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Abstract

A longstanding goal in reinforcement learning is to build intelligent agents that
show fast learning and a flexible transfer of skills akin to humans and animals.
This paper investigates the integration of two frameworks for tackling those goals:
episodic control and successor features. Episodic control is a cognitively inspired
approach relying on episodic memory, an instance-based memory model of an
agent’s experiences. Meanwhile, successor features and generalized policy im-
provement (SF&GPI) is a meta and transfer learning framework allowing to learn
policies for tasks that can be efficiently reused for later tasks which have a differ-
ent reward function. Individually, these two techniques have shown impressive
results in vastly improving sample efficiency and the elegant reuse of previously
learned policies. Thus, we outline a combination of both approaches in a single
reinforcement learning framework and empirically illustrate its benefits.

1 Introduction

The idea of building intelligent agents and systems that learn purely by interaction with their
environment, known as reinforcement learning [Sutton and Barto, 2018], is an appealing approach to
artificial intelligence with solid connections to neuroscience and psychology [Niv, 2009, Botvinick
et al., 2020]. Reinforcement learning has generated significant interest both in the research community
and in public awareness, especially in combination with deep learning [LeCun et al., 2015], a paradigm
known as deep reinforcement learning [Arulkumaran et al., 2017]. It has given rise to impressive
achievements in various contexts, including building champion game players [Silver et al., 2016,
Vinyals et al., 2019, OpenAI et al., 2019, Schrittwieser et al., 2020], and solving long-standing
problems in biology [Jumper et al., 2021] to list a few. However, human intelligence has defining
characteristics lacking in state-of-the-art deep reinforcement learning systems.

One important restriction of these systems is that they require significantly large amounts of data
to learn [Lake et al., 2017, Tsividis et al., 2017], as they need a lot of (repeated) exposure to learn
rules/concepts contained in data samples which manifests as slow learning. In contrast, humans can
learn quickly and efficiently, making use of little data. As pointed out by Botvinick et al. [2019], a
source of slowness in deep reinforcement learning can be attributed to the requirement for incremental
parameter adjustment in gradient-based optimization of deep neural networks. A technique that
has been proposed to tackle the data efficiency problem is Neural Episodic Control (NEC) [Pritzel
et al., 2017]. Instead of gradually learning a representation of the solution, i.e. the expected future
reward of an action in a certain situation, it stores observed experiences, i.e. the resulting rewards
of an action, directly in a memory. Encountering a similar situation again, the experiences in the
memory are recalled to decide which action yields the best outcome. As a result, episodic control
learns significantly faster than gradient-based techniques.

Another typical trait of human learning is the ability to seamlessly transfer knowledge across similar
tasks leading to a faster learning process in new tasks. This problem is typically tackled under the
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frameworks of meta [Hospedales et al., 2021] and transfer learning [Taylor and Stone, 2009, Zhu
et al., 2020b]. One such ability of humans is to reevaluate previously learned behaviors given a new
task setting [Momennejad et al., 2017]. For example, to reevalute all the possible ways you learned to
drive home from work while maximize a new weighted combination of using minimum time and
having scenic views. The framework of Successor Features and Generalized Policy Improvement
(SF&GPI) provides a mechanisms to replicate this human ability. It decomposes the representation of
learned behaviors in an environment dynamics part, i.e. what will happen when I do this behavior,
and a reward part, i.e. how to evaluate this outcome. Given a set of learned behaviors, i.e. their
environment dynamics, and a new reward function the expected return for each behavior can be
computed and the best behavior chosen.

The central idea proposed in this paper is a framework combining NEC with SF&GPI, which we
call Successor Feature Neural Episodic Control (SFNEC). We hypothesize that this would provide
advantages from both approaches by merging the learning speed conferred by episodic control
with flexible transfer from SF&GPI. We choose these two frameworks for the following reasons.
First, episodic control has both a well-founded cognitive science inspiration [Tulving et al., 1972,
Lengyel and Dayan, 2007] and displays impressive sample efficiency results in reinforcement learning
tasks [Blundell et al., 2016, Pritzel et al., 2017]. Likewise, for successor features, the elegance of the
SF&GPI framework and the connections of successor representation [Dayan, 1993, Gershman, 2018]
to neuroscience form the basis of our motivation. Additionally, a recent study [Tomov et al., 2021]
suggests that humans use a strategy similar to SF&GPI for multi-task reinforcement learning.

To summarize, our main contributions are:

• Introduction of SFNEC, a novel approach integrating sample-efficient learning using
episodic control with meta learning using SF&GPI

• Empirical validation of SFNEC by showing its advantage over baseline SF&GPI, and NEC

2 Background

2.1 Reinforcement Learning

Reinforcement learning [Sutton and Barto, 2018] refers to a learning process where an agent attempts
to maximize cumulative rewards it can obtain while interacting with its environment. Reinforcement
learning problems are formalized as Markov Decision Processes (MDPs) [Puterman, 1994]. A MDP
is a tuple (S,A, p,R, γ), where S is the state space, A is the action space, p is the state transition
probability distribution function p(st+1|st, at) defining the probability of ending in state st+1 ∈ S
after an agent takes action at ∈ A in state st ∈ S at the current time step t, and R is the reward
function associated with a transition (st, at, st+1). The goal of a reinforcement learning agent is to
learn a policy π, a mapping from states to actions, so as to maximize the expected sum of discounted
rewards Gt = Eπ[

∑∞
j=0 γ

jrt+j ], called the return, where rt+j are the rewards received at each time
step, and γ ∈ [0, 1) is the discount factor used to determine how much weight is accorded to future
rewards.

Value function based methods represent a large class of reinforcement learning algorithms based on
classical dynamic programming [Bellman and Dreyfus, 2010]. They learn a value function, here an
action value function, that can be recursively represented according to the Bellman equation:

Qπ(st, at) = Eπ
 ∞∑
j=0

γjrt+j

 = E [rt + γQπ(st+1, at+1)] .

The policy is then defined by maximizing the Q-function: π(s) = argmaxaQ
π(s, a). A widely used

method within this class of algorithms is Q-learning [Watkins and Dayan, 1992] trying to learn the
optimal Q-function: Q∗(st, at) = E

[
rt + γ argmaxat+1

Qπ(st+1, at+1)
]
.

Classical Q-learning is restricted to small problems because it requires a table of all state-action pairs
which becomes prohibitive or even unfeasible when attempting to scale to high dimensional state
spaces. Thus, more recently, powerful function approximators such as deep neural networks are used
which allow methods like Q-learning to scale to high dimensional state spaces, as exemplified in
Deep Q-Network [Mnih et al., 2013] and more recent variants.
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2.2 Episodic Control

Episodic memory [Tulving et al., 1972] is a model from the field of psychology, which refers
to an autobiographical kind of memory about one’s personal experiences. Likewise, episodic
control [Lengyel and Dayan, 2007] implies the utilization of episodic memory for reinforcement
learning by replaying stored action sequences from previous experiences.

Neural Episodic Control: Neural Episodic Control (NEC) [Pritzel et al., 2017] is a computational
model of episodic control. Central to NEC, is a memory structure called differentiable neural
dictionary (DND) which is a table Ma of a pair of dynamically growing arrays of keys and values
(Ka, Va) for each action a ∈ A. The keys here represent a learned representation of the agent
state, while the values are Q-value estimates. To estimate the Q-value for a particular (s, a) pair,
a lookup is performed with the corresponding DND for action a using a query key h, which is a
lower-dimensional representation of s. The governing equation is: Q(s, a) =

∑
i wivi, where vi

corresponds to Q-values stored in Va and wi are weights corresponding to the result of a normalized
kernel k between the query key h and keys hi in Ka as follows wi = k(h, hi)/

∑
j k(h, hj).

Two techniques were employed to enable the scalability of this model. First, the number of elements
involved in lookups was limited to the top 50 nearest neighbours, efficiently found using a k-d
tree. Second, the sizes of the DNDs were kept limited by removing the least recently used items.
Furthermore, the values stored in memory were N -step Q-value estimates:

Q(N)(st, at) = E

N−1∑
j=0

γjrt+j + γN max
a′

Q(st+N , a
′)

 .

Updates to keys already found in the DND memory store while learning were done using Q-learning
as Qi ← Qi + α(Q(N)(s, a)−Qi).

2.3 Meta and Transfer Learning

Meta [Li, 2018] and transfer learning [Taylor and Stone, 2009, Lazaric, 2012, Zhu et al., 2020b] refer
to methods that allow knowledge learned from one or several tasks to be reused when faced with new
tasks. In reinforcement learning, these tasks are defined by a set of MDPsM. To have a transfer
between MDPs, some shared structure must exist between them. For example, consider an agent
facing a set of navigation tasks in a sequence. Assuming the dynamics remain the same across these
tasks, we can specify the desired behaviour by rewarding the agent to reach specific locations. Thus,
specifying different tasks for an agent in this environment corresponds to different reward functions
based on its location. In this paper, we are interested in this setting for transfer where successive
tasks solved by an agent only differ in their reward functions. A prominent method for this setting is
the SF&GPI framework [Barreto et al., 2017].

Successor Features: Successor features (SF) are based on the idea of learning a value function
representation that decouples rewards from environment dynamics [Barreto et al., 2017]. This
is accomplished under the assumption that rewards are a linear combination of features φt =

φ(st, at, st+1) ∈ Rn that depend on a state transition and a weight vector w ∈ Rn: rt = φ>t w.
Features describe the essential aspects of states for evaluating them with a reward function in a
low-dimensional representation. Each MDP inM has a different weight vector that defines its reward
function, and the features are shared between all MDPs. As a result, the Q-function rewrites as:

Qπ(st, at) = Eπ
[ ∞∑
i=t

γi−tri

]
= Eπ

[ ∞∑
i=t

γi−tφ>i w

]
= ψπ(st, at)

>w ,

where ψπ(s, a) are known as the successor features (SF) of (st, at) under policy π. Also, SF satisfy
a Bellman equation: ψ(st, at) = φt + γEπ[ψπ(st+1, π(st+1))], and thus can be learned using
conventional reinforcement learning methods.

Generalized Policy Improvement: Generalized policy improvement (GPI) is an operation to
combine multiple policies, i.e. policies that were learned in previous tasks, to define a policy π(s)
for a new task: π(s) ∈ argmaxamaxiQ

πi(s, a). Using the SF decomposition Qπi(st, at) =
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Figure 1: SFNEC architecture to store in an episodic manner ψ-values.

ψπi(st, at)
>w, the GPI operator becomes π(s) ∈ argmaxamaxiψ

πi(st, at)
>w. As a result, the

operator allows reevaluating old policies in a new task with reward weight vector w to chose the best
action according to them. Based on this, an algorithm for transfer using SF&GPI was proposed in
[Barreto et al., 2017] called SFQL.

3 Method: The SFNEC Model

Our proposed model, SFNEC (Fig. 1), extends NEC to learn successor featuresψ(s, a) ∈ Rn in place
of scalar action-values. Like NEC, which learns N -step Q-values, SFNEC learns N -step ψ-values:

ψ(N)(st, at) = E

N−1∑
j=0

γjφt+j + γN max
a′
ψ(st+N , a

′)

 . (1)

To perform a lookup using the SFNEC model, we use Equation 2:

ψ(st, a) =
∑
i

k(st, si)∑
j k(st, sj)

∗ψi , (2)

where ψi corresponds to a previously stored ψi-value for a state si in memory, and k is the kernel
used to compute a similarity score between the query state st and states in memory si. We note that
we directly used the state vector st as keys in memory for our experiments. In general, the NEC
architecture allows training an embedding network to learn a lower-dimensional state embedding to
be used as keys in memory. Similar to NEC, we limit the elements in memory used during lookups
to the top nearest neighbours, e.g., 50. Likewise, we also used the inverse distance kernel used in
[Pritzel et al., 2017]: k(s, si) = 1

‖s−si‖22+δ
.

During training, ψ-values are updated after observing N transitions. When the ψ-value for a state
action pair (s, a) does not exist previously in memory, N -step estimates computed using Equation 1
are inserted in the corresponding DND for action a. On the other hand, ψ-values already in memory
are updated using: ψi ← ψi + α(ψ(N)(s, a)−ψi).
We defer for details of the algorithm and the training procedure to Appendix B.

4



4 Experiments

Figure 2: 2-D object collection environment
proposed in [Barreto et al., 2017].

We evaluated SFNEC in the two-dimensional
object collection environment (Fig. 2) proposed
by Barreto et al. [2017]. The environment con-
sists of four rooms with a start location in the
bottom left denoted ’S’, and a goal location in
the top right denoted ’G’. Multiple objects ex-
ist within the rooms belonging to three classes
shown as a circle, square, and triangle. The goal
is to navigate from the start position to the goal
position while picking up objects to maximize
the cumulative rewards. Objects once picked
up disappear and reappear at the beginning of a
new episode. To utilize the SF&GPI framework
as defined in [Barreto et al., 2017], it is neces-
sary to have a linear decomposition of rewards
into features and weights as rt = φ>w. The
features describe the picked up object classes and if the goal state is reached using a binary represen-
tation: φ ∈ {0, 1}4. The first three feature components represent if an object belonging to one of the
three classes has been picked, while the last component represents if the goal state is reached. Thus,
rewards associated with each transition can be expressed as a dot product between these features
and weight vectors w ∈ R4 that contain the reward associated with picking up each object class and
reaching the goal. Different tasks in the environment are then defined by setting a weight vector w.

To demonstrate good performance, an agent faces a series of tasks, each being a different instantiation
of w with the aim of maximizing the sum of rewards accumulated by the agent. In general, we
follow the same setup for this environment as in [Barreto et al., 2017] with further details given in
Appendix C. We compare SFNEC with SFQL, NEC, and a version of SFNEC without GPI.

Results: We compared the average return per task over 10 runs of each algorithm (Fig. 3). SFNEC
with GPI performs best, outperforming NEC and SFQL agents. We expect this as SFNEC combines
learning speed from episodic control on each task with the strong transfer conferred by SF&GPI.

Furthermore, we note that NEC and SFNEC without GPI show a significantly improved learning
speed over the SFQL baseline during the first 10 tasks due to their episodic memory even without
having a transfer mechanism.
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Figure 3: SFNEC has a higher learning speed than other methods. Depicted is the mean of the
average return per task over 10 runs with the standard error shown as the shaded regions.

5 Discussion

Complementary benefits of episodic control and SF&GPI: Like SFQL, SFNEC learnsψ-values
and utilizes GPI. However, SFNEC uses episodic memory, which means the main advantage we
expect would be improved learning speed compared to SFQL. This is confirmed in the results (Fig. 3)
as SFNEC rises in performance much faster than SFQL, even though they reach similar performance
levels in the long run due to both algorithms utilizing GPI for transfer. On the other hand, NEC and
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SFNEC without GPI also employ episodic control but differ from SFNEC by not utilizing GPI but
attempting to learn each task from scratch rapidly. More specifically, NEC directly learns Q-values,
while SFNEC without GPI learns ψ-values. We observe that SFNEC without GPI and NEC perform
similarly and can demonstrate reasonably strong performance in learning all tasks individually due
to their usage of episodic control. However, they are not able to match the long-run performance
of SFNEC. Putting both comparisons together, we deduce that the combination of episodic control
with transfer using the SF&GPI framework in SFNEC brings together rapid learning and transfer.
However, as can be seen towards the right end of Fig. 3, SFQL would most probably overtake
SFNEC in subsequent phases. This is similar to the observation reported in Pritzel et al. [2017]
where parametric methods like DQN outperform NEC in the long run. We leave an investigation of
integrating methods proposed to tackle this into SFNEC for subsequent work.

Learning a lower-dimensional state embedding: We conducted further preliminary experiments
with SFNEC that attempted to learn a lower-dimensional state embedding for the keys of the DND,
like the original setup in NEC. However, this did not yield good results yet. We hypothesize that
this might be due to higher approximation errors introduced when learning an embedding. With the
method we used in this paper, where we did not learn an embedding, we have the advantage that the
keys are stable as they come directly from environment observations. Thus, learning is easier for
the agent as it is not burdened with a representation learning stage. Logically, we can expect that
if the agent cannot learn a good embedding to produce keys in the DND for a particular task, then
reusing this on a new task can lead to erroneous predictions of the ψ-values. Essentially, this would
mean the approximation error could be high for the policies involved in the GPI procedure because of
inaccurately learned embeddings, which could result in poor performance.

6 Related work

Episodic Control: Several improvements and extensions to NEC have been proposed. In [Lin
et al., 2018] Episodic Memory Deep Q Network was proposed, an architecture that augments DQN
with an episodic memory-based estimate. They found that combining this with a TD estimate
improved sample efficiency and long-term performance over DQN and NEC. Sarrico et al. [2019]
investigated adding principled exploration to NEC by combining episodic control with maximum
entropy mellowmax policy. [Agostinelli et al., 2019] on the other hand, proposed using dynamic
online k-means to improve the memory efficiency of NEC. Likewise, [Zhu et al., 2020a] proposed to
further optimize the usage of the contents of the episodic memory store by considering the relationship
between contents of episodic memory. Finally, [Hu et al., 2021] recently introduced Generalizable
Episodic Memory which extends the applicability of episodic control to continuous action domains.
These extensions are parallel developments to SFNEC and could be integrated with it.

Successor Features: A few extensions to successor features exist. A relaxation of the condition
that reward functions be expressed as a linear decomposition, as well as a demonstration of how
to combine deep neural networks with SF&GPI was introduced in [Barreto et al., 2019]. Another
direction aims to learn appropriate features from data such as by optimally reconstruct rewards
[Barreto et al., 2017], using the concept of mutual information [Hansen et al., 2019], or the grouping
of temporal similar states [Madjiheurem and Toni, 2019]. A further direction is the generalization of
the ψ-function over policies [Borsa et al., 2018] analogous to universal value function approximation
[Schaul et al., 2015]. Similar approaches use successor maps [Madarasz, 2019], goal-conditioned
policies [Ma et al., 2020], or successor feature sets [Brantley et al., 2021]. However, none of these
extensions studied the usage of SF in combination with episodic memory.

7 Conclusion

We introduced SFNEC, and showed its viability as a framework that combines rapid learning
and transfer. However, a few problems would need to be addressed to obtain a robust practical
implementation. An example would be investigating methods for reducing memory requirements as
this is a real-world constraint. Similarly, deciding when to learn tasks or automatically detect task
switches is an area to tackle. Some suggestions for tackling such problems have been pointed out in
[Barreto et al., 2017], and we believe it would be fruitful work to investigate applying SFNEC on
real-world tasks with an evaluation of different techniques to handle these various challenges.
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A Supplemental Experiments

We now discuss a few supplemental experiments run to understand our model.

What is the effect of learning w? Here, we run experiments where the reward weight vector
w is not provided to agents; rather, it is approximated while interacting with the environment for
algorithms that need w i.e., SFQL and SFNEC. As shown in Figure 4, we noticed a reduction in the
performance across all agents that rely on w.
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Figure 4: Average return of SFQL, NEC, and SFNEC agents on the four-room environment while
learning w. Performance drops for SFQL and SFNEC agents that depend on w compared to Figure 3.
NEC performance remains the same and performs best in this setting. Averages are taken over 10
runs with the standard error shown as the shaded region around solid lines.

We posit that approximation errors from estimating w and the successor features ψ might lead to this
reduced performance for agents using successor features, especially as the best performing agent in
this setup is the NEC agent that does not rely on w nor successor features. Nonetheless, there are
many application domains where the reward function given by w would be known, and the SFNEC
model with GPI would perform best in this case.

What is the effect of varying memory capacity? We know an essential consideration in a real-life
implementation of our proposed SFNEC model and algorithm is how well it will scale with many
tasks. However, the scheme scales linearly, and this might be too expensive if one keeps a large DND
memory per action per task. Thus, we were interested in observing the degradation of the agent’s
performance with the DND capacity.
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Figure 5: Total return over 10 runs of SFNEC agents on the four-room environment when varying
the DND memory capacity. Beyond 10000, further increase in capacity does not lead to improved
performance.

As shown in Figure 5, there is a point beyond which increasing capacity does not lead to improvement
in performance. Practically, this means we might be able to use the minimum possible capacity
for memory that guarantees good performance, knowing that a larger capacity would not result in
performance gains. Also, the gradual degradation in performance shows that the method can be
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flexibly tuned to achieve the desired tradeoff between performance and memory requirements for a
particular application.

What is the effect of varying number of neighbours? A critical parameter when performing
value estimation using our model is the number of neighbours used. This induces a sort of bias-
variance tradeoff, and we experimented with different settings shown in Figure 6.
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Figure 6: Total Return over 10 random runs of SFNEC agents on the four-room environment when varying
number of neighbours used for value estimation. The plot depicts more that the performance follows a ’U-curve’.

Our results indicate that varying the number of neighbours should follow a ’U-curve’ for a particular
application, reducing performance when going towards either extreme of estimating with a single
neighbour or the entire memory. This is expected because, on one end, we will have a method that
obtains estimates that overfits to its nearest neighbour (i.e. high variance). On the other end, we have
a method that tries to fit its estimate over the entire dataset provided by the memory module (i.e.,
high bias).

B Agents

In this section, we give a few more details on the agents in this paper. Source code is available at
https://gitlab.inria.fr/robotlearn/sfnec.

SFQL agent: As our baseline agent for transfer learning, we used an implementation of SF&GPI
according to the pseudocode provided in [Barreto et al., 2017] which we call SFQL agent.

NEC agent: We implement an agent following the Neural Episodic Control architecture and
algorithm outlined in [Pritzel et al., 2017] as the baseline for learning speed on a single task. We relied
on a publicly available implementation provided by Kai Arulkumaran on GitHub2 as an inspiration
for the implementation of our NEC agent. For our purposes, we modified our implementation to
allow memory updates to occur either immediately after a horizon of N steps or batching updates at
the end of episodes. This is different from the original description and the reference implementation,
which suggest batching memory updates at the end of episodes. Our primary motivation for this
modification is that we would like our method to be applicable even in learning scenarios that do not
divide into episodes, i.e., continuing tasks.

Estimating action values with NEC involves combining the values for previously-stored keys in
memory similar to a query key representing the agent’s state. Thus, it is necessary to perform an
efficient similarity search. In [Pritzel et al., 2017] it was suggested to enable this efficiency by
performing approximate searches using a k-d tree [Bentley, 1975]. Contrary to this, to keep our initial
implementation simple while laying out the general idea of our framework, we utilize brute-force
searches for all agents that need to perform a similarity search in stored memory(NEC and SFNEC).

For this, we used the Facebook AI similarity search library3 [Johnson et al., 2017]. We chose to
use this library because it is open-source, simple to use, and well-optimized for brute-force and
approximate nearest neighbour searches.

2https://github.com/Kaixhin/EC
3https://github.com/facebookresearch/faiss
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SFNEC agent: The algorithm for SFNEC is given in Algorithm 1. We note that we allow for both
cases when reward descriptions wi for each task are provided or not with the boolean condition
learn_w. Additionally, we note that we can use the algorithm without GPI by simply making j equal
i in line 8 similar to the SFQL algorithm described in [Barreto et al., 2017].

Finally, we highlight that we also update policies used for GPI action selection in lines 22-25 as done
in the SFQL algorithm. The essence of this update is to continually refine the successor features of
policies that remain pertinent for GPI action selection in line 8. A crucial difference for updating
these policies is that we cannot obtain the features φ needed to compute N -step ψ estimates as
the agent is acting according to a different policy at this update point. Thus, we are constrained to
utilizing a single-step off-policy update.

Algorithm 1 Successor Feature Neural Episodic Control (SFNEC)

Require:

αw learning rate for w
learn_w condition to indicate if to learn w for each task
φ features of state transitions
wi optionally given for each task i
N n-step horizon for ψ(N) estimates
Di replay buffer of (h, a, ψ(N)) tuples for each task i
Mai a DND for each action a per task i

num_tasks number of tasks to be learned

1: for i = 1, . . . , num_tasks do
2: if learn_w then
3: Initialize wi with small random values
4: end if
5: for each episode do
6: for t = 1, . . . , T do
7: Get observation st from the environment and its embedding ht
8: j ← argmaxk∈{1,...,i}maxbψk(st, b)

>wi

{j is the index of policy selected according to GPI}
9: if rand[0, 1) < ε then

10: at ← select an action uniformly at random
11: else
12: at ← argmaxbψj(st, b)

>wi

13: end if {ε-greedy action selection}
14: Take action at and observe reward rt, and observation st+1

15: if learn_w then
16: wi ← wi + αw[r − φ(st, at, st+1)

>wi] {learn w for task i}
17: end if
18: Compute ψ(N)(st,at) using eqn. 1
19: Append (ht,ψ

(N)(st, at)) to Mati

20: Append (st, at,ψ
(N)(st, at)) to Di

21: Train on a random minibatch from Di

22: if j 6= i then
23: a′ = argmaxbψj(st+1, b)

>wj

24: update ψj(st, at) using the one-step TD target: φ(st, at, st+1) + γψj(st+1, a
′)

25: end if
26: end for
27: end for
28: end for
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C Experimental details

As mentioned in the main paper, we follow the same setup as described in [Barreto et al., 2017]
with essential details recapitulated below. There are twelve objects in the environment and three
object classes (four objects per class). The rewards associated with each class changes after 20, 000
transitions, and they are sampled uniformly at random from [−1, 1] while reaching the goal always
gave a reward of +1. The agent’s observations provided from the environment consists of two
parts. The first part is the activations of the agent’s (x, y) position on a 10× 10 grid of radial basis
functions over the entire four rooms. The second part consists of object detectors indicating the
presence or absence of objects in the environment. For our experiments, we provide both the state
featuresφ(st, at, st+1) and reward weight vector w. The state features are boolean vectors containing
elements indicating whether the agent is over an object present in the environment or over the goal
position. The reward weight vector contains rewards associated with picking up an object and reaching
the goal position. We note that providing both elements to the agent means the reward function is
fully specified to the agent according to the decomposition: r(st, at, st+1) = φ(st, at, st+1)

>w.
Nonetheless, it is possible to approximate these quantities as shown in [Barreto et al., 2017]. We refer
the reader to Appendix B in [Barreto et al., 2017] for further details on this environment.

Setup: We use 50 tasks for our experiments. For obtaining our hyperparameters, we carried out
a grid search for the NEC and SFNEC agents. At the same time, we relied on reported values
for SFQL agent parameters from [Barreto et al., 2017]. We now report values used for our search
and the final values chosen for our experiments. We tested values in {0.05, 0.15} for ε used for
ε-greedy exploration. For the learning rate used in network optimization: {0.01, 0.05, 0.1}, for
number of neighbours used in estimating ψ-values: {1, 4, 10, 20, 50}. Furthermore, we limited the
DND capacity to 10, 000 most recent entries. For the fast learning rate used to update re-encountered
keys in the DND, we tried values in {0.1, 0.3, 0.5}, and for horizon length N , we used the set:
{8, 16, 32}. We show the best configurations found for each agent in Table 1.

For our NEC and SFNEC agents, we obtain the keys used as the compact state representation in
memory by directly using the observation from the environment. Additionally, the training method
we use for NEC and SFNEC keeps a single sample in the replay buffer of these agents. Training
proceeds by using each sample sequentially as they are collected in the environment. We did this to
allow a more direct comparison to SFQL, which uses a "true" stochastic gradient descent method for
its optimization.

Agent ε Network learning rate Neighbours DND learning rate N

SFQL 0.15 0.01 - - -
NEC 0.15 0.01 20 0.1 8
SFNEC 0.15 0.05 20 0.1 8

Table 1: Best parameter configurations found for agents in the four-room environment
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