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ABSTRACT

While DNNs achieve over-human performances in a number of areas, it is of-
ten accompanied by the skyrocketing computational costs. Co-exploration of an
optimal neural architecture and its hardware accelerator is an approach of rising
interest which addresses the computational cost problem, especially in low-profile
systems (e.g., embedded, mobile). The difficulty of having to search the large co-
exploration space is often addressed by adopting the idea of differentiable neural
architecture search. Despite the superior search efficiency of the differentiable co-
exploration, it faces a critical challenge of not being able to systematically satisfy
hard constraints, such as frame rate or power budget. To handle the hard constraint
problem of differentiable co-exploration, we propose ConCoDE, which searches
for hard-constrained solutions without compromising the global design objectives.
By manipulating the gradients in the interest of the given hard constraint, high-
quality solutions satisfying the constraint can be obtained. Experimental results
show that ConCoDE is able to meet the constraints even in tight conditions. We
also show that the solutions searched by ConCoDE exhibit high quality compared
to those searched without any constraint.

1 INTRODUCTION

The primary interest of most Deep Neural Network (DNN) researches has always been the applica-
tion performance (i.e., accuracy). However, it also led to the rapid growth in the network size that re-
quire immense computational resources for execution. In recent years, many works have appeared to
mitigate the resource problem, mostly belonging to one of these two categories – network-side opti-
mization and hardware-side optimization. Network-side optimization refers to refining the architec-
ture of a neural network to reduce computations while maintaining a comparable accuracy (Howard
et al., 2017; Sandler et al., 2018; Iandola et al., 2017; Zhou et al., 2016; Frankle & Carbin, 2019;
Gale et al., 2019; He et al., 2018; Zhu & Gupta, 2018; Renda et al., 2020). Hardware-side opti-
mization, on the other hand, often involves improving DNN execution efficiency by using optimized
hardware design, also known as hardware accelerators (Chen et al., 2016; Jouppi et al., 2017; Chen
et al., 2014; Jang et al., 2021; Lym et al., 2019). Unfortunately, effort from one side often hinders
the benefits coming from the other. For example, the main advantage of depth-wise separable con-
volution operation often used in MobileNet family (Howard et al., 2017; Sandler et al., 2018) comes
from its structure which uses a single channel for its operation. However, Google’s TPU (Jouppi
et al., 2017), a renowned accelerator, mainly utilizes channel-level parallelism for gaining speedup.
In consequence, MobileNet results in a poor execution time on TPUs (Gupta & Akin, 2020).

Co-exploration of hardware accelerator and network architecture (Li et al., 2020; Fu et al., 2021;
Choi et al., 2021; Abdelfattah et al., 2020; Hao et al., 2019; Lu et al., 2019; Yang et al., 2020) is
therefore a natural direction to fulfill both goals of accuracy and hardware metrics such as latency,
energy consumption and silicon chip area. To address the large search space of the co-exploration,
differentiable Neural Architecture Search (NAS) based methods (Choi et al., 2021; Li et al., 2020;
Fu et al., 2021) are considered as promising approaches due to their ability to quickly explore the
search space compared to its reinforcement learning based counterparts (Abdelfattah et al., 2020;
Hao et al., 2019; Lu et al., 2019; Yang et al., 2020).
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Unfortunately, differentiable co-exploration has a serious drawback of being unable to deal with
hard constraints that are critical in many real-world scenarios. For instance, one of the important
constraints of object detection system (Redmon et al., 2016) is to meet the frame rate of the camera
(e.g., 30 frames per second). In addition, a mobile subsystem running on a limited battery often
has a power budget given by the system design decision (Jang et al., 2021). Because differentiable
co-exploration methods rely on a single loss function, they often fail to satisfy the constraints, and
have to blindly undergo a several repetitions of hyper-parameter tuning and re-exploration.

In order to address the problem, we present ConCoDE (Constrained Codesign with Differentiable
Exploration), which enables hard-constrained differentiable co-exploration of neural architecture
and hardware accelerator. The key concept of our proposal is a gradient manipulation method that
ensures the solution does not drift away from meeting the constraints. In addition to the gradients
from the global loss function, we calculate the gradient of the hardware constraints, which is used
to manipulate the gradient of the global loss, if any constraint violations, such that i) the dot product
of the two are positive (i.e., they point to a similar direction), and ii) the direction can alleviate the
violation of the constraints (although it little sacrifices other objectives).

To the best of our knowledge, this is the first work that considers hard constraints in a differen-
tiable co-exploration problem. We conduct an extensive amount of evaluation to demonstrate that
ConCoDE can 1) satisfy the hardware constraints even under tight constraints and 2) the searched
solution does not compromise the quality (i.e., global loss function).

Our contributions can be summarized as follows.

• We propose a hard-constrained differentiable co-exploration method for network and ac-
celerator in order to find valid solutions without trial-and-errors.

• We propose using gradient manipulation to gradually move solutions towards the
constraint-satisfying region.

• We provide an extensive evaluation for ConCoDE to show the constraint-meeting capability
and efficiency of its search method.

2 RELATED WORK

2.1 NEURAL ARCHITECTURE SEARCH

Neural Architecture Search (NAS) refers to the technique of automating the neural network design
process. Starting from some of the early works (Zoph et al., 2018; Real et al., 2019), many have
grown to outperform human-designed architectures. Most common are the reward based methods
such as Reinforcement-Learning (RL). However, such RL-based methods (Zoph & Le, 2017; Baker
et al., 2017) require extensive search costs for evaluating every candidate network. Differentiable
NAS (Liu et al., 2019) has been proposed as an efficient alternative, where we can take advantage of
gradient flow in its update to reduce the huge time cost to a few orders of magnitude shorter time.

Regardless, optimizing solely on network performance is insufficient as they do not take hardware
efficiency into account. Some recent works (Cai et al., 2019b; Wu et al., 2019a) that address this
issue consider hardware costs on top of differentiable NAS by adding related loss terms. Some also
attempt to reduce the network size for latency constraints using simple latency models (Berman et al.,
2020; Nayman et al., 2021), but they cannot be used for co-exploration since the relation between
accuracy and latency is not reflected in the model, in addition to the lack of hardware accelerator
consideration.

2.2 RL-BASED CO-EXPLORATION

The early works on the co-exploration utilize RL-based method to leverage its simplicity. Each
candidate network is trained for evaluation, while the accelerator design is analyzed for hardware
efficiency. These values create rewards used by the agent to create the next candidate solution.

Hao et al. (2019) conducts FPGA/DNN co-exploration to achieve a high accuracy-low latency design
using coordinate descent. Lu et al. (2019) designed a framework that can jointly explore architecture,
quantization, and hardware search space. Following a previous work (Jiang et al., 2019) that consid-
ers FPGA implementation performance, Jiang et al. (2020) further expands it into co-exploration by
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Figure 1: A motivational experiment. In each plot, we swept the hyperparameter λ2 on the hardware
cost from 0.001 to 0.010. The results from three searches done in identical settings are depicted with
same colors with the average in the center as a larger dot. It is clear that the trajectory is not strictly
linear to λ2. Moreover, the variation within the same setting often overlaps that of the other settings,
demonstrating the difficulty of satisfying the hard constraint of the co-exploration problem.

enabling hardware design changes. Some recent works (Abdelfattah et al., 2020; Yang et al., 2020)
also take RL-based approach to navigate their co-exploration space.

These methods all inherit the same problem from RL-based NAS methods in which they require
expensive training to evaluate each candidate solution. To worsen the matter, co-exploration requires
even larger network/hardware search space than searching only for networks.

2.3 DIFFERENTIABLE CO-EXPLORATION

Li et al. (2020) was the first to express the network/hardware co-exploration problem as a differen-
tiable mathematical formulation. However, their search space for the accelerator is severely limited
to a single parameter that controls calculation parallelism. Auto-NBA (Fu et al., 2021) used a differ-
entiable accelerator search engine to build a joint-search pipeline, and DANCE (Choi et al., 2021)
trained auxiliary neural networks for hardware search and cost evaluation, which allowed gradient
descent to directly consider the relation between hardware cost and the network parameters. How-
ever, none of the above properly addresses the hard constraint problem. In this work, we propose a
holistic method of handling hard constraints on differentiable co-exploration.

3 DIFFICULTY OF HARD-CONSTRAINED DIFFERENTIABLE CO-EXPLORATION

The most straightforward and naı̈ve way to handle hard constraints within differentiable co-
exploration would be to change the relative weight to the hardware cost. For example, below is
a loss function from Cai et al. (2019b).

Loss = LossCE + λ1||w||22 + λ2Latency. (1)

By increasing λ2, we can instruct the search process to consider hardware metrics (e.g. latency,
energy) more and yield a result that is more optimized towards them. However, giving a larger
penalty only induces a soft guidance than a strict instruction, meaning it does not directly lead to
reduction in the value of constrained metric. Figure 1 plots how changing λ2 from 0.001 to 0.010
affects the latency/energy and the classification error for CIFAR-10 dataset. Searches were done
three times for each setting and plotted with same colors. Even though some trend is observed as
λ2 increases, inconsistency in both direction and variance of the trajectory is more dominant. Such
unpredictability makes it difficult to determine the appropriate magnitude of the hyperparameter that
is needed to meet the constraint. Thus, trying to match the given constraint can become an arduous
search that takes exhaustive amount of trials.

Some recent works tackle the hard constraint problem by introducing soft-constraints terms into the
loss function. For example, Cai et al. (2019b) adds (t/T )λ where t is the measured latency for a
searched network, T is the target latency and λ is a hyperparameter for controlling the accuracy and
latency trade-off. Similarly, Hu et al. (2020) uses λ ·max(t/T − 1, 0) instead, giving more explicit
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Figure 2: Our proposed method for hard constrained co-design. Left is a close-up of our co-design
module, and right is the depiction of gradient manipulation. Gradient of the loss from the co-design
module is manipulated using the gradient of the constraint to obtain a new gradient. This is used to
update the module in the direction of lowering the value of the constrained metric.

consideration of the target latency. Compared to the simple scaling, manipulating the slope condi-
tioned on the constraint offers more control. However, such methods does not guarantee satisfying
the hard constraint, and require multiple trial-and-errors until a valid solution is found.

Despite the difficulties that lie in tackling a hard-constrained co-design problem, designing an effec-
tive strategy to it is indeed necessary. We propose a gradient manipulation based methods that can
successfully achieve this goal.

4 HARD-CONSTRAINED CO-EXPLORATION

4.1 PROBLEM DEFINITION

The mathematical formulation of hard-constrained differentiable co-exploration is as below:
argmin
α,β

(LossNAS(w∗, net(α)) + λCost · CostHW (eval(α, β))),

s.t. w∗ = argmin
w

(LossNAS(w, net(α))),
(2)

while satisfying the hard constraint t ≤ T . α and β denote network architecture parameters and
hardware accelerator configuration, respectively. w is the weights of the supernet and net(α) is
the dominant network architecture selected. eval(α, β) indicates the hardware metrics evaluated
for α and β. Usually it includes the execution latency, energy consumption, and the chip area.
The objective of co-exploration is expressed using two distinct evaluation metrics, which are neural
architecture loss (LossNAS . e.g., accuracy) and hardware cost (CostHW ) defined from the user.
Our goal here is to find the α and β that minimize the combination of LossNAS and CostHW . Both
metrics are measured with optimal values of w that minimize each metric, respectively.

4.2 CO-EXPLORATION WITHOUT HARD CONSTRAINT

Conceptually similar to many appraised works, our approach towards searching in a co-exploration
space involves formulating the problem in a differentiable way. Figure 2 illustrates the overall ar-
chitecture of the proposed method. In the leftmost part is the network search module. Like most
differentiable NAS, this module searches for network architecture by choosing a path from the su-
pernet. The network structure is then fed to the evaluator module.

The evaluator eval() is implemented as a composition of a hardware generator gen() and an estima-
tor est(), where the hardware generator is jointly trained with the supernet training and the estimator
is pre-trained. With these, we convert the objective in Eq. 2 as below:

argmin
α

(LossNAS(w∗, net(α)) + λCost · CostHW (est(α, gen(v∗, α)))),

s.t. w∗ = argmin
w

(LossNAS(w, net(α))),

v∗ = argmin
v

(CostHW (est(α, gen(v, α)))),

(3)
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where v is the weights for the hardware generator.

The hardware generator gen() takes the architecture parameters and uses them to output the optimal
hardware implementation (β from Eq. 2). We used a five-layer Multi-Layer Perceptron (MLP)
with residual connections and ReLU as activation functions in between the layers. It is trained
simultaneously with the network search module each time to effectively adapt to the given constraint,
which varies under different scenarios. While the hardware cost function can take many forms, we
use the following simple linear combination of the three hardware metrics:

CostHW = λEEnergy + λLLatency + λAArea. (4)

The estimator est() shares a similar architecture to the generator, and is pre-trained using the output
from other cost estimation frameworks such as MAESTRO (Kwon et al., 2020), Timeloop (Parashar
et al., 2019), and Accelergy (Wu et al., 2019b). After pre-training, the entire evaluator is frozen
during the exploration and is only used to infer the hardware cost given a network architecture.

We use ProxylessNAS (Cai et al., 2019b) as our NAS backbone with path sampling to train α, but
our method is orthogonal to the NAS implementation and has the flexibility to choose from any
differentiable NAS algorithms. Using ProxylessNAS with an additional weight decay term, the
neural architecture loss becomes:

LossNAS = LossCE + λDecay||w||. (5)

4.3 HARD-CONSTRAINED CO-EXPLORATION WITH GRADIENT MANIPULATION

In addition to the differentiable co-exploration methodology, we suggest the novel idea of gradi-
ent manipulation as an effective solution to the hard constraint problem. Direct manipulation of
gradients is a strategy often used in achieving multiple goals, such as in continual learning (Saha
et al., 2021; Lopez-Paz & Ranzato, 2017), differential equations (Kim et al., 2021), or market pre-
diction (Li et al., 2021). In this paper, we present a solution to apply gradient manipulation to the
co-exploration problem in the interest of satisfying hard constraints.

Figure 2 shows a high-level abstraction of our gradient manipulation method. The main idea is to
artificially generate a force that can push the gradient in the direction that ‘agree’s with the constraint.
The conditions under which the method is applied to compute the new gradient g are defined as
below:

g =


gLoss , if t ≤ T

or t > T ∧ gLoss · gConst ≥ 0,
mα + gLoss , otherwise

(6)

gConst =
∂max(t− T, 0)

∂α
. (7)

In the above equation, gLoss is the original gradient from the global loss function defined as

Loss = LossNAS + λCost · CostHW , (8)

as in Eq. 3, and gConst is the gradient of constraint loss that we define as: Const = max(t− T, 0).
t denotes the current value of constrained metric outputted from est() such as latency or energy,
and T is the target value (e.g., 33.3 ms for latency). Note that t is a function of α, and thus can
be backpropagated to find the gradient with respect to α. There are two distinct outcomes that can
be obtained from the following cases. In an ideal case where the t ≤ T , the constraint is already
met so we do nothing to the gradient. In the unfortunate case when the constraint is not met, we
calculate for the dot product of the two gradients to determine the agreement in their direction. If
gLoss · gConst≥ 0 (i.e., the angle between two gradients is less than 90°), it means gradient descent
update will contribute towards satisfying the constraint. Thus it is interpreted as an agreement in
direction and the same gLoss is used unmodified. Top right of the Figure 2 depicts this scenario.
However, if they disagree as illustrated in bottom right of Figure 2 (i.e., gLoss · gConst< 0), we force
the gradient to shift its direction bymα, which is obtained from (mα+gLoss)·gConst≥ 0 to guarantee
decrease in target cost after gradient descent. It can be reformulated asmα·gConst+gLoss·gConst = δ
where δ≥ 0 is a small value for ensuring gradual movement towards satisfying the constraint.

For updating α and w, we solve for optimal mα with respect to α, which are the parameters for
the network architecture. To minimize the effect of mα on gLoss, we use a pseudoinverse-based
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solution (Ben-Israel & Greville, 2003) that is known to minimize the size of ||mα||22. Using the
pseudoinverse of gConst,

m∗α =
−(gLoss · gConst) + δ

||gConst||22
gConst. (9)

In order to control the magnitude of the pull, we use a small multiplying factor p > 0 on δ. The
policy for updating δ using p is as follows: Some initial value δ0 exists for δ. If the target metric
fails to meet the constraint, δ is multiplied by 1 + p to strengthen the pull (δ

′
= (1 + p)δ). In the

other case when the constraint is satisfied, δ is reset to its initial value (δ
′
= δ0).

Note that we also train our v, weights for the differentiable hardware generator using gradient de-
scent. Thus we compute for m∗v in the same manner, but instead use gCostHW

in place of gLoss for
updating the generator.

Although a single constraint is already a challenging target, our method can be further generalized
to accommodate multiple constraints. With the same idea of using inner products to determine
the consensus in directionality, now the gradient is modified only in the direction of individual
constraints that do not comply. We provide a more generalized formulation:

g =


gLoss , if

∧n
i=1(ti ≤ Ti)

or
∨n
i=1(ti > Ti) ∧ gLoss · gConst ≥ 0,

mα + gLoss , otherwise
(10)

gConst =
∂
∑n
i=1 max(ti − Ti, 0)

∂α
, (11)

where Const is now defined as a sum of n constrained hardware metrics, T as their target values,
and t denotes current values for each metric. mα is computed the same way using Eq. 9.

5 EXPERIMENTS

5.1 EXPERIMENTAL ENVIRONMENT

We have conducted the following experiments on ConCoDE using CIFAR10 (Krizhevsky et al.,
2009) and ImageNet ILSVRC2012 (Krizhevsky et al., 2012) dataset. All experiments are conducted
on PyTorch 1.9.0, CUDA 11.1 with an RTX3090 GPU.

As a neural architecture search backbone, we use ProxylessNAS (Cai et al., 2019b). The operation
search space per layer follows MobilenetV2 architecture (Sandler et al., 2018), which consists of
multiple settings of MBConv operation with kernel size {3, 5, 7} and expand ratio {3, 6}. The total
number of layers is 18 and 21 for CIFAR and ImageNet, respectively. Other settings for network
search phase are identical to the original paper of the backbone.

The backbone hardware accelerator is based on Eyeriss (Chen et al., 2016). The accelerator is com-
posed of a two-dimensional Processing Element (PE) array for parallel calculation. Each PEs has a
Multiply-Accumulate (MAC) unit attached to a register file. In addition, dataflow, the computation
order of DNN processing forms an important aspect that determines the efficiency of the data reuse.
Therefore, hardware accelerator design space comprises PE array size from 12×8 to 20×24, register
file size per PE from 16B to 256B, and dataflow in Weight-Stationary (WS) similar to (Jouppi et al.,
2017), Output-Staionary (OS) similar to (Du et al., 2015) and Row-Stationary (RS) similar to (Chen
et al., 2016).

To train the estimator, we first build a dataset by randomly sampling 10.8M network-accelerator
pairs (2.95e−9 % of the total search space) from our search space which are evaluated on hardware
metrics using Timeloop (Parashar et al., 2019) and Accelergy (Wu et al., 2019b). Using this dataset,
the estimator network is trained for 200 epochs with the batch size of 256. The weight update is
done using Adam optimizer with the learning rate of 1e-4. For all the hardware metrics reported, we
have used the direct evaluation on the designed hardware from Timeloop and Accelergy instead of
the values outputted by the estimator to avoid any possible error in the learned model.

Evaluation of network performance is done by training the final network architecture, which we
train from scratch for 300 epochs using the batch size of 64. We use SGD optimizer with Nesterov
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Figure 3: Co-exploration results. (left) and (mid) represent the Latency and (right) represent the
hardware cost. Colored marks are hard-constrained and should result in a lower value than the
horizontal line of the same color.

momentum (Nesterov, 1983), and cosine learning rate scheduling with 0.008 as its initial value,
while weight decay term and momentum is 1e-3 and 0.9 respectively. Augmentation for the train
data is adopted from AutoAugment (Cubuk et al., 2019), on both CIFAR and ImageNet dataset.

5.2 EXPERIMENTAL RESULTS

Figure 3 plots the co-exploration experimental results from multiple techniques, on Proxyless-
NAS (Cai et al., 2019b) backbone and CIFAR-10 dataset. In the experiments, we have set three
different constraints for the latency: 16.6ms, 33.3ms, and 66.6ms, which correspond to 60 frames
per second (fps), 30 fps, and 15 fps, respectively. For comparison, we implemented the following:

• NAS only: A plain neural architecture search only, where a best-effort hardware accelerator
was designed after the NAS has been complete. Multiple solutions were found by setting
various λ2 (the flops penalty term) from Eq. 1.

• Unconstrained: Co-exploration based on ConCoDE without hard constraints, similar to
the differentiable co-exploration methods by Choi et al. (2021) or Fu et al. (2021). As
in NAS only method, multiple solutions were found by scaling λCost of Eq. 8 without
changing the cost function itself.

• Soft Constraint: To represent the conventional method of using soft constraints, we have
added the term λSoft ·max(t/T − 1, 0) to CostHW as in (Hu et al., 2020).

• ConCoDE: The proposed method with p = 1e−2.

In all experiments, we have used λE = 2.9, λL = 6.2, and λA = 1.0 from Eq. 4 to make a fair
comparison. For the NAS only method, hardware cost function was used just for the hardware
design phase. For evaluation on a different cost function, please refer to the appendix.

Figure 3 (left) and (mid) shows the relation between error and latency. The colored horizontal bars
represent the three latency targets we have applied. It can be easily seen that all solutions found by
ConCoDE satisfy the given hard constraints. For a tight constraint of 16.6ms, most solutions have
latency values just below 16.6ms. On the other hand, solutions for 66.6ms, a relatively loose con-
straint, yields some solutions far below the constraint, because those solutions exhibit better global
loss (Eq. 8). Soft-constraint based methods, however, often fail to meet the constraints, as depicted
with the diamond markers placed over the same-colored horizontal lines. As tighter the constraint
gets, the more they fail to meet the constraints. Solutions from ‘Unconstrained’ co-exploration and
‘NAS only’ demonstrate that getting a trade-off between latency (constrained metric) and accuracy
is possible, but there is no control for enforcing a solution with certain target value.
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Table 1: Experimental Results Showing the Quality of Solutions
Index Constrained Latency (ms) Energy (mJ) Chip Area (mm2) Error (%) CostHW Global Loss

A

Unconst. Original 69.23 37.00 2.53 4.10± 0.16 21.84 0.632
Latency 43.99 21.79 2.10 4.20± 0.07 13.87 0.624
Energy 51.98 29.18 2.53 4.38± 0.17 17.44 0.630
Chip Area 64.00 34.82 2.53 4.05± 0.06 20.56 0.629
All 63.72 12.09 1.86 4.12± 0.18 13.29 0.623

B

Unconst. Original 49.65 27.53 2.53 4.22± 0.06 16.67 0.638
Latency 48.02 27.33 2.53 4.27± 0.09 16.41 0.644
Energy 95.02 24.45 1.89 4.05± 0.10 20.76 0.648
Chip Area 54.74 29.81 2.53 4.11± 0.13 17.96 0.645
All 41.32 08.59 1.86 4.35± 0.05 09.50 0.629

C

Unconst. Original 56.11 29.81 2.53 4.11± 0.10 18.13 0.662
Latency 51.81 09.49 1.89 4.38± 0.11 11.06 0.645
Energy 44.78 24.38 2.53 4.12± 0.02 15.15 0.656
Chip Area 53.37 26.63 2.10 4.43± 0.07 16.44 0.668
All 41.53 08.81 1.86 4.48± 0.20 09.59 0.645

*Bold colored numbers indicate that they are under constraint of the same colored non-bold numbers.

5.3 SOLUTION QUALITY FOUND BY CONCODE

Figure 3 (right) plots CostHW and error together, which allows evaluating quality of the solutions.
Because Figure 3 (left) and (mid) overlook the other hardware metrics (energy and chip area), com-
paring theCostHW and error together is required for evaluation of the solution quality. Even though
the global loss function differs in individual solutions, plotting CostHW and error in two indepen-
dent axes allows a fair comparison in terms of Pareto-optimality.

From the plot, it is clear that the co-exploration methods (ConCoDE, Soft Constrained, and Un-
constrained) yield solutions of better quality than the ‘NAS only’. On the other hand, quality of
solutions from ConCoDE shows no particular degradation from the others.

To further study the quality of the solutions found by ConCoDE, we have conducted another set of
experiments. We selected a few solutions found from ‘Unconstrained’ method as ‘anchor’ solutions
and listed them in Table 1. From those, we chose either one or all three of the hardware metrics
to be fixed as the hard constraint, and performed co-explorations using ConCoDE. Because it is
guaranteed that such solution exists, a good method should be able to find a solution meeting the
constraint, of at least a similar quality. The results are shown in Table 1. As in the Section 5.2, all
of the 12 cases we have examined succeeded in finding a valid solution. Sometimes, the resulting
hardware metrics were much small than the targets, but in those cases, the error was larger than that
of the anchors, and show similar global loss values.

5.4 RESULTS FROM IMAGENET DATASET

Table 2 shows the exploration results from ImageNet (ILSVRC2012) dataset (Krizhevsky et al.,
2012). We have performed an unconstrained co-exploration. Then, similar to Table 1, hard-
constrained co-exploration was performed using the values from unconstrained co-exploration as
anchors. As the results show, ConCoDE satisfies the latency/energy constraints with competitive
global loss values.

5.5 SENSITIVITY STUDY ON PULLING CONTROL

In ConCoDE, p is the only tuning knob that controls the pulling magnitude. Figure 4 illustrates how
the global loss and latency changes over latency-constrained (33.3 ms) explorations, with varying p
of 1e-2, 7e-3, and 4e-3.

Table 2: Experimental Results for ImageNet

Constrained Latency (ms) Energy (mJ) Chip Area (mm2) Error (%) CostHW Global Loss

Unconstrained 165.98 47.35 2.56 25.46 29.37 2.043
Latency 84.47 36.20 2.40 26.22 20.64 2.053
Energy 78.75 32.23 2.40 27.94 18.68 2.130
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Figure 4: Sensitivity to p on ConCoDE. The red lines represents latency constraint at 33.3 ms.

Regardless of the value of p, the curve for the constrained value shows a similar trend. At the
beginning, the global loss becomes mainly optimized, while the latency stays steady for certain
number of epochs. During this phase the pulling magnitude δ (See Eq. 9) is still growing, and
is not strong enough to make meaningful changes. At certain point (around epoch 40 in p=1e-2),
δ becomes strong enough to pull the solution towards lowering latency. In this phase, the global
loss slightly increases due to a stronger movement towards latency optimization. When the latency
satisfies the constraint (< 33.3ms), global loss starts to decrease while maintaining the latency at
the same level. The latency occasionally increases above the target, but it is quickly pulled down
within a few steps. Altering p changes when the latency drop starts while the shape of the curves
are similar to others. One interesting aspect is that regardless of the value, there is no significant
discrepancy between the final solution in terms of the global loss and the latency, which shows that
ConCoDE is relatively insensitive to the hyperparameter p.

6 DISCUSSION

One-shot NAS methods. Recently, one-shot NAS methods (Cai et al., 2019a; Guo et al., 2019;
Nayman et al., 2021) are drawing much attention, which trains the supernet only once and searches
for a sub-network for a given purpose. However, one-shot NAS method is not a directly satisfying
solution for the constrained co-search task. First, hardware metrics of each network need to be
measured on the whole hardware accelerator search space, then compared with each other, which is
a non-trivial process that takes a long time. Furthermore, cost for training the entire supernet itself is
often multiple times more expensive than that of a conventional differentiable NAS, and searching
for each subnetwork is also costly, making the break-even number of deployments very high.

Nonetheless, if multiple deployments are planned over diverse constraints, we believe ConCoDE
can utilize one-shot NAS as its backbone thanks to its differentiability. One way to apply one-shot
NAS method onto ConCoDE is to attach differentiable architecture selector on pre-trained supernet.
Since both components are differentiable neural networks, gradient manipulation technique can be
applied to them in a coherent manner. Expanding our experiment further to include one-shot NAS
as our network search backbone is left as future work.

Expanding Design Space. One might wonder whether the scheme used in ConCoDE can be applied
to other co-exploration methods. For example, Li et al. (2020) and Fu et al. (2021) optimize the
quantization level of each layer in addition to the neural architecture. We believe ConCoDE can
accommodate such additional design space into consideration. Provided that there exists a analytic
or simulation model for those additional spaces (which is not difficult to build), satisfying hard-
constraint through gradient manipulation is likely to work with little extra effort.

7 CONCLUSION

In this paper, we proposed ConCoDE, a hard-constrained differentiable co-exploration method for
neural network and hardware accelerator. By conditionally applying gradient manipulation that
moves the solution towards meeting the constraints, hard constraints can be reliably satisfied with
high-quality solutions. We believe this proposal would ease the development of DNN based systems
by a significant amount.
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Figure 5: Experimental results for energy- and area- constrained co-exploration. Results in (a) and
(b) are the energy-constrained and those in (c) and (d) are area-constrained exploration.

A ENERGY- AND AREA-CONSTRAINED SOLUTIONS

Figure 5 plots the co-exploration results similar to Figure 3 when energy and area are constrained.
We have set 10mJ as the energy target, and 2mm2 as the area target. As shown in the figure, all
solutions found by ConCoDE meet the constraints, and the resulting constrained values are closer
to the target than that of the soft-constrained search. Area constraints are relatively easier to satisfy,
because the chip area depends solely on the accelerator design, and is independent of the neural
network architecture. Therefore, both ConCoDE and the soft constrained method were able to satisfy
the constraint with similar quality.

B RESULTS ON AN ALTERNATIVE CostHW

Figure 6 presents the co-exploration performed on a different hardware cost function. We have used
λE = 9.5, λL = 4.4, and λA = 1.0, which is a more energy-oriented setting than that from the
experiments in the main body. Despite the difference in the CostHW , the results of co-exploration
shows the same observations. ConCoDE achieves solutions within constraint, and soft-constrained
exploration misses the target especially when the constraint is tight. Also, the overall quality of the
solution found by ConCoDE is of at least similar quality compared to the other methods.
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Figure 6: Co-exploration results on an alternative CostHW .
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Table 3: Experimental Results on CIFAR-100 Dataset

Constrained Latency (ms) Energy (mJ) Chip Area (mm2) Error (%) CostHW Global Loss

16.6ms (60 fps) 16.34 8.82 2.23 22.90± 0.51 6.81 1.588
7.23 3.68 1.95 26.21± 0.35 3.92 1.718

33.3ms (30 fps) 33.24 19.38 2.53 20.89± 0.42 12.27 1.539
29.94 15.58 2.10 21.37± 0.22 10.32 1.568

66.6ms (15 fps) 57.76 31.94 2.53 20.33± 0.21 18.95 1.518
43.45 22.40 2.10 20.73± 0.11 13.98 1.560

C RESULTS ON CIFAR-100 DATASET

Table 3 presents the co-exploration performed on CIFAR-100 dataset. For the three latency target
values (16.6ms, 33.3ms, and 66.6ms) ConCoDE found a number of solutions. For each target
value, we chose one at the lowest error, and another at the lowest CostHW . They all satisfy the con-
straints, with different trade-offs. Interestingly, the pair of accelerator designs found from 33.3ms
and 66.6ms constraints were identical. This is because when the dataset and the backbone network
architecture is decided, the number of channels as well as the spatial dimension of the activation
map are fixed. These values govern most of the parallelism that can be exploited by the accelerator
and thus the solutions ended up in a convergent evolution.

D BACKGROUND ON HARDWARE ACCELERATORS FOR DNNS

To overcome the ever-increasing computational intensity of the DNN execution, much efforts to
accelerate the processing by specialized hardware have been made from both industry and academia.

The DNN accelerators usually focus on the parallel computation of MAC (Multiply-Accumulate)
operation and local data reuse. For the parallel computation, DNN accelerators often utilize a two-
dimensional mesh array of PEs (Processing Elements) that is connected to a global buffer that tem-
porarily stores data for rapid accesses. Each PE computes an element-wise multiplication of a input
activation and a weight parameter in a collaborative way for neural network operations.

Another important aspect of accelerator efficiency is data reuse, which attempts to reduce the main
memory access by utilizing limited amount of on-chip buffers and register files. This essentially
converts to the problem of organizing calculation order of loops in DNN processing. The DNN layer
usually consists of multiple computational loops. For example, a CNN layer calculation comprises
seven for-loop dimensions, consisted of (H ,W ,C) for input activation, (R,S,K) for kernel weight,
and (N ) for batch size.

The scheme that maps and orders these loops is commonly called dataflow and this is closely re-
lated to architecture design philosophy. Many pieces of research about dataflow have been made
to achieve a different aspect of hardware efficiency. Weight-Stationary (WS, Jouppi et al. (2017)),
Output-Stationary (OS, Du et al. (2015)), and Row-Stationary (RS, Chen et al. (2016)) dataflow poli-
cies are renowned examples. Each has its own advantages, such as energy efficiency (RS), execution
time (WS), or on-chip memory requirement (OS) as well as the parallelism they utilize.

Table 4: Details of Selected Solutions

Constraint Evaluated Metrics Network Stats Hardware Design

Error (%) Latency (ms) CostHW #Layers #Parameters PEX PEY RF Dataflow

16.6ms (60 fps) 4.58± 0.11 15.86 07.22 13 0.88 M 16 16 4 WS
5.31± 0.05 08.66 04.27 7 0.36 M 16 8 4 WS

33.3ms (30 fps) 4.30± 0.17 31.86 10.73 16 1.0 M 20 8 4 WS
4.70± 0.11 29.67 07.14 10 0.62 M 12 8 64 RS

66.6ms (15 fps) 4.00± 0.11 60.90 19.66 18 1.5 M 16 16 4 WS
4.19± 0.12 63.81 13.27 17 1.1 M 12 8 64 RS
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In the co-exploration problem, the task of hardware accelerator design is to decide those factors,
such that it fits well with the neural architecture being co-designed. Among many design factors, we
chose number of PEs along the two dimensions, register file size, and dataflow as our search space.

E DETAILS OF SELECTED SOLUTIONS

In this section, we present some details of a few selected solutions from that of Figure 3 in Table 4.
As in Table 3, for each of the three constraint, we chose one solution that shows the best accuracy
(the lowest error), and another that shows the best CostHW . One noticeable trend is that for tighter
latency constraints, the networks get smaller with less parameters and layers. This shows that the
network capacity had to be traded off with latency to meet the constraint. Also, there were more
solutions with row-stationary (RS) for the best CostHW solution, which aligns with the previous
findings (Chen et al., 2016).
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