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ABSTRACT

Knowledge Graph (KG) generation requires models to learn complex semantic de-
pendencies between triples while maintaining domain validity constraints. State-
of-the-art graph generation models rely on expensive attention mechanisms to
capture complex dependencies, yet (head, relation, tail) triples can be straight-
forwardly represented as sequences, suggesting simpler architectures may suffice
for KGs. We present ARK (Auto-Regressive Knowledge Graph Generation),
a family of RNN and transformer-based models that succesfully perform KG
generation. We show that the RNN variant requires only 9-21% of the training
time, a 3.7-11x speedup, compared to the transformer variant. The RNN gener-
ates semantically valid graphs with 89.2-100.0% validity on IntelliGraphs bench-
marks, with less than 0.76% degradation compared to the transformer on real-
world datasets, while achieving up to 10.7% better compression rates on synthetic
datasets and 12.8-21.1% gains on real-world datasets. Our analysis reveals that
for KG generation, model capacity (hidden dimensionality > 64) matters more
than depth, with single-layer GRUs matching deep transformer performance. We
also introduce SAIL, an extension of ARK that adds variational latent variables
for controlled diversity and interpolation in KG generation. Both models support
unconditional sampling and conditional generation from partial graphs. Our find-
ings challenge the assumption that structured data generation requires attention
mechanisms. This efficiency gain can enable the generation of larger KGs and
unlock new applications.

1 INTRODUCTION

Knowledge Graphs (KGs) encode knowledge as graphs of entities connected by typed relations,
powering applications from search engines to drug discovery (Hogan et al., 2021)). However, even
large-scale KGs such as Wikidata miss substantial world knowledge. Although Knowledge Graph
Embedding (KGE) models address incompleteness (Bordes et al., [2013; [Yang et al., 2015), they
score each triple independently, failing to capture the interdependencies that define valid knowl-
edge structures. This independence assumption becomes particularly problematic for complex facts
requiring multiple related triples to represent accurately (Nathani et al.,|[2019).

Consider representing “Barack Obama was the US President from 2009-2017” in a KG; this requires
multiple interdependent triples that must also satisfy temporal constraints (start year < end year),
and type consistencies (only persons can be presidents). Traditional link predictors cannot ensure
that these constraints are satisfied collectively, leading to semantically invalid predictions that un-
dermine downstream reasoning tasks (Thanapalasingam et al.,[2023). This is particularly critical for
N-ary relations that inherently cannot decompose into independent binary predictions (Wen et al.|
2016). In contrast to link prediction, KG generation addresses these limitations by modeling joint
distributions over sets of triples, enabling the sampling of complete graphs that satisfy semantic
constraints across all their components simultaneously.

Generative models can learn these interdependencies by modeling entire (sub)graphs rather than
individual links (Xie et al.,[2022). Previous work on generative models in the KG domain has pri-
marily focused on generating triples from text (Saxena et al.| [2022; |Chen et al.,2020) or learning
embeddings for downstream tasks (Xiao et al.,[2016; He et al., |2015)), rather than learning distribu-
tions over complete graph structures. To our knowledge, no prior work has demonstrated the ability
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to sample entire, semantically valid KGs from learned probabilistic models. This raises a funda-
mental question: What is actually required to model py(G)? Recent generative approaches in the
domain of simple graphs rely on computationally expensive transformer architectures for structured
output generation (Yun et al.,[2019; Zhuo et al., 2025} [Zhao et al., [2025), raising a further question
Are computationally costly attention mechanisms really required for graph generation?

We observe that Knowledge Graphs are naturally represented as sequences of triples (head, relation,
tail), making them amenable to sequential generation. We introduce two autoregressive models:
ARK, a GRU-based model, and t-ARK, a transformer-based model. Both generate KGs with 89.2-
100.0% validity across diverse datasets. We further present SAIL (Sequential Auto-Regresslve
Knowledge Graph Generation with Latents), a light-weight probabilistic extension of ARK that
enables controllable generation from learned latent distributions.

Our contributions are as follows:

1. We introduce generative models based on RNNs and transformers that successfully solve
the IntelliGraphs benchmark, achieving 99-100% semantic validity across diverse KG gen-
eration tasks, establishing that complex KG generation with semantic constraints is achiev-
able through learned models;

2. We present two architectures: ARK, a lightweight GRU-based decoder, and SAIL, its
extension with a learnable latent space representation enabling controlled generation, both
capable of unconditional and conditional graph generation. We release our models and
code on https://anonymous.4open.science/r/ARK-232F;

3. We demonstrate that recurrent architectures often outperform transformer-based alterna-
tives, achieving comparable semantic validity while requiring only 9-21% of the training
time and delivering 12.8-21.1% better prediction (in bits per graph) on real-world datasets;

4. We provide a comprehensive analysis of ARK and SAIL, showing that model capacity
(d > 64) matters more than depth for KG generation, with single-layer GRUs matching
deep transformers, with more interpretable latent structures that better capture semantics.

2 PRELIMINARIES

Knowledge Graph Generation We consider the task of generating semantically valid Knowl-
edge Graphs G = (E, R, T) where F is a set of entities, R is a set of relations, and T C Ex Rx E
is a set of triples. Unlike link prediction, which focuses on individual triple classification, our goal
is to generate a collection of triples (i.e. subgraphs) that satisfy domain-specific semantic con-
straints while capturing interdependencies. This subgraph inference task is particularly crucial for
N-ary relations and more complex facts that cannot decompose into independent binary predictions
(Thanapalasingam et al., [2023). For example, temporal constraints require that start year precede
end year across multiple triples, while type constraints ensure that only valid entity-relation combi-
nations appear together. Models must generate and validate entire structures collectively rather than
scoring individual triples. This is distinct from link prediction or generation of triples from text, as
the models need to assign probability to and sample entire sets of interdependent triples.

Definition 2.1 (Knowledge Graph Generation). Given a training set of Knowledge Graphs D =
{G4, ..., G}, learn a generative model py(G) that can sample new graphs G’ ~ py such that G’ that
satisfies semantic validity constraints S while not appearing in D.

Definition 2.2 (Semantic Validity). A graph G is semantically valid if it satisfies constraints
S = {s1,..., 51} where each s; is a rule (e.g., type constraints, temporal consistency, relational
dependencies). For example, in syn-tipr: s1: start_year < end_year.

Variational Inference To learn latent representations, we use the 3-VAE framework (Kingma &
‘Welling, 2013 Higgins et al., 2017, which aims to maximize the evidence lower bound (ELBO):

L(¢,0;G) = Eq, 210 [log po(G2)] — B KL[gy (2]G)l|p(2)]. ey


https://anonymous.4open.science/r/ARK-232F

Under review as a conference paper at ICLR 2026

goooeno o
(LITYLEL ] .
T

EEEY
RN ——

wr [IONBORD 0N} ~NIAR0EI0EE c[IJBE0E000E
[>~0B0BE0AE0RT]

® : G T
we (00000000 *I [ w-,_@v.,@..@‘@,ﬁ | NO0OEOREona
IR} Soadca ol postrs LI

f)

[BOS, hi, ri, ti, h2, ra2, tz2, EOS]

f

Autoregressive Generation

Generate token by token until [EOS]

Step 3:predicth: 000 D]

[BOS, hi, ri, ti1]

\
[

[BOS, hi, r:
[

0} 7 Step 2: predict ta1 D D] ]
‘ TOER00 0
a) SAIL Encoder (b) SAIL Decoder (c) ARK Decoder (d) Sampling
D Entity Embedding (eemb) D Relation Embedding (remb) D Special Token Embedding (BOS, PAD, EOS) [M] Memory Representations
" Mean Pooling Multi-Layer Perceptron Gated Recurrent Units Linear Projection

Figure 3.1: Overview of Model Architectures. (a) SAIL Encoder: Multi-layer perceptron (MLP)
processes linearized KG sequences [BOS, hq, 71,1, ha, T2, ta, . .., EOS], with mean pooling to pro-
duce fixed-size representations. Linear projections generate latent distribution parameters p and
logo. (b) SAIL Decoder: GRU-based decoder conditions on sampled latent code z ~ N '(u, 02)
by broadcasting z to all sequence positions and concatenating with embeddings [M;, Mo, . .., M,,]
at each timestep. (¢) ARK Decoder: GRU decoder for ARK operates without latent conditioning,
processing embedded sequences directly through stacked GRU layers. (d) Sampling: Autoregres-
sive generation proceeds token-by-token with causal masking until EOS token or maximum length.

3 SEQUENTIAL DECODING FOR KNOWLEDGE GRAPH GENERATION

We present our approach to Knowledge Graph generation through sequential decoding. We first
describe how graphs are processed as input sequences, then introduce ARK (Auto-Regressive
Knowledge Graph Generation), our GRU-based decoder model, followed by SAIL (Sequential
Probabilistic Auto-Regressive Knowledge Graph Generation), which extends ARK with a varia-
tional framework for probabilistic generation.

3.1 GRAPH INPUT PROCESSING

To enable sequential generation, we linearize KGs into token sequences. A graph G containing
triples (h1,71,t1), .y (Rn, T, tn) is represented as [BOS, hy,71,t1, ha, ra, ta, .y iy, T,y tn, EOS],
where BOS marks the sequence start and EOS indicates termination. These tokens provide explicit
generation boundaries, enabling the model to learn proper initiation and termination conditions. We
employ a unified vocabulary V = {BOS, PAD, EOS} U £ U R that combines special tokens, entities,
and relations into a single embedding space. Variable-length graphs are padded to a fixed maximum
length L« using PAD tokens for batched training. During training, triple ordering within sequences
is randomized to prevent the model from learning spurious positional patterns

3.2 AUTOREGRESSIVE KNOWLEDGE GENERATION (ARK)

ARK is an autoregressive RNN model (Mikolov et al.,[2010), using Gated Recurrent Units (GRUs)
(Cho et al., 2014). Given a sequence representation, the model learns to predict the next token
conditioned on all previous tokens, exploiting the natural sequential structure of linearized graphs.

See Appendix|A.3.1 for details.

The model is trained autoregressively with cross-entropy loss, conditioning on ground-truth previous
T
tokens: LArk = — Y _;_; log p(x¢|r<t).

!This prevents leakage. e.g. in syn-paths, linearizing in path order makes the pattern easier to learn.
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Generation During inference, ARK generates graphs sequentially starting from the BOS token.
At each timestep ¢, the model computes the probability distribution p(x;11|xz<;) over the vocabulary.
We select the next token through sampling controlled by temperature and top-k. Concretely, we
divide logits by temperature 7', keep only the top-k tokens, then retain the smallest prefix whose
cumulative probability mass exceeds p (top-p), renormalize and sample one token. Decoding stops
on EOS or when the maximum graph length has been reached. The generated sequence is parsed
into triples by extracting consecutive (h,r,t) token triplets between BOS and EOS markers, with
incomplete triples discarded during post-processing.

3.3 SEQUENTIAL AUTOREGRESSIVE KNOWLEDGE GRAPH GENERATION WITH LATENTS
(SAIL)

SAIL extends ARK by incorporating a variational autoencoder framework, similar to Bowman
et al.[(2016)), enabling probabilistic generation from learned latent distributions, z. This extension
allows for controlled generation and interpolation in latent space while maintaining the efficiency of
GRU-based decoding.

Encoder The encoder processes the input sequence through a multi-layer perceptron (MLP) to
obtain a fixed-size representation. Each input triple (h, r, ) is embedded as [E.[h]; E,.[r]; E.[t]] €
R3?, and we take a mean over the sequence to form a graph-level vector. The MLP consists of
multiple dense layers, with the number of these layers chosen to match the number of stacked GRU
layers in the decoder. The encoder then processes the aforementioned sequence through these layers,
while ReLLU is used as the activation function. The final hidden representation is projected to latent
distribution parameters, p and log 2.

Latent Sampling We sample from the latent distribution using the reparameterization trick:

z=p+ooe €~N(0T) 2

Decoder The decoder extends ARK’s GRU architecture by conditioning on the latent variables,
z. The latent representation is first projected and used to initialize the decoder’s hidden state:
hy = tanh(Wyz + bin) To maintain global conditioning throughout generations, z is broad-
cast to all sequence positions. At each timestep, we concatenate the projected latent code with the
input embedding: x, = [x:; W.z] This ensures that the global graph structure encoded in z in-
fluences every token prediction, allowing the decoder to maintain semantic consistency across the
entire sequence. SAIL is trained by maximizing the ELBO (as shown in Equation [IJ).

Generation & Sampling To generate a graph using the model, we sample z ~ N (0,I) from
the prior distribution. We call this unconditional generation. Additionally, we define conditional
generation where we encode a partial graph to obtain the posterior ¢(z|Gpariar ), sample from it, and
then complete the sequence. The generation then follows an autoregressive process where the prob-
ability of the complete graph factorizes as: pyg(G|z) = Hthl po(xi|r<t,z). We use beam search

with score(x1.¢|z) = 22:1 log po(x;|T<;, z). Latent conditioning enables controlled generation by
manipulating z, we can interpolate between graphs or explore specific regions of the latent space to
generate graphs with desired properties.

4 EVALUATION

We evaluate a family of RNN and transformer-based models on the IntelliGraphs benchmark (Thana-
palasingam et al.,|[2023)), which consists of five datasets designed to test different aspects of Knowl-
edge Graph generation.

Benchmark IntelliGraphs includes three synthetic datasets (syn-paths, syn-types, syn-tipr) with
algorithmically verifiable semantics, ranging from simple path structures to temporal constraints
requiring reasoning about time intervals, and two real-world Wikidata-derived datasets (wd-movies,
wd-articles) capturing complex relational patterns from movie and academic publication domains.
Synthetic datasets contain fixed-size graphs (3-5 triples) with small vocabularies (30-130 entities),
while Wikidata datasets feature variable-size graphs (2-212 triples) with large entity vocabularies
(24K-61K entities), providing diverse challenges for evaluating generation quality and semantic
validity. Detailed dataset characteristics and semantic constraints are provided in Appendix[A.2] To
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the best of our knowledge, IntelliGraphs is the only benchmark for KG generation, while other KG
datasets focus on link prediction.

Baselines The probabilistic baselines from |Thanapalasingam et al.| (2023)) decompose graph gen-
eration as p(F') = p(S|E)p(E), where E represents entities and .S represents structure. The uniform
baseline samples from uniform distributions, providing estimates for compression bits by assuming
equal likelihood for all configurations. The KGE-based baselines (TransE, ComplEx, DistMult)
estimate p(E) using entity frequencies with Laplace smoothing and p(S|E) using learned scor-
ing functions: TransE models relations as translations (Bordes et al., 2013), DistMult uses bilin-
ear interactions (Yang et al., |2015), and ComplEx employs complex-valued embeddings (Trouillon
et al.; [2016). These models convert scores to probabilities through sigmoid functions and compute
compression as — log, p(S|E) — log, p(E). To enable fair architectural comparison, we introduce
transformer-based variants: t-ARK replaces ARK’s GRU decoder with a transformer decoder using
causal self-attention for capturing long-range dependencies, while t-SAIL (depicted in Figure [C.T
in the Appendix) extends this with a variational framework employing transformer encoders and
decoders throughout. These transformer variants offer potentially superior modeling of complex
patterns, but require substantially more computational resources than their GRU counterparts.

Evaluation Metrics We evaluate generation quality through three primary metrics: (1) Semantic
Validity — the proportion of generated graphs that satisfy dataset-specific semantic constraints, mea-
suring whether the model learns to respect domain rules without explicit supervision; (2) Novelty
— the proportion of generated graphs not present in the training set, distinguishing genuine gen-
eration from memorization; and (3) Compression — the information-theoretic measure — log p(G)
in bits, quantifying how efficiently the model encodes graph structure. For variational models, we
additionally report the KL divergence between the approximate posterior and prior. These met-
rics collectively assess whether models capture the underlying data distribution while maintaining
semantic coherence and generalization capability.

4.1 COMPRESSION CODE LENGTH

We express the negative log-likelihood, — log,(ps), in bits-per-graph. See Appendix [A.3.2/for de-
tails. This measures both the ability to compress and to predict (Griinwald, 2007, Section 3.2).

Results  Table[I] shows the compression performance across all models. The decoder-only mod-
els (ARK and t-ARK) achieve competitive compression rates, particularly excelling on synthetic
datasets with 27.65 and 27.57 bits for syn-paths (outperforming the uniform baseline of 30.49 bits)
and exceptional performance on syn-tipr (23.48 and 23.34 bits respectively). While their compres-
sion on syn-types is higher (59.63 and 59.79 bits), both models compensate with strong semantic
validity in generation tasks. On real-world datasets, ARK achieves the best overall compression
with 98.19 bits for wd-movies and 205.24 bits for wd-articles, demonstrating efficient encoding de-
spite increased graph complexity. In contrast, the variational models (SAIL and ¢-SAIL) report
ELBO upper bounds rather than exact compression, as they use latent vectors z to capture graph
structure. Their compression includes both reconstruction and KL divergence terms, with the KL
component varying from nearly zero to syn-types (0.15 bits) to moderate values on other datasets
(13-32 bits), indicating adaptive latent space usage on dataset complexity.

4.2 SAMPLING FROM LATENT VARIABLE, z

We assess the generative capabilities of SAIL through two complementary approaches: uncon-
ditional generation by sampling from the prior distribution py(z), and conditional generation by
providing partial graph sequences. These experiments test whether the learned latent space is well-
structured and whether the model can generate semantically valid, novel graphs, demonstrating true
generative modeling rather than mere memorization. For more details regarding the method and
qualitative analysis, we refer the reader to Appendices[A.3.3 and [A.4] respectively.

Quantitative Results  Table|1| shows unconditional graph generation results. ARK achieves ex-
ceptional semantic validity across synthetic datasets, with 99.95% on syn-paths, 100.00% on syn-
tipr, and 89.22% on syn-types. SAIL similarly demonstrates strong performance with 92.50%,
98.45%, and 100.00% validity, respectively. Both dramatically outperform KGE baselines (TransE,
DistMult, ComplEx), which achieve less than 1% validity and produce 76-100% empty graphs,
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% Valid % Novel % Empty  Compression

Datasets  Model - he+ & Valid? Graphs |  Length (bits) |

uniform 0 0 0 30.49
TransE 0.25 0.25 76.55 49.89
DistMult 0.69 0.69 85.41 54.39
syn-paths ComplEx 0.71 0.71 85.73 48.58
t-SAIL 99.60 99.60 0 27.77
SAIL 92.50 92.50 0 28.74
t-ARK 97.39 97.39 0 27.57
ARK 99.95 99.95 0 27.65
uniform 0 0 0 61.61
TransE 0 0 94.42 69.51
DistMult 0 0 86.66 63.96
syn-tipr ComplEx 0 0 96.05 67.51
t-SAIL 100.00 100.00 0 26.30
SAIL 98.45 98.45 0 27.14
t-ARK 100.00 100.00 0 23.34
ARK 100.00 100.00 0 23.48
uniform 0 0 0 36.02
TransE 0.21 0.21 84.56 48.26
DistMult 0.13 0.13 87.53 47.69
syn-types ComplEx 0.07 0.07 89.75 47.69
t-SAIL 100.00 100.00 0 59.61
SAIL 100.00 100.00 0 60.58
t-ARK 87.07 87.07 0 59.79
ARK 89.22 89.22 0 59.63
uniform 0 0 0 171.60
TransE 0 0 85.39 208.60
DistMult 0 0 87.07 202.68
wd-movies  ComplEx 0 0 98.13 208.50
t-SAIL 99.83 99.83 0 124.50
SAIL 99.47 99.47 0 116.84
t-ARK 98.33 98.33 0 114.49
ARK 99.24 99.24 0 98.19
uniform 0 0 0 693.80
TransE 0 0 95.42 910.65
DistMult 0 0 100.00 887.30
wd-articles ComplEx 0 0 97.54 901.91
t-SAIL 98.00 98.00 0 235.24
SAIL 99.13 99.13 0 199.55
t-ARK 95.37 95.37 0 224.25
ARK 97.24 97.24 0 205.24

Table 1: Semantic validity and compression length in bits of the graphs generated. We sample
graphs and check the novelty of the sampled graphs by comparing them against the training and
validation sets. We use the test set for the calculation of the compression length when training has
finished. The best performing models for each dataset are bolded. Baseline results are from the
IntelliGraphs paper (Thanapalasingam et al.,[2023). The full results are available in Tables [4] and [3]
in the Appendix.

suggesting they fail to learn meaningful latent representations. All generated graphs from our
models are novel rather than memorizing training examples. For real-world datasets, ARK main-
tains 99.24% validity on wd-movies and 97.24% on wd-articles, while SAIL achieves 99.47% and
99.13% respectively, demonstrating robust performance despite increased complexity.

4.3 INTERPOLATION IN LATENT SPACE

For SAIL and ¢-SAIL, we explore the structure of the learned latent space by interpolating be-
tween encoded representations of different graphs. This analysis reveals whether the model learns
smooth, semantically meaningful transitions between graph structures, indicating a well-organized
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Figure 4.1: Latent space visualization for the wd-movies dataset. (a) t-SNE projection shows clear
clustering by genre. (b) Smooth interpolation paths connect different movie types. (c) Decoded
graphs along the interpolation path show gradual transitions in cast and genre attributes, maintaining
semantic validity throughout.

latent space where similar graphs cluster together and intermediate points correspond to valid hybrid
structures. For more details regarding the method, we refer the reader to Appendix [A.3.4]

Quantitative Results The smoothness metrics reveal distinct patterns across dataset complexity.
Comparing SAIL and ¢-SAIL (Figure[6]in Appendix), we observe that t-SAIL generally achieves
better latent space organization. For syn-tipr, -SAIL shows exceptional quality with near-perfect
local smoothness (0.99) and global consistency (0.98), while SAIL achieves lower but still strong
metrics (0.93 and 0.69, respectively). The architectural difference is most pronounced on syn-paths,
where t-SAIL maintains moderate global consistency (0.36) compared to SAIL’s much weaker
performance (0.14), suggesting that transformer-based encoders better capture graph structure. Sur-
prisingly, SAIL demonstrates superior performance on syn-types with high local smoothness (0.92)
and global consistency (0.73), exceeding ¢t-SAIL’s metrics (0.82 and 0.60). The flip rates reveal
interesting trade-offs: SAIL shows higher instability on most datasets (0.33 for syn-paths, 0.40 for
wd-movies) compared to t-SAIL (0.20 and 0.15 respectively), though they achieve similar rates on
syn-tipr (0.10 vs. 0.09). Real-world datasets (wd-movies) show both models achieving strong local
smoothness (0.84 and 0.87) but with ¢-SAIL maintaining better global consistency (0.58 vs 0.49).
These results suggest that while transformer encoders generally provide better latent space orga-
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nization, the simpler GRU-based SAIL can match or exceed transformer performance on certain
structured datasets, particularly syn-types.

Qualitative Results  Figurel4.1|demonstrates the learned latent space structure for the wd-movies
dataset. The t-SNE projection (Figure a) reveals distinct clustering by genre, indicating that
SAIL learns to organize its latent space according to semantic film categories without explicit su-
pervision. The linear interpolation experiment (Figure[d.1]b,c) traces a path between a Western film
and a Romantic Comedy, with decoded graphs at intermediate points (o € {0,0.25,0.5,0.75,1})
demonstrating smooth transitions: starting from a Western with actors Bob Steele and Tom Tyler,
progressing through hybrid representations with mixed genre elements (Comedy Horror at o« =
0.50), and reaching a Thriller film with different cast members. While all intermediate graphs main-
tain a valid KG structure, the semantic coherence varies; intermediate points produce valid but
potentially less realistic combinations of actors and genres, suggesting that semantic validity is pre-
served throughout interpolation, but semantic plausibility is highest near the training data manifold,
consistent with typical VAE behavior on structured data.

4.4 ABLATION STUDY

The ablation study in Appendix [A.5] demonstrates that model capacity (hidden dimensionality) is
more critical than network depth, with a clear performance threshold at d,oqe1 = 64 for the syn-
paths dataset. Simpler architectures, such as GRU decoders, achieve comparable validity and novelty
rates while providing substantial training speedups. Compression efficiency improves with model
complexity, yet lightweight architectures match transformer-based models in generation quality.

5 RELATED WORK

While substantial progress has been made in related areas such as molecular graph generation and
graph neural networks, the unique challenges of KG generation, including semantic consistency,
relational diversity, and logical constraints, have only begun to be addressed. Recent advances in
graph representation learning have paved the way for developing generative modeling of KGs.

Generative Modeling of KGs |Cowen-Rivers et al.| (2019) learn joint probability distributions
over facts stored in Knowledge Graphs to estimate the predictive uncertainty of KGE models and
evaluate their generative model using link prediction. TransG is a probabilistic model that learns the
semantics of N-ary relations (X1ao et al.,[2016). In contrast to this work, we focus on generating a
collection of triples. Loconte et al. reinterprets the score functions of traditional KGEs as circuits,
enabling efficient marginalization and sampling, thereby facilitating the generation of new triples
consistent with existing KGs (Loconte et al.,2024). Notably, Galkin et al.|(2024)) proposes ULTRA,
a foundation model for KG reasoning that achieves strong generalization across diverse KGs through
a unified pre-training approach on multiple graphs, demonstrating that a single model can transfer
reasoning capabilities across different knowledge domains without fine-tuning.

Graph Transformers Machine learning on sets requires learning permutation-invariant functions
(Zaheer et al., 2017). Various frameworks have been proposed that use attention mechanisms for
graph representation learning (Kim et al.| 2022} [Yun et al.|2019;|Zhuo et al., 2025} Zhao et al.,[2025)).
Due to the fully-attentional nature of Transformers, they can be seen as a generalisation of Graph
Neural Networks (Zaheer et al., [2017). In our work, we deal with a directed graph with labeled
edges. Recent advances include GraphGPS (Rampasek et al.,[2022), which combines message pass-
ing with global attention mechanisms, and NodeFormer (Wu et al., 2022)), which efficiently com-
putes all-pair interactions through kernelized softmax. [Shirzad et al. (2023)) introduce Exphormer,
achieving linear complexity in graph transformers through virtual global nodes and expander graphs.
Unlike these architectures that focus on encoding existing graphs, our work demonstrates that sim-
pler recurrent architectures suffice for generating KGs, achieving comparable performance with
3.7-11x speedup over transformer-based generation models.

Graph Generative Models Deep graph generative models have predominantly focused on gen-
erating novel molecular structures, emphasizing chemical validity and stability (Li et al., [2018).
Beyond molecular applications, models like GraphVAE and GraphRNN have been developed to
capture complex graph structures through latent variable and autoregressive approaches. |Kipf et al.
(2020) introduced methods to infer symbolic abstractions from visual data and relational structures
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from observations. Recent developments include DiGress (Vignac et al., 2023), which applies dis-
crete denoising diffusion to graph generation, and GraphARM (Kong et al.||[2023)), which combines
autoregressive models with graph neural networks for scalable generation. |Liu et al.|(2024) propose
GraphMaker, a diffusion-based approach that generates graphs by iteratively refining node features
and edge structures. Our work extends these concepts by focusing on the semantic generation of
KGs, learning implicit semantic constraints from background information without predefined rules.

Neuro-Symbolic Generative Models for KGs Combining distributed and symbolic representa-
tions, neuro-symbolic systems aim to combine the strengths of both paradigms (van Bekkum et al.}
2021). Generative neuro-symbolic machine combines distributed and symbolic entity-based rep-
resentations in a generative latent variable model to infer object-centric symbolic representations
from images Jiang & Ahn (2020). |Balloccu et al.| (2024) introduces KGGLM, a generative language
model designed for generalizable KG representation learning in recommender systems, which ex-
emplifies the integration of neural and symbolic approaches. A recent breakthrough comes from
van Krieken et al. (2025), who introduce a neurosymbolic diffusion model that integrates logical
constraints directly into the diffusion process. While these approaches explicitly incorporate sym-
bolic reasoning into neural networks, our work shows that simple recurrent models can implicitly
learn and enforce semantic constraints through autoregressiveive generation, achieving 89.2-100.0%
semantic validity without explicit logical rule integration.

6 CONCLUSION

We have demonstrated that KG generation can be performed effectively by sequential, autoregressive
models and that lightweight GRU-based decoders can match and sometimes even exceed transformer
performance while requiring only 9-21% of the training time: a 3.7-11x speedup. Our hypothesis
is that the natural sequential representation of KGs, with facts presented as ordered (head, relation,
tail) triples, aligns well with the inductive biases of recurrent architectures, enabling them to capture
both local dependencies within triples and global semantic constraints across subgraphs. Unlike
traditional KGE approaches that treat triples independently, ARK and SAIL preserve semantic va-
lidity by learning interdependencies, achieving 89.2-100.0% validity across diverse datasets while
maintaining competitive compression rates. We note that the complexity of GRUs is O(nd?) opera-
tions per sequence, compared to transformers’ O(n?d) complexity, showing that the former is more
efficient where sequence length dominates.

Limitations Our work assumes a fixed vocabulary of entities and relations known at training time,
limiting applicability to open-world scenarios where new entities emerge dynamically. While ARK
and SAIL generate semantically valid graphs, in our experiments, we only test on relatively small
graphs (3-212 triples). Additionally, the autoregressive formulation imposes a linear ordering on
inherently unordered graph structures, though our experiments show that this does not significantly
impact generation quality.

Future Work  Several directions merit exploration: extending the ARK framework to handle
out-of-vocabulary entities and relations through compositional embeddings or meta-learning ap-
proaches, investigating hierarchical generation strategies for larger graphs where local subgraphs
are generated independently then composed, and making the learned semantic rules explicit rather
than leaving them implicit in the model parameter would help to identify and mitigate learning un-
desired constraints that may stem from biases in the data. Since this work solves most challenges in
the Intelligraphs benchmark, larger and more complex KG generation benchmarks are called for.
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Ethics Statement  Datasets on which our models are trained may contain societal biases and fac-
tual errors, which could propagate through the learning process and manifest in generated knowledge
graphs. While our models achieve high semantic validity scores, they may still reproduce or amplify
biases present in the training data, potentially generating graphs that reflect historical inequities or
stereotypes. Additionally, the autoregressive generation process could produce factually incorrect
but semantically valid triples, as the model learns logical rules rather than verifying the truth. We
intend for ARK and SAIL to be treated as research prototypes to advance the field of KG gener-
ation, and should not be deployed in critical applications without thorough testing and safeguards.
See [I'hanapalasingam et al. (2023)) for a detailed analysis of the limitations of the datasets.

Reproducibility Statement We provide complete code and detailed configurations to ensure
complete reproducibility of all experiments. Our implementation, including model architectures,
training scripts, data preprocessing pipelines, and evaluation metrics, is available at https:
//anonymous.4open.science/r/ARK-232F, Experimental details, including hyperpa-
rameters, hardware specifications, and training procedures, are provided in Appendix [A.T] We also
release pre-trained model checkpoints for both ARK and SAIL to facilitate reproduction of our re-
sults and enable further research building upon our work. Detailed instructions for replicating each
experiment, including expected runtimes and resource requirements, are provided in the repository.
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