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Abstract001

As large language models (LLMs) grow in pa-002
rameter size and context length, computation003
precision has been reduced from 16-bit to 4-bit004
to improve inference efficiency. However, this005
reduction causes accuracy degradation due to006
activation outliers. Recent rotation-based INT4007
quantization attempts to address this through ro-008
tation matrix calibration, but they require hours009
of overhead per model deployment and leave010
significant computation unquantized in long-011
context scenarios. Microscaling (MX) floating-012
point (FP) formats offer fine-grained represen-013
tation with a shared scale, enabling fully quan-014
tized matrix multiplications through direct cast-015
ing without calibration. However, existing re-016
search shows unsatisfactory empirical results017
for MXFP4 inference, and the robustness of018
MX formats remains largely unexplored.019

In this work, we uncover the fundamental trade-020
offs of the MX format: while it effectively021
suppresses activation outliers, it does so at the022
cost of increased group-wise asymmetry. To023
address this, we propose an asymmetric MX024
format for a 4-bit floating point (AMXFP4),025
which employs asymmetric shared scales to026
handle both outliers and group-wise asymme-027
try without requiring calibration. Our cus-028
tom compute-engine implementation shows029
that the AMXFP4-based Multiply-Accumulate030
(MAC) design adds marginal resource overhead031
while delivering substantial accuracy improve-032
ments. Extensive experiments across bench-033
marks demonstrate that AMXFP4 outperforms034
MXFP4 in visual question answering (VQA)035
by 3% and surpasses rotation-based techniques036
on CSQA by 1.6%. Additionally, AMXFP4037
shows superior performance compared to the038
recently deployed commercial MXFP4 format.039

1 Introduction040

Multi-modal Large Language Models (LLMs) are041

widely used in advanced natural language pro-042

cessing tasks, including chatbots, long-document043

question-answering, and visual graph interpreta- 044

tion (Bai et al., 2023; Liu et al., 2023a). To en- 045

hance their capabilities, LLMs have been signifi- 046

cantly scaled in both parameter size and context 047

length (Chung et al., 2022; Chowdhery et al., 2022). 048

For example, LLaMA3 (AI@Meta, 2024) now fea- 049

tures 405 billion parameters and supports context 050

lengths of up to 128K tokens. As shown in Fig. 1(a), 051

this scaling results in peta-FLOP-level computa- 052

tional demands during the prefill phase, where the 053

model processes user context before inference. 054

Leading computing platforms have focused on 055

bit-precision scaling to meet the computational de- 056

mands of LLMs (Andersch et al., 2022; Nvidia, 057

2024; AzureAI, 2024). Reducing operand bit- 058

widths improves area and energy efficiency in arith- 059

metic operations (Horowitz, 2014), enabling higher 060

computation density in accelerators. As shown 061

in Fig. 1(b), NVIDIA’s Tensor Cores double com- 062

putation speed by lowering multiply-accumulate 063

(MAC) precision from FP16 to FP8 (Andersch 064

et al., 2022) and from INT8 to INT4 (Nvidia, 2020). 065

Recent research explores activation and weight 066

quantization to improve LLM inference efficiency 067

by leveraging hardware precision scaling. How- 068

ever, quantizing both weights and activations 069

to INT4 often degrades accuracy due to activa- 070

tion outliers (Dettmers et al., 2022; Xiao et al., 071

2022). Rotation-based transformations mitigate 072

this by making activations more quantization- 073

friendly (Ashkboos et al., 2024; Liu et al., 2024b), 074

with approaches like QuaRot (Ashkboos et al., 075

2024) significantly reducing LLM perplexity in 076

INT4 inference (Fig. 1(c)). Despite these benefits, 077

rotation-based methods require extensive calibra- 078

tion, leading to overfitting risks (Lee et al., 2023; 079

Lin et al., 2023) (cf. Table 2), and are impractical 080

for user-specific model deployments that demand 081

frequent recalibration (Bang et al., 2024). Addi- 082

tionally, they leave Softmax outputs unquantized, 083

forcing FP16 multiplications with value vectors, 084
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Figure 1: (a) FLOPS across context length and model sizes. (b) Precision scaling in NVIDIA Tensor Cores. (d)
Impact of bit-precision and data rotation on perplexity. (d) MX format. (e) LLM inference with MX Tensor Core.

which account for 41% of total FLOPs in 8B LLMs085

with 128K-token inputs (cf. Fig. 8).086

An alternative approach to quantization in-087

troduces reduced-precision formats that enable088

calibration-free data-type conversion (i.e., direct089

casting). For instance, the latest NVIDIA Ten-090

sor Core (Nvidia, 2024) supports the microscal-091

ing (MX) format, introduced by the Open Com-092

pute Project (OCP) (Rouhani et al., 2023a), which093

groups low-precision elements under a shared scale094

to mitigate dynamic range limitations (Fig. 1(b),095

(d)). As shown in Fig. 1(c), (e), MXFP4 achieves096

full matrix quantization with minimal perplexity097

degradation compared to INT4, without requiring098

data rotation. This is due to its fine-grained quanti-099

zation, which enhances value representation preci-100

sion. However, MXFP4 still lags behind the 16-bit101

baseline in perplexity and performs worse when102

combined with data rotation, and the root causes of103

this destructive interaction are mainly unexplored.104

This work uncovers a key trade-off in the MX105

format: while it effectively suppresses activation106

outliers, it increases group-wise asymmetry. Group-107

ing activation tensors into small micro-scaled units108

mitigates outliers, similar to rotation methods,109

but enables direct-cast inference. However, this110

grouping amplifies data asymmetry, necessitating111

an asymmetric numerical representation. To ad-112

dress this, we propose AMXFP4, a microscal-113

ing floating-point format designed for robust 4-114

bit LLM inference, which effectively handles ac-115

tivation outliers through micro-scaled asymmetric116

data representation. By employing an FP8 shared117

scale for both weights and activations, AMXFP4118

achieves quantization error rates close to ideal119

Lloyd-Max quantization. To validate its broad ap- 120

plicability, we evaluate AMXFP4 across multi-turn 121

conversation, long-context inference, and visual 122

question-answering (VQA) tasks on decoder-only 123

LLMs, vision-language models, and an encoder- 124

decoder model. Results show that AMXFP4 en- 125

ables calibration-free, direct-cast 4-bit inference, 126

outperforming MXFP4 and leading rotation-based 127

quantization methods. Additionally, AMXFP4 per- 128

forms better than the recently deployed commercial 129

MXFP4 format (NVFP4) (NVIDIA, 2024). 130

Our contributions can be summarized as follows: 131

• We examine the MXFP4 format, finding that 132

microscaling effectively reduces activation 133

outliers without calibration but introduces 134

asymmetry, necessitating asymmetric numeri- 135

cal representation. 136

• We propose AMXFP4, a novel format that 137

combines FP4 elements with shared asymmet- 138

ric FP8 scales, significantly suppressing quan- 139

tization error. 140

• We evaluate AMXFP4 across diverse applica- 141

tions, including multi-turn conversation, long- 142

context inference, and VQA, across multiple 143

model types, demonstrating consistently supe- 144

rior accuracy to MXFP4. 145

2 Background and Related Work 146

2.1 Bit-Precision Scaling for Accelerators 147

Reduced-precision formats are vital for enhanc- 148

ing scalability and computational efficiency in 149

deep learning accelerators, conserving area and 150
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energy in direct proportion to bit-width reduc-151

tion (Horowitz, 2014). This scaling enables higher152

floating-point operations per second (FLOPS) with153

lower power usage, thereby increasing accelerator154

throughput. For instance, NVIDIA’s Tensor Cores155

have progressed from FP16 in Volta (Nvidia, 2017)156

to FP8 in Hopper (Andersch et al., 2022) and FP4157

in Blackwell (Nvidia, 2024), boosting computa-158

tional speeds from 112 tera to 20 peta FLOPS, as159

shown in Fig. 1(b). Similar advancements by other160

computing platform companies in scaling preci-161

sion from 16-bit to 4-bit are crucial for managing162

the growing complexity of LLMs (AMD, 2024;163

AzureAI, 2024).164

Recently, the microscaling (MX) for-165

mat (Rouhani et al., 2023a; Darvish Rouhani et al.,166

2023; Rouhani et al., 2023b) has been developed167

from Block Floating Point (BFP) (Drumond168

et al., 2018; Darvish Rouhani et al., 2020) by169

incorporating a shared scale across a block of170

reduced-precision elements, thus mitigating171

quantization error due to limited dynamic range.172

While the original BFP format allows flexibility173

in design parameters-exponent (E) and mantissa174

(M ) for the element (Pi) and the shared scale175

(S), and the group size (GS), MX prescribes176

specific MX-compliant configurations (cf. Table 6):177

MXFP8 (Pi:E4M3, S=E8, GS:32) and MXFP4178

(Pi:E2M1, S=E8, GS:32), as shown in Fig. 1(d).179

However, MXFP4’s robustness for LLM infer-180

ence remains uncertain, with significant perfor-181

mance degradation in 4-bit inference due to acti-182

vation quantization (Rouhani et al., 2023b). More-183

over, MXFP4 lacks validation on practical tasks184

such as multi-turn chatbot interactions, raising con-185

cerns about its real-world applicability. While186

MXFP4 models generate coherent answers, they of-187

ten yield unhelpful responses, consistent with find-188

ings that quantization can impair conversational189

quality (Lee et al., 2024) (e.g., Fig. 11). These re-190

sults underscore the need for new data formats to191

enable robust 4-bit inference.192

2.2 Quantizing LLM’s Activation and Weight193

Recent research highlights the difficulty quanti-194

fying LLM activations due to outliers extending195

the activation dynamic range, leading to increased196

quantization error (Xiao et al., 2022; Ashkboos197

et al., 2024). Prior studies propose rescaling198

weights and activations to reshape their distribu-199

tions for better quantization compatibility while200

preserving mathematical equivalence (Xiao et al.,201

2022; Shao et al., 2024; Lee et al., 2023). However, 202

such methods often experience accuracy degrada- 203

tion in 4-bit inference (Lin et al., 2024). Data 204

rotation strategies, including QuaRot (Ashkboos 205

et al., 2024) and SpinQuant (Liu et al., 2024b), 206

use orthogonal matrices to redistribute concen- 207

trated channel information (represented as R in 208

Fig. 8(a)). QuaRot applies a randomized Hadamard 209

matrix, while SpinQuant uses learned rotation ma- 210

trices. DuQuant further enhances this approach by 211

combining per-channel permutation and rotation, 212

achieving state-of-the-art accuracy in 4-bit infer- 213

ence (Lin et al., 2024). 214

However, these rotation-based methods exclude 215

quantization for the Softmax output, leaving matrix 216

multiplications in the self-attention calculation to 217

be computed in FP16. Since self-attention com- 218

putation scales quadratically with context length 219

during the prefill phase, the partial quantization 220

of rotation methods significantly reduces overall 221

computational efficiency in long-context inference. 222

Additionally, these techniques require extensive 223

calibration, such as GPTQ (Frantar et al., 2022) or 224

training rotation matrices, to improve model accu- 225

racy. However, calibration introduces the risk of 226

overfitting, as models may become overly tailored 227

to the calibration dataset, limiting their adaptability 228

across broader applications (Table 2). Further dis- 229

cussions on limitations of calibration-based meth- 230

ods are provided in the Appendix A. 231

These challenges highlight the need for a gener- 232

alizable quantization approach that minimizes cali- 233

bration dependence and applies uniformly across 234

computations. Although MXFP4, a previously 235

explored reduced-precision format, applies to all 236

matrix multiplication without calibration, it com- 237

promises model accuracy. This work analyzes 238

MXFP4’s strengths and limitations, and proposes 239

AMXFP4, a superior 4-bit format that enables 240

direct-casting with improved model accuracy. 241

3 Microscaling for Taming Outliers 242

We systematically analyze activation outliers across 243

various LLMs using representative statistical mea- 244

sures—kurtosis and mean—to understand the ef- 245

fects of microscaling (i.e., reducing a quantization 246

group to 32 elements). Kurtosis, the fourth stan- 247

dardized moment, is commonly used to assess the 248

prevalence of outliers (Liu et al., 2024b), while the 249

mean reflects asymmetry within each group. We 250

use box plots of kurtosis and mean to examine the 251
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value distribution within groups, which are subject252

to quantization using a shared scale.253

3.1 Analysis of LLM’s Activation Outliers254

Fig. 2(a) and (b) present the kurtosis box plots255

for the OPT (Zhang et al., 2022) and LLaMA-like256

models (LLaMA, Qwen, Mistral (Touvron et al.,257

2023; AI@Meta, 2024; Bai et al., 2023; Jiang et al.,258

2023)). In cases of row-wise grouping (typically259

GS → 1024), the OPT models exhibit high kurto-260

sis in FFN1 activations, indicating many outliers261

that challenge quantization. Additionally, outlier262

prevalence increases with model size, aligning with263

previous findings that larger models are more af-264

fected by quantization (Dettmers et al., 2022). Con-265

versely, LLaMA-like models use the Gated Linear266

Unit (GLU) activation function, involving extra267

matrix multiplication; thus, data passing through268

FFN1 undergoes element-wise multiplication be-269

fore FFN2, further amplifying outliers—a phe-270

nomenon observed in recent studies (Yang et al.,271

2024; Fishman et al., 2024). Notably, outlier dom-272

inance is reduced as group size decreases in both273

model types. At GS=32, kurtosis nearly disap-274

pears, suggesting the activation dynamic range275

within groups becomes more suitable for quantiza-276

tion. This observation helps explain the preliminary277

success of MXFP8 in direct-casting for selected278

LLMs (Rouhani et al., 2023b), but it does not ex-279

plain the disappointing performance of MXFP4.280

To assess the trade-offs in the MX format’s han-281

dling of outliers, we examine the box plots of282

group means, which reflect distribution asymmetry.283

Fig. 2(c) and (d) show the mean values for FFN1 284

and FFN2 input activations as group size decreases 285

from an entire row to 32. Notably, with large group 286

sizes, group means center around zero, but as group 287

size decreases, the means scatter significantly. This 288

scattering indicates that the symmetric data repre- 289

sentation typically used in the MX format is sub- 290

optimal for microscaled activation quantization. In 291

other words, microscaling addresses activation out- 292

liers at the cost of data symmetry. Thus, simply 293

reducing group size (as in the MX format) may not 294

adequately minimize quantization error; instead, an 295

asymmetric data representation becomes essential. 296

3.2 Data Rotation vs. Microscaling 297

We then examine how data rotation reduces outliers 298

alongside microscaling and assess its effectiveness 299

as group size decreases. Fig. 2(e) shows the kur- 300

tosis before and after applying data rotation using 301

a random Hadamard transform (Ashkboos et al., 302

2024) across decreasing group sizes. When the 303

group size spans an entire row, activation rotation 304

substantially lowers kurtosis, demonstrating its ef- 305

ficacy in 4-bit activation quantization. However, 306

as group size decreases, the original activation’s 307

kurtosis also drops, reaching levels comparable to 308

those achieved with rotation. Thus, the benefit of 309

data rotation in outlier reduction diminishes with 310

smaller group sizes. 311

On the other hand, Fig. 2(f) shows the group 312

means of the activation before and after apply- 313

ing data rotation. As with the original activation, 314

the group means scatter more as group sizes de- 315

crease, but this scattering is even more pronounced 316

with rotated activations. This indicates that rota- 317

tion introduces an additional asymmetry in group 318

distributions, which complicates quantization with 319

MXFP4’s symmetric representation (cf. Table 1). 320

In other words, data rotation and microscaling lack 321

synergy, as both focus on outlier suppression with- 322

out addressing asymmetry. Thus, a microscaling 323

data format that effectively handles group distribu- 324

tion asymmetry presents a compelling alternative. 325

3.3 Multi-modal LLM’s Activation Outlier 326

To further understand activation outliers under mi- 327

croscaling in multi-modal LLMs, we examine the 328

popular vision-language model LLaVA (Liu et al., 329

2023a). LLaVA combines a visual encoder and a 330

language model backbone: an image is processed 331

by a vision transformer-based encoder (Dosovit- 332

skiy et al., 2021) to generate vision tokens, which 333
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are then input to the language model along with334

language tokens from the user prompt.335

As shown in Fig. 3(a), both vision and language336

tokens exhibit outliers within the same hidden di-337

mension of the activation, though their distribu-338

tions differ. Language tokens typically concen-339

trate around larger magnitudes, while only some340

vision tokens reach high magnitudes, a trend ob-341

served consistently across layers. In Fig. 3(c), these342

differences result in varying kurtosis distributions343

for row-wise group quantization: language tokens344

have clustered outliers, while vision tokens show a345

sparser outlier distribution. However, this distinc-346

tion fades as group size decreases, illustrating the347

effectiveness of microscaling in suppressing out-348

liers. Similar to LLMs, LLaVA’s group means scat-349

ter as group size decreases, indicating increased350

asymmetry in exchange for outlier suppression.351

This suggests microscaling could better handle di-352

verse outlier patterns from vision and language353

tokens if designed to support asymmetric data rep-354

resentation.355

4 Asymmetric Microscaling Format356

The findings from Sec. 3 motivate the development357

of a new microscaling format that inherently sup-358

ports asymmetric data representation. In this sec-359

tion, we explore the design space of the microscal-360

ing data format (Pi and S) alongside considerations361

for asymmetric quantization schemes.362

4.1 Selecting Element-Wise Data Format363

We first examine the design space of the element-364

wise data format Pi. To evaluate the benefits of365

asymmetric formats, we compare the mean-square366
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error (MSE) on activation samples from LLaMA2- 367

7B’s QKV-Proj at layer 5 across four symmetric 368

formats (INT4, FP4, NF4 (Dettmers et al., 2023), 369

SF4 (Dotzel et al., 2024)) with two asymmetric 370

formats: 371

• Asymmetric INT (AsymINT): INT quantiza- 372

tion applies asymmetry through a zero-point, 373

shifting the data range from zero-centered to 374

span between the minimum and maximum 375

values (Dettmers et al., 2022). 376

• Asymmetric FP (AsymFP): FP quantization 377

introduces asymmetry by applying separate 378

scales to positive and negative values due 379

to FP’s inherently zero-centered representa- 380

tion (Zhang et al., 2024b). 381

We compare the MSE of each format on acti- 382

vation samples from LLaMA2-7B’s QKV-Proj at 383

layer 5. Fig. 4(a) characterizes these activations 384

by group mean (x-axis) and kurtosis (y-axis). As 385

a reference, we cluster groups based on mean and 386

kurtosis similarity, then apply the Lloyd-Max algo- 387

rithm (Lloyd, 1982) for near-optimal quantization 388

(100 iterations, with 16 clusters, as further cluster- 389

ing yields no additional MSE reduction). 390

Fig. 4(b) presents the MSE of various element- 391

wise data formats. Compared to Lloyd-Max quanti- 392

zation (used as a reference), all symmetric data for- 393

mats show a significant MSE increase, with INT4 394

experiencing the most notable degradation. In 395

contrast, AsymINT4 and AsymFP4 achieve lower 396

MSE, with AsymFP showing MSE closest to Lloyd- 397

Max (a consistent trend across models and layers). 398

This finding supports the selection of AsymFP4 as 399

the element-wise format, further validated empiri- 400

cally in Table 1. 401

4.2 Selecting Shared-Scale with Asymmetry 402

With AsymFP4 selected as the preferred element- 403

wise data representation, its original design for 404
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weight-only quantization (Zhang et al., 2024b)405

requires high-precision dequantization before406

multiplication with activations. To integrate407

AsymFP into reduced-precision GEMM, we re-408

define AsymFP such that an exponent-bit-shifted409

mantissa represents a value, which is then scaled410

by a shared factor with sign-dependent polarity:411

xq =

{
(↑1)s · 2E+eb ·M · (2sebp · M̂p) if s = 0,

(↑1)s · 2E+eb ·M · (2sebn · M̂n) if s = 1,

(1)

412

where s, E, eb, and M represent an element’s sign,413

exponent, exponent bias, and mantissa, respectively.414

As described in Fig. 5(a), the terms 2sebp · M̂p415

and 2sebn · M̂n represents the positive and negative416

scales shared within a quantization group.417

PoT. When M̂p = M̂n = 1, the dynamic range418

for positive and negative values can be adjusted by419

modifying the exponent. However, we observe that420

MXFP4’s PoT frequently triggers max clamping421

in small group sizes, causing significant perfor-422

mance degradation. To address this, we propose423

an advanced PoT that mitigates max clamping by424

modifying the PoT decision rule (see Appendix B.2425

for details). As shown in Fig. 5(a), the proposed426

PoT shared scale reduces LLaMA2 perplexity by427

approximately 4.428

FP8. Although proposed PoT scale prevents429

clamping errors, its limited resolution still causes430

accuracy loss. To mitigate this issue, we propose431

using FP8 scales to leverage additional mantissa432

bits for finer rounding. However, as shown in433

Fig. 5(a), a 4-bit exponent results in a narrower434

dynamic range, which in turn increases perplexity435

compared to PoT. Therefore, we select FP8 with436

a 5-bit exponent (E5M2) as the shared scale, as437

these scales largely mitigate accuracy degradation438

caused by the limited resolution and narrower dy-439

namic range (see Table 15 for ablation studies).440

4.3 Asymmetric Microscaling Floating-Point 441

Based on our exploration of the MX design space, 442

we propose AMXFP4 (asymmetric microscaling 4- 443

bit floating-point), which utilizes asymmetric FP8 444

shared scales. During multiplication, the shared 445

scale is selected based on the signs of the two num- 446

bers. As shown in Fig. 5(b), this overhead remains 447

minimal because the mantissa of the shared scale 448

is only 2 bits, and the scale is computed once and 449

shared within a group. To evaluate AMXFP4 on 450

real hardware, we implement an AMXFP4 MAC 451

unit via hardware synthesis by modifying the exist- 452

ing MX MAC unit (Darvish Rouhani et al., 2023). 453

Our evaluation shows that AMXFP4 incurs only 454

about a 10% overhead compared to MXFP4 (details 455

are in Appendix B.3). 456

5 Experiments 457

In this section, we compare AMXFP4 with other 458

formats and rotation-based methods. Unless oth- 459

erwise specified, all experiments use the proposed 460

FP8 shared scale across all formats (including 461

INT4, MXFP4, and AMXFP4) for a fair compar- 462

ison and quantize input operands for all decoder- 463

layer matrix multiplications. Further details on 464

quantization settings and benchmark descriptions 465

are provided in Appendix C. 466

5.1 Impact of Microscaling and Data Rotation 467

Microscaling vs. Data Rotation. We empirically 468

validate the findings discussed in Sec. 3.2, con- 469

firming that data rotation effectively mitigates acti- 470

vation outliers in configurations with large group 471

sizes but has limited compatibility with microscal- 472

ing. Table 1 presents the impact of data rotation 473

(randomized Hadamard transform) on Wikitext- 474

2 (Merity et al., 2016) perplexity, with group sizes 475

ranging from an entire row to 32. When the group 476

size spans an entire row, data rotation provides the 477

best solution for MXFP4, outperforming asymmet- 478

ric data representations. However, as the group size 479

decreases, data rotation increases perplexity across 480

all models with MXFP4, whereas AMXFP4 con- 481

sistently reduces perplexity, achieving a 0.6-point 482

reduction in LLaMA3-8B. This result further sup- 483

ports that outlier handling becomes less effective 484

as group size decreases. 485

INT4 vs. FP4. We extend our analysis to mi- 486

croscaling INT (MXINT) to assess whether the 487

adverse effects of data rotation stem from FP’s non- 488

uniform data representation. Similar to MXFP4, 489
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LLaMAGroup
Size

Data
Rotation

Data
Format 2-7B 2-13B 3-8B

FP16 Baseline 5.47 4.88 6.14
MXINT4 NaN 2988.82 2603.42

AMXINT4 2045.70 364.96 1800.44
MXFP4 475.62 99.33 85.07-

AMXFP4 44.75 33.79 40.33
MXINT4 47.55 35.32 100.95

AMXINT4 16.60 13.94 35.90
MXFP4 11.88 10.81 13.27

Row

↭
AMXFP4 12.05 11.54 12.13
MXINT4 7.01 6.11 9.01

AMXINT4 6.33 5.55 9.62
MXFP4 6.49 5.69 8.35-

AMXFP4 6.22 5.47 7.72
MXINT4 7.90 6.18 9.96

AMXINT4 6.75 5.75 8.25
MXFP4 10.09 6.89 9.48

MX (32)

↭
AMXFP4 8.36 6.35 9.20

Table 1: Wikitext-2 perplexity results by group size with
and without data rotation applied (lower is better).

LLaMA Eval
Dataset QuaRot QuaRot

+ GPTQ SpinQuant AMXFP4

Calib Dataset - PM EE PM EE -
PM ↓ 7.7 5.4 5.5 5.7 5.9 5.32-7B EE ↓ 7.9 6.3 6.2 6.8 6.3 6.1
PM ↓ 9.4 7.4 7.6 7.5 7.7 6.83-8B EE ↓ 12.9 10.7 10.2 10.7 10.0 9.4

Calibration Dataset - PQ WG PQ WG -
PQ ↑ 72.0 77.4 76.2 76.4 73.1 77.82-7B WG ↑ 60.1 65.3 65.9 66.4 64.0 67.5

PM: PubMed, EE: Enron Emails, PQ: PIQA, WG: WinoGrande

Table 2: Impact of overfitting: Calibration on different
data distribution on LLaMA models.

MXINT4 benefits from data rotation when the490

group size spans an entire row, significantly re-491

ducing perplexity compared to asymmetric repre-492

sentation (AMXINT4). However, at a group size of493

32, data rotation tends to increase perplexity. No-494

tably, at group size 32, AMXINT4 achieves lower495

perplexity than MXFP4, but AMXFP4 achieves496

the lowest perplexity overall. This result demon-497

strates that our element format selection in Sec. 4.1498

effectively enhances LLM accuracy.499

Robustness to Calibration Set Distributions.500

Table 2 examines the sensitivity of QuaRot and501

SpinQuant to varying calibration set distributions.502

Perplexity is measured on PubMed (of the U.S.503

National Library of Medicine, 2023) and Enron504

Emails (Klimt and Yang, 2004), while accuracy505

is measured on PIQA (Bisk et al., 2019) and506

WinoGrande (Sakaguchi et al., 2019), using both507

matched and mismatched calibration/evaluation508

sets. QuaRot with GPTQ and SpinQuant substan-509

tially outperform the random Hadamard rotation510

but tend to show better accuracy on data observed511

during calibration. One exception is SpinQuant,512

●16-bit Baseline ●MXFP4-PoT ●MXFP4 ●AMXFP4

0

0.2

0.4
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0.8
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Figure 6: Normalized single score of MT-Bench
(LLaMA2-Chat-7B). Absolute accuracies are in Ta-
ble 13 in Appendix.

Data Format VQA-T DocVQA OCRBench ChartQA
16-bit Baseline 64.84 74.46 52.40 54.72
MXFP4-PoT 50.05 52.85 33.70 36.76

MXFP4 57.88 64.26 43.40 46.20
AMXFP4 59.13 66.98 43.90 49.48

Table 3: LLaVA1.6-7B inference results on multi-modal
visual question-answering benchmarks.

which attains strong accuracy on both PIQA and 513

WinoGrande when calibrated on PIQA, although 514

results vary by about 2–3% solely due to differ- 515

ent calibration datasets. However, AMXFP4 re- 516

mains unaffected by the calibration set and no- 517

tably improves results and surpasses conventional 518

calibration-based methods. 519

5.2 Enhancing MX Performance 520

In this section, we evaluate AMXFP4 against 521

MXFP4 in practical applications, including chat- 522

bots, visual tasks, and long-document question an- 523

swering. To assess our improvements over the MX- 524

compliant format, we also include MXFP4 with 525

PoT shared scale (MXFP4-PoT) from Sec 4.2 as a 526

baseline for comparison. 527

Multi-Turn Chatbot Tasks. Quantization ad- 528

versely affects the conversational capabilities of 529

chatbots (Lee et al., 2024); therefore, we conduct 530

an MT-Bench evaluation (Zheng et al., 2023) on 531

LLaMA2-Chat-7B (Touvron et al., 2023). Fig. 6 532

presents the normalized scores with the 16-bit base- 533

line score set to 1. While MXFP4 inference shows 534

severe performance degradation across all cate- 535

gories, AMXFP4 demonstrates recovery of conver- 536

sational abilities close to the baseline. Fig. 11 and 537

13 provide detailed examples, showing that while 538

MXFP4 generates unhelpful sentences, AMXFP4 539

produces responses that are genuinely helpful. 540
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Question: What basketball player elected to the National Collegiate 
Basketball Hall of Fame released music through Rendezvous Music?

Context (length: 7104): Passage 1: Wayman Tisdale ... was an 
American professional basketball player ... he was elected to the 
National Collegiate Basketball Hall of Fame in 2009 ...
Passage 7: Rendezvous Music (formerly known as Rendezvous 
Entertainment) ... new music by ... Wayman Tisdale.

16-bit Baseline: Wayman Tisdale

MXFP4-PoT: The basketball player elected to the National Collegiate 
Basketball Hall of Fame released music through Rendezvous.

AMXFP4: Wayman Tisdale

Figure 7: LongBench-E results on LLaMA2-Chat-7B.

Visual Tasks. Table 3 presents results on four541

multi-modal benchmarks (Zhang et al., 2024a) us-542

ing LLaVA1.6-7B (Liu et al., 2023a). AMXFP4 im-543

proves MXFP4 scores by approximately 3.3 points544

on benchmarks such as ChartQA (Masry et al.,545

2022), highlighting the significant advantages of546

asymmetric data representation in VLMs (example547

is shown in Fig. 12).548

Long-Context Tasks. We conduct the549

LongBench-E (Bai et al., 2024) evaluation to as-550

sess the effectiveness of AMXFP4 in long-context551

scenarios. As shown in Fig. 7, while MXFP4-552

PoT’s generation quality significantly degrades on553

questions with lengthy contexts, AMXFP4 pro-554

duces answers identical to the baseline. Detailed555

scores across 13 benchmarks, categorized by con-556

text length, are presented in Table 14. The re-557

sults indicate that AMXFP4 outperforms MXFP4,558

achieving over a 2% accuracy improvement for559

context lengths exceeding 8K.560

5.3 Comparison with Commercial MXFP4561

Recently, NVFP4 (NVIDIA, 2024) adopts a562

smaller group size of 16 and employs a double-563

scaling strategy, which combines a tensor-wise564

FP32 shared scale with a group-wise FP8 (E4M3)565

shared scale. We evaluate whether our proposed566

asymmetric shared scale enhances the recently de-567

plyed commercial MXFP4 by evaluating ANVFP4568

(Asymmetric NVFP4) on Common-Sense Ques-569

tion Answering (CSQA) (Talmor et al., 2019) and570

MMLU (Hendrycks et al., 2020) benchmarks. As571

shown in Table 4, when GS=32, AMXFP4 and572

ANVFP4 surpass NVFP4 in accuracy, indicating573

that the asymmetric data representation offers a574

greater improvement than double scaling strategy.575

Notably, in the NVFP4 setting with GS=16, AN-576

VFP4 increases MMLU accuracy by about 3%,577

which aligns with our observation that asymmetry578

MMLU Accuracy (%) ↑ CSQA Accuracy (%) ↑GS Data Format 2-7B 2-13B 3-8B 2-7B 2-13B 3-8B
16-bit Baseline 41.3 50.5 62.0 64.9 67.3 69.2

MXFP4-PoT 29.2 37.9 43.1 59.4 62.2 58.6
MXFP4 33.6 42.8 49.5 61.6 65.1 62.0

AMXFP4 36.3 45.0 52.8 62.0 64.9 62.2
NVFP4 32.9 44.5 51.9 61.4 65.0 61.9

32

ANVFP4 34.8 45.8 54.0 62.2 64.7 62.9
NVFP4 34.0 45.9 54.6 62.6 65.3 63.416 ANVFP4 37.3 47.7 57.1 62.2 66.2 64.9

Table 4: MMLU and CSQA results on LLaMA models.

becomes more beneficial at smaller group sizes. 579

5.4 Ablation Studies 580

We extend our experiments to transformer model 581

types (encoder-decoder models), quantization- 582

aware training, and 3-bit quantization. Experimen- 583

tal details and additional results, including perplex- 584

ity results and applying AMXFP4 on sparse mod- 585

els, are provided in Appendix D.1. Below is a 586

summary of our ablation study findings. 587

Encoder-Decoder Language Model. We 588

extend the comparison between AMXFP4 and 589

MXFP4 to the summarization task using BART- 590

Large (Lewis et al., 2019). As shown in Table 9, 591

AMXFP4 exhibits a 0.9-point ROUGE-1 degrada- 592

tion compared to the baseline, whereas MXFP4 593

suffers a greater 1.3-point degradation. 594

Quantization-Aware Training (QAT). We in- 595

vestigate whether QAT can reduce the perplexity 596

gap between MXFP4 and AMXFP4. As shown 597

in Table 10, after applying QAT to LLaMA3-8B, 598

AMXFP4 nearly matches the baseline perplexity, 599

while MXFP4 still exhibits a remaining gap. 600

More Aggressive Quantization. We compare 601

QuaRot and AMXFP under a 3-bit setting (W3A3) 602

in Table 11. While QuaRot with GPTQ main- 603

tains LLaMA2-13B perplexity degradation within 604

1 in W4A4 (Ashkboos et al., 2024), it suffers a 605

severe degradation exceeding 30 in W3A3. In con- 606

trast, AMXFP3 achieves a perplexity degradation 607

of only 1.7 in direct-cast inference, highlighting 608

AMXFP4’s potential in lower-precision settings. 609

6 Conclusion 610

To meet the computational demands of large lan- 611

guage models (LLMs) with extended contexts, we 612

introduce Asymmetric Microscaling 4-bit Floating- 613

Point (AMXFP4), which uses asymmetric shared 614

scales to handle outliers and quantization asymme- 615

try. AMXFP4 provides direct 4-bit inference with 616

high accuracy, outperforming MXFP4 and other 617

techniques for efficient, calibration-free inference. 618
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Limitations619

While AMXFP4 shows strong promise across620

various LLM tasks, our current hardware anal-621

ysis remains focused on a MAC-level evalua-622

tion. This choice reflects a balanced starting point623

for proof-of-concept experiments and aligns with624

many common practices in precision-scaling re-625

search (Darvish Rouhani et al., 2023). However,626

as seen with recent system-level benchmarks (e.g.,627

NVIDIA’s Blackwell), there is significant potential628

to extend these findings to a full system-level eval-629

uation. We plan to extend our evaluation accord-630

ingly, examining factors such as overall throughput,631

energy efficiency, and system-level trade-offs.632

Additionally, our experiments have employed633

greedy decoding to ensure fair comparisons.634

However, recent deployment scenarios often635

rely on more advanced strategies—such as best-636

of-N sampling or self-refinement in reasoning637

LLMs—which require increased computational re-638

sources at inference time. Investigating AMXFP4’s639

robustness and efficiency under these test-time scal-640

ing conditions is a natural next step and could fur-641

ther underscore the method’s potential benefits in642

real-world applications.643
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Figure 8: (a) Illustration of where reduced-precision ma-
trix multiplication and data transformation are applied
within a Transformer decoder layer. QuaRot and Spin-
Quant do not quantize the Query and Softmax outputs
(red dotted box). (b) FLOPS breakdown of LLaMA3-
8B in the prefill stage based on context length.

PPL↓ Accuracy↑Rotation Calibset-
SeqLen-Samples

Calib. Time
(A100) Wiki ARC-C WG

16-bit Baseline 5.47 46.33 69.30
QuaRot - - 8.38 36.26 60.06

Wiki-2048-128 6.08 41.64 66.22
Wiki-1024-128 6.06 42.32 65.59
Wiki-2048-64 6.11 41.64 65.51
Wiki-2048-32 6.11 41.55 63.85
PTB-2048-128 6.16 42.15 65.43

QuaRot+
GPTQ

PTB-1024-128

↓20 min

6.12 41.72 66.54
Wiki-2048-100 6.25 38.65 64.72
Wiki-1024-100 6.32 40.87 63.77
PTB-2048-100 7.11 38.74 60.30SpinQuant

PTB-1024-100

↓2 hours

7.14 37.71 63.54
AMXFP4 (direct-cast, no calibration) 5.93 42.83 67.32

Table 5: Calibration overhead on LLaMA2-7B.

A Comparison with Rotation Techniques1006

Rotation-based methods, such as QuaRot and Spin-1007

Quant, typically avoid quantizing query and soft-1008

max output, and require on additional calibration,1009

which introduces the following drawbacks:1010

High-Precision Query and Softmax Output.1011

Fig. 8(a) illustrates how rotation-based methods ap-1012

ply rotation and quantization in reduced-precision1013

LLM inference. While these techniques make ac-1014

tivations more quantization-friendly, they do not1015

quantize the softmax output. As shown in Fig. 8(b),1016

as context length increases, the dominant FLOPS1017

in the prefill stage come from query-key multipli-1018

cation and attention operations, including softmax1019

output (self-attention map; SA) and value multipli-1020

cation. Processing these operations in high preci-1021

sion undermines the benefits of reduced-precision1022

inference, limiting overall efficiency.1023

Calibration Overhead. Table 5 displays the1024

Name Element Data
Type Element Bits Group Size Shared Scale

MXFP8 FP8 (E5M2) 8

32 8-bit PoT

FP8 (E4M3)

MXFP6 FP6 (E3M2) 6FP6 (E2M3)
MXFP4 FP4 (E2M1) 4

MXINT8 INT8 8

Table 6: MX-compliant format. Configurations are
adapted from (Rouhani et al., 2023a).

effects of varying calibration settings (dataset, 1025

sequence length, and number of samples) on 1026

Wikitext-2 perplexity, ARC-Challenge (Clark et al., 1027

2018) and WinoGrande accuracy for QuaRot and 1028

SpinQuant. When using QuaRot alone, CSQA ac- 1029

curacy drops by 10%. When combined QuaRot 1030

with GPTQ, results depend on calibration settings; 1031

using only 32 calibration samples leads to a 2.4% 1032

reduction in WinoGrande accuracy compared to 1033

using 128 samples. SpinQuant, which trains a rota- 1034

tion matrix, achieves higher accuracy than QuaRot 1035

alone but increases calibration time by approxi- 1036

mately 6↔ and exhibits greater sensitivity to the 1037

calibration set. When calibrated with the PTB (Mar- 1038

cus et al., 1993) dataset instead of Wikitext-2, per- 1039

plexity on Wikitext-2 rises by around 0.9. Our 1040

proposed AMXFP4 shows minimal performance 1041

degradation compared to the baseline and remains 1042

unaffected by calibration settings. 1043

B MX Format Details and Emulation 1044

Framework 1045

B.1 MX Configuration 1046

Algorithm 1 Quantization procedure in MX format.
Algorithm is adapted from (Rouhani et al., 2023b).
1: Quantize vector elements ({Vi}ki=1) into MX format
2: shared_exp → ↑log2(maxi(|Vi|))↓ ↔ emaxelem

3: X → 2shared_exp

4: for i = 1 to k do
5: Pi = quantize(Vi/X), clamping normal numbers
6: end for
7: return X, {Pi}ki=1

As the MX format is our primary focus for im- 1047

provement, we aim to provide detailed informa- 1048

tion on it. We follow the MX format configura- 1049

tion and quantization procedure as (Rouhani et al., 1050

2023a,b). The MX format offers a variety of bit- 1051

configurations for elements, ranging from 8 bits to 1052

4 bits, while specifying only an 8-bit PoT for the 1053

shared scale. The process to determine this 8-bit 1054

PoT follows an Algorithm 1. As described in the 1055
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Figure 9: Impact of shared scale (LLaMA2-7B). More
results on other models and data formats are in Table 15.

Data Format Area-Memory Power-Area Power-Area
-Memory

FP16 1.00↔ 1.00↔ 1.00↔
MXFP4-PoT 10.44↔ 7.62↔ 28.67↔

MXFP4 9.23↔ 5.65↔ 21.41↔
AMXFP4 8.32↔ 4.58↔ 16.50↔

Table 7: Hardware comparison between MXFP4 and
AMXFP4.

entire quantization procedure, MX considers the1056

maximum data value to determine the shared scale,1057

performing a floor operation after extracting the1058

exponent of the element’s maximum value with1059

log2.1060

B.2 Determining PoT Shared Scale: Floor vs.1061

Round1062

As illustrated in Fig. 9(a), an undesirable perfor-1063

mance degradation occurs in PoT scales as group1064

size decreases. To analyze this degradation, we de-1065

compose the output error into maximum clamping1066

error and rounding error. As shown in Fig. 9(b),1067

with a group size of 2, the rounding error reduces1068

significantly, while the maximum clamping error1069

increases sharply, resulting in a net error rise. This1070

issue is attributed to the floor operation on the1071

exponent in MX, which introduces clamping er-1072

ror. To overcome maximum clamping errors while1073

maintaining the hardware efficiency of PoT shared1074

scales, we replace flooring with rounding. This ex-1075

ponent rounding approach significantly lowers total1076

error, enhancing performance, as demonstrated in1077

Fig. 9(a) and (b).1078
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Figure 10: MX dot-product architecture.

B.3 Hardware Evaluation for MXFP4 and 1079

AMXFP4 1080

Since a MAC unit is a major consumer of ASIC 1081

resources for deep learning accelerators, many rep- 1082

resentative prior works focus on MAC unit effi- 1083

ciency for hardware analysis (Darvish Rouhani 1084

et al., 2023). Thus, we also follow and expand 1085

(Darvish Rouhani et al., 2023)’s evaluation pro- 1086

cess (area, memory-efficiency) for AMXFP4. We 1087

design a fully custom MX-compatible MAC unit 1088

and its extension to AMX. Then, we synthesize it 1089

under a competitive operating environment with 1090

Synopsys Design Compiler (commercial 4nm tech- 1091

nology node, supply voltage of 0.675V, and a clock 1092

frequency of 1.1GHz). 1093

MX format’s group-wise data representation de- 1094

couples intra-group dot products from group-wise 1095

scaling, enabling efficient MAC implementations 1096

with minimal overhead from inter-group scale ad- 1097

justments (Fig. 10). As shown in Table 7, our MX- 1098

compatible MAC unit implementation shows that 1099

4-bit MX formats reduce area-memory costs by 1100

over 8↔. This aligns with MXFP4’s early adop- 1101

tion in recent deep learning accelerators, offering a 1102

2↔ speedup over 8-bit computation (Nvidia, 2024; 1103

AzureAI, 2024). 1104

Asymmetric FP8 scales require additional mul- 1105

tiplication of the mantissas for positive and nega- 1106

tive scales depending on the operand’s sign; how- 1107

ever, this incurs minimal resource overhead due to 1108

the small mantissa size, and once calculated, the 1109

overhead is shared within a group. Our evaluation 1110

shows that AMXFP4 incurs only a 10% overhead 1111

compared to MXFP4. 1112

B.4 Code Snippet of Our Framework 1113

As shown in the below example, our proposed 1114

AMXFP4 applies different shared scales to pos- 1115

itive and negative numbers, enabling more refined 1116

value representation compared to MXFP4. Addi- 1117
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tionally, the PoT shared scale significantly clamps1118

the largest value in the input, 31, to 24, while the1119

FP8 shared scale, using the same number of bits,1120

more precisely quantizes 31 to 30.1121

1122
class MXQuantizer(object):1123

def __init__(self, elem_format ,1124

group_size , scale_mode):1125

self.elem_format = elem_format #1126

Element Format1127

self.group_size = group_size # group1128

S i z e1129

self.scale_mode = scale_mode #1130

Shared S c a l e Type1131

self.mx_specs = MxSpecs(1132

a_elem_format=self.elem_format ,1133

group_size=self.group_size ,1134

custom_cuda=True,1135

scale_mode=scale_mode ,1136

)1137

def quantize(self, x):1138

qx = quantize_mx_op(1139

x,1140

self.mx_specs,1141

elem_format=self.elem_format ,1142

axes=[!1],1143

)1144

return qx1145

1146

# Example : A s y m m e t r i c a l l y d i s t r i b u t e d t e n s o r1147

wi th a s i n g l e row1148

x = torch.linspace(!4.9, 31, 1024)1149

1150

# MXFP41151

mx_fp4 = MXQuantizer(elem_format= ' fp4_e2m1 ' ,1152

group_size=!1, scale_mode=0)1153

qx_mx_fp4 = mx_fp4.quantize(x)1154

# AMXFP4 ( Shared S c a l e : PoT )1155

mx_fp4_asym =1156

MXQuantizer(elem_format= ' fp4_e2m1_asym ' ,1157

group_size=!1, scale_mode=0)1158

qx_mx_fp4_asym = mx_fp4_asym.quantize(x)1159

# AMXFP4 ( Shared S c a l e : FP8 )1160

mx_fp4_asym_fp8scale =1161

MXQuantizer(elem_format= ' fp4_e2m1_asym ' ,1162

group_size=!1, scale_mode=152)1163

qx_mx_fp4_asym_fp8scale =1164

mx_fp4_asym_fp8scale.quantize(x)1165

1166

# Q u a n t i z e d t e n s o r1167

print(qx_mx_fp4.unique()) # MXFP41168

>> tensor([!4., !2., 0., 2., 4., 6.,1169

8., 12., 16., 24.], device= ' cuda:0 ') 1170

print(qx_mx_fp4_asym.unique()) # AMXFP4 1171

( Shared S c a l e : PoT ) 1172

>> tensor([!4.0000, !3.0000, !2.0000, 1173

!1.5000, !1.0000, !0.5000, 0.0000, 1174

2.0000, 1175

4.0000, 6.0000, 8.0000, 12.0000, 1176

16.0000, 24.0000], 1177

device= ' cuda:0 ') 1178

print(qx_mx_fp4_asym_fp8scale.unique()) # 1179

AMXFP4 ( Shared S c a l e : FP8 ) 1180

>> tensor([!5.2500, !3.5000, !2.6250, 1181

!1.7500, !1.3125, !0.8750, !0.4375, 1182

0.0000, 1183

2.5000, 5.0000, 7.5000, 10.0000, 1184

15.0000, 20.0000, 30.0000], 1185

device= ' cuda:0 ') 11861187

C Experimental Details 1188

Quantization Settings. Our experiments is con- 1189

ducted by modifying the PyTorch and CUDA code 1190

within the MX Emulation library (Rouhani et al., 1191

2023b). We quantize all weights and activations in 1192

Transformer decoder layers, including Query, Key, 1193

Self-attention map, and Value as a default. 1194

Models. The models used in the experiments in- 1195

clude OPT (Zhang et al., 2022), LLaMA (Touvron 1196

et al., 2023), (AI@Meta, 2024), Qwen (Bai et al., 1197

2023), and Mistral (Jiang et al., 2023), LLaMA2- 1198

Chat (Touvron et al., 2023), BART (Lewis et al., 1199

2019), and LLaVA (Liu et al., 2023a) (which back- 1200

bone is Vicuna-7B (Chiang et al., 2023)). 1201

Robustness Measurment Settings in Table 2. 1202

Following the calibration robustness measurement 1203

method introduced in AWQ (Lin et al., 2023), we 1204

select two subsets from the Pile dataset (Gao et al., 1205

2020): PubMed Abstracts (of the U.S. National Li- 1206

brary of Medicine, 2023) and Enron Emails (Klimt 1207

and Yang, 2004). The calibration and evaluation 1208

sets are distinct, with no overlap; 128 samples with 1209

a sequence length of 2048 are used for calibration, 1210

and 200 samples are reserved for perplexity evalua- 1211

tion. Additionally, we configure the calibration set 1212

with questions and answers from the PIQA (Bisk 1213

et al., 2019) and WinoGrande (Sakaguchi et al., 1214

2019) datasets to analyze calibration effects in 1215

question-answering tasks. To determine whether 1216

our improved MX format can effectively replace ex- 1217

isting techniques for W4A4 inference, we align the 1218

experimental settings, applying reduced-precision 1219

activations consistent with prior studies (excluding 1220
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Question: Imagine you are participating in a race with a group of 
people. If you have just overtaken the second person, what's your 
current position? Where is the person you just overtook? 

16-bit Baseline: Great question! If I have just overtaken the second 
person in a race, my current position would be second place. The 
person I just overtook would be in third place. 

MXFP4-PoT: If I have just overtaken the second person, then I am 
currently in the lead position. As for the person I just overtook, they 
are now in second place.

AMXFP4: If I have just overtaken the second person, my current 
position would be in second place, directly behind the first-place 
runner. The person I just overtook is now in third place, behind me.

Figure 11: Example of chatbot interactions from MT-
Bench (LLaMA2-Chat-7B)

quantization for Query and Softmax output). We re-1221

produce the performance of QuaRot and SpinQuant1222

following their official repositories, with modifica-1223

tions to calibration and evaluation datasets.1224

MT-Bench. MT-Bench assigns scores ranging1225

from 1 to 10, given by GPT-4 (OpenAI, 2023), to1226

responses generated from an initial question and a1227

subsequent follow-up question across 80 multi-turn1228

conversations.1229

Visual Tasks. For evaluating VLMs, we uti-1230

lize lmms-eval (Zhang et al., 2024a), includ-1231

ing TextVQA (VQA-T) (Singh et al., 2019),1232

DocVQA (Mathew et al., 2021), OCRBench (Liu1233

et al., 2024a), and ChartQA (Masry et al., 2022).1234

Long-Context Benchmarks. To measure the1235

effectiveness of AMXFP4 while long-context1236

is given, we utilize LongBench-E (Bai et al.,1237

2024) on LLaMA2-Chat-7B. LongBench-E in-1238

cludes 13 tasks: Qasper (Dasigi et al., 2021), Mul-1239

tiFieldQA (Bai et al., 2024), HotPotQA (Yang1240

et al., 2018), MultihopQA (Ho et al., 2020), Gov-1241

Report (Huang et al., 2021), MultiNews (Bai1242

et al., 2024), TREC (Li and Roth, 2002), Trivi-1243

aQA (Joshi et al., 2017), SAMSum (Gliwa et al.,1244

2019), PassageCount (Bai et al., 2024), PassageRe-1245

trieval (Bai et al., 2024), LCC (Guo et al., 2023),1246

and RepoBench-P (Liu et al., 2023b).1247

Knowledge Evaluation Benchmarks (MMLU1248

and CSQA). We evaluate our method into com-1249

monsence QA (CSQA) (PIQA (Bisk et al., 2020),1250

WinoGrande (Sakaguchi et al., 2019), ARC chal-1251

lenge (Clark et al., 2018)) and MMLU (Hendrycks1252

et al., 2020). and CSQA and MMLU accuracies are1253

assessed using the lm-evaluation-harness (Gao1254

et al., 2021).1255

Data Format OPT LLaMA Mistral
6.7B 13B 2-7B 2-13B 3-8B 7B

16-bit Baseline 10.86 10.13 5.47 4.88 6.14 5.25
MXFP4-PoT 25.51 12.88 7.83 6.98 11.17 6.34

MXFP4 13.71 12.09 6.49 5.69 8.31 5.88
AMXFP4 13.06 11.90 6.22 5.47 7.72 5.71

Table 8: Wikitext-2 inference for MXFP4 and
AMXFP4.

Data Format ROUGE-1 ↑ ROUGE-2 ↑ ROUGE-L ↑
16-bit Baseline 45.09 21.60 31.43
MXFP4-PoT 42.47 19.10 29.18

MXFP4 43.73 20.50 30.43
AMXFP4 44.13 20.79 30.72

Table 9: CNN/DailyMail summarization task on BART-
Large.

D More Experimental Results 1256

D.1 Ablation Studies 1257

Language Modeling Tasks. We evaluate on lan- 1258

guage modeling with WikiText (Merity et al., 2016). 1259

The perplexity measurement on the Wikitext test 1260

dataset involves grouping 2048 tokens collectively. 1261

Table 8 presents Wikitext-2 perplexity results for 1262

six LLMs across MXFP4 and AMXFP4 with PoT 1263

and FP8 shared scale. While MXFP4-PoT in- 1264

troduces significant perplexity degradation across 1265

all models, employing MXFP4 with an enhanced 1266

shared scale substantially reduces perplexity in 1267

each case. Notably, AMXFP4, through asymmetric 1268

data representation, achieves a 0.59 perplexity re- 1269

duction in LLaMA3-8B compared to MXFP4 and 1270

limits perplexity degradation to only about 0.46 in 1271

models like Mistral-7B. 1272

Encoder-Decoder Language Model. Table 9 1273

displays the ROUGE (Lin, 2004) scores for BART- 1274

Large’s (Lewis et al., 2019) summarization task 1275

on the CNN/DailyMail dataset (See et al., 2017) 1276

across different MX format options. AMXFP4 1277

exhibits only a 0.7-point drop in ROUGE-L score 1278

compared to the baseline, demonstrating that the 1279

proposed data format also enables effective 4-bit 1280

inference in encoder-decoder models. 1281

Quantization-Aware Training. We conduct 1282

quantization-aware training (QAT) experiments on 1283

LLaMA3-8B, specifically because it exhibits rel- 1284

atively high perplexity degradation under direct- 1285

cast quantization. We quantize all linear layer 1286

weights and activations to 4 bits and employ flash- 1287

attention (Dao et al., 2022) for attention opera- 1288

tions. We construct QAT dataset by randomly 1289

sampling 3200 sequences, each with a length of 1290
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Method Data
Format

Wiki-2
PPL ↓

Required
Memory

for Fine-Tuning

Required
Time

for Fine-Tuning
Direct-Cast 16-bit-Baseline 6.14 - -
Direct-Cast MXFP4-PoT 7.70 - -
Direct-Cast AMXFP4 6.97 - -

QAT MXFP4-PoT 6.68 148GB 4h 30m
QAT AMXFP4 6.33 148GB 4h 30m

Table 10: Quantization-aware training results on
LLaMA3-8B with Wikitext-2 dataset. Training time
is measured in two A100-80GB GPUs.

Method Format Direct-cast? LLaMA2-7B LLaMA2-13B
16-bit Baseline 5.47 4.88

QuaRot-RTN 1032.30 1105.95
QuaRot-GPTQ INT no 38.47 37.42

AMXFP3 MX yes 8.40 6.53

Table 11: Wikitext-2 perplexity results on 3-bit infer-
ence.

2048 tokens (a total of 6.5M tokens), from the1291

Wikitext-2 training set. Training is performed for1292

100 steps with an effective batch size of 32, and1293

we search learning rates between 2e-6 and 1e-51294

to determine the best hyperparameters for both1295

MXFP4 and AMXFP4. As shown in Table 10,1296

under direct-cast inference, MXFP4 exhibits a per-1297

plexity degradation of 1.6 compared to the 16-bit1298

baseline, whereas our proposed AMXFP4 experi-1299

ences only a 0.8 increase. QAT significantly re-1300

duces perplexity for both MXFP4 and AMXFP4,1301

with AMXFP4 still achieving lower perplexity than1302

MXFP4, approaching baseline levels. However,1303

QAT requires 150GB of GPU memory and 5 hours1304

of fine-tuning time, in addition to the overhead for1305

hyperparameter tuning.1306

More Aggressive Quantization. To explore the1307

potential future of the proposed microscaling for-1308

mat, we compare AMXFP with QuaRot and MXFP1309

at settings lower than 4-bit. Table 11 shows the in-1310

ference results for the LLaMA2 model at 3-bit. In1311

3-bit inference, QuaRot with GPTQ shows signifi-1312

cant performance degradation. MXFP3-PoT also1313

experiences a significant deterioration in perplexity.1314

Conversely, AMXFP3 demonstrates a significant1315

improvement in perplexity, indicating that our find-1316

ings are effective at lower bit settings. This under-1317

scores the robustness of AMXFP in maintaining1318

performance with reduced bit precision, potentially1319

paving the way for more efficient computational1320

models in resource-constrained environments.1321

Conjunction with Sparsity We conduct an abla-1322

tion study by applying MXFP4 to a pruned model1323

to see if improvements in the micro-scaled reduced-1324

precision option can work in conjunction with1325

other methods like sparsity. We use 20% pruning 1326

with LLM-Pruner (Ma et al., 2023) as the baseline 1327

for the sparse model. Table 12 shows the accu- 1328

racy when applying various MXFP4 options to the 1329

pruned model for four CSQA tasks. The model 1330

with 20% pruning reduces the requried memory 1331

while tolerating a slight drop in accuracy. Apply- 1332

ing MXFP4-PoT to the pruned model results in 1333

an additional 5% performance drop. On the other 1334

hand, advancements in shared scale and the rep- 1335

resentation of asymmetric data have progressively 1336

enhanced accuracy even in pruned models, showing 1337

that the improvements of the proposed MX format 1338

have a cumulative effect. 1339

Ablation Study on Shared-Scale Bit-Encoding. 1340

Table 15 illustrates the perplexity according to the 1341

type of shared scale across various models and 1342

group sizes. In the case of FP4, using the default 1343

8-bit PoT (Floor) shared scale option of MX, there 1344

is a notable increase in perplexity as the group size 1345

decreases. This trend is also observed in AsymFP4, 1346

primarily due to the increased error from frequent 1347

clamping caused by the Floor operation. To address 1348

this, our proposed 8-bit PoT consistently improves 1349

performance even with smaller group sizes. On the 1350

other hand, FP8, another 8-bit alternative, with a 1351

4-bit exponent, significantly degrades performance 1352

in models like Mistral, a consequence of its inher- 1353

ent limitations in dynamic range. Conversely, our 1354

findings demonstrate that using a 5-bit exponent 1355

FP8 shared scale can achieve performance close to 1356

FP16. 1357

D.2 Detailed Results for Practical 1358

Applications 1359

Chatbot Results. Fig. 13 presents an example 1360

from MT-Bench. While the 16-bit baseline pro- 1361

vides responses aligned with the user’s intent, 1362

MXFP4 tends to generate repetitive and unhelp- 1363

ful sentences. In contrast, AMXFP4 produces re- 1364

sponses that, similar to the baseline, are useful to 1365

the user. Table 13 displays the single scores from 1366

MT-Bench across different categories. The pro- 1367

posed AMXFP4 demonstrates the ability to recover 1368

baseline performance in most sub-categories. 1369

Visual Question Answering Results. Fig. 12 1370

presents an example response to a given chart im- 1371

age using MXFP4 and AMXFP4. While MXFP4- 1372

PoT generates irrelevant responses, AMXFP4 pro- 1373

duces the correct ground-truth answer, identical to 1374

the baseline. 1375

LongBench-E Results. Table 14 provides de- 1376
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Pruning Ratio Bit-Configurations Memory (GB) BoolQ OBQA PIQA ARC-C Average ↗

0% FP16 13.48 75.11 44.40 79.16 44.71 60.85

20% FP16 10.85 66.45 41.40 78.13 39.42 56.35
20% MXFP4-PoT 3.27 61.74 36.80 73.39 35.15 51.77
20% MXFP4 3.27 62.91 37.60 75.19 36.77 53.12
20% AMXFP4 3.27 62.72 38.60 75.73 36.43 53.37

Table 12: Performance comparison across different pruning ratios and bit configurations (LLaMA-7B).

Data Format Writing Roleplay Reasoning Math Coding Extraction STEM Humanities Single Score
16-bit Baseline 9.25 7.20 4.65 2.55 3.30 5.55 8.93 9.58 6.38
MXFP4-PoT 4.30 4.05 2.35 1.90 1.25 1.55 5.23 5.15 3.22

MXFP4 7.20 7.03 3.95 1.70 1.70 4.35 7.53 8.53 5.25
AMXFP4 8.20 5.98 4.50 2.50 3.05 5.16 7.70 8.70 5.73

Table 13: MT-Bench Single Score (LLaMA2-Chat-7B).

Question: What was the 4th most 
popular emotion?

16-bit Baseline:
The fourth most 
popular emotion is 
“Inspired”.Image

Ground Truth: Inspired

MXFP4-PoT:
The image you've 
shared is a chart that 
appears to show the 
frequency of ...

AMXFP4:
The fourth most 
popular emotion is 
“Inspired”.

Question with Chart Image Generated Response

Figure 12: Comparison between responses from
MXFP4-PoT and AMXFP4 in ChartQA example.

tailed scores for 13 benchmarks in LongBench-E.1377

MXFP4-PoT shows significant performance degra-1378

dation overall, with a score drop of 16 for con-1379

texts exceeding 8K. While MXFP4 substantially1380

improves over MXFP4-PoT, it still experiences a1381

score reduction of over 6 when handling contexts1382

above 8K. AMXFP4 increases the average score by1383

more than 2 compared to MXFP4 for long-context1384

scenarios exceeding 8K.1385
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Question from User: The city of Vega intends to build a bridge that will span the Vegona River, covering a 
distance of 1.8 kilometers. The proposed location falls within a seismically active area that has experienced several 
high-magnitude earthquakes. Given these circumstances, what would be the best approach to constructing the 
bridge?

Response from 16-bit Baseline: Thank you for your question. Building a bridge in a seismically active area 
requires careful consideration and a multi-faceted approach to ensure the safety of the structure and its users. Here 
are some key factors to consider:\n1. Seismic Design: The bridge must be designed to withstand earthquakes. This 
involves using seismic-resistant materials, such as reinforced concrete or steel, and incorporating seismic isolation 
systems, such as base isolators or seismic isolation bearings. These systems can help reduce the bridge's response 
to seismic forces, minimizing damage and ensuring continued functionality during earthquakes.\n2. Site Selection: 
Choose a location for the bridge that is away from potential earthquake fault lines and has a low risk of landslides 
or other geological hazards. This may involve conducting geological surveys and assessments to identify potential 
hazards and selecting a site that is safe and stable.\n3. Structural Integrity: The bridge's structural elements, such 
as the piers, abutments, and superstructure, must be designed to withstand the forces generated by earthquakes. 
This may involve using reinforced concrete or steel, and incorporating redundancy in the structure to ensure that it 
can continue to function even if some elements fail during an earthquake.\n4. Foundation Design: The bridge's 
foundation must be designed to transfer the loads from the bridge to the ground without settling or failing during 
earthquakes. This may involve using deep foundations, such as piles or caissons, that are capable of resisting 
lateral loads and settlement. ...

Response from MXFP4-PoT: I'm glad you're interested in building a bridge! Let's explore some considerations 
first.\n1. Seismic activity: As you've noticed, Vega is an active seismic zone. Given the geological activity, what 
would be the best approach to constructing the bridge?\n2. Geological constraints: Vega is a volcanic in origin, and 
the magma is not a problem. The volcanic activity is not a concern for the bridge construction.\n3. Tectonic 
activity: Vega is a tectonic plate, and the magma is not a problem. The tectonic activity is not a concern for the 
bridge construction.\n4. Volcanic activity: Vega is a volcanic in origin, and the magma is not a problem. The 
volcanic activity is not a concern for the bridge construction.\n5. Geological constraints: Vega is a geological 
hotspot, and the geological activity is not a concern for the bridge construction.\n6. Tectonic activity: Vega is a 
tectonic spot, and the tectonic activity is not a problem for the bridge construction.\n7. Earthquake activity: Vega is 
an earthquake-prone area, and the earthquake activity is not a concern for the bridge construction.\n8. Geological 
constraints: Vega is a geological hotspot, and the geological activity is not a concern for the bridge 
construction.\n9. Tectonic activity: Vega is a tectonic hotspot, and the tectonic activity is not a concern for the 
bridge construction.\n10. Geological constraints: Vega is a geological hotspot, and the geological activity is not a 
concern for the bridge construction.\n1. Volcanic activity: Vega is a volcanic in origin, and the volcanic activity is 
not a concern for the bridge construction.\n2. Seismic activity: Vega is a seismic in origin, and the seismic activity 
is not a concern for the bridge construction.\n3. Tectonic activity: Vega is a tectonic hotspot, and the tectonic 
activity is not a concern for the bridge construction.\n4. Volcanic activity: Vega is a volcanic in origin, and the 
volcanic activity is not a concern for the bridge construction.\n5. Geological constraints: Vega is a geological 
hotspot, and the geological activity is not a concern for the bridge construction. ...

Response from AMXFP4: Thank you for sharing this information. Given the seismic activity in the area, it is 
crucial to prioritize safety when designing and constructing the bridge. Here are some recommendations for the 
best approach:\n1. Seismic Design: Incorporate seismic design principles into the bridge's structure and materials. 
This may include using seismic-resistant materials, such as reinforced concrete or steel, and designing the bridge 
with seismic loads in mind.\n2. Damping Systems: Implement damping systems to reduce the bridge's response to 
seismic activity. These can include devices such as shock absorbers or dampers, which can help reduce the bridge's 
motion and prevent damage from earthquakes.\n3. Reinforced Foundations: Reinforce the bridge's foundations 
with additional support systems, such as piles or caissons, to ensure stability during seismic activity. This will help 
prevent the bridge from shifting or collapsing during earthquakes.\n4. Monitoring Systems: Install monitoring 
systems to track the bridge's condition during seismic activity. This can include sensors to measure movement, 
strain, or other parameters, which can help identify potential issues before they become major problems.\n5. 
Emergency Response Plan: Develop an emergency response plan that includes procedures for assessing and 
repairing damage to the bridge during or after an earthquake. This can help ensure the safety of the bridge and 
those who use it.\nBy prioritizing safety and incorporating these recommendations into the bridge's design and 
construction, you can help ensure the safety of the bridge and those who use it during seismic activity. ...

Figure 13: MT-Bench example (LLaMA2-Chat-7B).
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Single Doc-QA Multi Doc-QA Summarization Few-shot Learning Synthetic Tasks Code Completion
Data Format Context

Length Qasper MultiField
QA

Hotpot
QA

Multihop
QA

Gov
Report

Multi
News TREC Trivia

QA
SAM
Sum

Passage
Count

Passage
Retrieval LCC Repo

Bench-P
Average

0-4k 22.99 43.37 37.14 35.79 31.13 26.84 54.00 83.13 39.33 6.35 18.00 62.45 49.02 39.20
4-8k 18.37 32.29 30.47 24.36 27.89 23.14 60.00 84.02 37.73 2.01 4.00 59.98 48.05 34.7916-bit Baseline
8k+ 21.42 25.59 24.08 23.37 25.14 23.11 60.00 91.51 40.22 2.72 7.00 56.88 48.51 34.58
0-4k 12.02 31.91 14.27 15.82 20.23 20.16 32.00 44.39 28.37 4.48 9.42 31.54 34.96 23.04
4-8k 11.02 17.56 13.83 13.32 15.71 13.96 37.00 36.66 25.93 6.07 2.12 32.13 32.50 19.83MXFP4-PoT
8k+ 9.27 10.26 10.78 10.10 13.94 13.13 36.00 41.83 24.92 5.72 5.09 27.31 35.29 18.74
0-4k 13.16 40.81 25.27 24.27 22.68 23.66 46.00 77.49 38.97 5.71 9.98 49.54 41.24 32.21
4-8k 14.26 27.40 21.96 19.36 19.91 18.59 58.00 75.53 35.98 1.50 0.79 48.15 38.45 29.22MXFP4
8k+ 10.04 23.07 19.15 17.19 18.09 18.66 49.00 79.39 37.82 3.68 5.00 45.10 41.77 28.30
0-4k 16.93 34.62 32.16 25.52 23.21 23.49 50.00 76.52 37.88 9.81 10.50 50.76 43.95 33.49
4-8k 19.56 26.96 26.03 19.74 19.80 19.71 54.00 70.53 36.29 2.04 5.27 48.05 40.77 29.90AMXFP4
8k+ 34.32 17.40 20.52 21.72 18.04 18.70 50.00 79.92 38.73 3.39 9.00 45.12 40.50 30.57

Table 14: Detailed scores of LongBench-E (Bai et al., 2024).

Data
Format

Shared
Scale

Group
Size

OPT LLaMA2 LLaMA3 Mistral 7B Qwen
6.7B 13B 7B 13B 8B 7B 7B

16-bit Baseline 10.860 10.128 5.472 4.884 6.137 5.252 7.605

MXFP4

FP16

128 12.566 12.415 7.065 6.208 9.826 6.137 8.669
64 11.843 11.958 6.470 5.667 8.368 5.854 8.364
32 11.475 11.084 6.206 5.444 7.851 5.722 8.214
16 11.233 10.841 6.015 5.284 7.334 5.607 8.084

PoT (Floor)

128 24.126 16.151 12.056 11.243 17.848 8.454 10.407
64 22.605 14.820 11.228 10.453 16.636 8.846 10.023
32 22.525 14.473 11.150 10.270 16.636 9.454 9.762
16 23.463 14.638 11.212 10.065 18.582 10.392 9.651

PoT (Round)

128 40.288 14.460 9.383 8.472 15.741 7.000 9.635
64 27.696 13.238 8.393 7.669 12.450 6.585 9.185
32 25.512 12.879 7.834 6.982 11.171 6.337 8.940
16 25.155 12.683 7.495 6.649 10.381 6.206 8.764

FP8 (1-4-3)

128 21.914 14.075 10.749 9.883 9.842 55.719 8.783
64 18.637 15.840 11.036 9.340 8.761 670.647 8.458
32 24.109 21.447 13.334 9.705 8.733 6050.050 8.358
16 28.186 33.131 17.082 11.330 8.340 25756.484 8.229

FP8 (1-5-2)

128 15.857 14.530 7.390 6.450 10.408 6.234 8.806
64 14.075 12.777 6.788 5.923 8.952 5.957 8.542
32 13.712 12.091 6.490 5.691 8.307 5.883 8.366
16 13.534 11.808 6.265 5.520 7.824 5.725 8.247

AMXFP4

FP16

128 12.107 11.718 6.564 5.712 8.364 5.898 8.408
64 11.489 11.187 6.173 5.400 7.660 5.702 8.272
32 11.242 10.900 5.999 5.261 7.296 5.588 8.066
16 11.118 10.581 5.840 5.149 6.978 5.507 7.953

PoT (Floor)

128 23.161 15.074 11.555 10.839 18.404 8.594 10.123
64 24.002 14.635 10.956 10.380 18.910 9.217 9.840
32 25.233 14.569 11.362 10.433 18.748 10.710 9.584
16 27.992 14.910 12.255 11.118 22.084 14.090 9.595

PoT (Round)

128 28.781 13.485 8.454 7.466 12.307 6.517 9.235
64 26.021 12.939 7.803 7.002 10.683 6.311 8.987
32 24.995 12.651 7.456 6.596 10.048 6.189 8.780
16 24.240 12.585 7.172 6.362 9.688 6.120 8.673

FP8 (1-4-3)

128 17.243 13.764 9.725 8.966 8.640 1053.763 8.468
64 18.093 16.331 10.582 8.622 8.609 3718.406 8.303
32 20.803 22.674 13.080 9.435 8.193 13421.343 8.231
16 31.017 40.884 17.459 11.331 8.260 30513.367 8.175

FP8 (1-5-2)

128 14.580 12.652 6.847 5.901 8.777 6.003 8.568
64 13.480 12.132 6.451 5.618 8.092 5.817 8.400
32 13.058 11.902 6.223 5.469 7.725 5.707 8.215
16 12.941 11.625 6.064 5.374 7.421 5.632 8.114

Table 15: Ablation study on shared scale bit-encoding.
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Cluster ID Centroids Data Formats
Normalized Mean Normalized Kurtosis NF4 SF4 INT4 Asym INT4 FP4 Asym FP4 Lloyd-Max

0 0.041 0.003 4.14E-04 5.24E-04 5.77E-04 3.90E-04 5.45E-04 4.65E-04 3.85E-04
1 -0.084 0.472 2.63E-03 1.86E-03 7.06E-03 2.41E-03 2.42E-03 1.43E-03 8.07E-04
2 -0.357 -0.010 4.18E-04 5.70E-04 4.80E-04 3.17E-04 5.40E-04 4.77E-04 3.30E-04
3 0.533 -0.016 3.72E-04 5.27E-04 4.16E-04 2.68E-04 5.44E-04 4.91E-04 2.89E-04
4 0.100 0.577 4.01E-03 2.80E-03 1.06E-02 3.44E-03 3.80E-03 2.19E-03 9.62E-04
5 0.231 -0.002 4.04E-04 5.17E-04 5.55E-04 3.61E-04 5.47E-04 4.71E-04 3.70E-04
6 -0.137 -0.001 4.16E-04 5.39E-04 5.51E-04 3.72E-04 5.41E-04 4.64E-04 3.72E-04
7 -0.236 -0.003 4.20E-04 5.48E-04 5.32E-04 3.52E-04 5.40E-04 4.68E-04 3.59E-04
8 -0.084 0.206 1.13E-03 8.89E-04 2.76E-03 1.18E-03 1.10E-03 7.67E-04 7.36E-04
9 0.353 -0.009 3.83E-04 5.14E-04 4.87E-04 3.18E-04 5.39E-04 4.76E-04 3.33E-04
10 -0.093 0.772 8.39E-03 5.83E-03 2.02E-02 6.59E-03 7.95E-03 4.18E-03 1.60E-03
11 -0.046 0.000 4.10E-04 5.29E-04 5.50E-04 3.78E-04 5.40E-04 4.61E-04 3.73E-04
12 0.096 0.830 1.14E-02 7.93E-03 2.58E-02 8.76E-03 1.09E-02 5.78E-03 1.86E-03
13 0.113 0.279 1.53E-03 1.15E-03 3.93E-03 1.52E-03 1.47E-03 9.78E-04 8.58E-04
14 0.132 0.002 4.12E-04 5.22E-04 5.79E-04 3.84E-04 5.48E-04 4.68E-04 3.86E-04
15 -0.533 -0.016 4.19E-04 5.95E-04 4.12E-04 2.69E-04 5.38E-04 4.85E-04 2.86E-04

Overall Error 1.09E-03 9.74E-04 2.25E-03 9.15E-04 1.17E-03 7.89E-04 4.83E-04

Table 16: Detailed MSE across clusters (LLaMA2-7B Layer 5 QKV-Proj Activations in Wikitext-2 inference).
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