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ABSTRACT

Contrastive learning often relies on comparing positive anchor samples with mul-
tiple negative samples to perform Self-Supervised Learning (SSL). However,
non-contrastive approaches like BYOL, SimSiam, and Barlow Twins achieve
SSL without explicit negative samples. In this paper, we introduce a unified
matrix information-theoretic framework that explains many contrastive and non-
contrastive learning methods. We then propose a novel method Matrix-SSL based
on matrix information theory. Experimental results reveal that Matrix-SSL signifi-
cantly outperforms state-of-the-art methods on the ImageNet dataset under linear
evaluation settings and on MS-COCO for transfer learning tasks. Specifically,
when performing 100 epochs pre-training, our method outperforms SimCLR by
4.6%, and when performing transfer learning tasks on MS-COCO, our method
outperforms previous SOTA methods such as MoCo v2 and BYOL up to 3.3% with
only 400 epochs compared to 800 epochs pre-training.

1 INTRODUCTION

Self-supervised learning (SSL) has achieved remarkable performance on various tasks like image
classifications and segmentations and even outperforms the supervised counterparts (Chen et al.,
2020a; Caron et al., 2021; Li et al., 2021; Zbontar et al., 2021; Bardes et al., 2021). Contrastive
learning is an important type of self-supervised learning method. For example, SimCLR (Chen et al.,
2020a) uses InfoNCE (Oord et al., 2018) loss to do contrastive self-supervised learning, and has
been proved to exactly perform spectral clustering on similarity graph (Tan et al., 2023). Spectral
contrastive loss (HaoChen et al., 2021) is a variant of SimCLR and also has been proven to be doing
spectral clustering under similar settings. The empirical success of contrastive learning has spurred a
number of theoretical explorations into the contrastive loss (Arora et al., 2019; HaoChen et al., 2022;
Tosh et al., 2020; 2021; Lee et al., 2020; Wang et al., 2022b; Nozawa & Sato, 2021; Huang et al.,
2021; Tian, 2022; Hu et al., 2022).

Recently, many researchers have been exploring non-contrastive self-supervised learning without
explicit negative samples using various different losses (BYOL (Grill et al., 2020), SimSiam (Chen
& He, 2021), Barlow Twins (Zbontar et al., 2021), VICReg (Bardes et al., 2021), MEC (Liu et al.,
2022), etc). Many theoretical studies have also paid attention to the intrinsic mechanism behind
non-contrastive SSL methods. For example, Garrido et al. (2022) established the duality between
contrastive and non-contrastive methods, and Balestriero & LeCun (2022) unveiled the links of some
contrastive and non-contrastive methods to spectral methods.

In this paper, we propose a unified matrix information-theoretic framework to analyze contrastive and
non-contrastive learning methods. Our investigation starts from the observation that loss functions
of these methods are mostly based on Z1 and Z2, two feature representation matrices derived from
data augmentations. Inspired by this, we extend classical concepts like entropy, KL divergence,
and cross-entropy to their matrix counterparts, facilitating a more expressive representation of the
associated loss functions.

In particular, from the matrix cross-entropy (MCE) perspective, SimCLR loss is optimizing the
diagonal of MCE, while non-contrastive learning methods like SimSiam or BYOL either aim to
maximize some trace norm or strive to align the covariance matrix closely with the identity matrix.
Interestingly, previous methods like Barlow Twins or MEC can also be succinctly derived as loss
functions based on MCE, a connection not obvious in their original descriptions.
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Leveraging this novel framework, we propose Matrix-SSL, a natural extension of the uniformity
and alignment idea from Wang & Isola (2020). This algorithm comprises two components of loss
functions: Matrix-KL-Uniformity and Matrix-KL-Alignment. The former employs MCE to align
the cross-covariance matrix between Z1 and Z2 with the identity matrix Id, while the latter directly
aligns the auto-covariance matrix of Z1 and Z2.

In experimental evaluations, our method Matrix-SSL outperforms state-of-the-art methods (SimCLR,
BYOL, SimSiam, Barlow Twins, VICReg, etc.) by a large margin on ImageNet datasets, especially
under linear evaluation settings, our method uses only 100 epochs pre-training can outperform
SimCLR 100 epochs pre-training by 4.6%. For transfer learning tasks such as COCO detection and
COCO instance segmentation, our method outperforms previous SOTA methods such as MoCo v2
and BYOL up to 3% with only 400 epochs compared to 800 epochs pre-training.

In summary, our contributions can be listed as three-fold:

• We present a matrix information-theoretic interpretation of uniformity pursuit in Self-Supervised
Learning.

• Rooted in matrix information theory, we propose matrix-alignment loss and Matrix-SSL to directly
optimize matrix KL divergence and matrix cross-entropy, and outperform SOTA methods on
linear probing and COCO transfer learning tasks.

• We examine the rank-increasing phenomenon, and link it to the matrix entropy and uniformity
pursuit, then explain the effectiveness of our method.

2 RELATED WORK

Contrastive and non-contrastive SSL approaches. Contrastive and non-contrastive self-supervised
learning methods learn representations based on diverse views or augmentations of inputs, and they
do not rely on human-annotated labels (Chen et al., 2020a; Hjelm et al., 2018; Wu et al., 2018; Tian
et al., 2019; Chen & He, 2021; Gao et al., 2021; Bachman et al., 2019; Oord et al., 2018; Ye et al.,
2019; Henaff, 2020; Misra & Maaten, 2020; Caron et al., 2020; HaoChen et al., 2021; Caron et al.,
2021; Li et al., 2021; Zbontar et al., 2021; Tsai et al., 2021b; Bardes et al., 2021; Tian et al., 2020;
Robinson et al., 2021; Dubois et al., 2022; Kim et al., 2023). These representations can be used for
various of downstream tasks, achieving remarkable performance and even outperforming supervised
feature representations. In our work, we propose to directly minimize the matrix KL divergence and
matrix cross-entropy in the pursuit of alignment and uniformity, with strong minimization property
and convexity.

Theoretical understanding of self-supervised learning. The empirical success of contrastive
learning has triggered a surge of theoretical explorations into the contrastive loss (Arora et al., 2019;
HaoChen et al., 2021; 2022; Tosh et al., 2020; 2021; Lee et al., 2020; Wang et al., 2022b; Nozawa
& Sato, 2021; Huang et al., 2021; Tian, 2022; Hu et al., 2022; Tan et al., 2023). Wang & Isola
(2020) shed light on the optimal solutions of the InfoNCE loss, decomposing it as alignment term and
uniformity term, contributing to a deeper comprehension of self-supervised learning. In HaoChen
et al. (2021); Shen et al. (2022); Wang et al. (2022b); Tan et al. (2023), self-supervised learning
methods are examined from a spectral graph perspective. Alongside these black-box interpretations
of contrastive learning, Saunshi et al. (2022); HaoChen & Ma (2022) argue that inductive bias also
has significant influences on the downstream performance of self-supervised learning. Cabannes
et al. (2023) introduces a theoretical framework that elucidates the intricate relationship among the
selection of data augmentation, the design of network architecture, and the training algorithm.

Various theoretical studies have also investigated non-contrastive methods for self-supervised learn-
ing (Wen & Li, 2022; Tian et al., 2021; Garrido et al., 2022; Balestriero & LeCun, 2022; Tsai
et al., 2021b; Pokle et al., 2022; Tao et al., 2022; Lee et al., 2021). Garrido et al. (2022) establishes
the duality between contrastive and non-contrastive methods. Balestriero & LeCun (2022) reveal
the connections between variants of SimCLR, Barlow Twins, and VICReg to ISOMAP, Canonical
Correlation Analysis, and Laplacian Eigenmaps, respectively. The fact that a method like SimSiam
does not collapse is studied in Tian et al. (2021). The loss landscape of SimSiam is also compared to
SimCLR’s in Pokle et al. (2022), which shows that it learns bad minima. A variant of Barlow Twins’
criterion is also linked to a variant of HSIC in Tsai et al. (2021b). The use of data augmentation in
sample-contrastive learning has also been studied from a theoretical standpoint in Huang et al. (2021);
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Wen & Li (2021). In our work, we present a unified matrix information-theoretic understanding of
several renowned self-supervised learning methods from the matrix-information-theoretic uniformity
and alignment pursuit.

Neural collapse and dimensional collapse. Papyan et al. (2020) describe the intriguing phe-
nomenon of Neural Collapse (NC), which manifests when training a classification network with
cross-entropy loss. This phenomenon can be summarized that all the features of a single class
converge to the mean of these features. In addition, the class-means form a simplex equiangular
tight frame (ETF). Zhuo et al. (2023) advocate for a comprehensive theoretical understanding of
non-contrastive learning through the mechanism of rank differential. We briefly introduce NC and
ETF in Appendix D. In our work, we discovered the exact closed-form relationships among effective
rank, matrix entropy, and other matrix information-theoretic quantities.

3 BACKGROUND

Self-supervised learning (SSL) aims to learn meaningful representations from unlabeled data {xi}ni=1,
which can be used to enhance performance in various downstream tasks. Prominent SSL architectures
like SimCLR, SimSiam, BYOL, Barlow Twins, VICReg, etc. employ 2-view (can be generalized
into multi-view) augmentations: an online network fθ and a target network fϕ. Given a mini-batch
{xi}Bi=1, each data point xi is augmented using a random transformation T from a predefined set τ
to obtain x′

i = T (xi). These original and augmented data points are processed through the respective
networks to generate feature representations zi1 and zi2, both residing in Rd. The resulting matrices
Z1 and Z2 ∈ Rd×B form the basis for the training loss L(Z1,Z2), which varies based on the learning
paradigm—contrastive or non-contrastive. In this work, we extend this framework through matrix
information theory, providing a unified understanding of both paradigms.

3.1 CONTRASTIVE SSL APPROACHES

The idea of contrastive learning is to make the representation of similar objects align and dissimilar
objects apart. One of the widely adopted losses in contrastive learning is the SimCLR (Chen et al.,
2020a) (InfoNCE (Oord et al., 2018)) loss which is defined as follows (where we use cosine similarity
sim(u,v) = u⊤v/∥(u∥2∥v∥2)):

LSimCLR(zi, zj) = − log
exp (sim (zi, zj) /τ)∑2B

k=1 1[k ̸=i] exp (sim (zi, zk) /τ)
. (1)

Recently, Tan et al. (2023) have proved that SimCLR is essentially running spectral clustering on
similarity graph (induced by augmentation process), while HaoChen et al. (2021) have proved that
spectral contrastive loss is also performing spectral clustering on augmentation graph.

3.2 NON-CONTRASTIVE SSL APPROACHES

SimSiam (Chen & He, 2021) employ negative cosine similarity as its loss function, which can also
be considered as the mean squared error of ℓ2-normalized vectors ziv (i ∈ {1, · · · , B}, v ∈ {1, 2})
which are used in BYOL (Grill et al., 2020):

LSimSiam = −
B∑
i=1

zi1
⊤
zi2 = − tr

(
Z⊤

1 Z2

)
= − tr

(
Z1Z

⊤
2

)
. (2)

LBYOL =

B∑
i=1

∥zi1 − zi2∥22 = 2B − 2 tr
(
Z⊤

1 Z2

)
= 2B − 2 tr

(
Z1Z

⊤
2

)
. (3)

Barlow Twins (Zbontar et al., 2021) and VICReg (Bardes et al., 2021) aim for similar objectives:
making the cross-correlation matrix as close to the identity matrix as possible, while also reducing
redundancy among features. The Barlow Twins loss is:

LBT =

d∑
i=1

(
1−

(
Z1Z

⊤
2

)
ii

)2
+ λBT

d∑
i=1

d∑
j ̸=i

(
Z1Z

⊤
2

)2
ij
. (4)

3



Under review as a conference paper at ICLR 2024

The loss function of Variance-Invariance-Covariance Regularization (VICReg) by Bardes et al.
(2021) can be formalized as:

LVICReg =α

d∑
k=1

max

(
0, 1−

√
Cov(Z,Z)k,k

)
+ β

d∑
j=1

d∑
k ̸=j

Cov(Z,Z)2k,j

+
γ

N

B∑
i=1

B∑
j=1

(G)i,j ∥Zi,. − Zj,.∥22 .

(5)

Where Cov denotes the covariance matrix. Here we use the notations from Balestriero & LeCun
(2022), denoting a known pairwise positive relation between samples in the form of a symmetric
matrix G ∈ {0, 1}N×N where (G)i,j = 1 iff samples xi and xj are known to be semantically
related, and with 0 in the diagonal.

The Total Coding Rate (TCR) and MCR2 method (Ma et al., 2007; Li et al., 2022; Tong et al., 2023),
which is grounded in coding theory and compression theory, has following loss function:

LTCR = −1

2
log det

(
Id +

d

Bϵ2
ZZ⊤

)
, (6)

Recent work ColorInfomax (Ozsoy et al., 2022) aims at capturing the linear dependence among
alternative representations, their loss function can be written down as:

LColorInfoMax =− log det (Cov(Z1,Z1) + εI)− log det (Cov(Z2,Z2) + εI)

− 2

εB

∥∥∥Z(1) − Z(2)
∥∥∥2
F
.

(7)

Given that both the online and target networks are approximations of the feature map f , we can
use the cross-covariance between Z1 and Z2 to approximate ZZ⊤, resulting in the maximal entropy
coding (MEC) loss (Liu et al., 2022):

LMEC = −µ log det

(
Id +

d

Bϵ2
Z1Z

⊤
2

)
= −µ tr

(
log

(
Id +

d

Bϵ2
Z1Z

⊤
2

))
, (8)

Another possible formulation for the multi-views (Siamese as 2-views) network architecture could be
to use the concatenated representations of different views (Tong et al., 2023):

LEMP-TCR = −µ log det

(
Id +

d

Bϵ2
Z̃Z̃⊤

)
. (9)

where z̃i = [zi1
⊤
, zi2

⊤
, · · · , zin

⊤
]⊤ ∈ Rnd is the concatenated representation (row vector) of n views

for image xi, and Z̃ = [z̃1, z̃2, · · · , z̃B ].

3.3 MATRIX INFORMATION-THEORETIC QUANTITIES

Definition 3.1 (Matrix entropy for positive semi-definite matrices). For a positive semi-definite
matrix A ∈ Rn×n, the matrix entropy is defined as:

ME(A) = − tr(A logA) + tr(A) = −
n∑

i=1

λi log λi +
∑
i

λi.

where log denotes the principal matrix logarithm (Higham, 2008). For zero eigenvalues, we define
log(0) := 0. Our proposed matrix entropy generalizes the definition of von Neumann entropy (von
Neumann, 1932; Witten, 2020), which is restricted to density matrices with unit trace: VNE(Â) =

− tr(Â log Â), s.t. tr(Â) = 1.
Definition 3.2 (Matrix KL divergence for positive semi-definite matrices). For two positive semi-
definite matrices P,Q ∈ Rn×n, the matrix KL divergence is defined as:

MKL(P||Q) = tr(P logP−P logQ−P+Q). (10)
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Our matrix KL divergence generalizes the definition of quantum (von Neumann) KL divergence
(relative entropy) (von Neumann, 1932; Witten, 2020; Bach, 2022), which is also restricted to density
matrix with unit trace: QKL(Â||B̂) = − tr

(
Â log Â− Â log B̂

)
, s.t. tr(Â) = tr(B̂) = 1.

In the same spirit that classical cross-entropy is often easier to optimize compared to classical KL
divergence, we introduce the matrix cross-entropy:

Definition 3.3 (Matrix Cross-Entropy (MCE) for positive semi-definite matrices). For two positive
semi-definite matrices P,Q ∈ Rn×n, the matrix cross-entropy is defined as:

MCE(P,Q) = MKL(P||Q) +ME(P) = tr(−P logQ+Q). (11)

Lemma 3.4. For any non-zero matrix A ∈ Rm×n, AA⊤ is positive semi-definite.

Proof. If not specified, we present proofs in the Appendix C.

Notice that we generalize quantum information quantities into positive semi-definite matrices without
unit trace constraints, and the trio of matrix entropy, matrix KL divergence, and matrix cross-entropy
exactly mirror the classical Shannon information-theoretic quantities, respectively.

3.4 EFFECTIVE RANK

Roy & Vetterli (2007) introduced the concept of effective rank, which provides a real-valued extension
of the classical rank.

Definition 3.5 (Effective rank (Roy & Vetterli, 2007)). The effective rank of a non-all-zero A ∈
Cn×n, denoted erank(A), is defined as

erank(A) ≜ exp {H(p1, p2, . . . , pn)} , (12)

where pi =
σi∑n

k=1 σk
, {σi|i = 1, · · · , n} are the singular values of A, and H is the Shannon entropy

defined as H(p1, p2, . . . , pn) = −
∑n

i=1 pi log pi, with the convention that 0 log 0 ≜ 0.

We now then provide a proposition that closely relates effective rank and matrix information-theoretic
quantities, suppose we have l2 normalized representations Z = [f(x1), · · · ,f(xB)] ∈ Rd×B .

Proposition 3.6. Matrix entropy is a special case of matrix KL divergence to the uniform distribution
1
dId, and it has the following equality with connection to effective rank.

ME(
1

B
ZZ⊤) = −KL(

1

B
ZZ⊤ || 1

d
Id) + log d+ 1,

erank(
1

B
ZZ⊤) = exp (ME(

1

B
ZZ⊤)− 1) = exp (VNE(

1

B
ZZ⊤)).

4 MATRIX INFORMATION-THEORETIC PERSPECTIVES OF SELF-SUPERVISED
LEARNING

Building upon the spectral clustering property inherent in contrastive learning—most notably in the
SimCLR and spectral contrastive loss (HaoChen et al., 2021; Tan et al., 2023), which means that
contrastive learning is more suitable for performing classification tasks other than dense feature tasks
such as object detection and instance segmentation, which has been empirically validated by (Hua,
2021; Grill et al., 2020), we want to design other loss functions that can be used to get diverse features
for dense prediction tasks.

We employ matrix KL divergence and matrix cross-entropy (MCE) as canonical metrics for comparing
positive semi-definite matrices since they have strong minimization properties as shown below.

Proposition 4.1 (Minimization property of matrix KL divergence).

argminQ≻0 MKL(P ||Q) = P. (13)
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Proposition 4.2 (Minimization property of matrix cross-entropy).

argminQ≻0 MCE(P,Q) = P. (14)

Proposition 4.3 (Balestriero & LeCun (2022); Van Assel et al. (2022)). SimCLR (InfoNCE) loss
can be seen as matrix cross-entropy with an element-wise logarithm. When the relation matrix is a
diagonal matrix, SimCLR’s element-wise logarithm loss is equivalent to matrix cross-entropy (where
G is defined in Section 3.2).

Ldiag
SimCLR = −

2B∑
i=1

(G)i,i log
(
Ĝ(Z)i,i

)
= − tr

(
(Gdiag) log

(
Ĝdiag(Z)

))
. (15)

From Proposition 4.3, we find that SimCLR loss is not canonical for achieving matrix information-
theoretic uniformity unless the relation matrix is diagonal (which is explicitly presented in the
objective of de-correlation-based methods such as Barlow Twins and VICReg), we consider a
natural way to achieve this without resorting to feature decorrelation and whitening methods, directly
optimizing the covariance (auto-correlation) matrices.

Given a batch of B data points {xi}Bi=1, and their l2 normalized representations Z =
[f(x1), · · · ,f(xB)] ∈ Rd×B , from Lemma 3.4, we know that matrix information-theoretic quanti-
ties are well-defined. We design the following loss function to pursue uniformity, resulting in the
following λ-regularized (λ ≥ 0) Uniformity-MCE loss:

LUMCE = MCE

(
1

d
Id + λId,

1

B
ZZ⊤ + λId

)
, (16)

This MCE-based uniformity loss definition and its Matrix-KL divergence based counterpart are
closely related are closely related to the Total Coding Rate (TCR) and MCR2 method (Ma et al.,
2007; Li et al., 2022; Tong et al., 2023), which is grounded in coding theory and compression theory.
(Notice that in our experiments, the λ in MCE loss is robust and can even be set as 0.)

Theorem 4.4. Given a batch of B data points {xi}Bi=1, and their l2 normalized representations
Z = [f(x1), · · · ,f(xB)] ∈ Rd×B , define λ-regularized (λ ≥ 0) Uniformity-MKL loss LUMKL as:

LUMKL = MKL

(
1

d
Id + λId

∣∣∣∣ ∣∣∣∣ 1BZZ⊤ + λId

)
, (17)

Assume that λ = ϵ2

d in TCR loss 6. Then, LUMCE and LUMKL can be expressed in terms of LTCR as:

LUMKL = (1 + dλ)(log
1 + dλ

λd
+ 2LTCR),

LUMCE = (1 + dλ) (− log λ+ 1 + 2LTCR) .

This proposition encapsulates the relationship between Uniformity-MCE, Uniformity-MKL, and
TCR losses, showing they are equivalent, up to constant terms and factors. From Proposition 4.1, 4.2,
joint convexity of matrix KL (Lindblad, 1974) and Theorem 4.4, we have the following theorem.

Theorem 4.5 (Minimization property of TCR loss). Given a batch of B data points {xi}Bi=1, and their
l2-normalized representations Z = [f(x1), · · · ,f(xB)] ∈ Rd×B , the global and unique minimizer
under the constraint ∥zi∥22 = 1, for i ∈ {1, 2, · · · , B} of TCR loss is 1

BZZ⊤ = 1
dId.

Proposition 4.6 (Taylor expansion of TCR loss (Liu et al., 2022)). The Taylor series expansion of
the Total Coding Rate (TCR) loss LTCR around the zero matrix 0 can be expressed as:

LTCR(Z) = − d

2Bϵ2
tr(ZZ⊤) +

d2

4B2ϵ4
tr(ZZ⊤ZZ⊤) +O

((
d

Bϵ2
ZZ⊤

)3
)
. (18)

For SimSiam in Eqn. (2) and BYOL in Eqn. (3), the losses focus on the trace of ZZ⊤, which
corresponds to the linear term in the Taylor series expansion of LTCR. This makes it a first-order
approximation of the TCR loss, emphasizing linear relationships between features.
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Notice that we have

tr
(
Z1Z

⊤
2 Z1Z

⊤
2

)
=

d∑
i=1

(
Z1Z

⊤
2

)2
ii
+

d∑
i=1

d∑
j ̸=i

(
Z1Z

⊤
2

)2
ij
,

The second term of Barlow Twins loss in Eqn. (4) is captured in the second-order term of the Taylor
expansion of LTCR, thus making it a second-order approximation. This allows Barlow Twins to
capture higher-order statistics of the feature space. For VICReg, the analysis is similar.

The MEC loss defined in Eqn. (8) can be formulated in terms of Matrix Cross-Entropy (MCE) as
below:

LMEC = µ

(
MCE(Id, Id +

d

Bϵ2
Z1Z

⊤
2 )− tr

(
Id +

d

Bϵ2
Z1Z

⊤
2

))
= µ

(
MCE(Id, Id +

d

Bϵ2
Z1Z

⊤
2 )− d− d

Bϵ2
tr
(
Z⊤

1 Z2

))
.

(19)

Now we see that this formulation based on matrix KL divergence, MCE, and TCR unifies a range of
self-supervised learning methods—SimCLR, SimSiam, BYOL, Barlow Twins, VICReg, MCR2,
MEC and EMP-SSL—providing a unified perspective that encompasses both contrastive and
non-contrastive paradigms, or in other words, sample-contrastive and dimension-contrastive
methods (Garrido et al., 2022).

5 MATRIX INFORMATION-THEORETIC UNIFORMITY AND ALIGNMENT FOR
SELF-SUPERVISED LEARNING

From the uniformity principle discussed in Section 4, we aim to ensure that the embeddings have
zero mean and a covariance matrix equal to 1

dId. To align the mean embedding, we can center the
embeddings. The following theorem demonstrates that optimizing a matrix uniformity loss LMCE can
achieve both mean alignment and covariance uniformity in the embeddings.

Theorem 5.1. Let x be a random vector with a distribution supported on the unit hypersphere Sd−1.
If the covariance matrix of x, denoted by C(x), has the maximal possible effective rank d and a trace
of at least one, then the expected value of x will be zero, and C(x) will equal 1

dId.

To achieve matrix information-theoretic uniformity, we propose the following matrix cross-entropy
(MCE) based uniformity loss, where C(Z1,Z2) =

1
B−1Z1HBZ

⊤
2 represents the sample covariance

matrix for simplicity:

LMatrix-KL-Uniformity = MCE

(
1

d
Id,C (Z1,Z2)

)
= MKL

(
1

d
Id ||C (Z1,Z2)

)
+ME

(
1

d
Id

)
= MKL

(
1

d
Id ||C (Z1,Z2)

)
+ Const.

(20)

For ease of optimization, a regularization term λId may be added to the cross-covariance to ensure it is
non-singular. This adjustment aligns with TCR and MEC methods, differing mainly in mean normal-
ization. An alternative approach is the auto-covariance uniformity loss

∑
i MCE

(
1
dId,C (Zi,Zi)

)
,

which is left for future exploration. Interestingly, the first and second terms of the ColorInfomax loss
in Eqn. (7) correspond to uncentered auto-covariance MCE.

5.1 MATRIX INFORMATION-THEORETIC ALIGNMENT

To directly optimize the alignment of representations in self-supervised learning, we propose the
following loss function focusing on the matrix KL divergence between two covariance matrices:

LMatrix-KL-Alignment = MKL(C(Z1,Z1)||C(Z2,Z2))

= MCE (C(Z1,Z1),C(Z2,Z2))−ME(C(Z1,Z1)).
(21)
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Applying the stop gradient technique to the first branch Z1, as utilized in SimSiam Hua (2021),
renders the second term ME(C(Z1,Z1)) a constant in the Matrix-KL-Alignment loss. Even without
the stop gradient, this term can be integrated into the Matrix-KL-Uniformity loss.

Lemma 5.2 (Frobenius norm and trace operator).

||P−Q||2F = ||P||2F + ||Q||2F − 2 tr(P⊤Q).

From Lemma 5.2 and considering the self-adjoint nature of covariance matrices, we observe that
various self-supervised learning methods optimize a similar objective involving Frobenius norm,
namely SimSiam (Eqn. (2)), BYOL (Eqn. (3)), the third term in VICReg (Eqn. (5)), the last term of
MEC (Eqn. (19)), and the third term of the ColorInfoMax loss (Eqn. (7)), also the alignment term
in spectral contrastive loss (HaoChen et al., 2021). These methods effectively target −∥Z1 − Z2∥2F
(since ∥Z1Z

⊤
1 ∥F and ∥Z2Z

⊤
2 ∥F are constant). This optimization converges to Z1 = Z2, which

is also a feasible global minimizer of LMatrix-KL-Alignment. However, this loss has a broader solution
space: Z1Z

⊤
1 = Z2Z

⊤
2 . In the context of aligning the covariance matrices Z1Z

⊤
1 and Z2Z

⊤
2 , the

key objective is not merely aligning the feature matrices Z1 and Z2 themselves but rather ensuring
the covariance matrices of C(Z1,Z1) and C(Z2,Z2) are identical. This alignment maintains the
overarching structure of the data representations, accommodating feature space transformations.

This broader solution space in the optimization landscape allows for a more flexible and nuanced
approach to learning representations. The goal extends beyond making Z1 and Z2 identical, it offers
a larger feasible solution space to balance the pursuit of uniformity and alignment.

5.2 MATRIX-SSL: UNIFORMITY AND ALIGNMENT

As we have presented an improved loss for uniformity, now generalizing Wang & Isola (2020)’s ax-
iomatic understanding of contrastive learning, we propose the matrix information-theoretic uniformity
and alignment framework to improve self-supervised learning:

LMatrix-SSL = LMatrix-KL-Uniformity + γ · LMatrix-KL-Alignment. (22)

6 DIMENSIONAL COLLAPSE, EFFECTIVE RANK AND MATRIX ENTROPY

Revisiting Section 4, we established the relationship between dimension-contrastive self-supervised
learning and matrix information-theoretic uniformity. This connection leads us to evaluate the extent
of “uniformity” (dimensional collapse), we will first discuss the close relationship of effective rank
and matrix entropy (and von Neumann entropy).

6.1 EFFECTIVE RANK AND RANK INCREASING PHENOMENON

Zhuo et al. (2023) find an intriguing phenomenon that during the optimization course of self-
supervised learning, the effective rank of the feature (empirical) covariance matrix consistently
increases.

We have presented Proposition 3.6 in Section 3.4 which captures the closed-form relationship among
effective rank and matrix information-theoretic quantities. Note the batch auto-correlation matrix
is a positive semi-definite matrix with all of its diagonal 1. As we have mentioned earlier, many
dimension-contrastive losses can be understood from the matrix information-theoretic uniformity
viewpoint. As such, during training the matrix KL divergence minimizes, thus 1

BZZ⊤ is anticipated
to progressively align more with 1

dId. By the fact that 1
dId achieves the maximal possible (matrix)

entropy, the rank-increasing phenomenon (Zhuo et al., 2023) can be well understood. Thus we may
treat the effective rank as an exact metric to measure the extent of the dimensional collapse.

Feature representations acquired through a deep neural network employing a cross-entropy (CE)
loss optimized by stochastic gradient descent, are capable of attaining zero loss (Du et al., 2018)
with arbitrary label assignments (Zhang et al., 2021). A phenomenon known as neural collapse
(NC) (Papyan et al., 2020) is observed when training of the neural network continues beyond zero loss
with CE. Based on this, we propose to use effective rank as a tool to investigate the difference between
supervised, contrastive, and feature contrastive methods, more details can be found in Appendix E.
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7 EXPERIMENTS

7.1 EXPERIMENTAL SETUP

Dataset and data augmentations. We implement our proposed Matrix-SSL method on the self-
supervised learning task of ImageNet (Deng et al., 2009) dataset. We use precisely the same data
augmentation protocols and hyperparameters with previous baselines such as BYOL (Grill et al.,
2020), SimSiam (Chen & He, 2021) and MEC (Liu et al., 2022), etc. In detail, our augmentation
protocol consists of random cropping, color jittering, color dropping (grayscale), left-right flipping,
Gaussian blurring, and solarization. We augment each image twice to get two different views during
each training iteration. For more on experiment details, please refer to Appendix F.

Pseudo-code. The pseudo-code for Matrix-SSL is shown as Algorithm 1 in the Appendix.

7.2 EVALUATION RESULTS

Table 1: Linear evaluation results (Top-1 ac-
curacy) on ImageNet dataset with different pre-
training epochs using ResNet50 backbone, Bold
means the best, underline means the second.

Method Pre-training Epochs

100 200 400

SimCLR 66.5 68.3 69.8
MoCo v2 67.4 69.9 71.0

BYOL 66.5 70.6 73.2
SwAV 66.5 69.1 70.7

SimSiam 68.1 70.0 70.8
Barlow Twins 67.3 70.2 71.8

VICReg 68.6 − −
MEC 70.6 71.9 73.5

Matrix-SSL (Ours) 71.1 72.3 73.6

Linear evaluation. We follow the standard lin-
ear evaluation protocol (Chen et al., 2020a; Grill
et al., 2020; Chen & He, 2021). We freeze the
parameters of the backbone encoder and then
connect a linear classification layer after it, and
train the linear layer in the supervised setting.
During training, each image is augmented by
random cropping, resizing to 224×224, and ran-
dom horizontal flipping. At test time, each im-
age is resized to 256×256 and center cropped
to 224× 224.

Linear evaluation of the Top-1 accuracy result
pre-trained with 100, 200, and 400 epochs on
ImageNet (Deng et al., 2009) dataset was shown
in Table 1. Notice that we use ResNet50 back-
bone as default for a fair comparison. Matrix-
SSL consistently outperforms baselines across
various pre-training epochs.

Transfer learning. Following the common protocol of previous works (Chen et al., 2020b; Chen &
He, 2021; Liu et al., 2022), we finetune the pre-trained models on MS-COCO (Lin et al., 2014) object
detection and instance segmentation tasks. Table 2 summarizes experiment results of baseline models
and Matrix-SSL. The experiment showed that Matrix-SSL consistently outperformed the baselines. It
is worth mentioning that Matrix-SSL was only pre-trained for 400 epochs, but it already performed
better than all the baselines pre-trained for 800 epochs.

Table 2: Transfer learning on object detection and instance segmentation tasks. For a fair
comparison, we employ a 2-view setting for all methods. We finetune models pre-trained on
ImageNet, with exactly the same experiment settings as SimSiam and MEC. All baseline models are
pre-trained with 800 or 1000 epochs, and our model is pre-trained with 400 epochs. Bold means
the best, underline means the second.

Method COCO detection COCO instance segmentation

AP50 AP AP75 APmask
50 APmask APmask

75

SimCLR 57.7 37.9 40.9 54.6 33.3 35.3
MoCo v2 58.9 39.3 42.5 55.8 34.4 36.5

BYOL 57.8 37.9 40.9 54.3 33.2 35.0
SwAV 58.6 38.4 41.3 55.2 33.8 35.9

Barlow Twins 59.0 39.2 42.5 56.0 34.3 36.5
SimSiam 59.3 39.2 42.1 56.0 34.4 36.7
VICReg - 40.0 - - - 36.7

MEC 59.8 39.8 43.2 56.3 34.7 36.8

Matrix-SSL (400 Epoch) 60.8 41.0 44.2 57.5 35.6 38.0
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Göran Lindblad. Expectations and entropy inequalities for finite quantum systems. Communications
in Mathematical Physics, 39:111–119, 1974. 6

Xin Liu, Zhongdao Wang, Ya-Li Li, and Shengjin Wang. Self-supervised learning via maximum
entropy coding. Advances in Neural Information Processing Systems, 35:34091–34105, 2022. 1, 4,
6, 9, 26, 27

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with restarts. CoRR,
abs/1608.03983, 2016. URL http://arxiv.org/abs/1608.03983. 26

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct, 2023. 15

Jiawei Ma, Chong You, Sashank J Reddi, Sadeep Jayasumana, Himanshu Jain, Felix Yu, Shih-Fu
Chang, and Sanjiv Kumar. Do we need neural collapse? learning diverse features for fine-grained
and long-tail classification. OpenReviewNet, 2023. 23

Yi Ma, Harm Derksen, Wei Hong, and John Wright. Segmentation of multivariate mixed data via lossy
data coding and compression. IEEE transactions on pattern analysis and machine intelligence, 29
(9):1546–1562, 2007. 4, 6

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representations.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
6707–6717, 2020. 2

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In
International Conference on Machine Learning, 2010. 26

Kento Nozawa and Issei Sato. Understanding negative samples in instance discriminative self-
supervised representation learning. Advances in Neural Information Processing Systems, 34:
5784–5797, 2021. 1, 2

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018. 1, 2, 3

Serdar Ozsoy, Shadi Hamdan, Sercan Arik, Deniz Yuret, and Alper Erdogan. Self-supervised learning
with an information maximization criterion. Advances in Neural Information Processing Systems,
35:35240–35253, 2022. 4

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652–24663, 2020. 3, 8, 23, 24, 26

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open
dataset of high-quality mathematical web text. arXiv preprint arXiv:2310.06786, 2023. 15

12

http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1608.03983


Under review as a conference paper at ICLR 2024
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A CONCLUSION

In this paper, we provide a matrix information-theoretic perspective for understanding the self-
supervised learning methods. We are confident that our perspective will not only offer a refined and
alternative comprehension of self-supervised learning methods but will also act as a catalyst for the
design of increasingly robust and effective algorithms in the future.

B MATRIX CROSS-ENTROPY FOR LARGE LANGUAGE MODELS

We further introduce representation learning into the language model regime and use the
matrix cross-entropy loss to fine-tune large language models, achieving SOTA results on the
GSM8K dataset for mathematical reasoning with 72.3% accuracy using a 7B model, with a
margin of 3.1% over standard cross-entropy loss on the GSM8K dataset, and even surpassing
the Minerva 540B model.

Now let us try to pre-train / fine-tune large language models with MCE. Consider the target distribution
p given by the training corpus (which is typically one-hot) and the output distribution q given by
the output of the language model. Suppose we have l2 normalized representation vectors ei ∈ Rd

(column vectors) for tokens vi, i ∈ [n], where n is the vocabulary size. One could use LM head
embeddings, word embeddings, or any other representation vectors of the models. In our experiments,
we use the LM head embeddings as default.

The main intuition behind our method is that the similarity among the representation vector of
different words (tokens) can be utilized to address the synonym phenomenon and polysemous
phenomenon within natural language.

For example, “Let ’s think step by step” should be similar to “Let us think step by step”. This intricate
part hasn’t been captured by the classical cross-entropy loss.

For auto-regressive LLMs with tokens k ∈ {1, 2, · · · ,K}, we define positive semi-definite matrices
P ∈ Rd×d and Q ∈ Rd×d as below:

P(k) =
∑
i

(
p
(k)
i · eie⊤i

)
, Q(k) =

∑
j

(
q
(k)
j · eje⊤j

)
.

Then we define the following loss as our objective:

LMatrix-LLM =
∑
k

CE(p(k),q(k)) +
∑
k

MCE(P(k),Q(k))

= −
∑
k

∑
i

pki log q
(k)
i −

∑
k

tr(P(k) logQ(k)) +
∑
k

tr
(
Q(k)

)
.

(23)

B.1 EXPERIMENTS ON FINE-TUNING LLMS

Training Pipeline. We use Llemma-7B (Azerbayev et al., 2023) as the base model, which is the
CodeLLaMA model continue pretrained on Openwebmath dataset (Paster et al., 2023). We then use
LMatrix-LLM to fine-tune it on the MetaMath dataset (Yu et al., 2023).

We evaluated the performance of different models on the mathematical reasoning dataset
GSM8K (Cobbe et al., 2021) and MATH dataset (Hendrycks et al., 2021), using different loss
functions and training methods.

Experimental Results. The results was shown in Table 3. We compared our results against baseline
methods, including Minerva (Lewkowycz et al., 2022), WizardMath (Luo et al., 2023), and MetaMath
(Yu et al., 2023) + Llemma (Azerbayev et al., 2023) using CE.

15



Under review as a conference paper at ICLR 2024

Model Training method GSM8K (%) MATH (%)
Minerva 8B CE 16.2 14.1
Minerva 62B CE 52.4 27.6
Minerva 540B CE 58.8 33.6
WizardMath 7B RL 54.9 10.7
WizardMath 13B RL 63.9 14.0
WizardMath 70B RL 81.6 22.7
LLaMA2 70B CE 56.8 13.5
MetaMath 7B CE 66.5 19.8
Llemma 7B CE 36.4 18.0
Llemma-MetaMath 7B CE 69.2 30.0

Llemma-MetaMath 7B CE + MCE 72.3 (+3.1) 30.2 (+0.2)

Table 3: Comparison of different models on mathematical reasoning benchmarks.

ARCHITECTURE OF MATRIX-SSL

Figure 1: Illustration of the architecture of Matrix-SSL, we directly optimize the matrix KL divergence
between covariance matrices, achieving higher-order uniformity and alignment.

PSEUDO-CODE

Pseudo-code. The pseudo-code for Matrix-SSL is shown below.

C APPENDIX FOR PROOFS

Proof of Lemma 3.4.

Proof. Consider any non-zero matrix A ∈ Rm×n. We want to show that AA⊤ is positive semi-
definite.

Recall that a matrix B is positive semi-definite if for all vectors x ∈ Rm, it holds that x⊤Bx ≥ 0.
We will apply this definition to AA⊤.

Consider any vector x ∈ Rm. We compute x⊤(AA⊤)x as follows:

x⊤(AA⊤)x = (x⊤A)(A⊤x)

= ∥A⊤x∥2.
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Algorithm 1: PyTorch-style Pseudo-code for Matrix-SSL
# f: encoder network
# B: batch size
# LMatrix-Uniformity: Matrix-KL-uniformity loss
# LMatrix-KL-Alignment: Matrix-KL-alignment loss
# γ: weight ratio between Matrix-KL-Uniformity term and
Matrix-KL-Alignment term
for X in loader:

# augment a batch of B images in X
X1, X2 = aug(X), aug(X)

# calculate l2 normalized embeddings
Z1, Z2 = f(X1), f(X2)

# calculate uniformity and alignment loss
uniformity loss = LMatrix-KL-Uniformity(Z1,Z2)
alignment loss = LMatrix-KL-Alignment(Z1,Z2)

# calculate loss
loss = uniformity loss + γ * alignment loss

# optimization step
loss.backward()
optimizer.step()

The last equality holds because the expression (x⊤A)(A⊤x) represents the squared norm of the
vector A⊤x.

Since the squared norm of any vector is always non-negative, ∥A⊤x∥2 ≥ 0 for any x ∈ Rm.

Therefore, x⊤(AA⊤)x ≥ 0 for all x ∈ Rm, which means that AA⊤ is positive semi-definite.

This completes the proof.

Proof of Proposition 3.6. Recall the definition of matrix KL divergence:

KL(P ||Q) = tr(P logP−P logQ−P+Q),

Substitute P = 1
BZZ⊤ and Q = 1

dId into this:

KL

(
1

B
ZZ⊤ || 1

d
Id

)
= tr

(
1

B
ZZ⊤ log

(
1

B
ZZ⊤

)
− 1

B
ZZ⊤ log

(
1

d
Id

)
− 1

B
ZZ⊤ +

1

d
Id

)
= tr

(
1

B
ZZ⊤ log

(
1

B
ZZ⊤

)
+

log d

B
ZZ⊤ − 1

B
ZZ⊤ +

1

d
Id

)
= −VNE

(
1

B
ZZ⊤

)
+

log d

B
tr(ZZ⊤)− 1

B
tr(ZZ⊤) +

1

d
tr(Id)

= −VNE

(
1

B
ZZ⊤

)
+ log d− 1 +

d

d

= −VNE

(
1

B
ZZ⊤

)
+ log d,

From this, we conclude that:

VNE

(
1

B
ZZ⊤

)
= −KL

(
1

B
ZZ⊤ || 1

d
Id

)
+ log d.
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ME

(
1

B
ZZ⊤

)
= VNE

(
1

B
ZZ⊤

)
+ tr

(
1

B
ZZ⊤

)
= VNE

(
1

B
ZZ⊤

)
+ 1.

The effective rank is defined as:

erank(A) = exp {H(p1, p2, . . . , pn)},

If we substitute A = 1
BZZ⊤ and given that VNE

(
1
BZZ⊤) is the entropy of the eigenvalue distribu-

tion of 1
BZZ⊤, then we could directly relate erank

(
1
BZZ⊤) and VNE

(
1
BZZ⊤):

erank

(
1

B
ZZ⊤

)
= exp

{
VNE

(
1

B
ZZ⊤

)}
= exp

{
ME

(
1

B
ZZ⊤

)
− 1

}
.

Proof of Proposition 4.1.

Proof. The proof is straightforward by using eigendecomposition and the minimization property of
classical KL divergence between positive measures. Below is an alternative proof using gradient.

First, recall that for two positive semi-definite matrices P,Q ∈ Rn×n, the matrix KL divergence is
defined as:

KL(P ||Q) = tr(P logP−P logQ−P+Q).

We want to show that:
argminQ≻0 KL(P ||Q) = P.

Consider the constrained optimization problem:

min
Q≻0

KL(P ||Q).

To find the stationary points of KL(P ||Q), we first take the gradient with respect to Q:

∇Q KL(P ||Q) = −PQ−1 + I,

where I is the identity matrix.

Setting the gradient equal to zero and solving for Q:

−PQ−1 + I = 0 =⇒ PQ−1 = I =⇒ Q = P.

To ensure that the solution is indeed a minimum, we need to verify the second-order conditions. The
Hessian of KL(P || Q) with respect to Q is a bit complicated to compute directly. However, one
can verify that the function is convex with respect to Q by proving that for all X ∈ Rn×n:

X⊤∇2
Q KL(P || Q)X ≥ 0.

In this case, the function KL(P || Q) is convex with respect to Q and hence, Q = P is indeed the
global minimum.

We have shown that the function KL(P || Q) has a stationary point at Q = P and that this point is a
global minimum, thereby proving the proposition:

argminQ≻0 KL(P ||Q) = P.
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Proof of Proposition 4.2.

Proof. The matrix cross-entropy is defined as:

MCE(P,Q) = tr(−P logQ+Q).

Taking the derivative of MCE with respect to Q :

∂MCE
∂Q

= −PQ−1 + I.

where we used the fact that the derivative of logQ with respect to Q is Q−1.

Setting the derivative to zero gives:

−PQ−1 + I = 0 =⇒ PQQ−1 = I =⇒ P = Q.

Thus,
argminQ≻0 MCE(P,Q) = P.

Proof of Propostion 4.3. We directly utilize the notations from the renowned work by Balestriero
& LeCun (2022).

Proof. The SimCLR loss (Chen et al., 2020a) firstly produces an estimated relation matrix Ĝ(Z)
generally using the cosine similarity (CoSim) via

(Ĝ(Z))i,j =
eCoSim(zi,zj)/τ∑2B

j=1,j ̸=i e
CoSim(zi,zj)/τ

,

with τ > 0 a temperature parameter. Then SimCLR encourages the elements of Ĝ(Z) and G to
match. The most popular solution to achieve that is to leverage the InfoNCE loss given by

LSimCLR = −
2B∑
i=1

2B∑
j=1

(G)i,j log(Ĝ(Z))i,j︸ ︷︷ ︸
cross-entropy between matrices

.

If the matrix G and Ĝ(Z) are both diagonal, then

Ldiag
SimCLR = −

2B∑
i=1

(G)i,i log Ĝ(Z)i,i = − tr((G) log Ĝ(Z)). (24)

For more on the element-wise cross-entropy interpretation of SimCLR and its connection to MCE
when the matrix is diagonal, please refer to Tan et al. (2023); Zhang et al. (2023).

Let’s consider px, the probability distribution on X that describes the data distribution. We adopt
the standard notation q = px ◦ f−1 as the push-forward measure of px under the feature mapping f
parameterized by a neural network (note that distribution q is supported on f(X )). Given ∥f(x)∥2 =
1, it follows that f(X ) ⊆ Sd−1 (where Sd−1 is the d-dimensional hypersphere with radius 1 ).
Lemma C.1. Let’s represent the uniform distribution on Sd−1. Then the expected value of σ is 0
and the auto-correlation matrix of σ is 1

dId.

Applying the inverse image rule, we know that the auto-correlation matrix of q is the covariance of
px. Thus based on the uniformity principle (Wang & Isola, 2020), we want the (empirical) covariance
of q to align with the covariance of σ.
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Proof of Lemma C.1.

Proof. We aim to prove two aspects of the uniform distribution σ on the hypersphere Sd−1: the
expected value of σ is 0, and the covariance (or auto-correlation matrix) of σ is 1

dId, where Id is the
d-dimensional identity matrix.

The uniform distribution over Sd−1 implies that all directions on the hypersphere are equally probable.
Given the symmetry of Sd−1, for every point x on the hypersphere, there is an antipodal point −x,
both equally probable under σ. Therefore, when integrating over Sd−1, the contribution of each
component of every point is negated by its antipodal counterpart. Thus, the expected value of each
component is 0, leading to the expected value of σ being the zero vector.

Secondly, the covariance matrix of σ is defined as:

E[XX⊤]− E[X]E[X]⊤.

Given that E[X] is the zero vector, we are left with XX⊤. The symmetry of the uniform distribution
over Sd−1 implies that for the covariance matrix, the off-diagonal elements (representing covariances
between different components) average to zero. The diagonal elements of XX⊤ represent the squared
components of X , which, due to the uniformity and symmetry, all have the same expected value.
Since X lies on Sd−1, the sum of the squares of its components equals 1. Hence, the expected value
of each squared component is 1

d . Therefore, the covariance matrix, which is E[XX⊤], becomes 1
dId.

Thus, the lemma is proved.

Proof of Theorem 4.4.

Proof. First, begin with LUMCE :

LUMCE = MCE

(
1

d
Id + λId,

1

B
ZZ⊤ + λId

)
,

Using the definition of MCE, we get:

LUMCE = tr

(
−
(
1

d
Id + λId

)
log

(
1

B
ZZ⊤ + λId

)
+

1

B
ZZ⊤ + λId

)
,

Now, let us divide and multiply by λ of the term − log
(
1
BZZ⊤ + λId

)
:

− log

(
1

B
ZZ⊤ +

ϵ2

d
Id

)
= − log

(
λ

(
1

λB
ZZ⊤ + Id

))
,

Now, factor out λ:

− log

(
λ

(
1

λB
ZZ⊤ + Id

))
= − log(λ)Id − log

(
1

λB
ZZ⊤ + Id

)
,

Since LTCR = 1
2 log det

(
Id +

d
Bϵ2ZZ

⊤), we can rewrite this term in the form of LTCR.

tr

(
− log

(
1

λB
ZZ⊤ + Id

))
= tr

(
− log

(
Id +

d

Bϵ2
ZZ⊤

))
= 2LTCR,

Upon substitution, it becomes:

LUMCE = − tr

((
1

d
Id + λId

)
(log(λ)Id)

)
+ 2(1 + dλ)LTCR + tr

(
1

B
ZZ⊤ + λId

)
,

Simplifying, we get:

LUMCE = −(1 + dλ) log λ+ 2(1 + dλ)LTCR + 1 + dλ

= (1 + dλ) (− log λ+ 1 + 2LTCR) .
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This matches the expression given in the proposition for LUMCE.

For LUMKL, Using the definition of Matrix KL divergence, we have:

LUMKL = KL

(
1

d
Id + λId

∣∣∣∣ ∣∣∣∣ 1BZZ⊤ + λId

)
,

= MCE

(
1

d
Id + λId,

1

B
ZZ⊤ + λId

)
+ tr (P logP−P) ,

where P denotes 1
dId + λId.

Now, we simplify tr (P logP−P). We know that P = 1
dId + λId =

(
1
d + λ

)
Id.

Since P is a diagonal matrix with all diagonal entries being 1
d + λ, its matrix logarithm logP will

also be a diagonal matrix with all diagonal entries being log
(
1
d + λ

)
.

Thus, tr (P logP−P) can be simplified as follows:

tr (P logP−P) = tr

((
1

d
+ λ

)
Id

(
log

(
1

d
+ λ

)
Id

)
−
(
1

d
+ λ

)
Id

)
,

Since the diagonal matrix Id has d ones along its diagonal, the trace operation essentially multiplies
each term by d. Therefore, we can write:

tr(P logP−P) = d

((
1

d
+ λ

)
log

(
1

d
+ λ

)
−
(
1

d
+ λ

))
,

Further simplifying, we get:

tr(P logP−P) = d

(
1

d
+ λ

)
log

(
1

d
+ λ

)
− d

(
1

d
+ λ

)
= (1 + dλ)(log(1 + dλ)− log d− 1),

Now, we can rewrite LUMKL using this result:

LUMKL = LUMCE + tr (P logP−P)

= LUMCE + (1 + dλ)(log(1 + dλ)− log d− 1)

= −(1 + dλ) log λ+ 2(1 + dλ)LTCR + 1 + dλ+ (1 + dλ)(log(1 + dλ)− log d− 1)

= −(1 + dλ) log λ+ 2(1 + dλ)LTCR + (1 + dλ) log(1 + dλ)− (1 + dλ) log d

= (1 + dλ)(− log λ+ 2LTCR + log(1 + dλ)− log d)

= (1 + dλ)(log
1 + dλ

λd
+ 2LTCR).

This equation represents LUMKL in terms of LTCR and other constants d, λ, and B, thus fulfilling the
proposition.

Proof of Theorem 4.5.

Proof. Here we present an alternative proof without resorting to other literature. To prove the theorem,
we examine the form of the TCR loss:

LTCR = −1

2
log det

(
Id +

d

Bϵ2
ZZ⊤

)
,

where Z = [f(x1), · · · ,f(xB)] ∈ Rd×B .

We note that ZZ⊤ is a positive semi-definite matrix, as it is the product of a matrix and its transpose.
Hence, all its eigenvalues are non-negative. Let these eigenvalues be denoted by λ1, λ2, . . . , λd.

The determinant of Id + d
Bϵ2ZZ

⊤ can then be expressed as the product of its eigenvalues:

det

(
Id +

d

Bϵ2
ZZ⊤

)
=

d∏
i=1

(1 +
d

Bϵ2
λi).
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Since logarithm is a monotonically increasing function, minimizing LTCR is equivalent to maximizing
the product of (1 + d

Bϵ2λi) terms.

Applying the arithmetic mean-geometric mean inequality, we find that the product of the eigenvalues
(and thus the determinant) is maximized when all eigenvalues are equal, i.e., λi = B

d for all i.
Therefore, the matrix that maximizes this determinant under the given constraints is one where all
eigenvalues are B

d .

Hence, the global and unique minimizer of the TCR loss under the constraint ∥zi∥22 = 1 is achieved
when 1

BZZ⊤ has eigenvalues equal to 1
d , which corresponds to 1

BZZ⊤ = 1
dId.

Proof of Proposition 4.6.

Proof. Utilizing the property tr(log(A)) = log(det(A)), the TCR loss function can be rewritten as

LTCR = −1

2
tr

(
log

(
Id +

d

Bϵ2
ZZ⊤

))
.

The Taylor series expansion of the trace log function around X = 0 is

tr(log(Id +X)) ≈ tr(X)− 1

2
tr(X2) +O(X3).

Substituting this into LTCR yields

LTCR ≈ −1

2

(
tr

(
d

Bϵ2
ZZ⊤

)
− 1

2
tr

((
d

Bϵ2
ZZ⊤

)2
))

+O

((
d

Bϵ2
ZZ⊤

)3
)

= − d

2Bϵ2
tr(ZZ⊤) +

d2

4B2ϵ4
tr(ZZ⊤ZZ⊤) +O

((
d

Bϵ2
ZZ⊤

)3
)
.

This concludes the proof.

Proof of Theorem 5.1.

Proof. Based on the definition of effective rank presented in Section 3.4, a maximal effective rank of
d implies that the covariance matrix has d non-negligible eigenvalues.

Let x = [x1, x2, . . . , xd]
⊤ be a random vector on Sd−1. The covariance matrix C(x) of x is defined

as E[xx⊤]− E[x]E[x]⊤.

Since x is on Sd−1, ∥x∥2 = 1 for each instance of x, and thus E[xx⊤] is a diagonal matrix with each
diagonal element being the expectation of the squared components of x.

The trace of C(x), which is the sum of its eigenvalues, must be at least 1. Given the maximal effective
rank d, each of these d eigenvalues must be equal (denote this common value as λ), resulting in
C(x) = λId.

As x is distributed on Sd−1, the expectation E[x] is the zero vector due to the symmetry of the
distribution over the hypersphere.

Combining Assertions 2 and 3, we find that E[xx⊤] = λId. The trace of this matrix, which is dλ,
must be equal to 1, implying λ = 1

d .

Thus, we conclude that if the covariance matrix of x has the maximal possible effective rank of d
and its trace is at least one, then the expected value of x is zero, and the covariance matrix C(x) is
1
dId.

Proof of Lemma 5.2. Lemma 5.2 states the relationship between the Frobenius norm of the
difference between two matrices and their individual Frobenius norms and trace operator. The
Frobenius norm of a matrix is defined as the square root of the sum of the absolute squares of its
elements, which can also be expressed in terms of the trace of a matrix.
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Proof. Given two matrices P and Q, the Frobenius norm of a matrix A is defined as ||A||F =√
tr(A⊤A), where tr denotes the trace of a matrix.

We need to prove that:

||P−Q||2F = ||P||2F + ||Q||2F − 2 tr(P⊤Q).

Starting from the left-hand side:

||P−Q||2F = tr((P−Q)⊤(P−Q))

= tr(P⊤P−P⊤Q−Q⊤P+Q⊤Q)

= tr(P⊤P)− tr(P⊤Q)− tr(Q⊤P) + tr(Q⊤Q)

= ||P||2F + ||Q||2F − 2 tr(P⊤Q),

In the third step, we used the linearity of the trace operator and the fact that the trace of a transpose is
the same as the trace of the matrix itself. This completes the proof.

Lemma C.2. Let Z1,Z2 ∈ Rd×B where d is the dimensionality of the data and B is the number of
samples. The cross-covariance matrix C(Z1,Z2) can be expressed as:

C (Z1,Z2) =
1

B − 1
Z1HBZ

⊤
2 ,

where HB = IB − 1
B1B1B

⊤ is the centering matrix.

Proof of Lemma C.2.

Proof. To prove the lemma, we first apply the centering matrix HB to Z1 and Z2 as follows:

Z̄1 = Z1HB ,

Z̄2 = Z2HB .

These equations remove the mean of each row, effectively centering the data.

The cross-covariance matrix for the centered data Z̄1 and Z̄2 is then given by:

C(Z̄1, Z̄2) =
1

B − 1
Z̄1Z̄

⊤
2 .

Substituting the expressions for Z̄1 and Z̄2, we get:

C (Z1,Z2) =
1

B − 1
(Z1HB)(Z2HB)

⊤.

Because HB is symmetric (HB = H⊤
B) and idempotent (H2

B = HB), this expression simplifies to:

C (Z1,Z2) =
1

B − 1
Z1HBZ

⊤
2 ,

completing the proof.

D NEURAL COLLAPSE AND DIMENSIONAL COLLAPSE

Feature representations acquired through a deep neural network employing a cross-entropy (CE) loss
optimized by stochastic gradient descent, are capable of attaining zero loss (Du et al., 2018) with
arbitrary label assignments (Zhang et al., 2021). A phenomenon which known as neural collapse
(NC) (Papyan et al., 2020) is observed when training of the neural network continues beyond zero
loss with CE. Galanti et al. (2021) demonstrate that the NC phenomenon can facilitate some transfer
learning tasks. However, potential concerns associated with neural collapse exist, as Ma et al. (2023)
posit that the total within-class features collapse may not be ideal for fine-grained classification tasks.

The NC phenomenon embodies the following characteristics (Zhu et al., 2021):
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• Variability collapse: The intra-class variability of the final layer’s features collapse to zero,
signifying that all the features of a single class concentrate on the mean of these features for
each class respectively.

• Convergence to Simplex ETF: Once centered at their global mean, the class-means are
simultaneously linearly separable and maximally distant on a hypersphere. This results in
the class-means forming a simplex equiangular tight frame (ETF), a symmetrical structure
determined by a set of points on a hypersphere that is maximally distant and equiangular to
each other.

• Convergence to self-duality: The linear classifiers, existing in the dual vector space of the
class-means, converge to their respective class-mean and also construct a simplex ETF.

• Simplification to Nearest Class-Center (NCC): The linear classifiers behaviors similarly to
the nearest class-mean decision rule.

Here we present the definition of standard K-Simplex ETF and general K-Simplex ETF (Papyan
et al., 2020).

Definition D.1 (K-Simplex ETF). A standard Simplex ETF is characterized as a set of points in RK ,
defined by the columns of

M =

√
K

K − 1

(
IK − 1

K
1K1⊤

K

)
,

where IK ∈ RK×K is the identity matrix, and 1K ∈ RK represents a all-one vector. Consequently,
we also obtain

M⊤M = MM⊤ =
K

K − 1

(
IK − 1

K
1K1⊤

K

)
.

Definition D.2 (General K-Simplex ETF). A general Simplex ETF is characterized as a set of points
in RK , defined by the columns of

M̃ = αUM,

where α ∈ R+ is a scale factor, and U ∈ Rp×K (p ≥ K) is a partial orthogonal matrix U⊤U = I.

Zhu et al. (2021) further studied the problem using an unconstrained feature model that separates
the topmost layers from the classifier of the neural network. They established that the conventional
cross-entropy loss with weight decay presents a benign global landscape, where the only global
minimizers are the Simplex ETFs and all other critical points are strict saddles exhibiting negative
curvature directions.

The study was later extended (Zhou et al., 2022), demonstrating through a global solution and
landscape analysis that a wide range of loss functions, including commonly used label smoothing
(LS) and focal loss (FL), display Neural Collapse. Therefore, all pertinent losses (i.e., CE, LS, FL,
MSE) yield comparable features on training data.

E MEASURING DIMENSIONAL COLLAPSE

Papyan et al. (2020) discuss the fascinating occurrence of neural collapse during the training of a
supervised neural network utilizing cross-entropy loss for classification tasks. Contrastive learning
may have similar effects of dimensional collapse due to its spectral clustering nature (Tan et al.,
2023). As dimension-contrastive learning can be seen as pursuing uniformity, we are also interested
in discovering the relationship between dimension-contrastive learning and dimensional collapse.

Figure 2 illustrates that the non-contrastive method, Barlow Twins, exhibits greater intra-class
variability than the contrastive method, SimCLR. However, for larger samples and classes (e.g.,
Figure 5 in Appendix F), this observation is qualitative explicit. To quantify this observation, we
propose the introduction of metrics involving class-specific information to quantify dimensional
collapse. These measures may enhance our understanding of the differences among supervised
learning, contrastive, and non-contrastive SSL.
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(a) SimCLR (b) BYOL (c) Barlow Twins (d) SimSiam (collapsed
w/o stop gradient)

Figure 2: Visualization of feature representation for images in 5 different classes from CIFAR-100
dataset via t-SNE of various self-supervised learning methods. We find that SimCLR has larger
inter-class variability than others, as the clusters seem more separable. For illustration, we also
introduce a collapsed representation via SimSiam without stop gradient operation.

Assuming a total of K classes and n labeled samples {xi, yi}ni=1, denote the number of samples in
each class c as nc, i.e., nc = |{i | yi = c}|. We define the intra-class effective rank and inter-class
effective rank as follows.
Definition E.1 (Intra-class effective rank). Denote the class-mean vector of each class c as µc =
1
nc

∑
yi=c

f(xi), and denote C(f(x) | y)) = 1
ny

∑
yi=y

(f(xi)− µy)(f(xi)− µy)
⊤. We define intra-class

effective rank (intra-class erank) as

erankintra-class ≜
1

K

∑
y∈[K]

erank(C(f(x) | y))), (25)

which can be viewed as an empirical approximation of Ey∈[K] [erank(C(f(x) | y))], where x is
drawn from pdata.
Definition E.2 (Inter-class effective rank). Denote global mean of representation as µG =
1
n

∑
i∈[n] f(xi), then we define inter-class effective rank (inter-class erank) as the effective rank

of the covariance matrix of all C class-mean vectors,

erankinter-class ≜ erank[
1

K

∑
i∈[K]

(µi − µG)(µi − µG)
⊤]. (26)

When class are balanced, intra-class erank is approximately erank(Cy∈[K](E[f(x) | y])), where x is
drawn from pdata.

Remark. These two metrics can be interpreted as an effective rank factorization of the two terms in
the total covariance theorem.

(a) Intra-class erank on test
dataset

(b) Inter-class erank on test
dataset

Figure 3: Intra-class effective rank and inter-class
effective rank. It is obvious that intra-class effec-
tive rank continues to grow for BYOL or Barlow
Twins, but not for SimCLR.

From illustrative examples shown in Figure
3, we observe that SimCLR, as a contrastive
method, exhibits a consistent decrease in intra-
class effective rank during training. This empiri-
cal evidence corroborates the spectral clustering
interpretation of contrastive learning. On the
contrary, non-contrastive methods like BYOL
and Barlow Twins, owing to the inherent prop-
erty of kernel-uniformity loss (and its low-order
Taylor approximations) tending towards a uni-
form distribution, exhibit larger intra-class effec-
tive ranks that continue to increase during train-
ing. Regarding the inter-class effective rank, a
metric for global class-means effective rank, all
three methods show a consistent increase.

We now present some theoretical properties of effective rank and its connections to an equiangular
tight frame (ETF). The following theorem suggests that a larger effective rank of the Gram matrix is
beneficial for expressiveness.

25



Under review as a conference paper at ICLR 2024

Theorem E.3 (Maximize effective rank forms a equiangular tight frame (ETF)). For K vectors zi
(1 ≤ i ≤ K), each lying on Sd−1. Assuming the latent dimension d satisfies d ≥ K and the mean of
zi is 0, denote Z = [z1, · · · , zK ]. If the Gram matrix Z⊤Z has an effective rank of K − 1, it implies
the existence of an equiangular tight frame (ETF) in the orthonormal span of zi. Conversely, the
Gram matrix of any ETF has an effective rank of K − 1.

Proof. Since the mean vector is 0, the Gram matrix can have an effective rank of at most K − 1.
By Property 1 in Roy & Vetterli (2007), we deduce that the Gram matrix Z⊤Z has K − 1 equal
eigenvalues and one eigenvalue equal to 0.

The trace of the Gram matrix equals K because zi lies on Sd−1. Hence, the Gram matrix has K − 1
equal eigenvalues of K

K−1 and one eigenvalue of 0. Therefore, the Gram matrix shares the same
eigenvalues (spectrum) as K

K−1HK , where HK is the centering matrix IK − 1
K1K1K

⊤.

Given the orthonormal standard form, there exists an orthonormal matrix Q ∈ RK×K such that
Q⊤(Z⊤Z)Q = K

K−1HK . According to Lemma 11 in Papyan et al. (2020), ZQ constitutes an ETF.
As ZQ directly represents the orthonormal span of Z’s column space, the conclusion follows.

Gram matrix plays a key role in connecting our metric with Section 6, i.e., understanding the
rank-increasing phenomenon.
Theorem E.4. The effective rank of the total sample Gram matrix can be effectively estimated by
batch.

Proof. Note scaling does not change effective rank. Change the order of Z⊤Z to ZZ⊤, then can
rewrite self-correlation as the empirical estimation of expected self-correlation by samples in a batch.
This explains the estimation given by Zhuo et al. (2023).

Interestingly, the following theorem connects our metrics with the Gram matrix.
Theorem E.5. Assuming the dataset is class-balanced and the global mean is 0, then the effective
rank of the covariance matrix of all K class-mean vectors is exactly the same as the effective rank of
the Gram matrix.

Proof. As ZZ⊤ and Z⊤Z have the same non-zero eigenvalues, thus having the same effective
rank.

F DETAILS ON EXPERIMENTS

Model Architectures. Similar to MEC (Liu et al., 2022), we select one branch of the Siamese
network as the online network and the other branch as the target network, updating the parameters
using the exponential moving average method instead of loss backward. We use ResNet50 (He
et al., 2015) without the last linear layer as the backbone encoder, whose output feature dimension
is 2048. Then we use a three-layer MLP with BN(Batch Normalization) (Ioffe & Szegedy, 2015)
and ReLU (Nair & Hinton, 2010) as the projector after the encoder, and the projector maintains
the feature dimension to be 2048 through three layers. For the online network, we apply an extra
two-layer MLP with BN (Ioffe & Szegedy, 2015) and ReLU (Nair & Hinton, 2010) with hidden
dimension 512 and output dimension 2048.

Optimization and hyperparameters. For pre-training, we use SGD optimizer with 2048 batch size,
10−5 weight decay, 0.9 momentum, and 4.0 base learning rate, which is scheduled by cosine decay
learning rate scheduler (Loshchilov & Hutter, 2016), to optimize the online network over training
process. For the momentum used for the exponential moving average process, it is set to be 0.996 to
1 scheduled by another cosine scheduler. As for linear evaluation, we use LARS optimizer (You et al.,
2017) with 4096 batch size, 0.9 momentum, no weight decay, and 0.03 base learning rate scheduled
by cosine decay learning rate scheduler, to train the linear layer over 100 epochs, and report the
performance of last epoch.

F.1 ABLATION STUDIES
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Figure 4: Comparative performance of Matrix-SSL and other state-of-the-art methods on COCO De-
tection and COCO Instance Segmentation tasks (Lin et al., 2014). Each axis represents a performance
metric (AP , AP50, etc.), and we denote APmask by APm. Matrix-SSL significantly outperforms
other methods across all metrics up to 3.3% with only half pre-training epochs, demonstrating its
efficacy in transfer learning tasks. For clarity, the maximum value for each metric is scaled to 1, and
the minimum is scaled to 0.2, following the same visualization styles from Yu et al. (2022); Wang
et al. (2022a); Liu et al. (2022) .

Table 4: Linear probing accuracy (%) of Matrix-SSL with
various γ.

γ 0 0.3 0.5 0.6 1 1.3 1.5

Acc. 70.6 70.7 71.0 70.9 71.1 70.8 70.8

Alignment loss ratio. We first inves-
tigate the impact of different alignment
loss ratios (i.e., the γ in Eqn. 22) on
performance. We chose the 100-epoch
pre-training task for the ablations, and
the results are summarized in Table 4.
Interestingly, setting γ = 1 exactly achieves the best linear probe performance, so we set the ratio to
be 1 as the default.

Taylor expansion order. We investigated the effect of the Taylor expansion order of matrix
logarithm implementation on linear evaluation tasks. We keep most of the settings in 7 unchanged,
except the Taylor expansion order. The results are summarized in Table 5. As shown in the table,
we found that Matrix-SSL performs best when the Taylor expansion order is 4, so we chose 4 as the
default parameter.

Table 5: Results of different Taylor expansion orders for Linear evaluation results.

Taylor expansion order 3 4 5

Top-1 accuracy 70.9 71.1 71.0

F.2 EXPERIMENTS OF DIMENSIONAL COLLAPSE

We measure dimensional collapse on various self-supervised learning methods, including Sim-
CLR (Chen et al., 2020a), BYOL (Grill et al., 2020), Barlow Twins (Zbontar et al., 2021) and
SimSiam (Chen & He, 2021) with or without stop gradient. We reproduce the above methods on
the self-supervised learning task of CIFAR100 (Krizhevsky et al., 2009) dataset, using the open
source implementations (Tsai et al., 2021a; Hua, 2021) of the above methods tuned for CIFAR.
After pre-training, we use the saved checkpoints to evaluate the results of these methods on different
metrics.

We calculate the intra-class and inter-class effective rank directly by definition, while for MCE, we
shuffle the testing dataset, import the data with 512 batch size, and finally output the average metrics
of all batches.

We perform t-SNE (van der Maaten & Hinton, 2008) visualization on the last checkpoint of each
method with the help of scikit-learn (Pedregosa et al., 2011). We use the default t-SNE (van der
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(a) SimCLR (b) BYOL (c) Barlow Twins (d) SimSiam (collapsed
w/o stop gradient)

Figure 5: Visualization of feature representation for images in 10 different classes from CIFAR-100
dataset via t-SNE of various self-supervised learning methods. We find that in many categories, it is
difficult to distinguish between two non-contrastive methods (BYOL, Barlow Twins) and contrastive
method (SimCLR) by t-SNE.

Maaten & Hinton, 2008) parameter of scikit-learn (Pedregosa et al., 2011) and select the first 5 or 10
categories from 100 categories in CIFAR-100 (Krizhevsky et al., 2009) for visualization.
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