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ABSTRACT

Long-tailed distributions are prevalent in real-world semi-supervised learning
(SSL), where pseudo-labels tend to favor majority classes, leading to degraded
generalization. While many long-tailed semi-supervised learning (LTSSL) meth-
ods have been proposed, the mechanisms by which they implicitly debias logits
remain poorly understood. In this work, we revisit LTSSL through the lens of
learning dynamics and provide a theoretical characterization of logits debiasing.
Specifically, we derive a step-wise decomposition of the logits updates, showing
that predictions are dominated by class-imbalance bias that reliably reflects label
priors. To expose this effect, we use the logits of a task-irrelevant baseline image
as an indicator of accumulated bias and prove that they converge to the class prior.
This provides a unified view where LTSSL remedies such as logit adjustment,
reweighting, and resampling correspond to reshaping gradient dynamics. Based
on this insight, we propose DyTrim, a principle-based dynamic pruning frame-
work that reallocates gradient budget through class-aware pruning on labeled data
and confidence-based soft pruning on unlabeled data. We provide theoretical guar-
antees that DyTrim reduces class bias and improves generalization. Extensive
experiments on standard LTSSL benchmarks show consistent gains across archi-
tectures and methods.

1 INTRODUCTION

Semi-supervised learning (SSL), exemplified by FixMatch (Sohn et al., 2020) and ReMix-
Match (Berthelot et al., 2019), has been proven to demonstrate significant generalization advantages
over supervised learning, particularly in deep neural networks (Li et al., 2025). However, many ex-
isting SSL variants, e.g. FlexMatch (Zhang et al., 2021), FreeMatch (Wang et al., 2023b) implicitly
assume that both labeled and unlabeled data are drawn from a balanced class distribution, i.e., class
imbalance. In practice, real-world datasets commonly exhibit a long-tailed label distribution, lead-
ing to biased pseudo-label toward majority classes. This discrepancy poses significant challenges to
the effectiveness of SSL algorithms on real-world datasets.

Recent studies on long-tailed semi-supervised learning (LTSSL) have emerged to mitigate the bias
introduced by class imbalance in both labeled and unlabeled data. These methods range from distri-
bution alignment (Wei et al., 2021; Kim et al., 2020), data rebalancing (Fan et al., 2022; Lee et al.,
2021), logit adjustment variants (Wei & Gan, 2023; Zhou et al., 2024), to foundation model-based
methods (e.g., LADaS; Zheng et al., 2025). In particular, the approach employs a baseline image
introduced by Lee & Kim, 2024 as a simple yet effective tool for quantifying classifier bias, which
has garnered significant attention in the community (Xing et al., 2025; Yi et al., 2025). Despite
these advancements, the underlying mechanisms of how class bias emerges and why existing ap-
proaches can mitigate it remain largely unexplored and poorly understood. That also prevents us
from exploring a principle-based method to improve performance.

In this paper, we analyze the underlying mechanisms of class debiasing through the lens of learning
dynamics in long-tailed semi-supervised learning (LTSSL), investigating how inputs, the classifier,
and pseudo-labels interact and recursively shape one another during training. Specifically, we de-
rive a stepwise decomposition of logit updates in SSL, showing that class imbalance dominates
the predictions and prevents the model from leveraging inter-sample similarity, thereby impairing
generalization. We further point out that in the learning dynamics of LTSSL, the logits of the base-
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line image serve as an indicator of the accumulated influence of the network’s bias. Building on
this framework, we offer a unified view of existing debiasing methods, including logit adjustment
(LA) (Menon et al., 2021), reweighting (Wang et al., 2017), and resampling (JAPKOWICZ, 2000),
which can all be understood through the lens of learning dynamics.

As a side product of this analysis, we propose a pruning-based debiasing framework for long-tailed
remedies, named DyTrim. For labeled data, we compute class-wise pruning ratios to rebalance
samples. For unlabeled data, we apply a label-agnostic criterion that prunes low-confidence, incon-
sistent samples. Beyond empirical improvements, we provide theoretical guarantees demonstrating
how our method alleviates class bias and improves generalization. Extensive experiments demon-
strate that our method consistently improves LTSSL performance across standard benchmarks and
various backbone architectures.

2 PRELIMINARIES

Notions. We consider a labeled dataset X = {(xn, yn)}Nn=1 with N samples and an unlabeled
dataset U = {um}Mm=1 with M samples, where xn ∈ Rd is the n-th labeled sample with label
yn ∈ [C] = {1, . . . , C}, and um ∈ Rd is the m-th unlabeled sample. Let Nc and Mc denote the
number of labeled and unlabeled samples in class c, such that

∑C
c=1 Nc = N and

∑C
c=1 Mc = M .

If classes are sorted by size, we have N1 ≥ N2 ≥ · · · ≥ NC , and define the imbalance ratios as
γl = N1/Nc ≥ 1 and γu = max{Mi}/min{Mi} ≥ 1, respectively. We denote the classifier by fθ :
Rd 7→ 1, . . . , C with parameters θ, and its logits by gθ(x) ∈ RC , where fθ(x) = argmaxc gθ(x)c
and (·)c denotes the c-th component. For each iteration of training, we sample minibatchesMX =
{(xn

b , y
n
b ) : b ∈ (1, . . . , B)} ⊂ X andMU = {(um

b ) : b ∈ (1, . . . , µB)} ⊂ U from the training
set, where B denotes the minibatch size and µ denotes the relative size ofMU toMX . For brevity,
when clear from context we drop the superscript on um

b (xm
b ) and simply write ub (xb).

Base SSL algorithms. We use FixMatch (Sohn et al., 2020) as the base SSL algorithm, follow-
ing other LTSSL studies. Specifically, FixMatch first predicts the class probability of a weakly
augmented unlabeled data point α(ub) as qb = πθ(y|α(ub)) and then generates hard pseudo-label
q̂b = argmaxc(qb,c), where πθ(y|·) = Softmax(gθ(·)). For consistency regularization, FixMatch
uses a hard pseudo-label q̂b only when maxc(qb,c) ≥ τ , where τ denotes a predefined confidence
threshold, to improve the quality of the pseudo-labels used for training. We express the training
losses of FixMatch L as:

L(xb, ub, q̂, τ ; θ) = Lsup(α(xb); θ) + Lcon(A(ub), q̂b, τ ; θ), (1)

where xb (ub) denotes the b-th labeled (unlabeled) samples in a minibatch MX (MU). A(ub)
denotes the strongly augmented of ub. The losses and other SSL algorithms, i.e. FlexMatch (Zhang
et al., 2021) and FreeMatch (Wang et al., 2023b), are detailed in Appendix B.1 to B.3.

Learning dynamics and its per-step decomposition. Inspired by Ren & Sutherland (2025), we
study how a single gradient update changes the model’s confidence on an observation xo. With
πθ(y | x) denoting the predicted class probability distribution, the learning dynamics become,

∆θ ≜ θt+1−θt = −η ·∇L(fθ(xb), yb); ∆ log πt(y|xo) ≜ log πθt+1(y|xo)− log πθt(y|xo). (2)

where the update of θ during step t → t + 1 is given by one gradient update on the sample pair
(xb, yb) with learning rate η. L is the loss function, we use the cross-entropy loss H in our setting.
Proposition 1 (Per-step decomposition of learning dynamics; Ren & Sutherland 2025). Let π =
Softmax(z) with z = gθ(x). Then the one-step learning dynamics decompose as

∆ log πt
θ(y | xo) = −ηT t(xo)Kt(xo, xb)Gt(xb, yb) +O

(
η2∥∇θz(xb)∥2op

)
, (3)

where T t(xo) = ∇z log πθt(xo) = I − 1π⊤
θt(xo) only depends on the model’s current pre-

dicted probability,Kt(xo, xb) = (∇θz(xo)|θt)(∇θz(xb)|θt)⊤ is the empirical neural tangent kernel
(eNTK, Jacot et al. 2018) of the model, the product of the model’s gradients with respect to xo and
xb. Gt(xb, yb) = ∇zL(xb, yb)|zt is the loss gradient. ∥·∥2op denotes the spectral norm, which bounds
the second-order remainder term.

This decomposition characterizes how each update at (xb, yb) influences predictions at xo, forming
the basis for our SSL analysis under class imbalance.
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3 LEARNING DYNAMICS OF LONG-TAILED SEMI-SUPERVISED DEBIASING

3.1 LEARNING DYNAMICS OF SEMI-SUPERVISED LEARNING

In this section, we characterize the learning dynamics of the semi-supervised version of gradient
descent (GD) for the FixMatch algorithm Eq. (1),

∆θ ≜ θt+1 − θt = −η · (∇Lsup(fθ(α(xb)), yb) +∇Lcon(fθ(α(ub)), fθ(A(ub))) ;

∆f(xo) ≜ fθt+1(xo)− fθt(xo).
(4)

where xo denotes the observation data point, the update of θ during step t → t + 1 is given by one
gradient update on the labeled sample pair (xb, yb) and unlabeled sample (ub) with learning rate
η. Previous work (Ren & Sutherland, 2025) showed how a single gradient update influences model
predictions in supervised learning. We now examine whether such characterization extends to the
semi-supervised setting. Since FixMatch (Sohn et al., 2020) update naturally consists of a supervised
part Lsup and a consistency part Lcon, the gradient update can be decomposed accordingly. For an
unlabeled sample ub with target q̂tb = argmaxc q

t
b,c, where qtb = πθt(· | α(ub)). The per-step

learning dynamics of semi-supervised learning become

∆ log πt(y|xo) ≜ ∆ log πt,sup
θ (y | xo;xb) + ∆ log πt,con

θ (y | xo;ub) (5)

where ∆πt,sup
θ denotes the influence caused by xb and ∆πt,con

θ denotes the influence caused by ub,
respectively. Inspired by Definition 1, we now state the decomposition of the per-step influence in
semi-supervised learning below:
Proposition 2. For an labeled (unlabeled) sample xb (ub) with target yb (q̂tb). The one-step learning
dynamics of SSL decompose as

∆log πt,sup
θ (y | xo;xb) = −ηT t(xo)Kt(xo, α(xb))Gt

sup(α(xb), yb) +O
(
η2∥∇θz(α(xb))∥2op

)
∆log πt,con

θ (y | xo;ub) = −ηT t(xo)Kt(xo,A(ub))Gt
con(A(ub), q̂

t
b) +O

(
η2∥∇θz(A(ub))∥2op

) (6)

where Kt(xo, α(xb)) and Kt(xo,A(ub)) are eNTK evaluations of the logit network z(·) =
gθ(·), with different inputs. Gtsup(α(xb), yb) = ∇zLsup(α(xb), yb)|zt and Gtcon(q̂b,A(ub)) =
∇zLcon(q̂b,A(ub))|zt , respectively.

As shown in Proposition 2, each update of θ in FixMatch decomposes into a supervised part driven
by (xb, yb) and a consistency part driven by (ub, q̂

t
b). While this decomposition captures the per-

step influence on πθ(y | xo), in practice training consists of many such steps, and the accumulated
effect is governed by the iterative interaction between labeled and unlabeled updates. The detailed
technical proofs are deferred to Appendix C.1.

𝑦 = 𝜋 𝑥! = 4 𝑦 = 𝜋 𝑥! = 4 𝑦 = 𝜋 𝑥! = 4𝑦 = 𝜋 𝑥! = 4

(a) Learn 𝑥𝑏 = 0 and 𝑢𝑏 = 0  
with 𝑞̂𝑏 = 0 

(b) Learn 𝑥𝑏 = 0 and 𝑢𝑏 = 0  
with 𝑞̂𝑏 = 4 

(c) Learn 𝑥𝑏 = 0 and 𝑢𝑏 = 0  
with 𝑞̂𝑏 = 0 

(d) Learn 𝑥𝑏 = 0 and 𝑢𝑏 = 0 
with 𝑞̂𝑏 = 4

Figure 1: Accumulated influence in the MNIST experiment using a labeled sample xb = 0 and an
unlabeled sample ub = 0 for training, with xo = 4 for testing. (a) and (b) shows results from the
Balanced experiment (MNIST), (c) and (d) from the Imbalanced experiment (MNIST-LT). (a) and
(c) show the influence with accurate pseudo-labels, (b) and (d) with inaccurate pseudo-labels. In (a)
and (b), the cumulative influence of pseudo-label authenticity is evident, with the false pseudo-label
affecting predictions for similar samples (e.g., probability of 9, 7 and 4). In (c) and (d), the class
imbalance masks the influence of false pseudo-label authenticity due to class bias.
Accumulated influence and a demonstration on MNIST. To demonstrate this, we train a WRN-
28-2 on MNIST and visualize the accumulated influence in Figure 1. In Figure 1(a), when q̂b is
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correct, the consistency term reinforces the supervised signal, gradually pulling the prediction of xo

toward the correct class, i.e., qb,4↑ and qb,9↓, consistent with the constructive dynamics implied by
Eq. (6). In contrast, when q̂b is incorrect (Figure 1(b)), the consistency update exerts the opposite ef-
fect, i.e., qb,4↓, qb,7↑ and qb,9↓, systematically reducing the correct probability of xo. This illustrates
how pseudo-label errors, even if small at each step, can accumulate across iterations into a negative
loop. The Figure 1(c) and (d) show that under class imbalance, such accumulated influence can
drive the classifier to consistently predict the majority class (here qb,0 > qb,4), regardless of the true
label. This confirms the implication of our dynamics analysis: in SSL, the imbalance influence of
labeled data is passed to the pseudo-labels through the classifier, so imbalance bias can be amplified
rather than averaged out, leading to catastrophic bias.

3.2 LEARNING DYNAMICS ANALYSIS OF ACCUMULATED BIAS UNDER CLASS IMBALANCE

The aforementioned phenomenon, together with the learning dynamics of the semi-supervised
framework, illustrates how class imbalance accumulates into systematic bias. While per-update
dynamics capture the influence of individual samples on predictions, they fall short of reflecting the
global effect of imbalance. This motivates the search for an indicator that bridges class-imbalance
bias with the underlying learning dynamics. Replacing the inputs xo with a task irrelevant baseline
image I, we can regard the Eq. (6) as such an attributing indicator (Sundararajan et al., 2017). To
justify this choice, we analyze its theoretical properties in both linear and deep settings, and then
incorporate it into the per-step influence decomposition.

Baseline image and its invariance property. For simplicity, we first consider a two-layer MLP
with no bias in the first layer and a bias vector b ∈ RC in the output layer h(x) = h(2) ◦ h(1)(x),
where h(1)(x) = σ(W1x) and h(2) = W2x + b. This setting allows us to isolate and examine the
predicted class probability πθ(I) of a baseline image. For a baseline image I ∈ Rd, we have

h(I) = W2h
(1)(I) + b. (7)

In modern neural networks, the explicit bias term b is often absorbed into the normalization layer,
e.g., BatchNorm, LayerNorm, with other layers typically set without bias. Without loss of gener-
ality, we take BatchNorm as an example for analysis. Since the BatchNorm transformation can be
equivalently viewed as an affine linear layer with learnable parameters, we may replace h(2) with a
BatchNorm(·) layer, i.e.,

h(I) = BatchNorm
(
h(1)(I)

)
=

h(1)(I)− E[h(1)(I)]√
Var[h(1)(I)] + ϵ

·W2 + b. (8)

where ϵ is a small positive constant that ensures numerical stability. The baseline image is typically
a solid color image, which inherently lacks task-related patterns, see Appendix D.1 for more dis-
cussions. This representation shows that, for baseline images, the dependence of h(I) on the input
is effectively controlled only through the affine parameters (W2, b) of the normalization layer. We
now state the main results regarding the prediction πθ(I) for such baseline images:
Proposition 3 (Invariance of baseline image under affine normalization). Let I = k · 1d be a solid
color image, where k ∈ {0, 1, . . . , 255} and 1d ∈ Rd is an all-one vector. Suppose the output of the
first hidden transformation is normalized by a normalization layer (e.g., BatchNorm, InstanceNorm,
or GroupNorm) with affine parameters (W2, b). Then the logits h(I) are independent of k and
reduce to

h(I) = b, πθ(I) = Softmax(b). (9)

One can immediately notice that πθ(I) in Eq. (9) does not contain any term related to the pixel
value k of I. This observation implies that the representation πθ(I) of a baseline image is entirely
determined by the BatchNorm bias term b, and is invariant to the actual pixel value k. The detailed
technical proofs are deferred to Appendix C.2.

Building upon this invariance, we now establish a direct connection between the baseline image and
the underlying class distribution. Specifically, for the classifier formulation in Eq. (8) and Eq. (9),
we show that the logits of the baseline image encode the class-imbalance ratio present in the train-
ing data, thus providing a direct bridge between πθ(I) and the class prior induced by the long-tailed
distribution in training. We empirically validate this connection on CIFAR10-LT by analyzing the
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distribution of baseline logits: as shown in Figure 2, the baseline logits closely align with the em-
pirical class prior. When we remove the bias term in our ablation model, this alignment vanishes,
indicating that the baseline logits lose their responsiveness to the class prior.

Labeled dataset

Black image

White image

w/o bias

Last layer bias

Unlabeled dataset

Black image

White image

w/o bias

Last layer bias

Full dataset

Black image

White image

w/o bias

Last layer bias

(a) Labeled dataset (b) Unlabeled dataset (c) Full dataset

Figure 2: Class distributions and measured biaseddegree under γl = 100 and γu = 100. The bar
plots show the class distributions for (a) labeled, (b) unlabeled, and (c) full datasets.

Theorem 1 (Bias as the conditional distribution prior). Assume the model h(x) as characterized in
Eq. (8) is trained using cross-entropy loss:

L = E(x,y)

[
− y⊤ log Softmax(h(x))

]
. (10)

At a population risk minimizer (W ⋆
2 , b

⋆) we have

p̂⋆(x) = P (y | x), p̂⋆(I) = Softmax
(
b⋆
)
= P

(
y
∣∣ h(1)(I)−E[h(1)(I)]√

Var[h(1)(I)]+ϵ
= 0

)
. (11)

For the baseline image I in Proposition 3, the baseline prediction thus coincides with the conditional
class distribution at the normalized-zero feature state, capturing the class prior induced by the long-
tailed training distribution. See the detailed to Appendix C.3.

Thus, πθ(I) serves as a natural proxy for the accumulated bias of the model, bridging the class
imbalance in the training set to the learning dynamics of the classifier.

Per-step influence decomposition of the baseline image. Let πθ(y|·) denote the estimate of
the underlying class prior. Then we can track the change in the model’s confidence by observing
log πθ(y|I). Then the learning dynamics on the baseline image become,

∆ log πt(y|I) ≜ log πθt+1(y|I)− log πθt(y|I). (12)

Proposition 4. Let π = Softmax(z) and z = gθ(x). The one-step dynamics on the baseline image
decompose as

∆log πt
θ(y | I;x) = −ηT t(I)Kt(I, x)Gt(x, y) +O

(
η2∥∇θz(x)∥2op

)
(13)

where T t(I) = ∇z log π
t(I) = I − 1πT

θt(I), Kt(I, x) =
(
∇θz(I)

∣∣
θt

) (
∇θz(x)

∣∣
θt

)T
is the eNTK

of the logit network z, x can be α(xb) or A(ub), y can be yb and α(ub). See Appendix C.4 for more
details.

Compared with Proposition 2, the main difference is that the T t(I) and Kt(I, x) term. Since the
baseline image I lies far from the data manifold, the coupling kernel Kt(I, x) is typically small.
Thus, the learning dynamics in Eq. (13) are mainly governed by the output-sensitivity term T t(I)
and the gradient signal Gt, with the latter providing both the energy and direction for the model’s
adaptation. Under this formulation, the baseline image I serves as an indicator that isolates the
model’s global bias state. Tracking πt

θ(I) over training therefore provides a direct and interpretable
measurement of how class-level bias accumulates during semi-supervised learning. Therefore, as the
number of labeled and unlabeled samples from the majority class increases, the output of πt

θ(I) will
be progressively squeezed into a biased long-tailed distribution. Even with Gt guiding the adaptation
direction, this process can still be steered by the biased state encoded in πt

θ(I), further amplifying
the long-tailed shift, as illustrated in Figure 3.
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first epoch first 10 epoch full epoch bias term 𝛽 = 0

Figure 3: The change of logits’s probability distribution πθ(I) for the baseline image on CIFAR-10-
LT. The left three panels depict the dynamics of reference logits under FixMatch: at epoch 1, epochs
1-10, and full epochs. The rightmost panel illustrates the dynamics after removing all bias terms.

4 ANALYSIS THE DYNAMICS OF LOGITS DEBIASING IN SEMI-SUPERVISED
LEARNING

Analyzing the dynamics of logits debiasing methods in long-tailed semi-supervised learning is chal-
lenging because different algorithms such as Logits Adjustment, Reweighting, and Resampling em-
ploy distinct formulations. In this section, we propose a unified framework based on the per-step
influence decomposition (Proposition 4). This framework enables us to analyze how these methods
modify the update gradient flow, thereby influencing the model’s bias evolution during training. We
also introduce a pruning-based method, DyTrim, as a byproduct of our analysis. It can be integrated
in a plug-and-play manner with other logits debiasing methods.

4.1 PER-STEP DECOMPOSITION OF LOGITS ADJUSTMENT

The typical logits debias method used during long-tail semi-supervised learning is logits adjustment
(LA) (Menon et al., 2021), which introduces a class-dependent shift in the logits, expressed as:

π̃θ(y|x) = Softmax(z̃(x)), z̃(x) = gθ(x)− λϕ, (14)

where λ ≥ 0 controls the adjustment strength and ϕ ∈ RC is estimates of the class priors. Thanks
to the z̃ implemented in CDMAD (Lee & Kim, 2024), the resulting logits adjustment is almost
identical to such simple subtraction, i.e., z̃(x) = gθ(x)− log π, where π = πθ(I). Thus, the change
of the model’s prediction on the baseline image I can be represented as,

∆ log π̃ t
θ (y | I; xb) = −η T t(I)Kt(I, xb) G̃tLA(x, y) + O

(
η2∥∇θz̃(xb)∥2op

)
. (15)

where G̃LA(x, y) = πt
θ(α(ub)|A(ub))−π represents the influence of the adjusted logits. Compared

with Proposition 4, the main difference is that the gradient term has been modified by class prior
π, which allows us to answer how does learning with debiasing affect the gradients for unlabeled
samples? When adjusting the model’s logits by class prior, the gradient flow will ensure that the
model compensates for the class imbalance during training. See more discussions in Appendix C.5.
We also conducted experiments on CIFAR10-LT to demonstrate the effectiveness of this debiasing,
as illustrated in Figure 3, which illustrates that the bias measured in the baseline image after applying
LA to the CDMAD method is alleviated.

4.2 PER-STEP DECOMPOSITION OF REWEIGHTING

Reweighting is another prevalent debiasing technique in long-tail semi-supervised learning (Lai
et al., 2022), which introduces class-dependent weights in the loss function, expressed as:

Lrw
sup =

C∑
k=1

wl
kLsup(α(x

k
b ); θ); Lrw

con =

C∑
k=1

wu
kLcon(A(uk

b ), q̂b, τ ; θ); (16)

where wl
k (wu

k ) is the weight of the k-th class in labeled (unlabeled) samples. For simplicity, we
assume the class weight distributions are consistent between labeled and unlabeled data, i.e., wl

k
and wu

k follow the same proportional relationship and remain fixed during training. Under this
reweighting scheme, the gradient signals for both supervised and consistency terms are scaled by

6
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their respective class weights. Hence, we can decompose the learning dynamics for reweighting
similarly to Eq. (15),

∆log πt,rw
θ (y | I;x) = −ηT t(I)K̃t

rw(I, x;wc)G̃t
rw(x, y;w

c) +O
(
η2|∇θz(x)|op2) (17)

where K̃t
rw(I, x;wc) = wcKt

rw(I, x) and G̃trw(x, y;wc) = wcGt(x, y). Thus, reweighting acts
by scaling both the similarity kernel and the gradient term with the class weight wc. Intuitively,
this modulates the strength of interaction between samples and the magnitude of their gradients
in a class-dependent manner: samples from classes with larger wc exert a stronger influence on
the update of θ, while those from classes with smaller wc contribute less. When wc is designed
as a function of class frequency (e.g., inverse frequency), this mechanism increases the effective
contribution of under-represented classes and attenuates that of head classes. See more discussions
in Appendix C.5.

4.3 DYTRIM: A BASELINE IMAGE GUIDED DATA PRUNING FRAMEWORK FOR LTSSL

Under the per-step influence framework of Proposition 4, logits adjustment and reweighting reshape
the gradient flow by modifying the update direction or magnitude, while resampling acts directly on
the data distribution by changing the frequency with which different classes enter training. Yet all
these methods leave the sample set itself intact at each step and ignore the heterogeneous per-step
utility of individual samples, allowing redundant head-class examples to continue dominating the
learning dynamics. This motivates debiasing at the data-selection level, where dynamically con-
trolling which samples participate in each update provides a more direct mechanism for mitigating
accumulated bias in LTSSL, as illustrated in Figure 5.

Per-step decomposition of dynamic pruning. Differs from logits adjustment, reweighting, or re-
sampling, dynamic pruning directly alters the set of samples that participate in each gradient update,
instead of modifying the loss or sampling distribution. We define step-dependent scoring func-
tions Hl

t(·) for labeled samples X and Hu
t (·) for unlabeled samples U , which dynamically quantify

sample utility at training step t. For the dynamic pruning process, samples are discarded by the
step-dependent pruning probabilities P l

t and Pu
t :

P l
t(x;Hl

t) = 1(Hl
t(x), H̄

l
t); and Pu

t (u;Hu
t ) = 1(Hu

t (u), H̄
u
t ), (18)

where H̄ l
t and H̄u

t are adaptive thresholds, 1(·, ·) is the indicator function. Under this dynamic
pruning mechanism, the one-step decomposition of dynamic pruning decomposes as

∆log πt,prune
θ (y | I;x) = −ηT t(I)Kt(I, x)G̃t

dytr(x, y) +O
(
η2|∇θz(x)|op2)

G̃t
dytr(x, y) = Pt(x)Gt(x, y)

(19)

where

Pt(x) =

{
P l
t(x;Hl

t) x ∈ X ,
Pu
t (u;Hu

t ) x ∈ U , (20)

This decomposition shows that dynamic pruning reshapes the update dynamics by gating sam-
ple participation through P l

t and Pu
t , effectively zeroing out the kernel–gradient interactions

Kt(I, x)Gt(x, y) of low-utility samples. In contrast to logits adjustment and reweighting, which
only alter gradient signals, or resampling, which changes the sampling measure, pruning directly
removes redundant head-class examples and underlearned unlabeled ones from the optimization
path, thereby reallocating the model’s effective update budget toward samples that meaningfully
influence bias correction. Although the kernel Kt(I, x) itself remains unchanged, its operational
contribution becomes Ex∼p[Pt(x)Kt(I, x)], selectively amplifying informative interactions while
suppressing those that drive long-tailed drift. This sample-level intervention yields a more direct
and fine-grained control of the learning dynamics than existing debiasing strategies.

Building on this perspective, we now instantiate how dynamic pruning is implemented in practice.
We introduce DyTrim, a baseline-guided dynamic pruning framework designed to accommodate
the distributional mismatch that real-world LTSSL typically exhibits between labeled and unlabeled
data. Since such mismatch renders a single participation rule inadequate, DyTrim employs two
complementary pruning mechanisms, one tailored to the long-tailed labeled set and the other to the
noisy and imbalance-unknown unlabeled set. See more details about Appendix C.6.
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Dynamic pruning for labeled data. Since the labeled data follow a long-tailed class distribution,
we design a class-aware pruning policy P l

t guided by πθ(I). Critically, the classifier’s pseudo-
labels are primarily influenced by the labeled samples, which introduce bias toward majority classes.
Since Proposition 3 shows that the baseline image has invariance to solid-color intensity, from first
principles, we leverage the logits from a black image I to calibrate pruning probabilities. Given
the labeled dataset X in the t-th epoch, a class-aware pruning probability is assigned to each sample
based on its score, which is formulated as:

P l
t(x

n
b ) =

{
1 Hl

t(x
n
b ) ∈H l

≺rc,t,
0 Hl

t(x
n
b ) /∈H l

≺rc,t,
(21)

where H l
≺rc,t denotes the rc×Nc smallest scoring values of the class c and rc = πθ(I)c is the class-

aware pruning probability. The labeled scoring functionHl
t(x

n
b ) is defined using the supervised loss

Lsup(x
n
b , y

n
b ) to quantify sample utility. See more details about Appendix E.1.

Dynamic pruning for unlabeled data. While the distribution of the label of the unlabeled data
and its imbalance ratio γu are unknown. To address the uncertainty and bias of pseudo-labels, we
design a label-insensitive soft pruning policy Pu

t inspired by (Qin et al., 2024), which introduces
randomness and gradient scaling into the pruning process. Specifically, for an unlabeled dataset
U at the t-th epoch, a pruning probability is assigned to each sample based on its score, which is
formulated as:

Pu
t (u

m
b ) =

{
r Hu

t (u
m
b ) < H̄m

t and p∗(um
b ) ≥ τ,

0 Hu
t (u

m
b ) ≥ H̄u

t or p∗(um
b ) < τ,

(22)

where H̄u
t is the adaptive threshold and r is a randomized pruning rate, τ is the confidence threshold

τ and p∗(um
b ) = max(softmax(g∗θ(α(u

m
b )))) denote the debiased pseudo-label confidence. See

more details about Appendix E.2.

Table 1: Comparison of bACC/GM on CIFAR-10-LT under different imbalance ratio γ = γl = γu,
where γu is assumed to be known. “*” indicates our own implementation.

Base SSL Debiasing γ = 50 γ = 100 γ = 150
Algorithm Strategy bACC GM bACC GM bACC GM

Vanilla 65.2±0.05 61.1±0.09 58.8±0.13 58.2±0.11 55.6±0.43 44.0±0.98

Re-sampling 64.3±0.48 60.6±0.67 55.8±0.47 45.1±0.30 52.2±0.05 38.2±1.49
LDAM-DRW 68.9±0.07 67.0±0.08 62.8±0.17 58.9±0.60 57.9±0.20 50.4±0.30

cRT 67.8±0.13 66.3±0.15 63.2±0.45 59.9±0.40 59.3±0.10 54.6±0.72

FixMatch

FixMatch 79.2±0.33 77.8±0.36 71.5±0.72 66.8±1.51 68.4±0.15 59.9±0.43
DARP+cRT 85.8±0.43 85.6±0.56 82.4±0.26 81.8±0.17 79.6±0.42 78.9±0.35
CReST+LA 85.6±0.36 81.9±0.45 81.2±0.70 74.5±0.99 71.9±2.24 64.4±1.75
ABC 85.6±0.26 85.2±0.29 81.1±1.14 80.3±1.29 77.3±1.25 75.6±1.65
CoSSL 86.8±0.30 86.6±0.25 83.2±0.49 82.7±0.60 80.3±0.55 79.6±0.57
SAW+LA 86.2±0.15 83.9±0.35 80.7±0.15 77.5±0.21 73.7±0.06 71.2±0.17
Adsh 83.4±0.06 82.9±0.13 76.5±0.35 74.8±0.34 71.5±0.30 68.8±0.35
DebiasPL 85.6±0.20 85.2±0.23 80.6±0.50 79.9±0.57 76.6±0.12 75.8±0.71
UDAL 86.5±0.29 86.2±0.26 81.4±0.39 80.6±0.38 77.9±0.33 75.8±0.71
L2AC 86.6±0.31 86.7±0.30 82.1±0.57 81.5±0.64 77.6±0.53 75.8±0.71
CDMAD 87.3±0.12 87.0±0.15 83.6±0.46 83.1±0.57 80.8±0.86 79.9±1.07
DyTrim 88.0±0.31 87.8±0.32 84.8±0.48 84.4±0.51 82.0±0.09 81.3±0.03

FlexMatch
FlexMatch* 72.6±0.72 70.2±0.88 67.7±0.73 63.6±1.27 62.6±0.63 56.1±1.13
CDMAD* 74.4±0.82 73.0±1.12 68.4±0.46 66.8±0.53 67.0±0.52 63.2±0.44
DyTrim 77.2±0.42 76.2±0.44 70.7±0.49 67.8±0.70 68.6±0.22 66.3±0.07

FreeMatch
FreeMatch* 71.9±0.24 69.4±0.61 65.7±0.18 60.9±0.69 62.5±0.12 57.3±0.53
CDMAD* 74.7±0.64 73.6±1.23 69.9±0.65 68.2±0.74 66.2±0.27 63.2±0.44
DyTrim 76.9±0.45 75.9±0.52 72.3±0.12 71.4±0.57 69.4±0.35 67.5±0.63

5 EXPERIMENT

In this section, we conducted comprehensive experiments to verify the effectiveness of the pro-
posed DyTrim on CIFAR10-LT, CIFAR100-LT (Cui et al., 2019), STL10-LT (Kim et al., 2020), and
ImageNet-127 (Deng et al., 2009; Huh et al., 2016) datasets. Due to limited space, we defer the
detailed experimental settings and additional experiments to the Appendix G.
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5.1 RESULTS ON CIFAR10/100-LT, STL10-LT AND IMAGENET-LT

Table 2: Comparison of bACC on CIFAR-100-LT un-
der different imbalance ratio, where γu is assumed to be
known. “*” indicates our own implementation.

Base SSL
Alogrithm

Debiasing
Strategy γ = 20 γ = 50 γ = 100

FixMatch

FixMatch 49.6±0.78 42.1±0.33 37.6±0.48
DARP 50.8±0.77 43.1±0.54 38.3±0.47
DARP+cRT 51.4±0.68 44.9±0.54 40.4±0.78
CReST 51.8±0.12 44.9±0.50 40.1±0.65
CReST+LA 52.9±0.07 47.3±0.17 42.7±0.70
ABC 53.3±0.79 46.7±0.26 41.2±0.06
CoSSL 53.9±0.78 47.6±0.26 43.0±0.61
UDAL 54.1±0.23 48.0±0.56 43.7±0.41
CPE 52.4±0.17 45.6±0.68 39.9±0.40
CDMAD 54.3±0.44 48.8±0.75 44.1±0.29
DyTrim 55.5±0.53 50.8±0.80 44.8±0.27

FlexMatch
FlexMatch* 36.5±0.51 29.6±0.35 25.8±0.79
CDMAD* 39.2±0.47 31.9±0.46 27.0±0.66
DyTrim 40.9±0.09 33.5±0.21 29.8±0.67

FreeMatch
FreeMatch* 35.9±0.69 31.3±0.65 24.5±0.66
CDMAD* 36.9±0.96 32.8±0.93 28.0±0.68
DyTrim 39.0±0.61 33.4±0.70 29.8±0.09

Under the consistent condition where γu
is known and matched to γl, the re-
sults in Table 1 show that CISSL al-
gorithms consistently outperform their
vanilla SSL counterparts by mitigat-
ing class imbalance while effectively
exploiting unlabeled data. Among
them, the proposed DyTrim achieves
the best performance across all imbal-
ance ratios. Compared with the state-
of-the-art CDMAD, DyTrim improves
bACC by 1.2% and GM by 1.4% on
average, without incurring additional
computational overhead. Furthermore,
when integrated into FlexMatch and
FreeMatch, DyTrim yields substantial
improvements, boosting bACC/GM by
2–3% on average.

Table 2 evaluates the methods on
CIFAR-100-LT, which involves more
classes and a stronger imbalance. The results demonstrate that DyTrim consistently outperforms
all competing approaches under this more challenging setting.

Table 3: Comparison of bACC on
ImageNet-LT.

Algorithm ImageNet-LT
FixMatch* 20.0
w/+CDMAD* 35.4
w/+DyTrim 37.2

As shown in Table 3, DyTrim consistently outperforms prior
techniques such as CDMAD on the large-scale ImageNet-LT
benchmark (Liu et al., 2019), demonstrating its complemen-
tary benefits rather than merely overlapping with existing re-
balancing approaches. See more details about Appendix H.4.
Under the inconsistent condition where γu was unknown and
mismatched to γl, the results in Table 4 show that DyTrim re-
mains the most effective method overall. When the labeled and unlabeled data distributions deviate,
DyTrim consistently outperforms CDMAD on both CIFAR-10-LT and STL-10-LT.

5.2 RESULTS ON VIT BACKBONES

In addition, Table 5 highlights the performance of various algorithms under both consistent and in-
consistent imbalance settings with ViT backbones. On CIFAR-10-LT, DyTrim yields the best results,
improving bACC 0.6% over CDMAD and nearly 4% over FixMatch when γl = γu = 100. Under
the inconsistent condition, DyTrim maintains a clear margin, surpassing CDMAD almost 2%. On

Table 4: Comparison of bACC/GM on CIFAR-10-LT and STL-10-LT under different imbalance
ratio γl ̸= γu, where γu is assumed to be unknown. “*” indicates our own implementation.

Base SSL
Algorithm

Debiasing
Strategy

CIFAR-10-LT (γl = 100, γu = Unknown) STL-10-LT (γu = Unknown)
γu = 50 γu = 150 γl = 10 γl = 20

bACC GM bACC GM bACC GM bACC GM

FixMatch

FixMatch 73.9±0.25 70.5±0.52 69.6±0.60 62.6±1.11 72.9±0.09 69.6±0.01 63.4±0.21 52.6±0.09
DARP 77.3±0.17 75.5±0.21 72.9±0.24 69.5±0.18 77.8±0.33 76.5±0.40 69.9±1.77 65.4±3.07
DARP+LA 82.3±0.32 81.5±0.29 78.9±0.23 77.7±0.06 78.6±0.30 77.4±0.40 71.9±0.49 68.7±0.51
DARP+cRT 82.7±0.21 82.3±0.25 80.7±0.44 80.2±0.61 79.3±0.23 78.7±0.21 74.1±0.61 73.1±1.21
ABC 82.7±0.64 82.0±0.76 78.4±0.87 77.2±1.07 79.1±0.46 78.1±0.57 73.8±0.15 72.1±0.15
SAW 79.8±0.25 79.1±0.32 74.5±0.97 72.5±1.37 78.3±0.25 77.0±0.19 71.9±0.81 69.0±0.81
SAW+LA 82.9±0.38 82.6±0.38 79.1±0.81 78.6±0.91 79.4±0.26 78.4±0.17 73.9±0.91 71.8±0.99
SAW+cRT 81.6±0.38 81.3±0.32 77.6±0.40 77.1±0.41 78.9±0.22 77.8±0.14 72.3±0.86 69.5±0.83
CPE 86.2±0.26 85.9±0.33 82.4±0.49 82.1±0.53 79.0±0.05 78.7±0.54 77.0±0.73 76.1±0.68
CDMAD 85.7±0.36 85.3±0.38 82.3±0.23 81.8±0.29 79.9±0.23 78.9±0.38 75.2±0.40 73.5±0.31
DyTrim 86.4±0.43 86.0±0.43 83.8±0.34 83.4±0.33 80.7±0.64 79.8±0.70 77.9±1.04 76.7±1.26

FlexMatch
FlexMatch* 67.7±0.67 62.8±0.65 63.0±0.77 56.3±1.70 62.1±0.29 60.8±0.43 56.9±0.90 51.4±0.81
CDMAD* 69.2±0.22 67.0±0.11 67.0±1.69 63.4±0.91 65.5±1.05 63.7±1.02 62.4±1.05 60.5±0.99
DyTrim 72.5±0.39 70.7±0.45 70.3±1.01 67.4±0.21 68.0±0.94 66.4±0.85 63.9±0.16 61.7±0.28

FreeMatch
FreeMatch* 69.3±0.99 65.4±1.45 63.5±0.76 55.7±0.77 63.9±0.77 62.0±0.90 59.0±1.43 57.6±0.67
CDMAD* 71.0±0.98 69.0±1.05 67.1±0.96 64.3±0.99 66.1±0.32 63.8±0.97 61.5±0.47 59.5±0.63
DyTrim 72.3±0.69 71.1±1.23 69.9±0.15 67.4±0.37 68.0±0.64 66.5±1.20 64.6±0.77 62.7±1.16
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(a) FixMatch (b) CDMAD (c) DyTrim (d) Metric

Figure 4: (a), (b) and (c) present the change of πθ(I) for the baseline image on CIFAR-10-LT with
γl = γu = 100 across different methods. (d) present the bACC and GM on those methods.

CIFAR-100-LT, although the absolute accuracies are lower due to the increased difficulty, DyTrim
still matches or slightly improves upon CDMAD, while consistently outperforming FixMatch. Ad-
ditional experimental results are provided in Appendix H.

Table 5: Comparison of bACC/GM on CIFAR-10-LT and CIFAR-100-LT with TinyViT under dif-
ferent imbalance ratio, where γu is assumed to be known. “*” indicates our own implementation.

Base SSL
Algorithm

Debiasing
Strategy

CIFAR-10-LT (γl = 100) CIFAR-100-LT (γl = 100)
γu = 100 γu = 150 γu = 100

bACC GM bACC GM bACC GM

FixMatch
FixMatch* 45.5±0.14 30.0±0.41 45.3±0.12 28.9±0.96 23.2±0.13 5.7±0.33
CDMAD* 48.7±0.49 40.5±0.26 45.4±0.13 39.9±0.10 24.0±0.15 9.0±0.77
DyTrim 49.3±0.47 40.3±0.36 47.3±0.12 39.7±0.57 24.1±0.22 8.9±0.15

5.3 SCALABILITY EVALUATION OF DYTRIM

DyTrim exhibited robust extensibility as a universal plug-in component, consistently boosting per-
formance across diverse SSL frameworks (CDMAD/CCL), datasets (CIFAR/STL10-LT), and im-
balance ratios (γ = 1 ∼ 150), as shown in Table 6. Notably, it achieved up to +1.4% (CDMAD on
CIFAR10-LT) and +2.7% (STL10-LT, γl=20) gains without architecture-specific tuning, validating
its versatility in semi-supervised long-tailed scenarios. To further validate the balanced classifica-
tion effect of DyTrim, we visualized the dynamics of baseline image logits during training as shown
in Figure. 4 (a), (b) and (c). The results clearly showed that DyTrim significantly reduced classifier
bias induced by class imbalance.
Table 6: Comparison of bACC with two state-of-the-art CISSL algorithms with and without DyTrim
on CIFAR-10, CIFAR-100, and STL-10. ↓and ↑ respectively indicate improvements or degradations
over the baseline CDMAD.

Dataset Imbalance ratio FixMatch+ FixMatch+

CDMAD CDMAD+DyTrim Gain CCL CCL+DyTrim Gain

CIFAR10-LT

γl = γu = 100 83.6±0.46 84.8±0.48 ↑1.2 86.2±0.35 86.7±0.39 ↑0.5
γl = γu = 150 80.8±0.86 82.0±0.09 ↑1.2 84.0±0.21 84.0±0.26 ↑0.0
γl = 100, γu = 1 87.5±0.46 88.9±0.88 ↑1.4 93.9±0.12 94.1±0.17 ↑0.2

CIFAR100-LT γl = γu = 20 54.3±0.44 55.5±0.53 ↑1.2 57.5±0.16 58.1±0.49 ↑0.6

STL10-LT γl = 10 79.9±0.23 80.7±0.64 ↑1.2 84.8±0.15 85.1±0.33 ↑0.3
γl = 20 75.2±0.40 77.9±1.04 ↑2.7 83.1±0.18 83.3±0.40 ↑0.2

6 CONCLUSION

In this work, we provide a theoretical characterization of class bias in long-tailed semi-supervised
learning (LTSSL) through an in-depth analysis of the learning dynamics. We derive a step-wise
decomposition of logit updates, demonstrating how class imbalance dominates predictions and how
debiasing methods, such as logit adjustment, reweighting, and resampling. Our theoretical insights
bridge the gap between existing methods and their effect on gradient dynamics, highlighting the crit-
ical role of sample-level interventions. Based on this foundation, we introduce DyTrim, a dynamic
pruning framework that mitigates class imbalance by reallocating gradient budgets. Empirical re-
sults across multiple benchmarks and SSL methods demonstrate that DyTrim consistently improves
performance.
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APPENDIX

A RELATED WORK

A.1 MORE ABOUT MECHANISMS OF LONG-TAILED DEBIASING

This paper considers learning dynamics to study the debiasing mechanisms of SSL algorithms. We
briefly introduce differences between the settings considered here and those in previous works. For
debiasing on long-tailed learning, Menon et al. (2021) considered a unified framework for debiasing
from the perspective of logits adjustment, which requires statistical label frequency. CCL (Zhou
et al., 2024) considered debiasing from an information-theoretical lens. LCGC (Xing et al., 2025)
used gradient flow to analyze the debiasing process. However, these methods only elucidate the
model’s behavior from an ad hoc perspective. We aim to develop a more comprehensive framework
that enables a principle-based lens of the bias generation mechanisms inherent in long-tailed semi-
supervised learning.

A.2 MORE ABOUT SEMI-SUPERVISED LEARNING

Modern SSL methods typically integrate diverse strategies for exploiting unlabeled data, such as
entropy minimization (Zhou et al., 2024), consistency regularization (Sohn et al., 2020), and con-
trastive learning (Zhou et al., 2024; Lee et al., 2022). Among them, most SSL approaches rely
on selecting reliable pseudo-labels during training. FixMatch (Sohn et al., 2020) adopts a fixed
confidence threshold of 0.95, whereas FlexMatch (Zhang et al., 2021) adapts thresholds per class
based on learning difficulty and training progress. FreeMatch (Wang et al., 2023b) integrates global
and local adjustments with a class-fairness regularizer to promote prediction diversity, while Soft-
Match (Chen et al., 2023) employs a soft thresholding scheme that reweights samples to balance
quantity and quality. In contrast, our method bypasses threshold tuning altogether and directly en-
forces class-balanced pseudo-labeling through dynamic pruning.

A.3 MORE ABOUT LONG-TAILED SEMI-SUPERVISED DEBIASING

Existing debiasing methods for LTSSL dominantly rely on consistent distribution assumptions (Guo
& Li, 2022; Lee et al., 2021) and logit adjustment strategies (Wei & Gan, 2023). Notable ap-
proaches include CReST (Wei et al., 2021), which focuses on minority classes through selective
self-training, and CoSSL (Cai et al., 2021), which balances representations using tail-class feature
augmentation. Recent advances, like BaCon (Feng et al., 2024), utilize contrastive learning for bal-
anced features, while SMCLP (Du et al., 2024) exploits collaborative label-instance correlations,
and CPE (Ma et al., 2024) employs multiple expert classifiers. Innovative methods such as InPL (Yu
et al., 2023) and DebiasMatch (Wang et al., 2022) move beyond traditional pseudo-labeling; InPL
uses energy scores to detect reliable inliers, whereas DebiasMatch applies adaptive debiasing with
a marginal loss to reduce long-tailed pseudo-label bias. Despite these advances, LTSSL techniques
often demand intricate mechanisms or additional modules (Lee et al., 2021), posing challenges in
minimizing bias while maintaining simplicity.

A.4 MORE ABOUT DYNAMIC DATASET PRUNING

To reduce training cost on datasets, dynamic dataset pruning methods (Chen et al., 2024; Killamsetty
et al., 2021; Sagawa et al., 2019; Schaul et al., 2015; Zhang et al., 2024) aim to reduce the number
of training iterations while maintaining performance. Existing methods employ a variety of crite-
ria to guide pruning, among which loss-based (Attendu & Corbeil, 2023; Kawaguchi & Lu, 2020;
Thao Nguyen et al., 2023) method is the most popular. UCB (Raju et al., 2021) applies the cross-
entropy loss with exponential moving average (EMA) smoothing to mitigate noise. Infobatch (Qin
et al., 2024) randomly prunes low-loss samples and amplifies the gradients of retained ones to pre-
serve the expected gradient. SCAN (Guo & Kankanhalli, 2024) categorizes samples as redundant
or ill-matched based on their loss and gradually increases the pruning ratio using cosine annealing.
While thsese methods effectively accelerate training and can yield nearly unbiased results, none
have explored their potential to mitigate class imbalance in SSL by pruning.
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B MORE BASE SSL ALGORITHMS

B.1 MORE ABOUT TRAINING LOSSES OF FIXMATCH

Training losses of FixMatch on a minibatch for the labeled setMX and a minibatch for the unla-
beled setMU can be expressed as follows:

Lsup(xb; θ) =
1

B

∑
xb∈MX

H (πθ(y|α(xb)) , pb) (23)

with

Lcon(ub, q̂, τ ; θ) =
1

µB

B∑
b=1

1(max(q̂b) ≥ τ)H(Pθ(y|A(ub), q̂b), (24)

where q̂ denote the concatenations of q̂b. Lsup denotes the supervised loss for weakly augmented la-
beled data points ub. Lcon denotes the consistency regularization loss with the confidence threshold
τ .

B.2 MORE ABOUT FLEXMATCH

To overcome the limitation of FixMatch using a fixed threshold τ across all classes, Flex-
Match (Zhang et al., 2021) introduces the Curriculum Pseudo Labeling (CPL) strategy. The key
idea is to dynamically adjust the confidence threshold according to the learning status of each class.
Specifically, FlexMatch first predicts the class probability for a weakly augmented unlabeled sam-
ple ub as qb = πθ(y|α(ub)), and then estimates the learning effect of each class c by σt(c), i.e., the
number of samples predicted as class c that exceed the fixed threshold τ . After normalization, a ratio
coefficient βt(c) is obtained, which defines the class-adaptive threshold:

Tt(c) = βt(c) · τ. (25)
In this way, hard-to-learn classes receive a lower threshold to include more samples in training,
while easy-to-learn classes gradually increase their thresholds to ensure pseudo-label quality. The
unsupervised loss is defined as:

Lcon(ub, q̂, Tt; θ) =
1

µB

µB∑
b=1

1(max(qb) > Tt(argmax(qb))) H(q̂b, πθ(y|A(ub))) , (26)

where q̂b = argmaxc qb,c denotes the hard pseudo-label, and A(·) is the strong augmentation func-
tion. The overall training objective is

Lt = Lsup + λLcon. (27)
where λ is weighting hyperparameter.

B.3 MORE ABOUT FREEMATCH

Unlike FixMatch and FlexMatch, which rely on fixed or indirectly adjusted thresholds,
FreeMatch (Wang et al., 2023b) proposes Self-Adaptive Thresholding (SAT) that dynamically deter-
mines thresholds based on the model’s prediction confidence. Specifically, FreeMatch first estimates
a global threshold τt using an exponential moving average (EMA) of model confidence:

τt = ρτt−1 + (1− ρ)
1

µB

µB∑
b=1

max(qb), (28)

and further refines it with class-specific local statistics p̃t(c):

τt(c) =
p̃t(c)

maxc′ p̃t(c′)
· τt. (29)

At the early stage of training, thresholds are low to encourage more unlabeled data utilization and
faster convergence. As the model becomes more confident, thresholds increase to suppress incorrect
pseudo-labels and reduce confirmation bias. The unsupervised loss at iteration t is thus:

Lcon(ub, q̂, τt; θ) =
1

µB

µB∑
b=1

1(max(qb) > τt(argmax(qb))) H(q̂b, πθ(y|A(ub))) . (30)
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In addition, FreeMatch introduces Self-Adaptive Fairness (SAF) regularization Lf , which dynami-
cally calibrates the prediction distribution to encourage diverse predictions and prevent class collapse
during early training. Concretely, let ht ∈ RC denotes the normalized class histogram of model pre-
dictions at iteration t, and let h∗ ∈ RC denotes the target distribution (e.g., a uniform distribution).
The SAF regularization is defined as

Lf = DKL(ht ∥h∗) , (31)

where DKL(·∥·) is the Kullback–Leibler divergence. The final training objective is:

L = Lsup + wuLcon + wfLf , (32)

where wu and wf are weighting hyperparameters.

C PROOF FOR SECTION 3 AND SECTION 4.

C.1 PROOF OF PROPOSITION 2

Proposition 1. For an labeled (unlabeled) sample xb (ub) with target yb (q̂tb = argmaxc q
t
b,c),

where qtb = πθt(y|α(ub)). The one-step learning dynamics of SSL decompose as

∆log πt,sup
θ (y | xo;xb) = −ηT t(xo)Kt(xo, α(xb))Gt

sup(α(xb), yb) +O
(
η2∥∇θz(α(xb))∥2op

)
∆log πt,con

θ (y | xo;ub) = −ηT t(xo)Kt(xo,A(ub))Gt
con(A(ub), q̂

t
b) +O

(
η2∥∇θz(A(ub))∥2op

) (6)

where Kt(xo, α(xb)) and Kt(xo,A(ub)) are eNTK evaluations of the logit network z(·) =
gθ(·), with different inputs. Gtsup(α(xb), yb) = ∇zLsup(α(xb), yb)|zt and Gtcon(q̂b,A(ub)) =
∇zLcon(q̂b,A(ub))|zt , respectively.

Proof. We aim to derive the one-step learning dynamics of SSL for both supervised and contrastive
terms. Suppose that we want to observe the model’s prediction on an “observing example” xo.
Starting from Eq. (5), we first approximate log πt+1(y|xo) using first Taylor expansion (with a
slight abuse of notation, we write πt for πt

θ):

log πt+1(y|xo) = log πt(y|xo)+ < ∇ log πt(y|xo), θ
t+1 − θt > +O(∥θt+1 − θt∥2).

Then, assuming the model updates its parameters using SGD calculated by a “labeled updating
example” (xb, yb) and an “unlabeled updating example” (A(ub), q̂

t
b).

Thus, for for supervised learning dynamics, we have, we have

∆ log πt+1,sup(y | xo;xb) = log πt+1,sup(y | xo;xb)− log πt,sup(y | xo;xb)

= ∇θ log π
t(y | xo)

∣∣
θt(θ

t+1 − θt) +O(∥θt+1 − θt∥2)

Assuming this step is driven solely by supervised loss, we plug in the definition of SGD and repeat-
edly use the chain rule:

∇θ log π
t
θ(y | xo)

∣∣
θt(θ

t+1 − θt) = ∇θ log π
t
θ(xo)

∣∣
θt

(
−η∇θLsup(α(xb))

∣∣
θt

)⊤
=
(
∇z log π

t
θ(xo)

∣∣
zt∇θz

t(xo)
∣∣
θt

)(
− η∇θLsup(α(xb))

∣∣
θt

)
= ∇z log π

t
θ(xo)

∣∣
zt∇θzt(xo)

∣∣
θt

(
− η
(
∇zLsup(α(xb))

∣∣
zt∇θz

t(α(xb))
∣∣
θt

))⊤
= −η∇z log π

t
θ(xo)

∣∣
zt

[
∇θz

t(xo)
∣∣
θt

(
∇θz

t(α(xb))
∣∣
θt

)⊤]
(∇zLsup(α(xb))

∣∣
zt)

⊤

= −ηT t(xo)Kt(xo, α(xb))Gt(α(xb), yb).

Similarly, for consistency learning dynamics, the only difference is that the update sample is
changed from α(xb) to A(ub), and the loss is changed from Lsup to Lcon(A(ub), q̂

t
b). Note that

q̂tb = argmaxc q
t
b,c is treated as a constant in this small step (stop-grad), so the gradient can still be

directly calculated w.r.t. z. Thus,

θt+1 = θt − η∇θLcon(A(ub), q̂
t
b)
∣∣
θt .
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Parallel to the above derivation, we obtain

∆ log πt,con
θ (y | xo;ub) = −ηT t(xo)∇θz

t(xo)
∣∣
θt

(
∇θz

t(A(ub))
∣∣
θt

)⊤︸ ︷︷ ︸
Kt(xo,A(ub))

∇zLcon(q̂
t
b,A(ub))

∣∣
zt︸ ︷︷ ︸

Gt
con(A(ub),q̂tb)

+O
(
η2|∇θz(A(ub))|2op

)
.

C.2 PROOF OF PROPOSITION 3

Proposition 2. (Invariance of baseline image under affine normalization) Let I = k · 1d be
a baseline image, where k ∈ {0, 1, . . . , 255} and 1d ∈ Rd is an all-one vector. Suppose the
output of the first hidden transformation is normalized by a normalization layer (e.g., BatchNorm,
LayerNorm, InstanceNorm, or GroupNorm) with affine parameters (W2, b). Then the logits h(I)
are independent of k and reduce to

h(I) = b, πθ(I) = Softmax(b). (9)

Proof. Consider a neural network with two layers: the first layer is a linear transformation, and the
second layer is a normalization layer followed by an affine transformation. For an input I ∈ Rd,
assume the model has the following structure:

h(1)(I) = σ(W1I); h(I) = BatchNorm(h(1)(I)) = h(1)(I)− E[h(1)(I)]√
Var[h(1)(I)] + ϵ

·W2 + b,

Let the baseline image I = k · 1d, where 1d is a vector of ones, and k is a scalar. Our goal is to
show that the output h(I) for the baseline image is independent of k and depends only on the bias
term b. For the baseline image I = k · 1d, the output of this neural network is:

h(1)(I) = σ(W1 · (k · 1d)) = σ(k ·W11d) = σ(k ·w).

where w = W11d ∈ Rm, which is a constant vector. We see that the output of the first layer depends
on k and the constant vector w, and it is passed through the activation function σ. Now, consider
the effect of the BatchNorm layer. For the baseline image I = k · 1d, since h(1)(I) = σ(k ·w) is
a constant vector, the mean E[h(1)(I)] and variance Var[h(1)(I)] are constants that depend only on
w.From first principles, we can set k = 0

Note that if the input I is random Gaussian noise or a batch mean, The situation would be different.

• Gaussian Noise. Let In ∼ N (0, σ2) ∈ Rd be a random Gaussian noise vector. After normaliza-
tion:

h(In) =
h(1)(In)− E(h(1)(In))√

V ar[h(1)(In)] + ϵ
·W2 + b

Since the input pixel values are random, the mean and variance of the first-layer output depend on
the noise distribution characteristics. These statistics fluctuate with the randomness of the input,
in contrast to the baseline image, where the normalized output is solely determined by the bias
term b.

• Batch Mean. Let Iµ = 1
B

∑B
i=1 xi ∈ Rd be the batch mean vector. After normalization, the

affine transformation:

h(Iµ) =
h(1)(Iµ)− E(h(1)(Iµ))√

V ar[h(1)(Iµ)] + ϵ
·W2 + b

Unlike Gaussian noise images, the mean input of data within a batch does not contain complete
randomness; the mean and variance are relatively stable but still do not solely depend on the b.
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C.3 PROOF OF THEOREM 1

Theorem 1. (Bias as the conditional distribution prior) Assume the model h(x) as characterized in
Eq. (8) is trained using cross-entropy loss:

L = E(x,y)

[
− y⊤ log Softmax(h(x))

]
. (10)

At a population risk minimizer (W ⋆
2 , b

⋆) we have

p̂⋆(x) = P (y | x), p̂⋆(I) = Softmax
(
b⋆
)
= P

(
y
∣∣ h(1)(I)−E[h(1)(I)]√

Var[h(1)(I)]+ϵ
= 0

)
. (33)

For the baseline image I in Proposition 3, the baseline prediction thus coincides with the conditional
class distribution at the normalized-zero feature state, capturing the class prior induced by the long-
tailed training distribution.

Proof. Consider the two-layer network fθ(x) =
h(1)(x)−E[h(1)(x)]√

Var[h(1)(x)]+ϵ
· γ + β, where h(1)(x) = W1x.

The cross-entropy loss is given by:

L = E(x,y)

[
−y⊤ log Softmax(h(x))

]
.

Minimizing the population risk results in p̂⋆(x) = Softmax(h(x)) = P (y | x).
For the baseline image I, we analyze the model’s output:

p̂⋆(I) = Softmax(b⋆).

Since h(1)(I)−E[h(1)(I)]√
Var[h(1)(I)]

→ 0 for a baseline image with no input signal, the model’s output is deter-

mined solely by b⋆.

Thus, we have:

P

(
y | h

(1)(I)− E[h(1)(I)]√
Var[h(1)(I)] + ϵ

= 0

)
= Softmax(b⋆).

Finally, we conclude that the baseline prediction corresponds to the conditional class distribution at
the normalized-zero feature state, capturing the class prior induced by the long-tailed distribution.

C.4 PROOF OF PROPOSITION 4

Proposition 3. Let π = Softmax(z) and z = gθ(x). The one-step dynamics decompose as

∆ log πt(y | I) = −ηT t(I)Kt(I, x)Gt(x, y) +O(η2∥∇θz(x)∥2op), (13)

where T t(I) = ∇z logπt(I) = I−1πT
θt(I),Kt(I, x) = (∇θz(I)|θt)(∇θz(x)|θt)T is the empirical

neural tangent kernel of the logit network z, and Gt(x, y) = ∇zL(x, y) |zt .

Proof. Inspired by the analysis of the learning dynamic of (Ren et al., 2022; Ren & Sutherland,
2025). In this work, we want to observe the classifier’s prediction on the baseline image I. Starting
from Eq (12), we first approximate log πt+1(y | I) using first-order Talyor expansion, with slightly
abused symbols, we use πt to represent πθt+1 , x to represent labeled sample xn

b and u to represent
unlabeled sample um

b :

log πt+1(y|I) = log πt(y|I)+ < ∇ log πt(y|I), θt+1 − θt > +O(∥θt+1 − θt∥2)

Then, assuming the model updates its parameters using SGD calculated by an “updating labeled
example” (x, y) or an “updating unlabeled example” u, we can rearrange the terms in the above
equation to get the following expression:

∆ log πt(y|I) = log πt+1(y|I)−log πt+1(y|I) = ∇θ log π
t(y|I)|θt(θt+1−θt)+O(∥θt+1−θt∥2),
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To evaluate the leading term, we first take a labeled sample as an example plug in the definition of
SGD, and repeatedly use the chain rule:

∇θ log π
t(y|I)|θt(θt+1 − θt) = (∇z log π

t(y|I)|zt)(−η∇θL(x)|θt)T

= (∇z log π
t(y|I)|zt)(−η∇θL(x)|zt −∇θz

t(x)|θt)T

= −η∇z log π
t(I)|zt [∇θz(I)|θt(∇θz(x)|θt)T ](∇zL(x)|zt)T

= −ηT t(I)Kt(I, x)Gt(x, y)

(34)

C.5 MORE ABOUT ANALYZING THE DYNAMICS OF THE LOGITS DEBIASING ALGORITHM

C.5.1 PER-STEP DECOMPOSITION OF RESAMPLING

Resampling is another widely used strategy for mitigating class imbalance in long-tail semi-
supervised learning. Instead of modifying the loss, resampling adjusts the data distribution by al-
tering the frequency with which each class is drawn. Let Prs(x ∈ c) = rc denote the (possibly
normalized) sampling ratio for class c, which determines the probability of selecting samples from
that class during training. Then the per-step update of the log-posterior under resampling becomes

∆log πt,rs
θ (y | I;x) = −η T t(I) K̃t

rs(I, x; rc) G̃t
rs(x, y; r

c) +O
(
η2∥∇θz(x)∥2op

)
, (35)

whereK̃t
rs(I, x; rc) = Ex∼rc [Kt(I, x)], G̃trs(x, y; rc) = Ex∼rc [Gt(x, y)] . This decomposition

highlights that resampling influences learning solely through changing the expectation measure.
The modified kernel K̃t

rs reshapes how training samples transfer influence to the test input, while
the modified residual term G̃trs reweights the magnitude of each update. Increasing the sampling
ratio of tail classes therefore amplifies their effective contribution at every step, accelerating their
representation and decision boundary updates to match those of head classes, i.e. offering a direct
dynamical explanation for the effectiveness of resampling in long-tail regimes.

C.5.2 PER-STEP DECOMPOSITION OF CDMAD

In this section, we use the loss function of a specific method in logits adjustment, CDMAD (Lee &
Kim, 2024), as a case study and integrate it into the learning dynamics framework we propose. The
consistency loss of CDMAD as:

Lcon(ub, q̂, τ ; θ) =
1

µB

B∑
b=1

1(max(q̂b) ≥ τ)H(Pθ(y|A(ub), q
∗
b ), (36)

where H is cross-entropy loss, q∗b = argmax(πθ(y|α(ub))− πθ(y|I)). Our framework reveals that
CDMAD operates through two complementary dynamical mechanisms:

∆ log πt
θ(y | I) = −ηT t(I)(Kt(I, α(xb))Gtsup(α(xb), yb)+

Kt(I,A(ub))Gtcon(A(ub), α(xb))) +O2
(37)

According to the analysis of Xing et al. (2025), Gt using the baseline image enhances the
balance of the base SSL model implicitly utilizing the integrated gradient flow ∇θLCon =∑

b

(∑d
i=1 IntegratedGradsi(ub)

)
∇gb +

∑
b qA,b

∂qA,b

∂θ . We now place ∇θLCon directly into Gtcon
to capture the influence of the consistency loss on the model’s update dynamics. The updated Gtcon
is:

Gtcon(A(ub), α(xb)) =
∑
b

(
d∑

i=1

IntegratedGradsi(ub)

)
∇gb +

∑
b

qA,b
∂qA,b

∂θ
. (38)

The term Gtcon(A(ub), α(ub)) now explicitly includes the consistency loss gradient ∇θLCon, which
involves the Integrated Gradients over the perturbations ub as well as the change in model output
probabilities.
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Table 7: Comparison of bACC/GM on CIFAR-10-LT under different baseline images.

FixMatch+DyTrim CIFAR-10-LT

Type of baseline γl = γu = 100 γl = 100, γu = 150

Noise 77.7 / 76.8 76.7 / 75.8
Batch means 78.0 / 76.1 76.7 / 74.2
Red 83.5 / 83.2 82.2 / 81.7
Green 83.7 / 83.3 81.5 / 81.0
Blue 84.5 / 84.2 83.1 / 82.6
Gray 84.1 / 83.7 82.3 / 81.9
White 84.2 / 83.8 82.4 / 82.0
Black 84.8 / 84.4 83.8 / 83.4

C.6 EFFECT OF THE BASELINE IMAGE FOR GUIDING DATA PRUNING

The training objective can be interpreted as the minimization of the empirical risk L. Assuming
that all labeled samples xn

b from X and unlabeled samples um
b from U are drawn from continuous

distributions ρl(xn
b ) and ρu(um

b ), respectively, the training objective can be formulated as:

argmin
θ∈Θ

E
xn
b ∈X ,um

b ∈U
[L(xn

b , u
m
b ; θ)] =

∫
xn
b

Lsup(x
n
b , θ)ρ

l(xn
b )dx

n
b +

∫
um
b

Lcon(u
m
b , θ)ρl(um

b )dum
b .

(39)
After applying a data pruning policy, we sample xn

b and um
b to obtain the labeled pruned subset Slt

and the unlabeled pruned subset Sut , according to the labeled pruning probabilities P l
t(x

n
b ) and un-

labeled pruning probabilities Pu
t (u

m
b ), respectively. For the labeled samples, we directly optimize

over the pruned subset Slt without reweighting the loss terms. Notably, the class-aware pruning
probability rc = πθ(I)c inherently adjusts Slt toward an asymptotically balanced class distribution.
By retaining more samples from minority classes (lower rc) and pruning more samples from major-
ity classes (higher rc), the pruned subset Slt naturally mitigates class imbalance. As a result, even
without explicit rescaling, the empirical risk over Slt approximates:

argmin
θ∈Θ

E
xn
b ∈Sl

t

[Lsup(x
n
b , θ)] ∝

1− P l
t(x

n
b )

clt

∫
z

Lsup(x
n
b , θ)ρl(x

n
b )dx

n
b , (40)

where clt = Exn
b ∼ρl

[1−P l
t(x

n
b )]. The term 1−Pl

t(z)

clt
acts as an implicit reweighting due to the class-

aware pruning policy. For unlabeled samples, pruning with uniform probability r and rescaling
losses by γt(u) =

1
1−Pu

t (u) yields

argmin
θ∈Θ

E
um
b ∈Su

t

[γt(u
m
b )Lcon(u

m
b , θ)] ∝ 1

cut

∫
z

Lcon(u
m
b , θ)ρl(um

b )dum
b , (41)

where cut = Eum
b ∼ρu

[1 − Pu
t (u

m
b )]. Crucially, even with uniform pruning rates, the interplay of

consistency regularization and confidence thresholding ensures Sut to be implicitly balanced, thus
training on Sut with rescaled factor γt(um

b ) could achieve a better result as training on the U .

D MORE ABOUT THE BASELINE IMAGE

D.1 MORE DETAIL ABOUT THE SELECTION OF BASELINE IMAGE

Sensitivity of different baseline images I. We further examined the sensitivity of DyTrim to the
choice of baseline image by conducting ablation studies on CIFAR-10-LT with different types of
inputs, including noise, dataset means, and solid colors. Table 7 shows that solid-color images con-
sistently outperform noise or mean-based baselines. Among them, white and black images deliver
the strongest results.
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Figure 5: Illustration of the proposed DyTrim framework. DyTrim mainly consists of two opera-
tions, named labeled pruning and unlabeled pruning. H l

≺rc,t and H̄u
t denote the adaptive thresholds

of scores of labeled samples and unlabeled samples, with slight abuse of symbols. Su≺τ denote the
low confidence unlabeled sample which p∗(um

b ) ≥ τ . Labeled pruning provides a class-aware prun-
ing policy for each sample from class c. Unlabeled pruning provides a random pruning policy from
the original unlabeled U and uses a gradient rescaling strategy (×1/(1− r) for which samples from
su1 is selected to pruning) to keep the approximately same gradient expectation.

D.2 DETAIL OF THE BIAS TERM AND RUNNING STATISTICS

Effects of bias term. When the bias term β of the BN layer is frozen and equal to 0, h(I) becomes
γ ∗ (⟨w, k⟩ − E[⟨w, k⟩])/

√
Var[⟨w, k⟩] which is the same as the Eq.(7) except for a bias term.

Ignoring the running statistics strategy, the form of h(I) only depends on the β. As a result, h(I)
becomes h(I) → 0 during training and h(I) → −γ ∗ Emom[⟨w, xb⟩]/

√
Varmom[⟨w, xb⟩] during

testing. This shows that the g∗θ operation has no effect in the training phase and only eliminates the
impact of the unbalanced running means in the testing phase. This will affect the ability to benefit h
from g∗θ , as shown in Table. 8.

Effects of running statistics. When we do not keep running estimates, batch statistics are instead
used during evaluation time as well. The form of h(I) becomes h(I) → β both training and
testing. We can rewrite g∗θ(xt) = γ ∗ (⟨w, xt⟩ − E[⟨w, xt⟩])/

√
Var[⟨w, xt⟩]. On the other hand, as

h(I)→ 0, the benefit of g∗θ is also vanishes, also shown in Table. 8.

We then extend our results to a non-linear neural network, thus we have the following corollary:

Table 8: Comparison of bACC/GM on CIFAR-10-LT.

Metric With original g∗θ g∗θ without β g∗θ without xmom g∗θ without β & xmom

bACC 83.6 ± 0.46 80.92 ± 0.02↓2.68 71.63 ± 0.35↓11.97 64.01 ± 0.14↓19.59
GM 83.1 ± 0.57 80.37 ± 0.23↓2.73 67.85 ± 0.51↓15.25 54.48 ± 0.36↓28.62

E MORE DETAILS ABOUT DYTRIM

E.1 MORE ABOUT LABELED PRUNING

Specifically, we exploit the pruning policy to prune samples based on their scores. Then, for the
pruned labeled samples, their scores remain unmodified as previously. For the remaining samples,
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their scores are updated by the losses in the current epoch. To ensure dynamic adaptation:

Hl
c,t+1(x

n
b ) =

{
Hl

c,t(x
n
b ) xn

b ∈ XnSl,
Lsup(x

n
b ) xn

b ∈ Sl.
(42)

where Sl denotes the pruned subset formed for labeled datasets.

E.2 MORE ABOUT UNLABELED PRUNING

For a remaining sample with score Hu
t (u

m
b ) < H̄m

t , whose corresponding pruning probability
is r, its gradient is scaled to 1/(1 − r) times of the original, otherwise the gradient remains
unchanged. The score Hu

t+1(u
m
b ) is derived from the consistency regularization loss values

Lcon(α(u
m
b ),A(um

b )) for unlabeled data points. To enhance pseudo-label reliability, we further
apply a confidence threshold τ , where only samples with p∗(um

b ) > τ contribute to Lcon, where
Lcon = 1

B

∑B
b=1 I(p∗(um

b ) > τ)H(Pθ(y|A(um
b ), q̂b). Thus, we formulate the update of Hu

t+1(u
m
b )

as:

Hu
t+1(u

m
b ) =

{
Hu

t (u
m
b ) um

b ∈ UnSu,
Lcon(u

m
b ) um

b ∈ Su.
(43)

where Su denotes the pruned subset formed for labeled datasets. Initialization: at t = 0, scoresHu
t

andHl
t are all set to {1}, as no prior loss is available.

F PSEUDO CODE OF THE PROPOSED ALGORITHM

The pseudo-code that describes the DyTrim is presented in Algorithm 1 and Algorithm 2.

Algorithm 1 DyTrim for Labeled Data Selection
Input: Labeled set of N samples X = {(xn, yn)}Nn=1, score set of the samples V l, number of
classes nc, biased degree b
Output: Labeled pruned set Sl (Sl ⊆ X , |Sl| <= |X |)

1: Sl ← ∅ ▷ Initialize the labeled pruned set
2: for c = 0 to nc − 1 do
3: Ic ← {i | yi = c}
4: V l

c ←
{
V l
i | i ∈ Ic

}
▷ Select scores of class c samples

5: kc ← ⌊(1− bc) · |Xc|⌋ ▷ Compute target pruned set size of class c based on biased degree
6: I top

c ← TopK(Ic,V l
c, kc) ▷ Select indices of top-kc scored samples

7: Sl ← Sl ∪ I top
c

8: end for
9: return Sl

G EXPERIMENTAL SETTINGS

G.1 MODELS

Unless otherwise specified, we adopt Wide ResNet (WRN) (Zagoruyko & Komodakis, 2016) as the
default backbone following common practice in semi-supervised learning. Additionally, we also
evaluate Tiny Vision Transformers (TinyViT) (Wu et al., 2022) on CIFAR-10-LT and CIFAR-100-
LT. For ImageNet-127, we employ ResNet-50 (He et al., 2016) as the backbone to ensure scalability
on large-scale datasets.

G.2 IMPLEMENTATION DETAILS

All experiments are trained for 500 epochs with 500 steps per epoch, resulting in a total of 250,000
iterations. We use Stochastic Gradient Descent (SGD) (Bottou, 2012) with a fixed learning rate of
η = 0.0015 and a batch size of 32. The pruning ratio of the unlabeled dataset is set to 0.7, and the pa-
rameter δ is aligned with InfoBatch (Qin et al., 2024), fixed at 0.875. For CIFAR-10-LT, the largest
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Algorithm 2 DyTrim for Unlabeled Data Selection
Input: Unlabeled set of M samples U = {(um)}Mm=1, score set of the samples Vu, pruning ratio r,
weight of samples w
Output: Unlabeled pruned set Sl (Sl ⊆ U , |Su| <= |U|)

1: Su ← ∅ ▷ Initialize the unlabeled pruned set
2: I0 ← {i | Vu

i = 0} ▷ Select low confidence samples
3: I ̸=0 ← {i | Vu

i ̸= 0} ▷ Select high confidence samples
4: Su ← Su ∪ I0
5: µ← Mean({Vu

i | i ∈ I̸=0})
6: Iwell ← {i ∈ I̸=0 | Vu

i < µ} ▷ Select well-learned samples
7: Ipoor ← I̸=0 \ Iwell ▷ Select poorly-learned samples
8: Su ← Su ∪ Ipoor
9: Iselect ← Randomly select ⌊(1− r) · |Iwell|⌋ samples from Iwell

10: Su ← Su ∪ Iselect
11: wi ← 1, ∀i ∈ {1, . . . ,M} ▷ Reset weights
12: wi ← 1

1−r , ∀i ∈ Iselect ▷ Rescaling
13: return Su

labeled class contains 1,500 samples, while the largest unlabeled class contains 3,000 samples. For
CIFAR-100-LT, the largest labeled and unlabeled classes contain 150 and 300 samples, respectively.
For STL-10-LT, the largest labeled class contains 450 samples. To assess classification performance,
we adopt balanced accuracy (bACC) (Huang et al., 2016) and geometric mean (GM) (Kubat, 1997)
for CIFAR-10-LT and STL-10-LT. For CIFAR-100-LT and ImageNet-127, evaluation is conducted
solely using bACC. Each experiment is repeated three times on RTX 4090 GPUs to ensure repro-
ducibility, and we report both the mean and the standard error.

H ADDITIONAL EXPERIMENTAL RESULTS

H.1 BASELINES

The classification performance of the DyTrim was compared with those of the following algo-
rithms: 1. vanilla algorithm - Deep CNN trained with cross-entropy loss, 2. CIL algorithms -
Resampling (JAPKOWICZ, 2000), LDAM-DRW (Cao et al., 2019), and cRT (Kang et al., 2020),
3. SSL algorithms - FixMatch (Sohn et al., 2020), and 4. CISSL algorithms - DARP, DARP+LA,
DARP+cRT (Kim et al., 2020), CReST, CReST+LA (Wei & Gan, 2023), ABC (Lee et al., 2021),
CoSSL (Fan et al., 2022), DASO (Oh et al., 2022), SAW, SAW+LA and SAW+cRT (Lai et al., 2022)
combined with FixMatch. Adsh(Guo & Li, 2022), DebiasPL (Wang et al., 2022), UDAL(Lazarow
et al., 2023) and L2AC (Wang et al., 2023a) combined with FixMatch. We report the performance
of the baseline algorithms reported in Tables of Lai et al. (2022) and Fan et al. (Fan et al., 2022)
when it is reproducible; the performance measured using the uploaded code was reported otherwise.

H.2 ADDITIONAL RESULTS ON CIFAR-10-LT

Following prior works (Xing et al., 2025; Lee & Kim, 2024; Guo et al., 2024), we evaluate under a
more challenging scenario where the unlabeled set is imbalanced in the reverse direction of the la-
beled set (Table 9). Across all settings, DyTrim delivers consistent gains by applying balanced prun-
ing on the labeled data. Notably, when combined with FixMatch, DyTrim surpasses CDMAD by
more than 1% in both bACC and GM. Similar benefits are observed for FlexMatch and FreeMatch:
DyTrim improves FlexMatch by approximately 1.1–1.3% and FreeMatch by around 0.9–1.5%.

We also compared the classification performance of CDMAD with ACR (Xiang et al., 2020) and
BaCon, two recent CISSL algorithms. From Table. 10, we can observe that CDMAD outperforms
both ACR and BaCon.

H.3 RESULTS ON SMALL-IMAGENET-127
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Table 9: Comparison of bACC/GM on CIFAR-10-LT(γl = 100, γu = 100(reversed)).

Algorithm CIFAR-10-LT, γl = 100, γu = 100(reversed)

ABC SAW SAW+LA SAW+cRT CDMAD DyTrim
FixMatch+ 69.5/66.8 72.3/68.7 74.1/72.0 75.5/73.9 77.1/75.4 78.2 / 76.7
FlexMatch+ −/− −/− −/− −/− 67.2/65.1 68.3 / 66.4
FreeMatch+ −/− −/− −/− −/− 68.5/66.4 69.4 / 67.9

Table 10: Comparison of bACC/GM on CIFAR-10-LT

Algorithm/CIFAR-10-LT γl = γu = 100 γl = γu = 1

FixMatch+ACR 81.8 / 81.4 85.6 / 85.3
FixMatch+BaCon 84.4 / 84.0 82.0 / 81.5
FixMatch+CDMAD 83.6 / 83.1 87.5 / 87.1
FixMatch+DyTrim 84.8 / 84.4 87.9 / 87.5

Table 11: Comparison of bACC on
Small-ImageNet-127.

Algorithm Small-ImageNet-127

32× 32 64× 64
FixMatch 29.7 42.3
w/+DARP 30.5 42.5
w/+DARP+cRT 39.7 51.0
w/+CReST 32.5 44.7
w/+CReST+LA 40.9 55.9
w/+ABC 46.9 56.1
w/+CoSSL 43.7 53.8
w/+CPE 47.8 58.2
w/+CDMAD 48.4 59.3
w/+DyTrim 50.6 60.0

ImageNet-127 is a naturally long-tailed dataset, widely
used to evaluate class-imbalanced semi-supervised learning
(CISSL) algorithms at scale. Following standard protocol, we
downsample images to resolutions of 32×32 and 64×64 us-
ing the box interpolation method from the Pillow library, and
randomly select 10% of the training samples as labeled data.
Under such limited supervision and class imbalance, learn-
ing discriminative representations and a balanced classifier is
particularly challenging. As reported in Table. 11, DyTrim
achieves the highest balanced accuracy (bACC) at both res-
olutions, outperforming the strongest baseline CDMAD by
3.0% at 32 × 32 and 1.2% at 64 × 64. These improvements
demonstrate the robustness of our method, especially under
low-resolution and low-resource conditions. The performance gain at lower resolutions suggests
that DyTrim effectively handles the compounded difficulty of reduced visual fidelity and severe la-
bel scarcity. This makes it a promising solution for real-world applications where high-resolution
data and abundant labels are often unavailable.

H.4 MORE RESULTS ON IMAGENET-LT

ImageNet-LT (Liu et al., 2019) is a long-tailed variant of ImageNet, constructed to exhibit a heavy
class-imbalance that better reflects real-world data distributions. To assess the scalability of our
method on large-resolution inputs (224× 224), we conducted experiments on ImageNet-LT. Due to
hardware constraints, we set the batch size to 2.

As shown in Table 3, CDMAD yields a substantial improvement over the FixMatch baseline, in-
creasing bACC from 20.0% to 35.4%, which highlights the effectiveness of incorporating class-
distribution modeling under long-tailed imbalance. Building upon the same baseline, our method
further pushes performance to 37.2%, achieving the best result among all compared approaches.
Notably, the improvement over CDMAD remains consistent despite their strong performance, sug-
gesting that our approach introduces complementary benefits rather than merely overlapping with
prior re-balancing techniques.

H.5 RESULTS ON DYNAMIC DATA PRUNING EXPERIMENT

Recently, Infobatch (Qin et al., 2024) provides a no-bias dynamic data pruning method. In this
section, we compare it with DyTrim in the framework of CISSL. The experiment is conducted on
the CIFAR-10-LT dataset, comparing the settings of γl = γu and γl ̸= γu. Specifically, we directly
apply the pruning policy of InfoBatch to labeled samples and unlabeled samples without distinction,
and the results are shown in the Table. 12 and Table. 13. It can be seen that compared with the
proposed method, the pruning policy directly combined with InfoBatch is not consistently effective
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in all settings. In particular, when γl ̸= γu, it will cause a decrease in accuracy, which is caused by
the mismatch in the distribution of labeled samples and unlabeled samples.

Table 12: Comparison of bACC/GM on CIFAR-10-LT.

Algorithm
CIFAR-10-LT (γ = γl = γu, γu is assumed to be known)

γl = 50, γu = 50 γl = 100, γu = 100 γl = 150, γu = 150

FixMatch 79.2±0.33 / 77.8±0.36 71.5±0.72 / 66.8±1.51 68.4±0.15 / 59.9±0.43
w/+CDMAD 87.3±0.12 / 87.0±0.15 83.6±0.46 / 83.1±0.57 80.8±0.86 / 79.9±1.07
w/+InfoBatch* 87.2±0.18 / 86.9±0.19 84.1±0.61 / 83.7±0.69 81.6±0.45 / 80.9±0.59
w/+DyTrim 88.0±0.31 / 87.8±0.32 84.8±0.48 / 84.4±0.51 82.0±0.09 / 81.3±0.03

Table 13: Comparison of bACC/GM on CIFAR-10-LT (γl ̸= γu, γu is assumed to be unknown).

Algorithm
CIFAR-10-LT (γl = 100, γu = Unknown)

γu = 1 γu = 50 γu = 150

FixMatch 68.9±1.95 / 42.8±8.11 73.9±0.25 / 70.5±0.52 69.6±0.60 / 62.6±1.11
w/+CDMAD 87.5±0.46 / 87.1±0.50 85.7±0.36 / 85.3±0.38 82.3±0.23 / 81.8±0.29
w/+InfoBatch* 86.4±0.63 / 85.9±0.73 85.5±0.33 / 85.1±0.37 83.3±0.08 / 82.8±0.11
w/+DyTrim 88.9±0.88 / 88.6±1.03 86.4±0.43 / 86.0±0.43 83.8±0.34 / 83.4±0.33

H.6 ABLATION STUDY

Effectiveness of each component. We conducted ablation studies on CIFAR-10-LT to assess the
contribution of each component in DyTrim, varying the hyperparameter γ = γl = γu across 50,
100, and 150. As shown in Table. 14, the best performance was achieved when both labeled and
unlabeled pruning were combined with rescaling. Removing rescaling led to a bACC drop of 0.8–2.1
points across γ values. Excluding either pruning component also reduced performance (e.g., -0.5
and -0.3 at γ = 50 without unlabeled or labeled pruning, respectively). Removing both pruning
strategies resulted in the most significant degradation. These results highlighted the complementary
benefits of pruning and rescaling.

H.7 QUALITATIVE ANALYSES

Since the baseline image could implicitly reflect the bias of the classifier, we argued that by cus-
tomizing dynamic data pruning methods for labeled and unlabeled data, DyTrim significantly re-
duced classifier bias while improving performance. To verify this claim, in Figure. 6 (a) and (b), we
analyzed the class probabilities predicted on the baseline image using FixMatch+DyTrim, trained
on CIFAR-10-LT under various settings. We observed that classifiers trained with DyTrim con-
sistently produced more balanced predictions than CDMAD across all settings, with improved ac-
curacy on tail classes. We defined r as the probability of pruning an unlabeled sample um

b when
Hu

t (u
m
b ) < H̄m

t and max(Pθ(y|α(um
b ))) ≥ τ . In Figure. 7, we evaluated different pruning ratios

for unlabeled samples on CIFAR-10-LT. Results showed that setting r ≥ 0.1 yields higher perfor-

Table 14: Ablation study for the proposed algorithm on CIFAR-10-LT.

Labeled Unlabeled Rescaling γl = γu = 50 γl = γu = 100 γl = γu = 150

Pruning Pruning bACC GM bACC GM bACC GM

87.3 87.0 83.6 83.1 80.8 79.9
✓ 87.5 87.2 84.4 84.0 81.3 80.6

✓ ✓ 87.7 87.4 84.0 83.6 81.4 80.6
✓ ✓ 87.2 86.9 83.6 83.1 79.9 79.0
✓ ✓ ✓ 88.0 87.8 84.8 84.4 82.0 81.3
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Figure 6: (a) and (b) present the πθ(I) using the CDMAD and DyTrim. (c) and (d) present the
confusion matrices of the class predictions on test samples on CIFAR-10-LT (γl = γu = 100).

mance across both architectures, indicating that DyTrim was relatively robust with respect to the
hyperparameter r, with the best performance achieved when r = 0.3.
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Figure 7: Evaluation curves of hyper-parameter r on CIFAR-10-LT under bACC and GM.

H.8 COMPARISON OF CLASS DISTRIBUTIONS BEFORE AND AFTER PRUNING

(a) Labeled dataset (b) Unlabeled dataset (c) Full dataset

After pruning

Before pruning

After pruning

Before pruning

After pruning

Before pruning

Figure 8: Comparison of class distribution before and after pruning across three datasets: (a) Labeled
dataset, (b) Unlabeled dataset, (c) Full dataset.

Figure 8 compares the class distributions before and after applying DyTrim on the labeled, unlabeled
and full training sets. Across all three subsets, pruning consistently reduces the proportion of head
classes while preserving or slightly increasing the relative proportion of tail classes. This produces
a noticeably flatter long-tailed distribution. Unlike traditional pruning methods, which typically
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remove samples that contribute least to training progress, the behavior of DyTrim is different because
the pruning decision is guided by baseline logits and the reliability of pseudo-labels. This tends to
eliminate redundant head-class samples and low-quality unlabeled samples while rarely discarding
the already scarce tail-class data. Consequently, the resulting effective training subset becomes more
balanced without sacrificing essential information from tail classes.

H.9 ANALYSIS OF SAMPLE SELECTION FREQUENCY

Minimum frequency

Average frequency

Maximum frequency

Figure 9: Illustration of per-class maximum,
average, and minimum sample selection fre-
quencies during training.

w/ scaling

w/o scaling

Figure 10: Comparison of class-probability
distributions with and without scaling.

Figure 9 reports the maximum, average and minimum sample selection frequencies for each class.
Three observations emerge clearly. First, the maximum frequency remains close to 1 for all classes,
which indicates that each class contains at least a subset of highly informative samples that are
almost always preserved during pruning. Second, the average frequency increases from head to tail
classes, showing that DyTrim removes a larger fraction of redundant samples from majority classes
while retaining more samples in minority classes. This behavior matches the intended effect of
mitigating class dominance through selective pruning. Third, the minimum frequency stays within a
narrow and relatively high range across all classes, suggesting that even the least frequently selected
samples are not entirely discarded. This prevents the severe under-sampling of tail classes that often
occurs in traditional pruning strategies.

H.10 EFFECT OF SCALING STRATEGIES ON CLASS-BIAS

Table 15: Comparison of bACC and GM
on CIFAR-10-LT on fixed and dynamic
scaling factors.

Algorithm
CIFAR-10-LT

γl = 100, γu = 100 γl = 100, γu = 1/100

Fixed Scaling 84.8 / 84.4 78.2 / 76.7
Dynamic Scaling 84.9 / 84.4 78.9 / 78.1

Figure 10 compares the class probability distribu-
tions obtained with and without the proposed scaling
strategy. Although the two curves differ for several
head and mid-frequency classes, the overall decay pat-
tern remains consistent, and the probabilities of head
classes do not increase when scaling is applied. This
shows that the scaling mechanism does not intensify
the influence of high confidence samples and preserves
the long-tailed structure shaped by DyTrim.

Additionally, to provide each class with an adaptive scaling factor that assigns smaller scaling to
head classes and larger scaling to tail classes, we further compare fixed and dynamic scaling in
Table 15. Dynamic scaling leads to higher bACC and GM under both matched and mismatched
imbalance conditions, indicating that adapting the scaling factor to the current pruning state yields
a more reliable correction for changes in the effective batch size. The dynamic scaling factor is
computed as 1 − πθ(I)q̂b + 1/(1 − r), which stabilizes the loss magnitude during training and
prevents undesirable shifts toward majority class predictions.
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Head sample

Tail sample

Figure 11: Scores of a representative head class sample and a representative tail class sample over
the first 50,000 training steps, recorded every 500 steps.

H.11 DYNAMICS OF SAMPLE SCORE ACROSS HEAD AND TAIL CLASSES

Figure 11 shows the dynamics of scores for one head class sample and one tail class sample over
the first 50,000 training steps. The two trajectories exhibit a clear contrast. The tail class sample
maintains consistently higher and more volatile scores throughout training, reflecting its larger con-
tribution to reducing class bias and its higher utility for updating the classifier. In comparison, the
head class sample quickly drops to very low scores and remains close to zero for most of training.
This indicates that the head sample becomes saturated early and provides little additional informa-
tion, which aligns with the design of DyTrim that aims to remove redundant head class samples.

H.12 PRUNING DYNAMICS ACROSS LABELED AND UNLABELED DATASETS

(a) Head classes (labeled) (b) Tail classes (labeled) (c) Head classes (unlabeled) (d) Tail classes (unlabeled)

Class 0 Class 1 Class 3 Class 5 Class 7 Class 9Class 4 Class 6 Class 8Class 2

Figure 12: Number of pruned samples for each class across training process on CIFAR-10-LT. (a)
and (b) show the evolution for head and tail classes in the labeled set, and (c) and (d) show the
corresponding results for the unlabeled set. Each curve indicates how many samples of a given class
have been removed up to each pruning step, recorded every 100 iterations.
Figure 12 reports the number of pruned samples per class over the course of training. The results
from both the labeled and unlabeled subsets exhibit a consistent pattern. Head classes experience
a rapid increase in pruned samples at the beginning of training and maintain high pruning counts
throughout the process, which reflects the large amount of redundant information contained in these
majority classes. In contrast, tail classes show much slower growth curves with considerably lower
pruning volumes, indicating that DyTrim preserves most of the scarce minority samples and avoids
aggravating the long-tailed imbalance. The same trend appears in the unlabeled subset, where head
classes accumulate substantially more pruned samples due to the prevalence of high confidence
but less informative pseudo-labeled instances. These observations confirm that DyTrim adaptively
modulates pruning according to class frequency and sample utility, removing redundant head-class
samples while retaining informative tail-class data.
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Figure 13: Comparison of the change of logits’s probability distribution πθ(I) for the baseline image
on CIFAR-10-LT with γl = γu = 100 across different CISSL methods.
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Figure 14: Class probabilities predicted on a baseline image using (a) FixMatch, (b) Fix-
Match+InfoBatch, (c) FixMatch+CDMAD, (d) FixMatch+DyTrim.

I VISUALIZATION

I.1 DETAILS OF THE CHANGE OF LOGITS’S PROBABILITY DISTRIBUTION

In this section, we conduct some visualization experiments to demonstrate the advantages of the
DyTrim in debiasing and improving classifier performance. We first analyze the change of logits’s
probability distribution Softmax(gθ(I)) for the baseline image on CIFAR-10-LT with γl = γu =
100 for fixmatch, CDMAD, and the DyTrim as shown in Figure. 13. It can be seen intuitively that
in the first epoch, the classifier has bias due to the imbalance of categories in the data. This situation
increases significantly with the number of network training times, as shown in the second column
of the figure. However, we can see that DyTrim can effectively slow down the increase of this bias.
Furthermore, after the model is fully trained for 500 epochs, it can be seen that after the 100th
epoch, CDMAD starts to use the baseline image for post-hoc debiasing, which significantly reduces
the representation of the model. However, by dynamically pruning the data set, DyTrim obtains a
more distinct debias effect as shown in Figure. 14.

I.2 DETAILS OF THE CHANGE OF LOGITS’S PROBABILITY DISTRIBUTION

Figure. 15 and Figure. 16 compare the confusion matrices of the class predictions on the test set
of CIFAR-10 using (a) FixMatch, (b) FixMatch+Infobatch, (c) FixMatch+CDMAD, and (d) Fix-
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Figure 15: Confusion matrices of the class predictions on the test set of CIFAR-10 using (a) Fix-
Match, (b) FixMatch+InfoBatch, (c) FixMatch+CDMAD, and (d) FixMatch+DyTrim trained on
CIFAR-10-LT under γl = 100 and γu = 100.

T
ru

e
 L

a
b

e
l

Predicted Label

T
ru

e
 L

a
b
e

l

Predicted Label

(c) FixMatch+CDMAD (d) FixMatch+ DyTrim

T
ru

e
 L

a
b

e
l

T
ru

e
 L

a
b

e
l

Predicted LabelPredicted Label

(a) FixMatch (b) FixMatch+InfoBatch

Figure 16: Confusion matrices of the class predictions on the test set of CIFAR-10 using (a) Fix-
Match, (b) FixMatch+InfoBatch, (c) FixMatch+CDMAD, and (d) FixMatch+DyTrim trained on
CIFAR-10-LT under γl = 100 and γu = 1.
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Figure 17: Confusion matrices of the class predictions on the test set of CIFAR-10 using (a) Fix-
Match, (b) FixMatch+InfoBatch, (c) FixMatch+CDMAD, and (d) FixMatch+DyTrim trained on
CIFAR-10-LT under γl = 1 and γu = 1.

Match+DyTrim trained on CIFAR-10-LT under γl = 100, γu = 1, 100. FixMatch+DyTrim made
more balanced predictions across classes. Furthermore, we also conducted experiments under a
balanced setting (γ = γ1 = γu = 1), as shown in Figure. 17. The results show that even under a
balanced data distribution, DyTrimcan still achieve better results on the pruned dataset than methods
such as CDMAD trained on the full dataset.

Similar to confusion matrices, we also compare t-distributed stochastic neighbor embedding (t-SNE)
of representations obtained for the test set of CIFAR-10 using FixMatch, FixMatch+CDMAD,
FixMatch+InfoBatch, and FixMatch+DyTrim trained on CIFAR-10 with γl = 100 and γu =
1, 100(unknown γu), where different colors indicate different classes in CIFAR-10 Figure. 18, Fig-
ure. 19. We can observe that the representations obtained using FixMatch+DyTrim are separated
into classes with clearer boundaries compared the those from FixMatch and CDMAD. This is prob-
ably because CDMAD appropriately refined the biased pseudo-labels and used them for training,
whereas FixMatch failed to learn the representations properly because they used the biased pseudo-

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

(c) FixMatch+CDMAD (d) FixMatch+ DyTrim(a) FixMatch (b) FixMatch+InfoBatch

Figure 18: t-SNE of representations obtained for the test set of CIFAR-10 using (a) FixMatch, (b)
FixMatch+InfoBatch, (c) FixMatch+CDMAD, and (d) FixMatch+DyTrim trained on CIFAR-10-LT
under γl = 100 and γu = 100.

(c) FixMatch+CDMAD (d) FixMatch+ DyTrim(a) FixMatch (b) FixMatch+InfoBatch

Figure 19: t-SNE of representations obtained for the test set of CIFAR-10 using (a) FixMatch, (b)
FixMatch+InfoBatch, (c) FixMatch+CDMAD, and (d) FixMatch+DyTrim trained on CIFAR-10-LT
under γl = 100 and γu = 1.

labels for training. These results demonstrate that the quality of representations can be improved by
using well-refined pseudo-labels for training.

J LIMITATION

A key limitation of our method is its reliance on a task-irrelevant baseline image as a bias indica-
tor. If this baseline image is used as a training sample, it may no longer reflect the accumulated
bias, reducing the effectiveness of our debiasing mechanism. Additionally, our framework does not
account for architectures with auxiliary classification heads or semi-supervised methods based on
mixup-style (Zhang et al., 2017) interpolations, limiting DyTrim’s applicability to these models.
Extending our approach to these settings is an interesting avenue for future work.

K USE OF LLMS

Large language models (LLMs) were used solely to assist with minor language polishing during
manuscript preparation. All scientific components of this work, including the design of experi-
ments, data processing, analysis, and interpretation, were carried out entirely by the authors using
established computational methods and human expertise, without reliance on automated reasoning
or model-generated content.
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