
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A BRAIN-INSPIRED MACHINE LEARNING PARADIGM
FOR NATURE-POWERED EQUATION SOLVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Solving equations is fundamental to human understanding of the world. While
modern machine learning methods are powerful equation solvers, their escalating
complexity and extreme operational costs hinder sustainable development. In con-
trast, nature effortlessly solves complex equations through dynamical systems that
instinctively evolve to low-energy states without explicit instructions. However,
existing attempts to leverage dynamical systems are limited by low expressivity
and a lack of training support. To this end, we propose DS-Solver, a nature-
powered AI paradigm employing an expressive, self-trainable dynamical system
capable of accurately solving a wide spectrum of equations with extraordinary ef-
ficiency. (1) We enhance system expressivity by enriching node dynamics with
coupled real-valued and polarized shadow nodes, capturing complex interactions
inherent in the real world. (2) We propose an on-device learning method that
leverages intrinsic electrical signals as loss, enabling the dynamical system to in-
stantly train itself at negligible cost. Experimental results across key equations
from diverse domains demonstrate that DS-Solver achieves 42% higher accuracy
than current SOTA – while offering orders-of-magnitude improvements in speed
and energy efficiency over traditional neural network solutions on GPUs for both
inference and training, showcasing its broader impact in overcoming persistent
computational bottlenecks across various critical fields.

1 INTRODUCTION

Solving equations is at the heart of human understanding, allowing us to describe society, the uni-
verse, and reality, and enabling us to anticipate future events. Modern ML methods, particularly
neural networks, have played a critical role as powerful equation solvers. By observing data, these
models approximate equations into data distributions represented by carefully designed neural net-
works, finding high-probability solutions from the learned distributions as solutions to the equations.
However, the skyrocketing complexity of models programmed on general-purpose processors (e.g.
GPU) with a tremendous number of explicit instructions has led to extreme operational costs, espe-
cially training, hindering the sustainable development of AI.

In contrast, nature effortlessly and constantly solves complex equations, as seen in dynamical sys-
tems. Consider partial differential equations (PDEs) in molecular dynamics and chemical reactions:
dynamical systems solve them by representing the underlying data distributions as energy land-
scapes, where lower energy states indicate higher probability. Driven by their intrinsic nature (Sec-
ond Law of Thermodynamics), dynamical systems instinctively evolve to the lowest energy state at
equilibrium – a process called natural annealing – thus finding the solutions to the equations. Shar-
ing a similar statistical basis with ML, this method is nature-powered and operates without explicit
instructions, ensuring extreme efficiency. Notably, numerous high-profile scientific studies (Fris-
ton, 2010; Inagaki et al., 2019; Wills et al., 2005) reveal that the brain functions as a dynamical
system, seamlessly integrating inference and training by continually settling into stable, low-energy
states representing cognitive processes and memories. This insight partially explains the remarkable
efficiency of biological intelligence. These observations raise a compelling question: Can dynam-
ical systems serve as AI supercomputers, creating a nature-powered ML paradigm that solves
equations with efficiency comparable to biological intelligence? The first challenge is to make
dynamical systems controllable and programmable.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: The overview of the proposed DS-Solver.

Recognizing their huge potential, researchers have developed dynamical systems that offer easy
control and programmability (Böhm et al., 2022; Moy et al., 2022; Lo et al., 2023), primarily com-
posed of electronic components like resistors and capacitors. In the past two years, these dynamical
systems have been utilized to solve simple learning problems, such as traffic prediction (Pan et al.,
2023; Wu et al., 2024) and collaborative filtering (Liu et al., 2023). Specifically, these systems are
governed by parameterized Hamiltonians, which determine the complexity of the energy landscape
and thus the system’s expressivity. The programmability stems from adjustable resistors, whose
conductance represents Hamiltonian parameters, collectively shaping the exact structure of the en-
ergy landscape. To solve learning problems, existing works (Pan et al., 2023; Liu et al., 2023; Wu
et al., 2024) employ traditional machine learning training methods, e.g. stochastic gradient descent
(SGD) on GPUs, to find the optimal parameters that align the constructed energy landscape with the
data distribution. During inference, these parameters are programmed into the resistors, enabling the
dynamical system to leverage natural annealing to find the energy minimum as the desired solution.
These approaches enable dynamical systems as efficient equation solvers, capable of finding solu-
tions through natural annealing with no explicit instructions involved in inference, thus approaching
the efficiency of intelligence observed in nature.

Unfortunately, the applicability and broader impact of electronic dynamical systems are significantly
limited due to two main challenges: 1. Low Expressivity: Existing works employ dynamical systems
governed by a quadratic Hamiltonian, leading to low-rugosity energy landscapes with only linear in-
teractions among nodes, and hence limiting accuracy in real-world contexts. The current SOTA (Wu
et al., 2024) can solve linear equations like matrix multiplication with satisfactory accuracy but
fails when tackling more advanced problems such as PDEs (Table 1) and transformers (as shown in
Figure 1.b) that dominate scientific computing and machine learning, respectively. 2. Lack of Sup-
port for Training: Present approaches realize inference on dynamical systems through on-device
natural annealing; however, the training process to construct the desired energy landscape must be
performed entirely on digital processors. This results in even higher training costs than traditional
DNNs due to the intrinsic complexity of dynamical systems, even with simple Hamiltonians. This
decoupled training and inference depart from the intelligence observed in nature and prevent this
new AI paradigm from addressing the most critical problem in AI development – extreme training
cost. Directly utilizing dynamical systems to perform nature-powered training at ultra-low cost is
crucial and insightful.

To address these bottlenecks and realize the potential of electronic dynamical systems, we introduce
DS-Solver – a nature-powered AI paradigm that employs an expressive, self-trainable dynamical
system to solve a wide spectrum of equations with superior accuracy and unprecedented efficiency.
Specifically, we enhance the dynamical system through two key innovations: (1) We significantly
improve system expressivity by enriching the node dynamics with tightly coupled real-valued and
polarized shadow nodes, enabling the precise capture of high-order and highly nonlinear interac-
tions. (2) We propose an on-device self-learning method that allows the dynamical system to lever-
age its intrinsic electrical signals as loss (akin to the brain), enabling it to self-construct its energy
landscape, align with the target distribution, and achieve instant training at negligible costs. Unlike
digital processors that orchestrate electrons following explicit instructions from AI programs, DS-
Solver performs both inference and training by allowing electrons to instinctively seek equilibrium.
This approach offers a unique, nature-powered AI paradigm with ’electron speed’ and ultra-low
power consumption, outperforming GPUs by orders of magnitude in both speed and energy effi-
ciency, paving the way to the efficiency of biological intelligence. By significantly expanding the
applicability of dynamical systems to encompass representative challenges from diverse domains,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

e.g. PDEs in scientific computing, transformers in ML, and even hard-to-define equations in com-
plex real-world problems like pandemic propagation, DS-Solver holds the potential to overcome
persistent computational bottlenecks and drive advancements across various fields. The major con-
tributions of this paper are summarized as follows:

• We propose DS-Solver, a nature-powered AI paradigm harnessing dynamical systems with collo-
cated inference & training to accurately and efficiently solve key equations across diverse domains.

• We enhance the expressivity of existing dynamical-system AI paradigms by introducing enriched
node dynamics coupled with polarized shadow nodes, enabling high-rugosity energy landscapes
that precisely capture complex node interactions in the real world.

• We propose an on-device training method that enables dynamical systems to self-construct energy
landscapes using internal electrical signals, allowing for second-level training at negligible cost.

• Experimental results demonstrate that DS-Solver solves equations with high accuracy, achieving
orders of magnitude speedup (∼ 103×) and energy efficiency (∼ 105×) over A100 GPU.

2 BACKGROUND AND RELATED WORK

2.1 BACKGROUND

This section provides an overview of the current state-of-the-art (SOTA) dynamical system designs
employed in solving learning problems (Wu et al., 2024). We begin with the dynamical system
model, proceed to its precise hardware embodiment, and conclude with its training methods.

Dynamical System Model. A dynamical system is a mathematical model that describes how ele-
ments influence each other’s states over time, causing the system to evolve, often toward equilib-
rium. These systems feature an energy landscape defined by a Hamiltonian, with energy minima at
equilibrium states. The Hamiltonian of the current SOTA dynamical system used in AI is defined:

Hrv = −
N∑
i ̸=j

Jijσiσj +

N∑
i=1

hiσ
2
i , σi, σj ∈ [−1, 1] ⊂ R. (1)

Here, Jij represents the interaction strength between two nodes σi and σj , and hi denotes the self-
reaction strength of σi to external influences. Assuming a Boltzmann distribution prv = e−βHrv/Z,
where the partition function Z serves as a normalizing constant ensuring that probabilities sum
to one, the energy landscape is mapped to a probability distribution, with the lowest energy state
corresponding to the highest probability state.

The spontaneous energy decrease of the system is guaranteed by the carefully designed node dy-
namics, which dictate how the system evolves over time. The current approach designs the node
dynamics dσi/dt as follows:

dσi
dt

= −∂Hrv

∂σi
=

N∑
j ̸=i

(Jij + Jji)σj − 2hiσi, (2)

This node dynamics adheres to Lyapunov stability analysis, guaranteeing that the system evolves
towards the lowest energy state:

dHrv

dt
=

N∑
i=1

(
∂Hrv

∂σi

dσi
dt

)
≤ 0. (3)

Dynamical System Embodiment as a Processor. In the current SOTA, the dynamical system gov-
erned by the Hamiltonian defined in equation 1 is effectively embodied as a low-power processor
composed of programmable electronic components, such as resistors and capacitors, as illustrated
in Figure 2. The key idea behind this embodiment is to precisely and efficiently realize the node
dynamics using electronic components, ensuring that the system’s energy decreases spontaneously.
In this design, each node σi is implemented as a nanoscale capacitor within a node unit (Ni), with its
voltage representing the node value. Each capacitor is coupled with a resistor of resistance Ri set to
1/(2hi), forming a resistive current within the node unit. This current acts as an energy regulator, re-
alizing the term 2hiσi from the node dynamics and enabling real-valued stability. Furthermore, each
pair of capacitors from different node units (Ni andNj) is structurally connected by a programmable
resistor in the coupling unit (CUij) with resistance Rij set to 1/Jij . This effectively incorporates
the term

∑N
j ̸=i (Jij + Jji)σj from the node dynamics into a resistively coupled capacitor network.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

N
od

e
C

on
tr

ol
 U

ni
t

Column Programming Unit
Column Select Unit

N1

N2

N3

CU12 CU13 CU1n

CU21 CU23 CU2n

CU31 CU32 CU3n

......
...

...

...

...

...

...

...

...

...

...

...

...

.....................

N4CUn1 CUn2 CUn3

Figure 2: The overall architecture
of the electronic dynamical system.

Training of Dynamical System. The training process of a
dynamical system is to find the optimal parameters J and h
in the Hamiltonian Hrv to construct an energy landscape that
mirrors the target data distribution. Prior works have trained
the model using computationally expensive traditional statis-
tical methods executed on digital processors, mainly GPUs.
Specifically, the training process begins by estimating the low-
est energy states of the dynamical system using methods such
as conditional likelihood maximization (Wu et al., 2024) and
the contrastive divergence algorithm (Hinton, 2002). The dis-
crepancies between the estimations and the ground truths are
evaluated using metrics such as Mean Absolute Error (MAE).
These metrics serve as loss functions to update the model pa-
rameters, thereby reconstructing the energy landscape to align
the ground truth with the system’s energy minima. During in-
ference, natural annealing drives the system toward the lowest
energy state, allowing it to find the solution with the highest likelihood for the target problem.

2.2 RELATED WORK

Dynamical systems as efficient supercomputers have gained significant attention in recent years,
particularly for solving optimization problems. The Ising machine, one of the earliest processors
to harness dynamical systems for such tasks, embodies the Ising model originally developed for
ferromagnetism in statistical physics. Ising machines have demonstrated breakthrough efficiency in
solving numerous NP-complete binary optimization problems, with results published in prominent
scientific journals (Mohseni et al., 2022; Lo et al., 2023; Böhm et al., 2019). For instance, researchers
have employed Ising machines to tackle satisfiability (SAT) problems (Sharma et al., 2023a;b), as
well as MAX-CUT and graph coloring problems (Wang & Roychowdhury, 2019; Böhm et al., 2019).
Recognizing their potential, scientists have also explored the use of dynamical systems for ML,
addressing real-world issues such as traffic congestion (Pan et al., 2023), collaborative filtering (Liu
et al., 2023), and neural network training (Böhm et al., 2022).

While these studies provide valuable insights into leveraging dynamical systems for ML tasks, their
scope and applicability are limited by the binary nature of Ising machine nodes, hindering progress
in more complex, real-valued scenarios. To address this binary limitation, Wu et al. (Wu et al., 2024)
proposed an extension of the binary Ising model to accommodate real-valued nodes and developed
a real-valued Ising machine for accelerated inference in graph learning problems, setting the cur-
rent SOTA for dynamical system approaches in ML. However, their contributions are constrained
by two key limitations. First, while their proposed Hamiltonian supports real-valued nodes, it only
accounts for linear node interactions, which is insufficient for capturing the intrinsic nonlinearity
present in many complex problems. Second, their approach utilizes the power of dynamical systems
exclusively during the inference phase, leaving the computationally intensive training process unad-
dressed. These limitations, which significantly constrain the broader impact of dynamical systems
in ML, will be addressed in this work.

3 METHODOLOGY

The proposed DS-Solver features two highlights: expressivity enhancement and instant on-device
training, detailed in Section 3.1 and Section 3.2, respectively.

3.1 EXPRESSIVITY ENHANCEMENT

The SOTA Dynamical System Model. Current SOTA dynamical system model is governed by its
Hamiltonian, as illustrated in equation 1, with node dynamics described in equation 2. The system
stabilizes when each node’s dynamics converges to zero, and at this equilibrium, the lowest energy
state reveals a linear interaction between nodes:

σi =
1

2hi

N∑
j ̸=i

(Jij + Jji)σj (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

While the system exhibits inherent nonlinearity due to the voltage range limitations of the capacitors,
the linear inter-node interaction significantly constrains the dynamical system’s capacity to address
more complex equations.

Figure 3: The duo-
channel interactions.

DS-Solver Model with Enriched Node Dynamics. Drawing inspiration
from the Ising model – a binary dynamical system model renowned for
its high expressivity and effectiveness in modeling complex physical sys-
tems – we propose to enhance the expressivity of dynamical systems by
enriching node dynamics. Specifically, we selectively couple real-valued
nodes with their corresponding polarized shadow nodes, augmenting the
system with node dynamics powered by duo-channel (main channel from
real-valued node and side-channel from polarized one) inter-node interac-
tions. Each shadow node is strongly connected with its parent node and also
weakly connected globally with all other neighbor nodes, enabling nonlin-
ear and high-order information aggregation, which is then forwarded to the output nodes along with
the original real-valued information. This enhancement allows for more nuanced representations
of the system’s energy landscape, expanding the model’s capacity to capture intricate patterns and
behaviors in complex problems. Particularly, we redefine the node dynamics as:

dσi
dt

=

M∑
j=1

Jijσj +

K∑
k=1

Nikφ (sk)− 2hiσi. (5)

Here, φ (sk) = φ
(∑M

j=1Mkjσj

)
represents the polarized shadow nodes used to learn the high-

order nonlinear node interactions. K is the number of shadow nodes. φ represents a non-linear
function introduced to achieve polarization. For a hardware-friendly design, we use an adjustable
piecewise function, defined as φ(x) = −1, if x < −θ; φ(x) = 1, if x > θ; φ(x) = τx, if − θ ≤
x ≤ θ. Our proposed enriched node dynamics significantly enhances the model expressivity from
three perspectives:

• Duo-channel Non-linear Node Interaction: The shadow nodes, polarized by learnable piecewise
functions, create enriched node dynamics. This enables system evolution powered by duo-channel
non-linear node interaction. Moreover, the learnable parameter τ in the piecewise function en-
ables fine-grained tuning of the system’s more refined energy landscape.

• High-order Interactions: The designed polarized shadow nodes φ (sk), k = 1, 2, ...,K, hierar-
chically capture high-order interactions among local and remote nodes through a learnable matrix
Mkj . This enables the system to capture intricate, non-local dependencies in the data distribution.

• Adaptive Complexity: The quantity of these shadow nodes can be dynamically adjusted to align
with the complexity of the targeted problems, further enhancing the system’s adaptability.

The Physical Embodiment of DS-Solver. The physical embodiment of the enhanced dynamical
system model closely resembles that of the current SOTA implementation as illustrated in Figure 4
(as K ≪ M, the hardware augmentation is minimal). The embodiment for the first and third terms
in the enhanced node dynamics remains identical to the SOTA model: with node values mapped to
capacitor voltages and with parameters J and h configured as resistor conductances. This configu-
ration realizes both terms as electrical currents: the flow-in current and the internal current of a node
unit, respectively. Following the same design strategy, we realize the second term by embodying θ
as capacitors in the shadow element of the node unit, and N, M, τ as resistor conductances. Con-
sequently, the second term is also realized as electrical current, introducing an additional flow-in
current to the node unit. The summation of the first two terms,

∑M
j=1 Jijσj +

∑K
k=1Nikφ(sk),

corresponds to the electrical current jointly flowing into the node unit associated with σi, denoted as
Iini . Equilibrium for an individual node is achieved when this inflow current neutralizes the current
flowing through the node’s resistor Ri, denoted as IRi = 2hiσi, which represents the last term in
the enriched node dynamics. At this point, the node dynamics dσi/dt equal zero, indicating node
stabilization. The system reaches global equilibrium when all nodes stabilize simultaneously. As
with the SOTA model, this global equilibrium corresponds to the dynamical system’s lowest energy
state and the highest probability state, which ideally should be trained to represent the desired solu-
tions to the target equation. This equilibrium-seeking process is governed by the spontaneous energy
decrease of dynamical systems, as illustrated in equation 3, and is referred to as natural annealing.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2 INSTANT ON-DEVICE TRAINING POWERED BY INTRINSIC ELECTRIC SIGNAL

On-Device Instant Training Algorithm Powered by Dynamical System: To extend the extraordi-
nary computational power of dynamical systems to the training process, we propose an efficient
on-device training method, EC-Train. This novel approach leverages the intrinsic electrical cur-
rent of the dynamical system as a feedback signal to adjust parameters on-device and further self-
reconstruct the energy landscape, precisely mirroring the data distribution of the target problem.
EC-Train establishes a well-defined physical entity within the electric dynamical system that func-
tions as a loss mechanism, enabling second-level instant model training directly on the dynamical
system processor. This innovation significantly reduces training costs by orders of magnitude com-
pared to conventional offline training methods executed on digital processors.

The development of EC-Train is founded on a key observation: A perfectly trained DS-Solver should
achieve equilibrium when its nodes are set to the ground truth values from the training dataset. At
equilibrium, the aggregate electric current Iini =

∑M
j=1 Jijσj +

∑K
k=1Nikφ(sk) flowing into node

σi must neutralize its internal resistor current IRi = 2hiσi, thereby stabilizing the capacitor voltage
that represents the node’s value. Consequently, the on-device training process of EC-Train aims to
minimize the difference between these currents (Iini − IRi) for all nodes when set to ground truth
values. The EC-Train loss function can be formulated as:

L =
1

N

N∑
i=1

(Iini − IRi)2. (6)

The electric currents provide feedback signals for each node:

δi =
∂L

∂σi
= − 2

N
(Iini − IRi). (7)

The updates for the trainable parameters are derived as the gradients of the feedback signal with
respect to each parameter. Specifically, the trainable coupling parameters include J, N, and M. h
serves as a set of scaling factors and is fixed as a constant. Therefore, the gradients with respect to
Jij , Nik, and Mkj are:

∇Jij = δi · σj ; ∇Nik = δi · φ(sk); ∇Mkj = τ
∑
i

δiNikσj . (8)

Figure 4: Architecture design of DS-
Solver with EC-Train.

The Physical Embodiment of DS-Solver with EC-Train is
illustrated in Figure 4. We introduce a lightweight yet ef-
fective modification to enable parameter adjustments based
on feedback from electrical currents: an additional feedback
signal path (highlighted in brown) for each parameter, con-
necting the node unit and its shadow element to their cor-
responding parameters, realized as resistors within coupling
units. These feedback paths allow the electronic dynamical
system to propagate signals to the coupling units, facilitat-
ing instantaneous parameter adjustment through rapid charg-
ing or discharging of the programmable resistors. With EC-
Train, the system performs infinite updates within each natu-
ral annealing cycle, continuously and instantly reshaping the
energy landscape to achieve convergence at “speed of elec-
trons”, at negligible cost compared to traditional training on
digital processors. The EC-Train training process is as:

1. Initialization: The capacitor voltages representing node values are set to their ground truth values,
while the trainable parameters are randomly initialized.

2. Natural Annealing: The system undergoes a rapid, spontaneous energy decrease, driving it to-
ward equilibrium and generating the electrical current Iini − IRi , which serves as the feedback
signal to adjust the system parameters.

3. Parameter Adjustment: The trainable parameters are updated based on the feedback signal.
4. Continuous and Iterative Training: The update of trainable parameters results in a new electrical

current Iin, which flows back to the node units, updating the feedback signal Iini − IRi , and
instantaneously initiating a new training iteration. This process continues iteratively across the
entire training set until convergence is achieved.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EVALUATION

4.1 EXPERIMENT SETUP

As a pioneering effort demonstrating the significant potential of dynamical systems, we evaluate the
performance of DS-Solver across various domains, including PDE solving in scientific computing,
Transformer approximation in ML, and hard-to-define equation solving in real-world problems.

Datasets and Baselines. For PDE solving, we consider PDEs that commonly exist in the phys-
ical world, including Heat, Wave, Laplace, Poisson, Navier Stokes, and Schrödinger equations.
For each of the PDEs, datasets are generated using the finite difference method, with unique ini-
tial conditions, boundary conditions, and domain geometries (more details are provided in the Ap-
pendix). We compare the proposed DS-Solver with Multi-Layer Perceptrons (MLP) (Rumelhart
et al., 1986), Radial Basis Function Networks (RBF) (Lowe & Broomhead, 1988), Support Vector
Machines (SVM) (Cortes, 1995), Kolmogorov–Arnold Networks (KAN) (Liu et al., 2024), and the
current SOTA dynamical system based method NP-GL (Wu et al., 2024). Detailed implementation
configurations are provided in the Appendix.

For Transformer approximation, we demonstrate DS-Solver’s effectiveness in approximating key
components of the GPT-2 model (124M parameter version) (Wolf, 2019), specifically the first multi-
head self-attention layer and the first decoder block. We extract a subset (∼60,000 tokens) of input-
output pairs from the first self-attention layer and the first decoder block in the pretrained GPT-2 us-
ing the OpenWebText training set. We compare DS-Solver with the SOTA dynamical system based
method NP-GL (Wu et al., 2024). DS-Solver and NP-GL are trained on the constructed datasets to
replicate the complex, non-linear transformations between inputs and outputs of the selected com-
ponents. Detailed implementations are in the Appendix.

10 1

100

101

102

103

104
N

or
m

al
iz

ed
 tr

ai
ni

ng
 ti

m
e

10 8

10 7

10 6

10 5

10 4

In
fe

re
nc

e
La

te
nc

y
(s)

MLP
RBF

SVM
KAN

NP-GL
DS-Solver

Figure 5: Training time and infer-
ence latency for PDE solving.

For hard-to-define equation solving in real-world problems, we
evaluate the performance of DS-Solver in spatial-temporal pre-
diction tasks and the electric field energy prediction task in nu-
clear fusion. Regarding spatial-temporal prediction, we eval-
uate the proposed DS-Solver on six real-world datasets for
four applications. (1) Traffic flow prediction with two datasets
PEMS04 and PEM08 (Chen et al., 2001). (2) Air quality pre-
diction including PM2.5 and PM10 (Kong et al., 2021). (3) Taxi
demand prediction (NYC Taxi): predicting the hourly number
of taxi trips (New York City Taxi and Limousine Commission,
2024). (4) Pandemic progression prediction (Texas COVID):
predicting the daily number of new cases (Centers for Disease
Control and Prevention, 2024). We compare DS-Solver with SOTA spatial-temporal prediction base-
lines, including Graph WaveNet (Wu et al., 2019), MTGNN (Wu et al., 2020), DDGCRN (Weng
et al., 2023), MegaCRN (Jiang et al., 2023), and the SOTA dynamical system based method NP-GL
(Wu et al., 2024). Detailed implementations are in the Appendix.

Electric field energy prediction is a task from nuclear fusion research, which helps to optimize fusion
reactions occurring in extremely complex physical dynamical systems. To evaluate DS-Solver on
this task, we construct a dataset using Particle-in-Cell (PIC) simulations (Fonseca et al., 2002). Our
setup encompasses key fusion-relevant parameters, with the prediction task formulated as follows:
given the input features Electron Temperature (Te), Ion Temperature (Ti), Laser Intensity (Li), and
time t, forecast the corresponding electric field energy (This dataset will be open-sourced to facilitate
further research in this critical domain). We compare DS-Solver with the SOTA dynamical system
based method NP-GL (Wu et al., 2024). Detailed implementations are in the Appendix.

Experimental Platforms. We conduct our experiments using an NVIDIA A100 40GB SXM GPU
for non-dynamical system based baselines, measuring total training time, inference latency per sam-
ple, accuracy, and energy consumption. For the SOTA dynamical system based baseline NP-GL, we
use the same A100 GPU for training time measurement, while employing its proposed dynamical
system for inference latency and accuracy evaluation. The proposed DS-Solver is assessed using
a custom CUDA-based Finite Element Analysis (FEA) software simulator, built upon the BRIM
framework (Afoakwa et al., 2021), for training time, inference latency, and accuracy measurements.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: PDE solution comparison in MAE, best results are in bold.
Dataset Heat Wave Laplace Poisson Navier Stokes Schrödinger
MLP 3.7e-4 6.5e-4 4.8e-4 1.3e-4 7.1e-4 4.2e-4
RBF 5.3e-4 6.2e-4 3.9e-4 1.0e-4 5.8e-4 3.5e-4
SVM 6.5e-4 7.1e-4 5.9e-4 8.2e-5 5.3e-4 4.1e-4
KAN 2.1e-5 2.7e-5 1.9e-5 7.2e-6 3.1e-5 4.3e-5

NP-GL 2.8e-4 4.9e-4 3.7e-5 8.3e-5 1.6e-4 4.8e-4
DS-Solver 1.8e-5 2.2e-5 1.6e-5 6.4e-6 2.7e-5 2.5e-5

Table 2: Attention layer replacement
Dataset LAMBADA WT2 WT103
GPT-2 35.13 29.41 37.50
NP-GL 41.56 34.82 45.27
DS-Solver 35.38 29.64 37.82

Table 3: Decoder block replacement
Dataset LAMBADA WT2 WT103
GPT-2 35.13 29.41 37.50
NP-GL 42.95 35.72 46.39
DS-Solver 36.46 30.15 38.02

DS-Solver’s energy consumption was evaluated using the Cadence Mixed-Signal Design Environ-
ment with 45nm CMOS technology.

4.2 EXPERIMENTAL RESULTS

PDE solving. We compare DS-Solver and baselines on the selected PDEs. The best MAE achieved
by each method is presented in Table 1. The results demonstrate that DS-Solver consistently out-
performs traditional methods across all PDEs. Besides, we average each model’s training time and
inference latency across all PDEs, the comparison is shown in Figure 5. DS-Solver shows extraor-
dinary training and inference efficiency compared to traditional methods implemented on digital
processors, achieving 897× training speedup and over 101× inference speedup on average.

10 7

10 6

10 5

10 4

In
fe

re
nc

e
La

te
nc

y
(s)

Original Self-Attention
Original Decoder
NP-GL as Self-Attention
NP-GL as Decoder
DS-Solver as Self-Attention
DS-Solver as Decoder

Figure 6: Inference la-
tency for Transformer.

Transformer Approximation. We conduct two separate evaluations to
evaluate the performance of integrating the trained NP-GL and DS-Solver
models into GPT-2. In the first evaluation, we replace the first self-
attention layer in GPT-2 with either NP-GL or DS-Solver and measure
the resulting systems’ performance on the LAMBADA (Paperno et al.,
2016), WikiText2 (WT2), and WikiText103 (WT103) (Merity et al., 2016)
datasets using the perplexity (PPL) metric. In the second evaluation, we
substitute the first decoder block with NP-GL or DS-Solver and similarly
evaluated performance across the same datasets. As shown in Tables 2 and
3, replacing the first self-attention layer with the trained NP-GL resulted in
a substantial increase in PPL, with an average increase of 6.54 across these
datasets. Similarly, substituting the first decoder block with NP-GL leads
to an average PPL increase of 7.67. In contrast, DS-Solver maintained
PPL scores much closer to the original GPT-2, with only a small average
increase of 0.27 when replacing the first self-attention layer and 0.86 when
replacing the first decoder block across all datasets. These results demon-
strate the superior capability of DS-Solver compared to NP-GL in learning complex transformations
within ML models. As shown in Figure 6, DS-Solver achieves an average speedup of 73.2× on the
self-attention and decoder layers compared to the baselines on GPU.

Spatial-Temporal Prediction. We present the test MAE of baselines and DS-Solver on selected
datasets in Table 4, where lower values indicate better performance. The results show that DS-Solver
outperforms all baselines across all datasets. Figure 7 shows the training time and inference latency
comparisons. DS-Solver demonstrates substantial computational efficiency, consistently delivering
orders of magnitude speedup in training time across all datasets. The training speedup ranges from
478× to 2408× compared to the best baseline NP-GL, while delivering an average of 886× training
speedup versus all baselines and 1923× inference speedup versus the baselines executed on GPU.

Table 5: Electric field energy prediction.

Dataset E1 E2
MAE RMSE MAE RMSE

NP-GL 3.75e-2 4.28e-2 5.31e-2 5.84e-2
DS-Solver 1.13e-2 1.64e-2 3.17e-2 3.92e-2

Electric Field Energy Prediction. We com-
pare DS-Solver with the current SOTA dy-
namical system based method NP-GL. The
test MAE and RMSE are presented in Table
5, showing the performance of NP-GL and
DS-Solver in predicting electric field energy
along two orthogonal directions (E1 and E2). DS-Solver achieved impressively low test MAE and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Spatial-temporal prediction comparison in MAE, best results are in bold.
Dataset PEMS04 PEMS08 PM2.5 PM10 NYC Taxi Texas Covid

Graph WaveNet 20.84 15.77 1.823 1.954 10.22 82.96
MTGNN 19.96 15.15 1.833 1.990 7.079 84.17

DDGCRN 18.97 14.64 1.711 1.881 3.059 23.94
MegaCRN 17.65 13.70 1.646 1.741 6.082 83.73

NP-GL 17.07 13.51 1.624 1.730 3.031 22.04
DS-Solver 16.97 13.50 1.565 1.653 2.488 17.31

PEMS04 PEMS08 PM2.5 PM10 NYC Taxi Texas Covid
10 1

100

101

102

103

104

N
or

m
al

iz
ed

 tr
ai

ni
ng

 ti
m

e

PEMS04 PEMS08 PM2.5 PM10 NYC Taxi Texas Covid
10 7

10 6

10 5

10 4

10 3

10 2

10 1

In
fe

re
nc

e
La

te
nc

y
(s)

GraphWaveNet MTGNN DDGCRN MegaCRN NP-GL DS-Solver

Figure 7: Training time and inference latency comparison for spatial-temporal prediction.

0 20 40 60 80 100
Test Sample Index

0.0

0.2

0.4

0.6

N
or

m
al

iz
ed

 E
ne

rg
y Electric Field Energy Prediction for E1

Target
Prediction

0 20 40 60 80 100
Test Sample Index

0.0

0.5

1.0

1.5
N

or
m

al
iz

ed
 E

ne
rg

y Electric Field Energy Prediction for E2

Target
Prediction

Figure 8: Electric field energy prediction for E1 and E2.

RMSE with the dataset normalized to [0,1], outperforming NP-GL on both E1 and E2. These min-
imal MAE values underscore DS-Solver’s effectiveness in capturing and reproducing the intricate
dynamics of electric field energy evolution in fusion simulations, highlighting its potential as a pow-
erful tool for plasma physics research and fusion reactor design optimization. Besides, the visualiza-
tions of DS-Solver’s predictions and ground truths are provided in Figure 8, elucidating DS-Solver’s
remarkable ability to accurately forecast electric field energy across a diverse range of simulation
timescales and physical parameters.

Power and Energy Efficiency. DS-Solver provides ultra-low power of 1.6W for training, and
326mW for inference. For a reasonable reference, we assume the average power for the GPU
used in this work is 250W. In terms of overall energy consumption, taking into account the excep-
tional speedups achieved in training and inference, DS-Solver achieves approximately, on average,
1.40×105 and 1.38×105 higher energy efficiency in training for PDE solving and spatial-temporal
prediction applications, respectively; 7.74×104, 5.61×104, 1.47×106 higher energy efficiency in in-
ference for PDE solving, Transformer approximation, and spatial-temporal prediction, respectively.

5 CONCLUSION

While modern machine learning methods excel as equation solvers, their growing complexity and
substantial operational costs pose challenges to sustainable development. In contrast, nature ef-
fortlessly solves complex equations through dynamical systems that naturally evolve towards low-
energy states without explicit guidance. In response, we introduce DS-Solver, a nature-powered
AI paradigm that leverages a self-trainable, expressive dynamical system capable of solving a wide
range of equations with remarkable efficiency. Experimental results across key equations from var-
ious domains show that DS-Solver achieves 42% higher accuracy than the current SOTA – while
delivering a ∼ 103× speedup and ∼ 105× energy efficiency compared to traditional neural net-
work solutions on GPUs for both inference and training. These results highlight its broad impact
on overcoming the persistent computational bottlenecks across various critical fields, including ML,
scientific exploration, and real-world complex systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY

We have a comprehensive plan to enable reproducibility. (a) The dynamical system processor has
been manufactured, and we have access to the real hardware. We plan to provide the public with
remote access to the processor through the university’s computing cluster. (b) We have developed
an accurate GPU-based emulator of the dynamical system processor. This software will be open
sourced, enabling the reproducibility of this work and open research even without physical access
to the hardware. The integration of the hardware in our paper with existing systems (e.g. GPUs) can
be seamless since it is fully CMOS-based, utilizing the same underlying chip technology as GPUs,
CPUs, and FPGAs.

REFERENCES

Richard Afoakwa, Yiqiao Zhang, Uday Kumar Reddy Vengalam, Zeljko Ignjatovic, and Michael
Huang. Brim: Bistable resistively-coupled ising machine. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pp. 749–760. IEEE, 2021.

Fabian Böhm, Guy Verschaffelt, and Guy Van der Sande. A poor man’s coherent ising machine
based on opto-electronic feedback systems for solving optimization problems. Nature Commu-
nications, 10(1):3538, Aug 2019. ISSN 2041-1723. doi: 10.1038/s41467-019-11484-3. URL
https://doi.org/10.1038/s41467-019-11484-3.

Fabian Böhm, Diego Alonso-Urquijo, Guy Verschaffelt, and Guy Van der Sande. Noise-injected
analog ising machines enable ultrafast statistical sampling and machine learning. Nature Com-
munications, 13(1):5847, 2022.

Centers for Disease Control and Prevention. Covid data tracker, 2024. URL https://covid.
cdc.gov/covid-data-tracker/#datatracker-home. Accessed: September 20,
2024.

Chao Chen, Karl Petty, Alexander Skabardonis, Pravin Varaiya, and Zhanfeng Jia. Freeway perfor-
mance measurement system: mining loop detector data. Transportation research record, 1748
(1):96–102, 2001.

Corinna Cortes. Support-vector networks. Machine Learning, 1995.

Ricardo A Fonseca, Luis O Silva, Frank S Tsung, Viktor K Decyk, Wei Lu, Chuang Ren, War-
ren B Mori, Shaogui Deng, Shiyoun Lee, T Katsouleas, et al. Osiris: A three-dimensional, fully
relativistic particle in cell code for modeling plasma based accelerators. In Computational Sci-
ence—ICCS 2002: International Conference Amsterdam, The Netherlands, April 21–24, 2002
Proceedings, Part III 2, pp. 342–351. Springer, 2002.

Karl Friston. The free-energy principle: a unified brain theory? Nature reviews neuroscience, 11
(2):127–138, 2010.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8):1771–1800, 2002.

Hidehiko K Inagaki, Lorenzo Fontolan, Sandro Romani, and Karel Svoboda. Discrete attractor
dynamics underlies persistent activity in the frontal cortex. Nature, 566(7743):212–217, 2019.

Renhe Jiang, Zhaonan Wang, Jiawei Yong, Puneet Jeph, Quanjun Chen, Yasumasa Kobayashi, Xuan
Song, Shintaro Fukushima, and Toyotaro Suzumura. Spatio-temporal meta-graph learning for
traffic forecasting. In Proceedings of the AAAI conference on artificial intelligence, volume 37,
pp. 8078–8086, 2023.

Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Jianjun Li, Huangjian Wu, Qizhong Wu, Huansheng
Chen, Lili Zhu, Wei Wang, et al. A 6-year-long (2013–2018) high-resolution air quality reanalysis
dataset in china based on the assimilation of surface observations from cnemc. Earth System
Science Data, 13(2):529–570, 2021.

10

https://doi.org/10.1038/s41467-019-11484-3
https://covid.cdc.gov/covid-data-tracker/#datatracker-home
https://covid.cdc.gov/covid-data-tracker/#datatracker-home

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Zhuo Liu, Yunan Yang, Zhenyu Pan, Anshujit Sharma, Amit Hasan, Caiwen Ding, Ang Li, Michael
Huang, and Tong Geng. Ising-cf: A pathbreaking collaborative filtering method through efficient
ising machine learning. In 2023 60th ACM/IEEE Design Automation Conference (DAC), 2023.

Ziming Liu, Pingchuan Ma, Yixuan Wang, Wojciech Matusik, and Max Tegmark. Kan 2.0:
Kolmogorov-arnold networks meet science. arXiv preprint arXiv:2408.10205, 2024.

Hao Lo, William Moy, Hanzhao Yu, Sachin Sapatnekar, and Chris H Kim. An ising solver chip
based on coupled ring oscillators with a 48-node all-to-all connected array architecture. Nature
Electronics, 6(10):771–778, 2023.

David Lowe and D Broomhead. Multivariable functional interpolation and adaptive networks. Com-
plex systems, 2(3):321–355, 1988.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Naeimeh Mohseni, Peter L McMahon, and Tim Byrnes. Ising machines as hardware solvers of
combinatorial optimization problems. Nature Reviews Physics, 4(6):363–379, 2022.

William Moy, Ibrahim Ahmed, Po-wei Chiu, John Moy, Sachin S Sapatnekar, and Chris H Kim. A
1,968-node coupled ring oscillator circuit for combinatorial optimization problem solving. Nature
Electronics, 5(5):310–317, 2022.

New York City Taxi and Limousine Commission. Tlc trip record data, 2024. URL https://www.
nyc.gov/site/tlc/about/tlc-trip-record-data.page. Accessed: September
20, 2024.

Zhenyu Pan, Anshujit Sharma, Jerry Yao-Chieh Hu, Zhuo Liu, Ang Li, Han Liu, Michael Huang,
and Tony Geng. Ising-traffic: Using ising machine learning to predict traffic congestion under
uncertainty. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.
9354–9363, 2023.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Anshujit Sharma, Matthew Burns, Andrew Hahn, and Michael Huang. Augmenting an electronic
ising machine to effectively solve boolean satisfiability. Scientific Reports, 13(1):22858, 2023a.

Anshujit Sharma, Matthew Burns, and Michael C Huang. Combining cubic dynamical solvers with
make/break heuristics to solve sat. In 26th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2023b.

Tianshi Wang and Jaijeet Roychowdhury. Oim: Oscillator-based ising machines for solving com-
binatorial optimisation problems. In Ian McQuillan and Shinnosuke Seki (eds.), Unconventional
Computation and Natural Computation, pp. 232–256, Cham, 2019. Springer International Pub-
lishing.

Wenchao Weng, Jin Fan, Huifeng Wu, Yujie Hu, Hao Tian, Fu Zhu, and Jia Wu. A decomposition
dynamic graph convolutional recurrent network for traffic forecasting. Pattern Recognition, 142:
109670, 2023.

Tom J Wills, Colin Lever, Francesca Cacucci, Neil Burgess, and John O’Keefe. Attractor dynamics
in the hippocampal representation of the local environment. Science, 308(5723):873–876, 2005.

T Wolf. Huggingface’s transformers: State-of-the-art natural language processing. arXiv preprint
arXiv:1910.03771, 2019.

Chunshu Wu, Ruibing Song, Chuan Liu, Yunan Yang, Ang Li, Michael Huang, and Tong Geng.
Extending power of nature from binary to real-valued graph learning in real world. In The Twelfth
International Conference on Learning Representations, 2024.

11

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep
spatial-temporal graph modeling. In Proceedings of the 28th International Joint Conference on
Artificial Intelligence, pp. 1907–1913, 2019.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Con-
necting the dots: Multivariate time series forecasting with graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
753–763, 2020.

A APPENDIX

A.1 DATASETS

For the PDE solving tasks, we generated datasets for the following equations: Heat equation, Wave
equation, Laplace equation, Poisson equation, Navier-Stokes equation, and Schrodinger equation.
For each PDE, we used the finite difference method to discretize the equations over specific domain
geometry, initial conditions, and boundary conditions. We generate one-dimensional heat equation
data with spatial domain x ∈ [0, 1], temporal domain t ∈ [0, 1], initial condition u(x, 0) = sin (πx),
and Dirichlet boundary conditions. We generate one-dimensional wave equation data with spatial
domain: x ∈ [0, 1], temporal domain t ∈ [0, 1], initial conditions u(x, 0) = sin (πx) , ∂u∂t |t=0 = 0,
and Dirichlet boundary conditions. We generate the two-dimensional Laplace equation data with
spatial domain x ∈ [0, 1], y ∈ [0, 1], boundary conditions: u(0, y) = 1, u(L, y) = 0, u(x, 0) = 0,
u(x, L) = 0. We generate the two-dimensional Poisson equation data with spatial domain x ∈ [0, 1],
y ∈ [0, 1], and Dirichlet boundary conditions. We generate the two-dimensional Navier-Stokes
equation data with spatial domain x ∈ [0, 1], y ∈ [0, 1], initial velocity u = 0, v = 0, initial pressure
p = 0, no-slip conditions on the walls, bottom and side walls: u = 0, v = 0, and top lid: u = 1,
v = 0. We generate the one-dimensional time-dependent Schrödinger equation data with spatial
domain: x ∈

[
− 1

2 ,
1
2

]
, and periodic boundary conditions: ψ

(
− 1

2 , t
)
= ψ

(
1
2 , t

)
. All simulations

were run until the convergence criteria were met.

For PDE solving, and electric field energy prediction tasks, we split the generated data into 60%
training, 20% validation, 20% testing. For the spatial-temporal prediction task, we follow the set-
tings in (Wu et al., 2024) to split the data into 70% training, 20% validation, 10% testing.

A.2 MODEL IMPLEMENTATION DETAILS

For PDE solving, we use the same settings as in (Wu et al., 2024) for NP-GL, while other baselines
employed ReLU activation, Adam optimizer, and two-layer architectures. Hyperparameter searches
were conducted for MLP (batch size: [32,64,128], hidden neurons: [8,16,32]), RBF with Gaussian
basis functions (batch size: [32,64,128], centers: [8,16,32]), SVM with polynomial kernel (batch
size: [32,64,128]), and KAN (spline order 3, grids: [5,10,15,20], hidden neurons: [8,16,32]). DS-
Solver was simulated with 4 and 8 shadow nodes. In spatial-temporal prediction, all baselines ad-
hered to settings from their original papers, with DS-Solver utilizing 32 shadow nodes. For electric
field energy prediction, we use the same settings as in (Wu et al., 2024) for NP-GL, and implemented
4 shadow nodes for DS-Solver.

12

	Introduction
	Background and Related Work
	Background
	Related Work

	Methodology
	Expressivity Enhancement
	Instant On-Device Training Powered by Intrinsic Electric Signal

	Evaluation
	Experiment Setup
	Experimental Results

	Conclusion
	Appendix
	Datasets
	Model Implementation Details

