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ABSTRACT

We consider the problem of length generalization in sequence prediction. We de-
fine a new metric of performance in this setting – the Asymmetric-Regret– which
measures regret against a benchmark predictor with longer context length than
available to the learner. We continue by studying this concept through the lens of
the spectral filtering algorithm. We present a gradient-based learning algorithm
that provably achieves length generalization for linear dynamical systems. We
conclude with proof-of-concept experiments which are consistent with our theory.

1 INTRODUCTION

Sequence prediction is fundamental to machine learning, with applications in NLP, forecasting, and
control systems. In this setting, a learner observes a sequence of tokens and iteratively predicts the
next token, suffering a loss that measures the discrepancy between the predicted and the true token.
Predicting sequences is vital for tasks like language modeling and autonomous control.

A key challenge in sequence prediction is understanding the role of context length—the number
of previous tokens used to make the upcoming prediction—and designing predictors that perform
well with limited context due to computational and memory constraints. These resource constraints
become particularly significant during the training phase of a predictor, where the computational
cost of using long sequences can be prohibitive. Thus, designing predictors that learn from shorter
contexts but generalize to longer ones is crucial. This leads us to the central question of our investiga-
tion: Can we develop algorithms that learn effectively using short contexts but perform comparably
to models that use longer contexts?

To address this question, we introduce a new performance metric—Asymmetric-Regret—which
measures the difference in total prediction loss between an online predictor with limited context
length and a benchmark predictor with a longer context. Unlike classical regret, which assumes both
the learner and the benchmark operate under the same conditions, Asymmetric-Regret accounts for
the asymmetry in context lengths, providing a more realistic assessment of performance in resource-
constrained settings. With a formal and well-defined notion of Asymmetric-Regret in hand, we
begin our investigation with the following question: are there algorithms that can attain non-trivial
bounds on the Asymmetric-Regret for natural sequences?

We explore this concept through the lens of spectral filtering algorithms (Hazan et al., 2017b; 2018).
Spectral filtering has emerged as a robust method for learning linear dynamical systems when the
system is unknown and the hidden state is unobserved. Linear dynamical systems are a useful and
rich class to study. Although they are applicable in many domains, they have been particularly
useful in large language modeling applications. Since next-token generation is a sequence predic-
tion problem, these methods are naturally applicable as a building block to use as layers in LLMs.
Methods which are designed to solve sequence prediction in linear dynamical systems have been
used to design state space models which have achieved SOTA performance on many LLM tasks,
with efficiency gains during both training and inference Gu et al. (2021b); Poli et al. (2023); Gu &
Dao (2023). Spectral filtering was introduced in Hazan et al. (2017a) as a method which provably
achieves O(

p
T ) regret when compared with the best LDS predictor (without any assumptions on

the sequence data). Beyond their theoretically sound properties, spectral filtering-based predictors
have proven practical in recent applications. Notably, the Spectral Transform Unit (Agarwal et al.,
2023), a neural architecture built using spectral filtering, has recently shown promise on sequence
prediction over a range of modalities (Liu et al., 2024).
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In this work, we extend the theoretical understanding of spectral filtering by demonstrating that
these predictors can achieve length generalization. Specifically, we present a gradient-based online
learning algorithm for spectral filtering and show that we can learn and make predictions on a smaller
context length while still achieving the same regret bounds as if we had used a much longer context
length. Formally, we prove that this algorithm guarantees Asymmetric-Regret Õ(

p
T ).

Beyond theoretical interest, our work is practically motivated by challenges in length generalization
faced by large language models (LLMs). As previously mentioned, methods which emerged from
studying linear dynamical systems have proven useful in LLMs, including spectral filtering and the
Spectral Transform Unit. LLMs struggle to generalize to longer sequences than those seen during
training (Abbe et al., 2023; Anil et al., 2022; Jelassi et al., 2023; Zhou et al., 2023; Delétang et al.,
2022; Dziri et al., 2024; Zhou et al., 2024) and extensive empirical research has been dedicated to
addressing this (Kazemnejad et al., 2024; Shen et al., 2023; Dai, 2019; Chi et al., 2022; Li et al.,
2023; Press et al., 2021). Despite its importance and extensive empirical research, provable theo-
retical results on length generalization remain largely elusive. We view our work as a step toward
addressing this gap. The asymmetric regret bounds we establish in this paper imply that spectral
filtering is able to implicitly handle the difficult problem of deciding how to use and store tokens
much earlier in a sequence for next-token prediction. Since most empirical methods introduced to
improve length generalization are task-specific, this is an exciting feature. It suggests that simply
incorporating spectral filtering into neural architectures may have the potential to improve length
generalization.

1.1 OUR CONTRIBUTIONS

Consider online sequence prediction in which the predictor iteratively receives input ut 2 Rdin

and then makes a prediction ŷt 2 Rdout of the output, after which the true output yt is revealed. The
goal of the predictor is to minimize error according to a given convex and Lipschitz loss function
`t(yt, ŷt). In this work we consider the class of spectral filtering predictors, introduced by Hazan
et al. (2017b). A spectral filtering predictor is characterized by parameters (T,Mi

k
i=1, k) and outputs

predictions ŷt of the form

ŷt = yt�1 +
Xk

i=1
Miu(t�1):0�i,

where u(t�1):0 2 Rdin⇥T is a matrix whose columns are the previous inputs ut�1, ut�2, . . . , u0

(possibly zero-padded as necessary), {�j}kj=1 are the T -dimensional spectral filters, {Mi}ki=1 ⇢
Rdout⇥din are matrices which are learned online, and k is the number of filters used. Hazan et al.
(2017b) provide an algorithm to learn {Mi}ki=1 and show this achieves nearly optimal regret bounds
when measured against the best Linear Dynamical System (LDS) predictor. We explore whether
the full history u(t�1):0 is needed to learn {Mi}ki=1. More broadly, we explore whether predictor
classes and corresponding online learning algorithms exist that can achieve context length general-
ization—that is, they use only a short recent history during learning but perform nearly as well as if
they had used the full, much longer history length. Of course, predictors which perform poorly on
systems that require long memory can trivially achieve context length generalization if their perfor-
mance is poor regardless of the context length used. Notably, spectral filtering predictors excel in
systems with long memory (Hazan et al., 2017b).

To properly understand context length generalization, we introduce the notion of Asymmetric-Regret.
The idea is to consider the regret of learning a predictor from a class which is only allowed to use
context length L0 against the best predictor which is allowed to use (potentially much longer and
therefore asymmetric) context length L. Let ⇧L denote the class of predictors in ⇧ which use
context length L. Given an algorithm A(L0) which learns over predictors from some class ⇧L0 , the
Asymmetric-Regret over horizon T is

RegretAsymmetric,T (A(L0),⇧L)
def
=
XT

t=1
`t(yt, ŷ

A(L0)
t )�min⇡2⇧L `t(yt, ŷ

⇡
t ).

Our first result shows that spectral filtering generalizes from a history of T q , where q 2 [0, 1], to T
for certain linear dynamical systems. It is formally given in the following theorem.
Theorem 1. Let T 2 Z � 0 and q 2 [0, 1]. Consider a sequence (y1, . . . , yT ) generated by an
unknown and noiseless linear dynamical system defined by matrices (A,B,C,D) as per Eq. 1.
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Assume the input sequence u0:(t�1) is sufficiently well-conditioned, satisfying
PT�1

t=0 (T �t)utu>
t ⌫⇣

2|C||B|p
T

⌘
I . Suppose the eigenvalues of A lie within the range

h
0, 1� log(T )

8T q

i
[
⇥
1� 1

2T 5/4 , 1
⇤
.

Let A(L) denote Algorithm 1 operating with context length L, and let ⇧SF
L denote the class of

spectral filtering predictors using context length L. For the squared loss `t(y, y0) = |y � y0|2 and
sufficiently large T , it holds that:

RegretAsymmetric,T

�
A(T q),⇧SF

T

�
 Õ(

p
T ).

This theorem indicates that for any q 2 [0, 1], the Asymmetric-Regret is bounded by Õ(
p
T ). How-

ever, as q decreases, the class of linear dynamical systems for which this bound holds becomes
more restricted due to the eigenvalue conditions on A. The spectrum of A determines the memory
of the system; when the eigenvalues of A are 1, the system is only marginally-stable and standard
predictors which aim to use low memory typically fail. Critically, Theorem 1 holds even for these
marginally-stable systems. When interpreting this result, it’s important to note that the class of spec-
tral filtering predictors ⇧SF

T which use the full context length are provably able to predict well on
marginally-stable Linear Dynamical Systems (Hazan et al., 2017b)1. Therefore, this result implies
that spectral filtering predictors are able to context length generalize in a nontrivial way.

Inspired by the way in which Theorem 1 is sensitive to the spectrum of A, we develop a novel
variation on the Spectral Filtering algorithm, presented in Algorithm 2, which achieves robust length
generalization without added assumptions on the spectrum of A (whenever the context-length is at
least T 1/4). Algorithm 2 achieves this by using two autoregressive components yt�1 and yt�2 to
construct its prediction ŷt of yt. We provide our main theorem of this work.

Theorem 2. Let T 2 Z � 0 and q 2
h
1
4 + log(log(T )/8)

log(T ) , 1
i
. Consider a sequence (y1, . . . , yT )

generated by an unknown and noiseless linear dynamical system defined by matrices (A,B,C,D)
as per Eq. 1. Assume the input sequence u0:(t�1) is sufficiently well-conditioned, satisfying
PT�1

t=0 (T � t)utu>
t ⌫

⇣
2|C||B|p

T

⌘
I . Let A(L) denote Algorithm 2 operating with context length

L, and let ⇧SF
L denote the class of spectral filtering predictors using context length L. For the

squared loss `t(y, y0) = |y � y0|2 and sufficiently large T , it holds that:

RegretAsymmetric,T

�
A(T q),⇧SF

T

�
 Õ(

p
T ).

Finally, we experimentally confirm the results of Theorem 1 and Theorem 2 on synthetic data gener-
ated by an LDS. Interestingly, we find that Theorem 1 accurately predicts when length generalization
is possible; indeed, when the data is generated by an LDS which has eigenvalues in the “bad” range
[1�log(T )/(8T q), 1�1/(2T 5/4)] we find that the limited context length spectral filtering predictors
are unable to length generalize. However, when the data is generated by and LDS which has eigen-
values “hugging” this bad range (i.e. either just smaller than 1 � log(T )/(8T q) or just larger than
1 � 1/(2T 5/4)), the limited context length spectral filtering predictors successfully length general-
ize, demonstrating the sharpness of our analysis. Next, we see that adding the second autoregressive
term allows for robust length generalization on marginally-stable systems with no spectral assump-
tion. Lastly, we conduct experiments using the STU neural architecture to test the hypothesis that
this architecture should simply length generalize without any task-specific engineering. We consider
the induction heads synthetic task and find that the out-of-the-box STU neural architecture does in-
deed enjoy some level of length generalization. This suggests that incorporating spectral filtering
into neural architectures, like the STU, may provide improved length generalization in deep learning
applications. We leave further empirical study on this for future work.

1.2 RELATED WORK

The literature for sequence prediction is too broad to survey in detail, so we give a few highlights of
the recent rapid advancements. The most notable progress includes the Transformer model (Vaswani

1The only LDS’s for which there can be any useful results are those with A’s eigenvalues in [�1, 1], i.e.
marginally-stable systems. We recall that the spectral filtering principle can be readily applied to handle neg-
ative eigenvalues in [�1, 0] (see Appendix D of Agarwal et al. (2023), for example). For ease of presentation,
we focus on capturing the length generalization effects of eigenvalues in [0, 1] in the sequel, and so we suppose
without loss of generality that A ⌫ 0.
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et al., 2017) that incorporates an attention mechanism for accurate sequence prediction in many
domains (Brown et al., 2020; Dosovitskiy et al., 2020; Jumper et al., 2021). Transformer models and
their attention layers have memory/computation requirements that scale quadratically with context
length. Many approximations have been proposed (see Tay et al. (2022) for a recent survey).

Motivated by the high memory and compute requirements of transformers, state space models were
revisited starting from (Gu et al., 2020; 2021b) who propose and develop the HiPPO theory. Gu
et al. (2021a) develop the S4 parameterization to address the bottlenecks of training efficiency, per-
formance and numerical stability. Further works in the area show SOTA performance and include
Gupta et al. (2022); Smith et al. (2023); Orvieto et al. (2023); Gu & Dao (2023). State space models
are very efficient for training and inference, but can suffer in long-context applications. This moti-
vated the use of spectral filtering technique for learning marginally-stable linear dynamical systems
(Hazan et al., 2017b; 2018). This technique was incorporated to a neural architecture in Agarwal
et al. (2023), that was recently shown to perform well across several modalities (Liu et al., 2024).

From an applied perspective, generalization in sequence prediction has been recently studied in Hou
et al. (2024) through the theoretical lens of Turing programs. They propose a methodology that
empirically improves length generalization across a diverse set of tasks. There are also architecture-
specific approaches to length generalization such as ALiBi positional embeddings for transformers
(Press et al., 2022), but such methods lack provable guarantees and can have varying empirical
performance (Kazemnejad et al., 2024).

In contrast, our investigation starts from the theory of regret minimization in games and online learn-
ing. Regret minimization has the advantage that it implies generalization in the statistical learning
setting (see e.g. Cesa-Bianchi et al. (2004)) and is usually accompanied by efficient algorithms such
as online gradient descent (see e.g. Hazan et al. (2016)). Our new notion of Asymmetric-Regret
incorporates asymmetric information access between the online learner and the benchmark class.

2 BACKGROUND AND SETTING

In the online sequence prediction setting the predictor iteratively receives input ut and makes
prediction ŷt of the output, after which the true output yt is revealed. The goal is to minimize error
according to a given (convex Lipschitz) loss function `t(yt, ŷt).

In online learning, we usually do not make statistical assumptions about the generation of the input
sequence. As such, performance is measured relative to a certain benchmark class of predictors. A
prediction algorithm A is measured by regret, or difference in total loss, vs. a class of reference
predictors ⇧ref (such as linear predictors), i.e.

RegretT (A,⇧) =
XT

t=1
`t(yt, ŷ

A
t )�min

⇡2⇧

XT

t=1
`t(yt, ŷ

⇡
t ).

This formulation is valid for online sequence prediction of any signal. We are particularly interested
in signals that are generated by dynamical systems. A time-invariant linear dynamical system is
given by the dynamics equations

xt+1 = Axt +But + wt , yt+1 = Cxt +Dut + ⇣t, (1)
where xt is the (hidden) state, ut is the input or control to the system, and yt is the observation. The
terms wt, ⇣t are noise terms, and the matrices A,B,C,D are called the system matrices.

Many methods exist for linear dynamical systems and their performance guarantees rely heavily on
the spectrum of A. The system is unstable whenever |�max(A)| > 1 because the norm of the obser-
vations tends towards infinity, stable when |�max(A)| < 1, and marginally-stable if |�max(A)| = 1.
When |�max(A)| = 1� � < 1, typical methods (i.e. Kalman filtering) must use a history of at least
� 1

� previous states to accurately capture the dynamics. As � gets smaller (i.e. long memory) it
therefore becomes difficult for methods to directly learn these relationships. Methods which learn
the system matrices require knowledge of the dimension of the hidden state (which may be very
large) and can also be unstable for systems with long memory. Through a particular parameteri-
zation and convex relaxation, however, the spectral filtering algorithm is able to efficiently predict
observations from marginally-stable systems with sublinear regret. We provide more background
on spectral filtering in Section 2.2, and more details on the rich theory of linear dynamical systems
may be found in Hazan et al. (2020).
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2.1 CONTEXT LENGTH GENERALIZATION AND THE ASYMMETRIC-REGRET METRIC

We say that an online predictor has context length L if it bases its prediction ŷt only on information
from the previous L timesteps, i.e. ut:t�L and yt:t�L. The key question in our work is whether there
are algorithms which learn and predict using a short context length, but perform as well as had they
been allowed to use long context length. To formalize this notion, we introduce Asymmetric-Regret
whose definition we restate here:
Definition 3 (Asymmetric-Regret). Let ⇧learn

L0 be a class of predictors which use context length L0

and let ⇧ref
L be a reference class of predictors which use context length L. The Asymmetric-Regret

with respect to (convex Lipschitz) loss `t over horizon T of an algorithm A(L0) which tries to learn
a predictor from ⇧learn

L0 is

RegretAsymmetric,T

�
A(L0),⇧ref

L

� def
=
XT

t=1
`t(yt, ŷ

A(L0)
t )� min

⇡2⇧L

XT

t=1
`t(yt, ŷ

⇡
t ).

To gain a better understanding of Asymmetric-Regret, note that the typical notion of regret in se-
quence prediction sets L0 = T for the given class of predictors and sets L = T for the given
reference class of predictors ⇧ref by default. In this case Asymmetric-Regret recovers typical regret,

Regret
�
A,⇧ref� = RegretAsymmetric,T

�
A(T ),⇧ref

T

�
.

However, if L0 < T , any upper bound on RegretAsymmetric,T

�
A(L0),⇧ref

T

�
immediately implies an

upper bound on Regret
�
A,⇧ref

�
since the algorithm A(T ) can choose to only use context length L0

and ignore the rest. Therefore, Asymmetric-Regret is a stronger notion than typically used.

2.2 SPECTRAL FILTERING

Spectral filtering is a notable deviation from the standard theory of linear dynamical systems that
allows efficient learning in the presence of arbitrarily long memory (Hazan et al., 2017b). The idea
is to project the sequence of inputs to a small subspace that is constructed using the special structure
of discrete linear dynamical systems. The output of the spectral filtering predictor is represented as

ŷt = yt�1 +
Xk

i=1
Miu(t�1):0�i, (2)

where u(t�1):0 2 Rdin⇥T is a matrix whose columns are the previous inputs ut�1, . . . , u0 (possibly
zero-padded as necessary), {�j}kj=1 are the T -dimensional spectral filters that can be computed
offline given the target sequence length T , and {Mi}ki=1 ⇢ Rdout⇥din are the matrices parameterizing
the model. These spectral filters are the eigenvectors of the matrix constructed as the average of outer
products of the discrete impulse-response functions as we now detail.

Let µ↵,T = (1� ↵)[1,↵,↵2, ...,↵T ] be the (weighted) impulse-response vector corresponding to a
one dimensional linear dynamical system with parameter ↵ unfolded to T time steps, and consider
the symmetric matrix

HT
def
=

Z 1

0
µ↵,Tµ

>
↵,T d↵. (3)

Since HT is a real PSD matrix, it admits a real spectral decomposition, and the (non-negative)
eigenvalues can be ordered naturally by their value. Let {(�j 2 R,�j 2 RL)}Lj=1 be the eigenvalue-
eigenvector pairs of HT ordered to satisfy �1 � �2 � . . . � �d. The spectral filters �1, ...,�k

are exactly those first k eigenvectors corresponding to the largest eigenvalues. The spectral filtering
class is further parameterized by matrices M1, ...,Mk 2 Rdout⇥din . The output at time t is then given
by equation equation 2.

The following theorem establishes that the spectral filtering class of predictors approximately con-
tains bounded linear dynamical systems with positive semi-definite A. The exact constants are left
out for simplicity of presentation, but appear in the original work.
Theorem 4 (Simplified from Hazan et al. (2017a)). Given any linear dynamical system
parametrized by A,B,C,D such that A is a PSD matrix with kAk  1, there exists matrices
M1, ...,Mk, such that for all T and all sequences u1:T , kutk  1, the following holds. Let yLDS

1:T be

5
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the sequence generated by execution of the LDS via equation 1 and ySF1:T be the sequence generated
by Spectral Filtering via equation 2. Then for all t 2 [T ],

kyLDS
t � ySFt k ⇠ e�

k
log(L) .

Theorem 4 establishes that Spectral Filtering can predict long memory sequences since the state-
ments holds even over marginally stable linear dynamical systems.

3 LEARNING WITH A SHORT CONTEXT—PROVABLE LENGTH
GENERALIZATION FOR LINEAR DYNAMICAL SYSTEMS

In Algorithm 1, we modify the classical online learning algorithm for spectral filtering to use a
shorter context window. To properly define our notion of length generalization, we need to distin-
guish between context lengths. Thus we introduce the notation for the loss observed with a context
length L: letting ŷ(M,L) denotes the prediction of yt using M = [M1, . . . ,Mk] and context win-
dow size L as in Eq. 4 of Algorithm 1 we have

`t(M,L)
def
= kŷ(M,L)� ytk2.

Note that this is overloaded notation compared with `t(y, y0) which measures the loss of the true y
with the predicted y0 as used in our definition of regret. To provide a precise statement on length

Algorithm 1 Spectral Filtering with Limited Context
1: Input: k > 0, T > 0, L > 0, r > 0. Initialize M1

i 2 Rdout⇥din for i 2 [k] and set M1 =
[M1

1 , . . . ,M
1
k ]. Let �1:k be the largest eigenvectors of HT defined in Eq. 3 with corresponding

eigenvalues �1:k, and let ⇡K(·) denote the projection to convex set K.
2: for t = 1, 2, ..., T do
3: Compute and predict

ŷt = yt�1 +
Xk

i=1
M t

i u(t�1):(t�L)(�
1/4
i �i). (4)

4: Observe yt, denote `t(M t, L) = kŷt � ytk2 and update and project onto the low Frobenius
norm ball

M̂ t+1  M t � ⌘trM `t(M
t)

M t+1 = ⇡K

⇣
M̂ t+1

⌘
,

where Kr =
�
M 2 Rk⇥dout⇥din s.t. kMik  r for all i 2 [k]

 
.

5: end for

generalization, we present the following performance guarantee. Note that we prove the following
for a (A,B,C, I)-LDS rather than (A,B,C,D) which is without loss of generality since we can
consider the input as Du1, . . . , DuT .
Theorem 5. Let T 2 Z � 0 and q 2 [0, 1]. Consider a sequence (y1, . . . , yT ) generated by an
unknown and noiseless linear dynamical system defined by matrices (A,B,C, I) as per Eq. 1. As-
sume the input sequence u0:(t�1) is sufficiently well-conditioned, satisfying

PT�1
t=0 (T � t)utu>

t ⌫⇣
2|C||B|p

T

⌘
I . Suppose the eigenvalues of A lie within the range

h
0, 1� log(T )

8T q

i
[
⇥
1� 1

2T 5/4 , 1
⇤
.

Let k = ⌦ (log(T ) · log (TdA)), r � kBkkCk, and assume T � (4k log(T )/kCkkBk)4. Algo-
rithm 1 satisfies:

RegretAsymmetric,T

�
A(T q),⇧SF

T

�
 O

⇣
kBk2kCk2k3/2 log(T )

p
T
⌘
.

The proof of Theorem 5 is in Appendix B with a high-level overview at the end of this section.
This theorem shows that the sequence M1, . . . ,MT constructed by Algorithm 1, even when using
a reduced context length of size T q , is able to achieve regret O(

p
T ) when compared to the best

6
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spectral filter that uses full context length T . To gain better understanding of the needed assumption
on the spectrum of A, first suppose that all the eigenvalues of A are bounded by 1 � �. Then the
extent to which the input ut�t0 affects the value of yt is roughly (1 � �)t0 , since the hidden state
is multiplied by A t0 many times. This becomes negligible when t0 is much larger than 1/� and
implies that ut�t0 may be forgotten. This intuition explains why length generalization is possible for
the first region of eigenvalues [0, 1� log(T )/(8T q)]. Indeed, letting � = log(T )/8T q and t0 = T q

(which is much bigger than 8T q/ log(T ) for large enough T ) we see that when the spectrum of A is
smaller than 1��, after t0 many steps we can forget about the previous inputs ut�t0 . The second part
of the range – i.e. that the spectrum of A can lie between [1� 1/(2T 5/4), 1]– is a special feature of
spectral filtering’s ability to efficiently capture long memory effects and is rather technical. The “bad
region“ is exactly the range where the eigenvalues aren’t small enough that ut�t0 can be forgotten
for t0 � T q , but also aren’t large enough that spectral filtering is naturally able to capture them.
Numerically, the range is very small for large T and reasonable q.

Motivated by the limitations of Theorem 5, in order to provide a length generalization that is robust
to the spectrum of A, we introduce a variation on the classical Spectral Filtering algorithm, presented
as Algorithm 2. This algorithm uses the two most previous outputs yt�1 and yt�2 when making a
prediction ŷt of yt.

This algorithm has a slightly different construction of spectral filters. Indeed, they are the eigenvec-
tors of the following matrix

NT
def
=

Z 1

0
µ̃↵,T µ̃

>
↵,T d↵, (5)

where µ̃↵,T
def
= (1�↵)2[1,↵,↵2, . . . ,↵T ]. Interestingly, just by using one extra autoregressive term,

our adapted algorithm is able to enjoy robust length generalization in the sense that whenever the
context window is at least T 1/4+✏ then no extra assumptions on the spectrum of A are necessary to
achieve our notion of length generalization. We state this formally in the following theorem.

Algorithm 2 Spectral Filtering with Limited Context and Two Autogressive Components
1: Input: k > 0, T > 0, L > 0, r > 0. Initialize M1

i 2 Rdout⇥din for i 2 [k] and set
M1 = [M1

1 , . . . ,M
1
k ]. Let �̃1:k be the largest eigenvectors of NT�2 defined in Eq. 5 with

corresponding eigenvalues �̃1:k, and let ⇡K(·) denote the projection to convex set K.
2: for t = 1, 2, ..., T do
3: Compute and predict

ŷt = 2yt�1 � yt�2 +M t
1ut�1 +M t

2ut�2 +
Xk

i=3
M t

i u(t�3):(t�L)(�̃
1/4
i �̃i).

4: Observe yt, denote `t(M t, L) = kŷt � ytk2 and update and project onto the low Frobenius
norm ball

M̂ t+1  M t � ⌘trM `t(M
t)

M t+1 = ⇡K

⇣
M̂ t+1

⌘
,

where Kr = {M = [M1, . . . ,Mk] s.t. kMik  r for all i 2 [k]}.
5: end for

Theorem 6. Let T 2 Z � 0 and q 2
h
1
4 + log(log(T )/8)

log(T ) , 1
i
. Consider a sequence (y1, . . . , yT )

generated by an unknown and noiseless linear dynamical system defined by matrices (A,B,C, I)
as per Eq. 1. Assume the input sequence u0:(t�1) is sufficiently well-conditioned, satisfying
PT�1

t=0 (T � t)utu>
t ⌫

⇣
2|C||B|p

T

⌘
I . Let k = ⌦ (log(T ) · log (TdA)), r � kBkkCk and assume

T � (4k log2(T )/kCkkBk)4. Algorithm 2 satisfies:

RegretAsymmetric,T

�
A(T q),⇧SF

T

�
 O

⇣
kBk2kCk2k3/2 log2(T )

p
T
⌘
.

The proof of Theorem 6 is in Appendix C and we now give a high-level overview.
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High-Level Proof Overview. The general proof technique for both Theorem 5 and Theorem 6
is the same. First, using standard online gradient descent results from Hazan et al. (2017b) we
prove that the iterates M t achieve O(

p
T ) regret as measured by the context-length restricted lossPT

t=1 `t(M,L). That is,
XT

t=1
`t(M

t, L)  min
M2Kr

XT

t=1
`t(M,L) +O(

p
T ). (6)

Next we prove that there is a unique M⇤
T which minimizes the loss on the full T -length context

and this M⇤
T achieves length generalization in the sense that it achieves small loss even when only

allowed to use context length L. That is
XT

t=1
`t(M

⇤
T , L) 

XT

t=1
`t(M

⇤
T , T ) +O(

p
T ). (7)

We combine Eq. 6 and Eq. 7 to get the final notion of length generalization that
TX

t=1

`t(M
t, L)  min

M2Kr

TX

t=1

`t(M,L)+O(
p
T ) 

TX

t=1

`t(M
⇤
T , L)+O(

p
T ) 

TX

t=1

`t(M
⇤
T , T )+O(

p
T ).

The difficult result to prove is Eq. 7. The high level idea is that when y1:t evolves as a noiseless LDS
and when the input u0:(t�1) is sufficiently well-conditioned, then

PT
t=1 `t(M,T ) is strongly convex

and the minimizer approximately recovers a collection of “true” matrices which are generated by
the underlying linear dynamical system. The second key idea is that if an algorithm had access to
these “true” matrices then it would be able to achieve small loss even when restricted to a small
context-length L ⌧ T . The extent to which these recovered matrices can achieve small loss when
restricted to the small context-length depends on the way the algorithm chooses to predict yt. In
the case of Algorithm 1 where yt is predicted based only using only one autoregressive term, even
having access to the true matrices is not enough to accurately predict yt. However, in the case
of Algorithm 2, having access to the true matrices as well as a second autoregressive term allows
accurate prediction of yt even when restricted to small context-length window.

4 EXPERIMENTS

4.1 LINEAR DYNAMICAL SYSTEM

We can empirically verify Theorem 5 and Theorem 6 in an online sequence prediction task
where the data is generated by a noiseless LDS. We refer to a “bad” region of eigenvalues�
1� log(T )/(8T 7/8), 1� 1/(2T 5/4)

�
as Region B, and we define Region A to hug Region B on

both sides as shown in Figure 1. Theorem 5 predicts that if all the eigenvalues lie outside Region B,

0 1

Region A

Region B

Figure 1: Region B is the interval of eigenvalues for which Theorem 5 does not provide length
generalization. Region A hugs both sides of Region B (Region A is [0.9·

�
1� log(T )/(8T 7/8)

�
, 1]\

Region B. This ensures that Region A will contain bad eigenvalues as q decreases from 7/8 and
eigenvalues in Region B are bad for q  7/8.

then spectral filtering will length generalize from T 7/8 to T . To confirm this, we generate a random
LDS (hidden dimension: 512) with half of its eigenvalues sampled from each part of Region A.
The online prediction losses are plotted in Figure 2 for different choices of context length T q , where
T = 214 and k = 24. As expected from the theory, context lengths approaching T 7/8 closely match
the performance of the optimal spectral filtering predictor with full context.

Interestingly, we see that context length T 1/2 consistently fails in a qualitatively worse fashion –
indeed, some of the values in Region A are actually “bad” for q = 1/2. This seems to suggest that
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such eigenvalues can actually cause instabilities with length generalization and are not limitations
of our proof – if true, such a fact could be seen as a partial converse to Theorem 5. To check this
conjecture empirically, we run another experiment where we generate a random LDS of hidden
dimension 512 with all eigenvalues in Region B and plot the prediction losses `t(M t, T q) for M t

from Algorithm 1 in Figure 3 (averaged over random seeds and smoothed). These results confirm
that (some subset of) this bad region is indeed what impedes the length generalization capability of
spectral filtering.

Figure 2: Loss for Algorithm 1
with eigenvalues in Region A.

Figure 3: Loss for Algorithm 1
with eigenvalues in Region B.

Figure 4: Loss for Algorithm 2
with eigenvalues in Region B.

Next we apply our novel Algorithm 2, which uses two autoregressive components. Theorem 6
predicts that this algorithm should be robust to this bad region of eigenvalues and instead achieve
length generalazation for any (symmetric, marginally-stable) LDS. We verify this experimentally
in Figure 4 – to be as adversarial as we can, this experiment is run with all eigenvalues sampled
from Region B. As predicted by Theorem 6, the second autoregressive component allows for robust
length generalization even with context lengths as small as

p
T .

4.2 INDUCTION HEADS

So far, we have demonstrated length generalization of spectral filtering on linear systems: when
trained with a shorter context length of T q it is able to compete with methods that have access to the
full context T (even on marginally-stable systems that can have arbitrarily large effective memory
lengths). This length generalization property is most crucial in deep learning applications, in which
multi-layer models are stacked (with added nonlinearities) to solve non-LDS sequence prediction
tasks.

As an empirical proof-of-concept to demonstrate that STU’s length generalization capability extends
to this regime, we evaluate it on the induction heads synthetic sequence modeling task, which is
commonplace in the language modeling literature (see Gu & Dao (2023)) and was experimentally
shown in Liu et al. (2024) to be efficiently solved by a two-layer STU. In the induction heads task,
the model is required to recall one token (sampled uniformly from a vocabulary) immediately after
a special flag token; the rest of the sequence consists of the same special blank token, which the
model should learn to ignore.

The STU architecture we use is composed of an embedding layer, two “tensordot” STU layers with
MLPs and ReLU nonlinearities, and an output projection layer (the same as in Liu et al. (2024))
with filters of length T = 256.

Following prior STU architecture implementations we use no autoregressive components, and so
any length generalization observed here comes directly from the filtering mechanism itself. We train
these models until convergence with a tuned Adam optimizer and various context lengths T q . The
vocabulary size is set to 4.

Accuracies are plotted in Figure 5 for evaluation task lengths increasing up to T . As we see, vanilla
STU models are able to nontrivially length generalize and occasionally retain good accuracy beyond
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Figure 5: Accuracies for STU models trained on an induction heads task of length T q and evaluated
on sequence lengths increasing up to T , averaged over random seeds. Models occasionally general-
ize all the way up to length T , as indicated by the large variance of evaluation accuracies.

their training context lengths, though inconsistently2. Importantly, unlike algorithms that achieve
length generalization through architectural modification, we simply just train with filters longer than
the train context. As such, this method allows for the convolutional mode during training and in-
herits all the benefits of STU that are demonstrated in Liu et al. (2024). For example, the nonlinear
selection mechanism of Gu & Dao (2023) allows for extreme length generalization on induction
heads without prior knowledge of the evaluation length, though at a cost to training efficiency, im-
plementation simplicity, and optimization complexity. We reiterate that our goal is not to navigate
such a tradeoff by modifying the STU model so that it length generalizes on induction heads, but
rather to exhibit a provable length generalization capability of the STU that comes for free from its
natural structure.

5 DISCUSSION

In review, we first introduced the notion of Asymmetric-Regret as a way to describe length gen-
eralization through the lens of online learning and regret minimization in games. We then proved
that the class of spectral filtering predictors naturally enjoys sublinear Asymmetric-Regret thereby
exhibiting length generalization without any change to the algorithm, albeit with some restrictions
on the underlying data (i.e. the spectrum of A). We introduced a new variant of spectral filtering
which uses two autoregressive components and achieves length generalization which is more robust
to the assumptions of the underlying data. Next, we used experiments on synthetic data generated
by an LDS to demonstrate the validity and sharpness of our theory and provided proof-of-concept
length generalization experiments on a synthetic nonlinear sequence prediction task.

Our theoretical results and initial empirical findings reveal that some type of length generalization
comes naturally with the spectral filtering algorithm. This result implies that spectral filtering is
powerful in its ability to learn the dynamics of a complicated underlying system with long memory
– it naturally handles the issue of what aspects in a sequence should be memorized for the future
and what aspects can be forgotten, whereas many existing methods are hand engineered depending
on the specific task. This adds to the already-exciting list of its useful (and provable) properties, in-
cluding: robustness to systems with long memory and large hidden dimension, efficient training via
convolutions, optimization convexity, and the existence of good parameter-efficient approximations.
Given recent successful applications of spectral filtering as the building block for STU models in
deep learning (Agarwal et al., 2023; Liu et al., 2024), it would be valuable to research how to best
take advantage of their length generalization capacity at scale – we leave this for future work.

2The large variance in Figure 5 is due to bimodality in the accuracies – often the model generalizes per-
fectly, though sometimes it fails. Overcoming this through regularization or optimization considerations is a
modeling question that ought to be studied in large empirical setups. We use this synthetic task strictly as a
proof-of-concept: length generalization in synthetic tasks can be very sensitive (compare Figures 5 and 6 in Je-
lassi et al. (2024), for example), and it can be difficult to know when length generalization on a certain task
informs us about real-world applications Ben-Kish et al. (2024). We leave a thorough empirical study on length
generalization in LLMs to future work.
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