
Learning Dense Reward with Temporal Variant Self-Supervision

Yuning Wu1,2, Jieliang Luo2, Hui Li2

Abstract— Rewards play an essential role in reinforcement
learning. In contrast to rule-based game environments with
well-defined reward functions, complex real-world robotic ap-
plications, such as contact-rich manipulation, lack explicit and
informative descriptions that can directly be used as a reward.
Previous effort has shown that it is possible to algorithmically
extract dense rewards directly from multimodal observations.
In this paper, we aim to extend this effort by proposing a
more efficient and robust way of sampling and learning. In
particular, our sampling approach utilizes temporal variance
to simulate the fluctuating state and action distribution of a
manipulation task. We then proposed a network architecture
for self-supervised learning to better incorporate temporal
information in latent representations. We tested our approach
in two experimental setups, namely joint-assembly and door-
opening. Preliminary results show that our approach is effective
and efficient in learning dense rewards, and the learned rewards
lead to faster convergence than baselines.

I. INTRODUCTION

Reinforcement learning (RL) is gaining momentum in
solving complex real-world robotics problems. One challeng-
ing category is contact-rich manipulation tasks. The success
of RL in these scenarios depends on a reliable reward system.
While this genre of problems is marked by rich, high-
dimensional, continuous observations, it is typically hard to
come up with a dense reward that can harness such richness
to guide RL training. The conventional way of using sparse,
boolean rewards (e.g., 1 if the task is successfully completed
and 0 otherwise) is often challenging and inefficient. The
difficulty has led to the practice of reward engineering,
where rewards are hand-crafted based on domain knowledge
and trial-and-error. However, such solutions often require
extensive robotics expertise and can be quite task-specific.

In this research, we propose an end-to-end learning
framework that can extract dense rewards from multimodal
observations, inspired by [1]. The reward is learned in a
self-supervised manner by combining one or two human
demonstrations with a physics simulator, and can then be
directly used in training RL algorithms. We evaluate our
framework in two contact-rich manipulation tasks, joint-
assembly and door-opening tasks.

There are two main contributions in this paper: 1) a
temporal variant forward sampling (TVFS) method that is
more robust and cost-efficient in generating samples from
human demonstrations for contact-rich manipulation tasks, 2)
a self-supervised latent representation learning architecture
that can utilize sample pairs from TVFS.

1Carnegie Mellon University, Pittsburgh. 2Autodesk Research, San Fran-
cisco. This research was conducted during Yuning Wu’s internship at the
Autodesk AI Lab and Autodesk Robotics Lab.

II. PROBLEM STATEMENT & RELATED WORK

A. Problem Statement

We focus on contact-rich tasks that can be suitably framed
as discrete-time Markov Decision Processes (MDPs) [2],
which is described by a set of states S, a set of actions A,
a set of conditional probabilities p(st+1|st, at) for the state
transition st → st+1, a reward function R : S × A → R,
and a discount factor γ ∈ [0, 1]. The MDPs can be solved
by using RL algorithms to train an optimal policy π(s) → a
that maximizes the expected total reward. Our goal is to
learn a dense reward function R, which can be used by RL
algorithms to reach the optimal policy for the MDPs.

B. Inverse Reinforcement Learning

To tackle the reward engineering problem, Inverse Rein-
forcement Learning (IRL) has arisen as a prominent solution
[3]. Rather than crafting the reward, IRL methods learn
reward functions [4], [5], [6] from expert demonstrations.
However, conventional IRL methods mostly deal with ideal
scenarios where states and representations are discrete and
low-dimensional. Recent advances in deep learning have
extended classical IRL’s capability to continuous, high-
dimensional observation space [7], [8]. However, despite
much improved performance, learning is often conducted
using generative adversarial learning frameworks [9], [10],
meaning that one must train the reward function alongside a
policy. Besides instability in training, this framework essen-
tially diverges from our goal, i.e. to learn a reward function
independently without concurrently learning a policy.

C. Learning Dense Reward for Contact-Rich Manipulation

[11] and [12] explored the idea of training a dense
reward function directly from human feedback. The methods
integrated human experts in the RL training process and
periodically ask their preference on a group of pairwise
videos clips of the agent’s behavior. A reward function
is gradually trained that eventually can best explain the
human’s judgments. The methods showed impressive results
on training complex robotic locomotion tasks, but haven’t
been tested on contact-rich manipulation tasks where the
behaviors are hard to be observed by pure visual cues.
[1] proposed a DREM framework that extracts dense reward
from multimodal observation through sampling and self-
supervised learning. The framework shows great potential in
translating rich, continuous, high-dimensional observations
into a task progress variable that can be used to guide
RL training. Our work builds on top of this research, by
proposing improvements to the sampling method and self-
supervised learning architecture. [13] also proposed to learn

a multimodal representation of sensor inputs and use the
representation for policy learning on contact-rich tasks, such
as peg insertion. However, it uses crafted reward functions
for various sub-tasks.

III. APPROACH: LEARNING DENSE REWARD WITH
TEMPORAL VARIANT SELF-SUPERVISION

Similar to ideas presented in [1], our method also aims
to learn a task progress variable p ∈ [0, 1] that captures the
progress towards finishing a task. The variable can then be
used as a dense reward. With p = 0 representing the initial
state, and p = 1 representing the goal state, the variable
is structured as a similarity score in the latent space H.
The latent representation hϕ : S → H is learned in a self-
supervised manner with two major objectives. The first is
to capture an efficient, low-dimensional embedding of the
multimodal observation space S. The second is to encode
temporal information in the learned representation. Adopted
from [1], for contact-rich manipulation tasks with relatively
determined and repeatable goal state, the task progress can
be derived with distance measure d in H:

p = 1− d(hϕ(s), hϕ(sg))

d(hϕ(s0), hϕ(sg))
(1)

Prior work has explored ways to learn the representation
through explicitly enforcing temporal order through a triplet
loss function [1]. Such enforcement by design involves
tuning multiple hyperparameters. We propose a framework
where temporal information can be injected in a more
natural, self-consistent manner by utilizing dynamic relation
among pairs of adjacent observations (st, st+1).

hϕ(st) + ∆hψ(st) = hϕ(st+1) (2)

hϕ is the latent representation, whereas ∆hψ is the change
of latent representation between t and t+1 resulted from dy-
namics. hϕ and ∆hψ are learned using different modalities.
The insight behind such constraint is that latent representa-
tion of st+1 should be consistent with the representation of
st, plus any dynamic change happened within the time step.

Our proposed improvements are the following. The first
is temporal variant forward sampling, which generates a tree
of data (i.e. observations with temporal information) from a
single human demonstration. The second is self-supervised
representation learning network architecture, which uses
generated observation pairs to learn representations through
Eq.(2).

A. Temporal Variant Forward Sampling

Collecting observations with temporal information is an
essential step for training, but can be challenging if only
from human demonstrations. Therefore, the idea of sampling
has been broadly experimented in [1], [14]. By combining
one or two human demonstrations with a physics simulator,
it is possible to obtain a tree of data through sampling. [1]
proposed a backward sampling process based on the insight
that variance of the goal state is smaller than the initial

Fig. 1. Sampling variance along different stages of a manipulation task. The
blue V1(t) and red V2(t) curves show potential temporal variance control
functions that can be used in sampling.

state. However, although it is feasible to sample backward
positions and generate visual images from the positions in
simulation, it is typically hard to sample backward force
and torque (F/T). Through experiments, we have found that
restoring a state with the exact F/T reading can be com-
putationally intensive and simulator-dependent. Also, when
playing forward a backward sampled action sequence, the
F/T readings in the forward pass do not necessarily match
the F/T readings recorded in the backward pass.

Without loss of generality, we propose a new sampling
process, named Temporal Variant Forward Sampling (TVFS)
that aims to tackle the aforementioned challenges, while
capturing the fluctuating variance of manipulation tasks. The
insight behind our method is to roughly control sampled
actions with a temporal variance V (t), such that sampled
actions do not diverge too much from the potential distri-
bution of an expert demonstration, and that the actions are
mostly progressing forward. For instance, an action that is the
opposite of an expert action may not appear at certain stable
stages. As shown in Fig.1, at the starting stage (p = 0), the
sampling variance is limited. At the intermediate stage, the
variance is high due to lack of constraints and high moving
flexibility. At the ending stage (p = 1), the variance is low
because the goal state is relatively deterministic. V (t) can be
depicted with a chosen kernel function. In our experiment,
we have chosen the quadratic function for simplicity. The
general process of our sampling method is illustrated in
Fig.2, and is described as follows.

1) We record an expert demonstration in simulation, and

Fig. 2. Temporal variant forward sampling (TVFS). The difference between
sampled actions (blue) and demo actions (black) are controlled through
V (t), which is also a variance measure that changes along the task process.

choose the sampling seeds (states) {Q0, Q1, · · · , QM}
by certain sampling interval.

2) At each seed (state) Qi, randomly sample N branches.
Each branch may contain multiple forward steps. At
each step, control the variance between sampled action
asampled
t and demo action ademo

t . The variance can be
measured using any similarity score. In our case, we
have chosen the cosine similarity.

3) Record the sampled observations in pairs (st, st+1),
such that they can be used in learning Eq.(2).

B. Multimodal Representation Learning

With the generated multimodal observation pairs from
TVFS, we have designed a network architecture and a loss
function to incorporate temporal information in representa-
tion learning. As mentioned above, we use different modal-
ities to learn different components of Eq.(2). hϕ is learned
with static modalities such as images, depth maps and poses,
while ∆hψ is learned using dynamic modalities such as
F/T and velocities. The two separately learned components
should be consistent in the latent space. We accentuate
such consistency with a hybrid loss function, consisting
of temporal enforcement loss and reconstruction loss. The
architecture and loss functions are detailed as follows.

Fig. 3. Self-supervised learning network architecture

1) Static Modality Encoder Es. To learn hϕ, we use
a fixed RGB-D camera as input for static modality

encoders. The RGB image (256x256x3) and depth map
(256x256x1) are handled separately. Similar to [13],
the network is composed of a 6-layer Convolutionary
Neural Network and a fsully-connected layer. Depend-
ing on the experiment scenarios, one may switch or
combine the modalities. An extra Multi-Layer Percep-
tron may for output fusion. The final embedding is a
64 dimensional hidden vector.

2) Dynamic Modality Encoder Ed. To learn ∆hψ , we
use F/T reading and velocity as input for the dynamic
modality encoder. Due to the accumulative nature of
F/T, we use a window size of 32 to better capture the
momentum. The 32x6 input is passed into a 4-layer
Causal Convolution Network. The output is concate-
nated and fused with velocity to produce another 64
dimensional hidden vector.

3) Static Modality Decoder Ds. Through experiments, we
have found that instead of enforcing self-supervised
learning on both static and dynamic modalities, it is
better to focus on one side only. This choice will be
explained further in later descriptions. In our case,
we are proposing an auto-encoding architecture on
the static modality side. The decoder takes input of
a 64 dimensional hidden vector and use transposed
Convolutional Neural Network to reconstruct the RGB
image / depth map.

4) Latent Representation Learning. As mentioned briefly
in previous context, the temporal order is injected
through learning with pairs of adjacent observations
(st, st+1). By enforcing Eq.(2) among each pair, the
temporal relation among latent representations are
broadcasted. Fig.3 is an illustration of the whole net-
work architecture. We first encode and decode st with
Es, Ed and Ds, then use the embedding to craft an
latent representation for st+1.

ĥ(st+1) = Es(st) + Ēd(st) (3)

The hybrid loss function is structured around ĥ(st+1).
The first component is temporal enforcement loss,
which enforces Eq.(2) in the latent space. To ensure
effectiveness of ∆hψ , we are applying L2 normaliza-
tion to Ēd(st).

ltemporal = MSE
[
ĥ(st+1),E

s(st+1)
]

(4)

The second component is reconstruction loss, which
provides supervision signal to the auto-encoding archi-
tecture. As apposed to directly decoding Es(st+1), we
are decoding ĥ(st+1) so that Eq.(2) is also enforced
in self-supervision.

lrecon = lrecon(st) + l̂recon(st+1) (5)
lrecon(st) = MSE [Ds(Es(st)), st] (6)

l̂recon(st+1) = MSE
[
Ds

(
ĥ(st+1)

)
, st+1

]
(7)

The two loss components are then combined through

a hyperparameter λ.

l = lrecon + λ · ltemporal (8)

We set λ = 10 in training to accentuate the temporal
relation, so that the representation learning does not
converge suboptimally too early. The learned embed-
ding is then used in Eq.(1) for the dense reward.

IV. EXPERIMENTAL RESULTS

The experiments are conducted in simulation. In order to
test that our sampling method can be generalized to different
simulators and robot controllers, we tested lap-joint assembly
in PyBullet [15] with an robot-agnostic environment, and
door-opening in Robosuite [16] with a Panda robot. We
conducted similar sampling process on both tasks, setting
sampling interval I = 50, number of branches N = 5,
number of steps per branch K = 10. The temporal variance
is controlled in θ ∈ [π12 ,

π
4]. We trained the model with an

NVIDIA 3060 GPU for around 5,000 iterations. Compared
to the training iterations mentioned in [1], our method
is potentially more efficient. We defer ablation study and
further examination of this comparison to future work.

A. Visualization of Learned Dense Reward

We visualized the learned dense reward in two cases. The
results indicate that the dense reward learned by our approach
is effective. In the first case (Fig.4), we compare the rewards
between a successful trajectory and a failed trajectory in the
lap-joint task. The plots suggest that a successful trajectory
has rewards gradually increasing from 0 to 1, which matches
the definition of task progress. A failed trajectory have a
decreasing reward dropping below 0, which can happen when
the agent get into unexpected scenarios.

Fig. 4. Comparison of a successful trajectory (left) and a failed trajectory
(right). Visualization produced in the lap-joint task.

In the second case (Fig.5), we examine rewards of an
inexpert demonstration in door-opening. The demonstra-
tor experienced a plateau of trial-and-error when rotating
back and forth the door handle. While the hand-crafted
reward mostly gives analogous signals during this period,
our rewards provides fluctuations indicating more detailed
feedback for learning.

B. Dense Rewards for Policy Training

To examine the performance of the learned reward in
policy training, we have chosen Soft Actor-Critic [17] as the
RL algorithm for benchmarking. We compared three types of

Fig. 5. Comparison of dense reward and hand-crafted rewards in door
opening task

rewards in the door-opening task, namely our dense reward,
a hand-crafted reward based on distance (γ∥xt − xg∥2),
and the sparse boolean reward. In particular, we trained the
policy for door-opening task for 500 epochs. For each type
of reward, we conducted three training experiments with
different random seeds. The results (Fig.6) indicate that our
dense reward leads to faster convergence, and more training
stability.

Fig. 6. RL training comparison among three types of rewards: our dense
reward (blue), hand-crafted distance reward (orange), and sparse boolean
reward (red).

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose an improved framework for
learning dense reward for contact-rich manipulation tasks.
The framework includes a more robust sampling method,
namely temporal variant forward sampling (TVFS), that can
generate samples from one or two human demonstrations
with a physics simulator. A self-supervised learning archi-
tecture is also designed to efficiently utilize the generated
sample pairs.

For future work, we intend to conduct more ablation stud-
ies regarding the framework’s adaptability and modalities.
For instance, during experiments we observe that camera
setup can have a substantial impact on the learning result.
Therefore one potential is to study whether we can mainly
rely on pure tactile sensors for reward inference. Another
potential is to test whether the reward can be transferred to
manipulation tasks with nondeterministic goal state.

ACKNOWLEDGEMENT

We thank Tonya Custis and Sachin Chitta for budgetary
support of the project; Yotto Koga for simulation support; our
colleagues at Autodesk Research for the valuable feedback,
and Zheng Wu for the discussions.

REFERENCES

[1] Z. Wu, W. Lian, V. Unhelkar, M. Tomizuka, and S. Schaal, “Learning
dense rewards for contact-rich manipulation tasks,” 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 6214–
6221, 2021.

[2] M. L. Puterman, Markov decision processes: discrete stochastic dy-
namic programming. John Wiley & Sons, 2014.

[3] A. Y. Ng, S. J. Russell, et al., “Algorithms for inverse reinforcement
learning.” in Icml, vol. 1, 2000, p. 2.

[4] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning, 2004, p. 1.

[5] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, et al., “Maximum
entropy inverse reinforcement learning.” in Aaai, vol. 8. Chicago, IL,
USA, 2008, pp. 1433–1438.

[6] D. Ramachandran and E. Amir, “Bayesian inverse reinforcement
learning.” in IJCAI, vol. 7, 2007, pp. 2586–2591.

[7] M. Wulfmeier, P. Ondruska, and I. Posner, “Maximum entropy deep
inverse reinforcement learning,” arXiv preprint arXiv:1507.04888,
2015.

[8] S. K. Seyed Ghasemipour, S. S. Gu, and R. Zemel, “Smile: Scalable
meta inverse reinforcement learning through context-conditional poli-
cies,” Advances in Neural Information Processing Systems, vol. 32,
2019.

[9] J. Ho and S. Ermon, “Generative adversarial imitation learning,”
Advances in neural information processing systems, vol. 29, 2016.

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[11] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and
D. Amodei, “Deep reinforcement learning from human preferences,”
Advances in neural information processing systems, vol. 30, 2017.

[12] K. Lee, L. Smith, and P. Abbeel, “Pebble: Feedback-efficient interac-
tive reinforcement learning via relabeling experience and unsupervised
pre-training,” arXiv preprint arXiv:2106.05091, 2021.

[13] M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei-Fei,
A. Garg, and J. Bohg, “Making sense of vision and touch: Self-
supervised learning of multimodal representations for contact-rich
tasks,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 8943–8950.

[14] C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel, “Re-
verse curriculum generation for reinforcement learning,” in Conference
on robot learning. PMLR, 2017, pp. 482–495.

[15] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” http://pybullet.org,
2016–2021.

[16] Y. Zhu, J. Wong, A. Mandlekar, and R. Martı́n-Martı́n, “robosuite: A
modular simulation framework and benchmark for robot learning,” in
arXiv preprint arXiv:2009.12293, 2020.

[17] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR,
2018, pp. 1861–1870.

