100~ = 100,7, = 1/100

shows that the scaling mechanism does not intensify  Fixed Scaling 84.8/84.4 78.2/76.7
Dynamic Scaling 84.9/84.4 78.9/78.1

the influence of high confidence samples and preserves
the long-tailed structure shaped by DyTrim.

Additionally, to provide each class with an adaptive scaling factor that assigns smaller scaling to
head classes and larger scaling to tail classes, we further compare fixed and dynamic scaling in
Table 15. Dynamic scaling leads to higher bACC and GM under both matched and mismatched
imbalance conditions, indicating that adapting the scaling factor to the current pruning state yields
a more reliable correction for changes in the effective batch size. The dynamic scaling factor is
computed as 1 — m(Z)g, + 1/(1 — ), which stabilizes the loss magnitude during training and
prevents undesirable shifts toward majority class predictions.
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Figure 11: Scores of a representative head class sample and a representative tail class sample over
the first 50,000 training steps, recorded every 500 steps.

H.11 DYNAMICS OF SAMPLE SCORE ACROSS HEAD AND TAIL CLASSES

Figure 11 shows the dynamics of scores for one head class sample and one tail class sample over
the first 50,000 training steps. The two trajectories exhibit a clear contrast. The tail class sample
maintains consistently higher and more volatile scores throughout training, reflecting its larger con-
tribution to reducing class bias and its higher utility for updating the classifier. In comparison, the
head class sample quickly drops to very low scores and remains close to zero for most of training.
This indicates that the head sample becomes saturated early and provides little additional informa-
tion, which aligns with the design of DyTrim that aims to remove redundant head class samples.

H.12 PRUNING DYNAMICS ACROSS LABELED AND UNLABELED DATASETS
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Figure 12: Number of pruned samples for each class across training process on CIFAR-10-LT. (a)
and (b) show the evolution for head and tail classes in the labeled set, and (c) and (d) show the
corresponding results for the unlabeled set. Each curve indicates how many samples of a given class
have been removed up to each pruning step, recorded every 100 iterations.

Figure 12 reports the number of pruned samples per class over the course of training. The results
from both the labeled and unlabeled subsets exhibit a consistent pattern. Head classes experience
a rapid increase in pruned samples at the beginning of training and maintain high pruning counts
throughout the process, which reflects the large amount of redundant information contained in these
majority classes. In contrast, tail classes show much slower growth curves with considerably lower
pruning volumes, indicating that DyTrim preserves most of the scarce minority samples and avoids
aggravating the long-tailed imbalance. The same trend appears in the unlabeled subset, where head
classes accumulate substantially more pruned samples due to the prevalence of high confidence
but less informative pseudo-labeled instances. These observations confirm that DyTrim adaptively
modulates pruning according to class frequency and sample utility, removing redundant head-class
samples while retaining informative tail-class data.
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Figure 13: Comparison of the change of logits’s probability distribution 7y (Z) for the baseline image
on CIFAR-10-LT with v; = ,, = 100 across different CISSL methods.
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Figure 14: Class probabilities predicted on a baseline image using (a) FixMatch, (b) Fix-
Match+InfoBatch, (c) FixMatch+CDMAD, (d) FixMatch+DyTrim.

I VISUALIZATION

1.1 DETAILS OF THE CHANGE OF LOGITS’S PROBABILITY DISTRIBUTION

In this section, we conduct some visualization experiments to demonstrate the advantages of the
DyTrim in debiasing and improving classifier performance. We first analyze the change of logits’s
probability distribution Softmax(gy(Z)) for the baseline image on CIFAR-10-LT with y; = v, =
100 for fixmatch, CDMAD, and the DyTrim as shown in Figure. 13. It can be seen intuitively that
in the first epoch, the classifier has bias due to the imbalance of categories in the data. This situation
increases significantly with the number of network training times, as shown in the second column
of the figure. However, we can see that DyTrim can effectively slow down the increase of this bias.
Furthermore, after the model is fully trained for 500 epochs, it can be seen that after the 100th
epoch, CDMAD starts to use the baseline image for post-hoc debiasing, which significantly reduces
the representation of the model. However, by dynamically pruning the data set, DyTrim obtains a
more distinct debias effect as shown in Figure. 14.

1.2 DETAILS OF THE CHANGE OF LOGITS’S PROBABILITY DISTRIBUTION

Figure. 15 and Figure. 16 compare the confusion matrices of the class predictions on the test set
of CIFAR-10 using (a) FixMatch, (b) FixMatch+Infobatch, (c) FixMatch+CDMAD, and (d) Fix-
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Figure 15: Confusion matrices of the class predictions on the test set of CIFAR-10 using (a) Fix-
Match, (b) FixMatch+InfoBatch, (c) FixMatch+CDMAD, and (d) FixMatch+DyTrim trained on
CIFAR-10-LT under ; = 100 and ~,, = 100.
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Figure 16: Confusion matrices of the class predictions on the test set of CIFAR-10 using (a) Fix-
Match, (b) FixMatch+InfoBatch, (c) FixMatch+CDMAD, and (d) FixMatch+DyTrim trained on
CIFAR-10-LT under ~; = 100 and ~,, = 1.
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Figure 17: Confusion matrices of the class predictions on the test set of CIFAR-10 using (a) Fix-
Match, (b) FixMatch+InfoBatch, (c) FixMatch+CDMAD, and (d) FixMatch+DyTrim trained on
CIFAR-10-LT under v; = 1 and ,, = 1.

Match+DyTrim trained on CIFAR-10-LT under ; = 100, ~, = 1,100. FixMatch+DyTrim made
more balanced predictions across classes. Furthermore, we also conducted experiments under a
balanced setting (v = y1 = 7y, = 1), as shown in Figure. 17. The results show that even under a
balanced data distribution, DyTrimcan still achieve better results on the pruned dataset than methods
such as CDMAD trained on the full dataset.

Similar to confusion matrices, we also compare t-distributed stochastic neighbor embedding (t-SNE)
of representations obtained for the test set of CIFAR-10 using FixMatch, FixMatch+CDMAD,
FixMatch+InfoBatch, and FixMatch+DyTrim trained on CIFAR-10 with v; = 100 and v, =
1, 100(unknown 7, ), where different colors indicate different classes in CIFAR-10 Figure. 18, Fig-
ure. 19. We can observe that the representations obtained using FixMatch+DyTrim are separated
into classes with clearer boundaries compared the those from FixMatch and CDMAD. This is prob-
ably because CDMAD appropriately refined the biased pseudo-labels and used them for training,
whereas FixMatch failed to learn the representations properly because they used the biased pseudo-
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(a) FixMatch (b) FixMatch+InfoBatch (c) FixMatch+CDMAD (d) FixMatch+ DyTrim

Figure 18: t-SNE of representations obtained for the test set of CIFAR-10 using (a) FixMatch, (b)
FixMatch+InfoBatch, (c) FixMatch+CDMAD, and (d) FixMatch+DyTrim trained on CIFAR-10-LT
under ~; = 100 and ~,, = 100.

W

(a) FixMatch (b) FixMatch+InfoBatch (c) FixMatch+CDMAD (d) FixMatch+ DyTrim

Figure 19: t-SNE of representations obtained for the test set of CIFAR-10 using (a) FixMatch, (b)
FixMatch+InfoBatch, (c) FixMatch+CDMAD, and (d) FixMatch+DyTrim trained on CIFAR-10-LT
under ; = 100 and ~,, = 1.

labels for training. These results demonstrate that the quality of representations can be improved by
using well-refined pseudo-labels for training.

J  LIMITATION

A key limitation of our method is its reliance on a task-irrelevant baseline image as a bias indica-
tor. If this baseline image is used as a training sample, it may no longer reflect the accumulated
bias, reducing the effectiveness of our debiasing mechanism. Additionally, our framework does not
account for architectures with auxiliary classification heads or semi-supervised methods based on
mixup-style (Zhang et al., 2017) interpolations, limiting DyTrim’s applicability to these models.
Extending our approach to these settings is an interesting avenue for future work.

K USE orF LLMS

Large language models (LLMs) were used solely to assist with minor language polishing during
manuscript preparation. All scientific components of this work, including the design of experi-
ments, data processing, analysis, and interpretation, were carried out entirely by the authors using
established computational methods and human expertise, without reliance on automated reasoning
or model-generated content.
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