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ABSTRACT

Selective classification allows a machine learning model to abstain from predict-
ing some hard inputs and thus improve the safety of its predictions. In this pa-
per, we study the ensemble of selective classifiers, i.e. selective classifier ensem-
ble, which combines several weak selective classifiers to obtain a more powerful
model. We prove that under some assumptions, the ensemble has a lower selective
risk than the individual model under a range of coverage. The proof is nontriv-
ial since the selective risk is a non-convex function of the model prediction. The
assumptions and the theoretical result are supported by systematic experiments
on both computer vision and natural language processing tasks. A surprising em-
pirical result is that a simple selective classifier ensemble, namely, the ensemble
model with maximum probability as confidence, is the state-of-the-art selective
classifier. For instance, on CIFAR-10, using the same VGG-16 backbone model,
this ensemble reduces the AURC (Area Under Risk-Coverage Curve) by about
24%, relative to the previous state-of-the-art method.

1 INTRODUCTION

Although recent years have witnessed the broad applications of deep learning models, their securities
have not been fully guaranteed, which gives rise to the study of selective classification. For any
given deep learning classifier, there might be inputs that the model is not able to classify in practical
applications, for which the model might make unpredictable errors. To prevent this kind of error,
we must accurately delimit the deep learning classifier’s application scope. This need gives rise to
the study of selective classification that learns a selective classifier (f, g), where f is a conventional
classifier, and g is a selective function that decides whether the selective classifier should abstain
from prediction. Since the classifier is well studied, the study of selective classification focuses on
the design of the selective function.

A standard approach to designing the selective function is to design a confidence score function with
a threshold, and several confidence score functions have been developed. A simple confidence score
function is the maximum predictive probability of the classifier (Hendrycks & Gimpel, 2017). More
advanced methods modify the model architecture (Geifman & El-Yaniv, 2019) or the loss function
(Liu et al., 2019; Huang et al., 2020) of the classifier to train the confidence score function and
the classifier simultaneously. For example, Deep Gambler (Liu et al., 2019) regards the selective
classification problem as gambling and proposes a novel loss function to train the classifier and the
confidence score function. Although there are various individual models for the selective classifier,
there has been no systematic study of the ensemble method in selective classification.

It is well known that the ensemble method, which combines the individual models to obtain a more
powerful model, can improve the predictive performances of machine learning models (see Zhou
(2012) for a review), but only a particular selective classifier ensemble, the ensemble of Softmax
Response (Hendrycks & Gimpel, 2017), has been empirically studied by Lakshminarayanan et al.
(2017). Ensembles of other kinds of selective classifiers, and the theoretical foundation of the en-
semble in selective classification have not been studied yet. In this paper, we first demonstrate the
theoretical foundation of the ensemble on selective classifiers, that is, with some assumptions, the
ensemble has a lower selective risk than the individual model under a range of coverage. The proof
is nontrivial since the selective risk (with the 0/1 loss) are non-convex. Second, we show the exper-
imental results of the ensemble’s performance in selective classification. The contributions of this
paper are summarized as follows.
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• We are the first to theoretically demonstrate that based on several reasonable assumptions,
the ensemble has a lower selective risk than the individual model under a range of cover-
age. We verify this by systematic experiments on the tasks of image classification and text
classification.

• We show a surprising experimental result that two simple methods, the SR ensemble and
the Reg-curr ensemble, which can be summarized as the ensemble model with maximum
probability as confidence, are the state-of-the-art selective classifiers.

2 PROBLEM FORMULATION OF SELECTIVE CLASSIFICATION

A selective classifier is composed of a standard classifier and a selective function. Considering a
standard classification problem, X is a feature space, Y = {1, 2, ...,K} is a finite label set, and a
classifier f is a function f : X → Y. A labeled dataset D = {(xi, yi)}Ni=0 ⊆ X × Y is sampled
from a distribution pX,Y. Our goal is to learn a selective classifier where f is a standard classifier
and g : X → {0, 1} is a selective function that estimates the correctness of f ’s prediction. Given
input x, the output of selective classifier (f, g) is

(f, g)(x) =

{
f(x), if g(x) = 1

Abstain, if g(x) = 0
. (1)

Usually, g is realized by a confidence score κ̂ : X → R+ with a threshold τ (Geifman & El-Yaniv,
2017), namely

g(x) = I{κ̂(x) > τ}, (2)

where I is the indicator function.

Coverage and selective risk are two basic evaluation metrics of selective classifiers, and the goal of
selective classifiers is to minimize the selective risk for target coverage. The coverage of (f, g) is
defined to be the probability of (f, g) not abstaining from prediction (Geifman & El-Yaniv, 2017),
i.e.

φ(f, g) := Ep(x)[g(x)], (3)

where p(x) is the probability density function of input x. The selective risk (Geifman & El-Yaniv,
2017) of (f, g) is

R(f, g) :=
Ep(x)[`(f(x), y)g(x)]

Ep(x)(g(x))
, (4)

where ` : Y × Y → R+ is a given loss function. Usually, ` is the 0/1 loss (Geifman & El-Yaniv,
2017; 2019; Liu et al., 2019; Huang et al., 2020). Based on these definitions, the objective of
selective classifiers is formalized as

minR(f, g), s.t. φ(f, g) ≥ ctarget,

where ctarget is a given target coverage.

When the selective function g is developed as (2), the confidence threshold τ controls the trade-
off between coverage and selective risk. With different values of τ , (f, g) has different pairs of
coverage and selective risk (φ(f, g; τ), R(f, g; τ)), which forms the risk-coverage curve (Geifman
& El-Yaniv, 2017) of (f, g). The risk-coverage curve specifies the entire performance profile of
a selective classifier, and it is easy to see that the selective classifier with a lower risk-coverage
curve is better. To evaluate selective classifiers more concisely, the area under the risk-coverage
curve (AURC) is introduced as a metric of selective classifiers (Xin et al., 2021), and the selective
classifier with a lower AURC is better.

3 RELATED WORK

Here, we summarize the previous studies on selective classification and ensemble methods. We also
discuss the difference between selective classification and out-of-distribution detection.
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3.1 SELECTIVE CLASSIFICATION

The critical problem of designing a selective classifier is to design its selective function, and there
are two types of selective function g. One is the implicit selective function, which is derived from
the classifier. The other is the explicit selective function, a neural network trained with the classifier
f simultaneously. Previous works for selective classifiers are listed as follows.

Selective classifiers with implicit selective functions include SR (Softmax Response) (Hendrycks
& Gimpel, 2017), MC-Dropout (Monte Carlo-Dropout) (Gal & Ghahramani, 2016), and Reg-curr
(Xin et al., 2021). In SR, the selective classifier is a vanilla classifier with its maximum predictive
probability as confidence (i.e., the maximum output of the softmax layer). In MC-Dropout, it enables
the dropout layer of the classifier and runs multiple feed-forward iterations at inference time to obtain
the variance of the maximum probability output of f ’s softmax layer, whose negative value is used
as the confidence score. Reg-curr behaves the same as the SR at inference time but uses an RPP-
based regularizer at training time, where RPP (Reversed Pair Proportion) (Xin et al., 2021) is the
proportion of reversed pairs of confidence scores.

Selective classifiers with explicit selective functions include SN (SelectiveNet) (Geifman & El-
Yaniv, 2019), Gambler (Deep Gambler) (Liu et al., 2019), and SAT (Self-Adaptive Training) (Huang
et al., 2020). SN is a neural network that combines f and g, where f and g share convolutional layers
and have their separate fully-connected layers. The loss function of the model is the selective risk
with some regularizers. A hyperparameter c is needed to specify the target coverage. Gambler adds
the abstention option to the classifier as an extra class, that is, for a given input x, the predictive prob-
ability of the extra class is the confidence of abstention, i.e., 1− κ̂(x). At training time, it regards the
selective classification problem as gambling and is trained to maximize the gambling reward. Simi-
lar to Gambler, SAT adds the abstention option to the classifier as an extra class. However, SAT has
a different training procedure, which is trained with a soft label that tells the model which sample to
reject. SAT is the previous state-of-the-art selective classifier for image classification tasks.

3.2 RANDOMIZATION-BASED ENSEMBLE

In the randomization-based ensemble method, each member model is trained independently with
the same architecture and training procedure but with different randomization seeds for the random
initialization of parameters and the random shuffling of training data for each training epoch. At
inference time, the predictive probability of the ensemble for each class is the average of those of
member models. Lakshminarayanan et al. (2017) applies this ensemble method to deep neural net-
works (Deep Ensemble) and has achieved state-of-the-art performance in uncertainty estimation.
The difference between Lakshminarayanan et al. (2017) and our work is that they only empiri-
cally study the ensemble of vanilla classifiers (the SR ensemble), but we not only empirically study
ensembles of multiple outstanding selective classifiers but also provide the theoretical foundation
of the ensemble in selective classification. As for the theoretical works, Krogh & Vedelsby (1994)
proposes the error-ambiguity decomposition to explain the better performance of the randomization-
based ensemble in regression tasks. However, for classification tasks, there is no such simple and
elegant analysis, since the evaluation metrics are non-convex (Zhou, 2021). Thus, the corresponding
analysis for classification tasks needs additional assumptions, e.g., unbiased, uncorrelated, and iden-
tically distributed estimation errors for the posterior probability distribution (Tumer & Ghosh, 1996;
Fumera & Roli, 2005). Nevertheless, these assumptions are impractical (Fumera & Roli, 2005). As
far as we know, there is no systematic study of the ensemble in the context of selective classification.

3.3 OUT-OF-DISTRIBUTION DETECTION

A related topic of selective classification is out-of-distribution (OOD) detection (Lakshminarayanan
et al., 2017)) (also called as open set recognition (Scheirer et al., 2012), or novelty detection
(Schölkopf et al., 2001)), which detects samples that differ significantly from a given dataset, i.e.,
OOD samples. The essential difference between selective classification and OOD detection lies
in their different goals. The goal of the former is to detect samples where the classifier predicts
incorrectly, which depends on both the classifier and samples, while that of the latter is to detect
samples that differ significantly from a given dataset, which depends on samples only. In addition,
at present, selective classification assumes that test data and training data are sampled from the same
distribution (Geifman & El-Yaniv, 2017), instead of using OOD test data as OOD detection. Thus,
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selective classification and OOD detection are complementary in preventing error predictions of
machine learning models, as Figure 3 shows.

4 METHOD

With the randomization-based ensemble method, we propose the selective classifier ensemble. The
basic idea is that each predictive probability (as well as the confidence score in the case of explicit
selective functions) of the ensemble should be the average of those of the member models. Formally,
we assume that for an input sample x, a classifier f at first provides the predictive probability
distribution π̂θ = (π̂1

θ , · · · , π̂Kθ ) and then makes prediction f(x; θ) = arg max1≤k≤K π̂
k
θ (x), where

K is the number of classes, θ denotes the parameters of f , and π̂kθ (x) is the predictive probability
for class k (the superscript is not an exponent). Then, the predictive probability distribution of the
ensemble classifier of M member models is

π̂ens(x) :=
1

M

M∑
m=1

π̂m(x). (5)

The ensemble of the selective function is defined as follows. For implicit selective functions (e.g.
SR), to keep the ensemble the same kind of selective classifier as the individual model (for example,
the ensemble of SR should still be an SR model), the confidence score of the ensemble is derived
from π̂ens in the same way as the individual model. For example, the confidence score of the SR
ensemble is

κ̂ens(x) = max
k

π̂kens(x). (6)

For explicit selective functions (e.g. SAT), the confidence score of the ensemble is the average of
those of member models,

κ̂ens(x) =
1

M

M∑
m=1

κ̂m(x). (7)

5 THEORETICAL ANALYSIS OF SELECTIVE CLASSIFIER ENSEMBLE

In this section, we analyze the selective risk (with the 0/1 loss) of the ensemble of a simple selective
classifier, the SR ensemble (see Section 4 for its definition). If the selective risk is a convex function
of the predictive probability distribution, then according to the definition of the convex function, (6)
implies that the selective risk of the ensemble is less than or equal to that of the individual model.
However, the selective risk is non-convex because the 0/1 loss is a step function. Thus, the analysis
is not easy. We need some assumptions to prove a lower selective risk of the ensemble. We introduce
the assumptions in Section 5.1 (verified in Section 6.1) and the theoretical results in Section 5.2. The
analysis for the other selective classifiers is left for future study.

5.1 ASSUMPTIONS

Given an SR ensemble with M (M > 1) members, we assume that there are samples on which
all member models provide almost the same predictive probability distributions. Furthermore, we
idealize them as definite samples, for which all member models provide precisely the same predictive
probability distribution. Then, the rest samples are referred to as ambiguous samples. Let D be
the event that the input sample is definite and A be the event that the input sample is ambiguous.
Considering that the input sample is randomly drawn from a dataset, the predictive probability for
class k (1 ≤ k ≤ K) and the confidence of the SR model are random variables. We denote these
random variables as Πk and C respectively and use πk and κ to denote their values respectively.
Generally, for any continuous random variable Z, pZ denotes the probability density function (PDF)
of Z, and for any real variable z, z → 1− denotes that z approaches 1 from the left. Based on the
idealization and notations above, we introduce the following assumptions.
Assumption 1. For any individual SR model, with its confidence score denoted as C, we have

lim
τ→1−

Pr(Err|A,C ≥ τ) > lim
τ→1−

Pr(Err|D,C ≥ τ), (8)

where Err is the event that the model makes an error prediction.
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In Assumption 1, Pr(Err|A,C ≥ τ) is the selective risk of the individual model with a confidence
threshold of τ for ambiguous samples, and Pr(Err|D,C ≥ τ) is that for definite samples. The
motivation for Assumption 1 is that ambiguous samples seem more difficult to classify than definite
samples.

Assumption 2. For any individual SR model, both limκ→1− pC(κ|D) and limκ→1− pC(κ|A) exist
and are non-zero, i.e., positive, where C is the confidence score of the SR model.

Assumption 2 claims that for both ambiguous samples and definite samples, when the confidence
score of the individual model approaches 1, its PDF approaches a non-zero value. In other words,
the individual model is not modest over both ambiguous samples and definite samples.

Assumption 3. For any SR ensemble of M member models, let Πk
i be the predictive probability of

the i-th member model for class k. Then ∀k ∈ {1, . . . ,K}, pΠk
1 ,Π

k
2 ,...,Π

k
M

(·|A), the joint probability
density function of Πk

1 ,Π
k
2 , . . . ,Π

k
M given the input sample being ambiguous, is bounded.

Assumption 3 is related to the definition of ambiguous samples and can be understood via the fol-
lowing example. Consider an ensemble with two members θ1 and θ2. Let their predictive probability
for class k be Πk

1 and Πk
2 , k ∈ {1, 2, ...,K}, respectively. On definite samples, both θ1 and θ2 pro-

vide the same predictive probability distribution (Πk
1 = Πk

2 ,∀k ∈ {1, 2, ...,K}). Thus, for all k,
pΠk

1 ,Π
k
2
(·|D), the joint distribution of Πk

1 and Πk
2 given the input samples being definite, collapses to

{(λ, λ)|λ ∈ [0, 1]}. In other words,

pΠk
1 ,Π

k
2
(u, v|D) =

{
+∞, if (u, v) ∈ {(λ, λ)|λ ∈ [0, 1]}
0, otherwise

.

On the contrary, ambiguous samples do not have such a property. We intensify this by Assumption
3 to provide a good analytical property of ambiguous samples. Furthermore, Assumption 3 reflects
the diversity of the ensemble over ambiguous samples. Still consider the example above. If the
predictions of θ1 and θ2 are sure to coincide, i.e., the ensemble model has no diversity, then the PDF
of Πk

1 and Πk
2 is unbounded. Conversely, if the PDF of Πk

1 and Πk
2 is bounded, then the predictions

of the member models are diverse. Thus, Assumption 3 provides the diversity of the ensemble over
ambiguous samples. It is well known that the randomization-based ensemble has diversity (Zhou,
2012). Since the ensemble does not have diversity over definite samples, it must have diversity over
ambiguous samples. Thus, we do not provide experimental verification for Assumption 3.

5.2 ANALYSIS RESULTS

With the assumptions above, we derive Theorem 2 (see Appendix B for proof details), which shows
that the selective risk of the ensemble is lower than that of the individual model under a range of
coverage. The intuition of its proof is as follows. According to Assumption 1, the individual model
is not modest over ambiguous samples. On the contrary, based on Assumption 3, we prove that the
ensemble is modest over ambiguous samples (Proposition 1). In addition, both the individual model
and the ensemble are not modest over definite samples (due to Assumption 2 and the definition of
definite samples). Thus, considering that the classifier’s error rate over ambiguous samples is higher
than that over definite samples when confidence approaches 1 (Assumption 1), the individual model
suffers more wrong but confident predictions that come with ambiguous samples than the ensemble.
Therefore, the selective risk of the individual model is higher than that of the ensemble (Theorem
2). In a word, the intuition is that because the ensemble avoids to be overconfident over ambiguous
samples, the ensemble has a lower selective risk.

Before Theorem 2, we discuss Proposition 1, which provides critical insight into the better perfor-
mance of the ensemble.

Proposition 1. If Assumption 3 holds, then limκens→1− pCens(κens|A) = 0, where Cens is the confi-
dence score of the ensemble.

Proposition 1 suggests that given the input sample being ambiguous, when the confidence of the
ensemble approaches one, its PDF approaches zero. In other words, the ensemble is modest over
ambiguous samples. Based on this proposition, we prove that the SR ensemble has a lower selective
risk than an SR individual model under a range of coverage.
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Theorem 2. If Assumption 1-3 holds, then for any individual SR model and any SR ensemble,
∃φ0 ∈ (0, 1) such that ∀φ ∈ (0, φ0),

Rens(φ) < Rind(φ), (9)

where Rens(φ) and Rind(φ) are the selective risks of the SR ensemble and the individual SR model
under coverage φ, respectively1.

6 EXPERIMENTS

Datasets. We conduct experiments on multiple datasets for image classification and text classifi-
cation tasks. Following Geifman & El-Yaniv (2017; 2019); Liu et al. (2019); Huang et al. (2020),
we use CIFAR-10, CIFAR-100 (Krizhevsky, 2009), and SVHN (Netzer et al., 2011) for image clas-
sification tasks, and following Xin et al. (2021), we use MRPC (Dolan & Brockett, 2005), MNLI
(Williams et al., 2018), and QNLI (Wang et al., 2018) for text classification tasks. The usage of the
training set and test set in selective classification are the same as the standard classification, because
current selective classification focuses on in-domain data (i.e., data from the same distribution as
the training set) (Geifman & El-Yaniv, 2017). For example, if the selective classifier is trained on
the training set of CIFAR-10 (Krizhevsky, 2009), then it will be tested on the test set of CIFAR-10.
Furthermore, MNLI’s development set and test set are divided into matched and mismatched parts.
The matched parts are sampled from the same source as the training set (so they are in-domain
data), while the mismatched parts are sampled from different sources. In our experiments, only the
matched parts are used since the current selective classification only considers in-domain data. In
addition, test sets of MRPC, QNLI, and MNLI are not accessible, so we use their development sets
as test sets. Following Liu et al. (2019); Huang et al. (2020), since CIFAR-10, CIFAR-100 and
SVHN originally had no development set, their development sets were 2000 samples randomly split
from corresponding test sets. More details of all the datasets in our experiments are described in
Appendix C.1.

Evaluation Metrics. The evaluation metrics are AURC and selective risk (the lower, the better
for both). AURC is a comprehensive metric of selective classifiers, and selective risk is a standard
metric in previous works (Geifman & El-Yaniv, 2019; Liu et al., 2019; Huang et al., 2020). In this
paper, given a selective classifier, the result of selective risk is shown in the form of risk-coverage
curves, which shows the selective risk of the selective classifier against its coverage. According to
the object of selective classification, a selective classifier with a lower risk-coverage curve is better.

Networks. Following Huang et al. (2020); Xin et al. (2021), for image classification and text clas-
sification, we use VGG-16 (Simonyan & Zisserman, 2014) and BERT-base (Devlin et al., 2019) as
the backbones of selective classifiers, respectively. More details of the backbone models and their
training procedures are provided in Appendix C.2.

Baselines. We use SR (Geifman & El-Yaniv, 2017), SN (SelectiveNet) (Geifman & El-Yaniv, 2019),
Gambler (Liu et al., 2019), SAT (Huang et al., 2020), and Reg-curr (Xin et al., 2021) for both
image classification and text classification. Note that the SN is optimized for fixed coverage, so
the comprehensive metrics AURC and risk-coverage curve, which summarizes performances under
different coverages, are not suitable for evaluating the SN. Thus, we only evaluate the selective
risk for a fixed coverage of the SN ensemble and provide the results in Appendix E. To ensure a
fair comparison, for tasks of image classification, all the baselines are re-implemented based on
the open resource code of SAT (Huang et al., 2020), and for tasks of text classification, they are
re-implemented based on the open resource code of Reg-curr (Xin et al., 2021). The details of the
hyperparameters of each baseline are provided in Appendix C.3.

6.1 VERIFICATION OF THE ASSUMPTIONS

We examine Assumption 1 and Assumption 2 (only for the baseline of SR) on datasets for both image
classification and text classification. Since the definite samples are the idealization of samples on
which member models provide almost the same predictive probability distributions, we take samples
with a standard deviation of predictive probability distributions of member models (or STD for short)
less than a small positive number ε as definite samples and the other samples as ambiguous samples

1Beyond Theorem 2, we provide an elaborate analysis on the lower bound of φ0 in Appendix G.
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in experiments. Formally, STD :=

√∑M
j=1(π̂j− 1

M

∑M
i=1 π̂i)2

M−1 , where π̂j is the predictive probability
distribution vector of the j-th member model, and samples with STD < ε approximates definite
samples in experiments. We choose ε = 10−3 for datasets of image classification and ε = 10−2 for
datasets of text classification. Figure 1(a) and Figure 1(e) show the selective error rates (selective
risks) of samples with STD < 10−3 and samples with STD ≥ 10−3 given a range of confidence
thresholds (which approximate Pr(Err|D,C ≥ τ) and Pr(Err|A,C ≥ τ)) on the test set of each
dataset. The results show that the selective risk of samples with STD < 10−3 is lower than that
of samples with STD ≥ 10−3 for all confidence thresholds near 1 on all datasets, which verifies
Assumption 1. Figure 1(b)-1(d) and Figure 1(f)-1(h) shows the histogram of confidence scores of
samples with STD < ε and that of other samples, which approximate pC(κ|D) and pC(κ|A), on the
test set of each dataset. The results show that the number of samples with STD < 10−3 is non-zero
in the top bin on all datasets, which verifies Assumption 2. In summary, Assumption 1 and 2 hold
on all datasets.
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Figure 1: (a)/(e): the selective error rates (selective risks) of definite samples and ambiguous samples
given a range of confidence thresholds on the test set of each dataset for image/text classification.
(b)-(d): the histogram of confidence scores of samples with STD < 10−3 and that of other samples
on the test set of each dataset for image classification. (f)-(h): the histogram of confidence scores
of samples with STD < 10−2 and that of other samples on the test set of each dataset for text
classification.

6.2 EVALUATION OF SELECTIVE CLASSIFIER ENSEMBLES

We first verify Theorem 2. Figure 2 shows the risk-coverage curves of the ensembles and the indi-
vidual models of each baseline on each dataset. As we can see, except on MRPC, the risk-coverage
curve of the ensemble is always entirely below that of the individual model, i.e., the ensemble has
a lower selective risk than the individual model under any coverage, which is consistent with The-
orem 2. The abnormal results on MRPC dataset may be because of the small number of samples
in MRPC. The development set of MRPC has only 0.4k samples, which is much smaller than de-
velopment sets of other datasets (see Table 2). More importantly, when the coverage is low, say
10%, only about 40 samples in MRPC are selected to predict, which may cause a large variance in
selective risk estimation. Thus, the estimation of selective risk is not accurate under low coverage,
which may explain the violation of Theorem 2 on MRPC. In summary, except the results on MRPC,
which might have a large variance in selective risk estimation, the experimental results in Figure 2
verify the correctness and practicability of Theorem 2.
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Figure 2: Risk-coverage curves of ensembles and individual models of each baseline on multiple
datasets, where all ensembles consist of 5 member models.

Table 1: AURC/10−4 on each dataset, where MNLI-(m) is the matched part of the MNLI develop-
ment set. The means and standard deviations are calculated over three trials. The best entries are
marked in bold.

Dataset #Member SR Gambler SAT Reg-curr

CIFAR-10

1 66.1±5.6 o=2.20 70.7±2.6 67.1±0.3 67.1±2.0
2 55.5±1.7 o=2.20 63.2±1.8 63.0±0.4 59.2±1.1
3 53.0±1.7 o=2.20 60.8±1.2 59.1±1.1 56.0±1.6
4 51.3±2.2 o=2.20 58.9±2.0 58.3±0.5 54.6±1.0
5 51.2±2.0 o=2.20 57.4±1.0 57.6±0.6 53.5±0.5

CIFAR-100

1 793.1±9.0 o=4.60 930.6±10.2 807.3±6.0 851.9±12.8
2 722.6±3.5 o=4.60 880.7±7.0 756.7±1.6 767.6±1.1
3 695.9±2.6 o=4.60 871.3±4.3 741.2±3.8 739.5±5.7
4 681.8±4.4 o=4.60 859.0±4.6 729.2±6.9 721.8±7.9
5 672.5±1.9 o=4.60 857.1±4.7 715.5±12.2 714.2±6.3

SVHN

1 46.7±0.2 o=2.60 44.2±2.5 35.0±0.5 43.8±1.0
2 42.1±1.8 o=2.60 41.3±2.9 33.5±0.8 39.9±1.4
3 39.4±0.8 o=2.60 38.2±0.8 32.9±1.1 38.2±0.3
4 38.1±0.9 o=2.60 37.2±1.0 32.7±0.9 37.0±1.4
5 37.1±0.3 o=2.60 37.0±0.8 32.4±0.9 36.6±1.2

MRPC

1 654.3±68.3 o=1.80 695.6±65.9 794.6±51.9 696.8±66.0
2 560.1±57.0 o=1.80 721.4±38.2 643.4±42.2 631.4±56.0
3 566.0±57.3 o=1.80 707.3±58.4 581.2±11.0 653.7±67.3
4 560.2±56.2 o=1.80 707.3±40.0 571.5±5.3 645.8±55.0
5 561.3±55.6 o=1.80 650.1±24.8 563.0±16.5 640.3±14.1

QNLI

1 221.5 ±8.1 o=1.60235.8 ±35.1 246.6 ±4.2 201.0 ±1.3
2 196.4 ±7.0 o=1.60195.5 ±12.8 220.0 ±1.1 186.9 ±1.5
3 180.1 ±4.4 o=1.60188.4 ±9.0 201.5 ±4.6 176.6 ±3.3
4 175.7 ±3.5 o=1.60181.0 ±6.2 196.0 ±5.5 174.3 ±3.5
5 173.3 ±1.8 o=1.60177.7 ±5.3 192.9 ±1.8 171.9 ±2.4

MNLI-(m)

1 515.3 ±8.6 o=2.80607.6 ±19.3 519.8 ±8.0 496.8 ±9.5
2 482.3 ±9.3 o=2.80590.6 ±19.4 482.8 ±16.5 466.9 ±7.7
3 475.0 ±8.4 o=2.80563.0 ±11.4 470.1 ±6.5 458.5 ±5.3
4 467.1 ±2.8 o=2.80567.1 ±14.9 460.1 ±6.4 453.0 ±1.0
5 465.2 ±3.8 o=2.80569.4 ±11.4 454.4 ±3.1 451.9 ±2.1

Next, we show the AURCs of the ensembles in Table 1, where o is the hyperparameter of Deep
Gambler, and each ensemble has 2-5 member models. As we can see, the ensemble with five mem-
bers has a significantly lower AURC than the individual model on each dataset. On CIFAR-10,
CIFAR-100, SVHN, MRPC, QNLI, and MNLI, the AURCs of the best ensemble models with five
members are 23%, 15%, 7%, 14%, 14%, and 9% lower than those of the best individual models.
Among all ensembles, SR ensemble has the lowest AURCs on CIFAR-10, CIFAR-100, and MRPC,
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SAT ensemble has the lowest AURCs on SVHN2, and Reg-curr has the lowest AURCs on QNLI and
MNLI3.

Surprisingly, the SR ensemble and Reg-curr ensemble are state-of-the-art selective classifiers for
image and text classification tasks, respectively. They only use the maximum probability as the
confidence score, while SAT and SN use more sophisticated and explicit confidence score functions.
Note that, on SVHN, the SAT ensemble performs better than the SR ensemble. We find that the
annotations on SVHN are noisy, and after manually removing some noisy samples in the training
set, the SR ensemble performs better than SAT ensemble. Therefore, the SVHN result indicates that
SAT is better at handling label noise rather than selecting when to abstain. Please refer to Appendix
F.3 for more details.

In addition, we conduct experiments to explore further properties of the selective classifier ensem-
ble, including the effect of the number of members and the relationship between the classification
performance and the selective classification performance (see Appendix F). The results are that an
ensemble with more member models has better selective performance, and good classification per-
formance of the ensemble does not necessarily imply good selective classification performance.

7 DISCUSSION

A possible direction for future work is to adapt our analysis to standard classification. The previous
analyses of the randomization-based ensemble for standard classification need some impractical as-
sumptions (Tumer & Ghosh, 1996; Fumera & Roli, 2005). On the contrary, this paper’s assumptions
are a good approximation of practical settings (see Section 6.1), and more importantly, the standard
classification is a particular case of selective classification, i.e., selective classification with coverage
of 1. Therefore, our analysis (although it does not cover the case of coverage of 1, i.e., the case of
standard classification) may motivate the analysis of the randomization-based ensemble for standard
classification in practical settings.

Another possible direction for future work is the relaxation of assumptions. This paper’s assumption
is a little strong for the convenience of proof. Although the experimental results suggest that these
assumptions are the actual behaviors of the SR model, we guess the assumptions can be relaxed
while the conclusion keeps the same. It is interesting to relax the assumption of the idealization of
the definite samples. Although the idealization may be a good approximation of practical setting,
it is unrealistic anyway. We believe that a similar theoretical result holds in the absence of the
idealization.

8 CONCLUSION

We prove that under some assumptions, the ensemble has a lower selective risk than the individual
model under a range of coverage. Although the metrics of selective classification are non-convex,
we complete the proof with the help of several assumptions motivated by empirical observations.
The assumptions and the result are well supported by the experimental results on multiple datasets
of image classification tasks and text classification tasks. A surprising empirical result is that two
simple methods, SR ensemble and its variant Reg-curr ensemble, (which can be summarized as the
ensemble models with maximum probability as confidence) are state-of-the-art selective classifiers.
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A RELATIONSHIP BETWEEN SELECTIVE CLASSIFICATION AND OOD
DETECTION

Figure 3 shows the relationship between selective classification and OOD detection (or open set
recognition, novelty detection).

Figure 3: Relationship between selective classification and OOD detection (or open set recognition,
novelty detection).

B PROOFS

The complete proof is somewhat complex, but its intuition is straightforward. In a word, the intuition
is that because the ensemble avoids being overconfident over ambiguous samples, the ensemble has
a lower selective risk. Details of the intuition are as follows:

1. the individual model is not ”modest” over both ambiguous samples and definite samples
(Assumption 2);
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2. by contrast, based on Assumption 3, we prove that the ensemble provides modest confi-
dence to ambiguous samples (Proposition 1). In addition, the confidence of definite sam-
ples remains the same throughout ensembling (due to the definition of definite samples);

3. thus, when confidence approaches 1, as long as the classifier’s error rate over definite sam-
ples is lower than the error rate over ambiguous samples (Assumption 1), the individual
model suffers more error predictions that come with the ambiguous samples than the en-
semble. Based on this, we prove that the selective risk drops under a range of coverage via
ensembling (Theorem 2).

We prove Proposition 1 in Section B.1 and prove Theorem 2 in Section B.2. The road map of the
complete proof of the final result, i.e., Theorem 2, is shown in Figure 4.

Figure 4: The road map of the proof of Theorem 2

B.1 PROOF OF PROPOSITION 1

To prove Proposition 1, that is, the ensemble is modest over ambiguous samples, we first show that
over ambiguous samples, the ensemble provides a moderate predictive probability for each class.
By moderate predictive probability, we mean a predictive probability whose PDF approaches zero
when itself approaches one or zero 4. Formally, we have the following lemma (proof is provided in
Section B.1.1).

Lemma 3. If Assumption 3 holds, then

pΠk
ens

(0|A) = 0, (10)

pΠk
ens

(1|A) = 0, (11)

and

pΠk
ens

(πkens|A) = O((πkens)
M−1) (πkens → 0+), (12)

pΠk
ens

(πkens|A) = O((1− πkens)
M−1) (πkens → 1−), (13)

where the notation follows that of Assumption 3, and Πk
ens is the predictive probability of the ensem-

ble for class k.

Secondly, to prove the ensemble is modest over ambiguous samples, we show the relationship be-
tween the PDF of confidence and the PDFs of predictive probabilities. Note that the confidence of
an SR model is the maximum predictive probability. Thus, the following lemma (proof is provided
in Section B.1.2) bounds the PDF of confidence by PDFs of predictive probabilities, and then it
is clear that the ensemble is modest over ambiguous samples, considering the moderate predictive
probabilities of the ensemble over ambiguous samples.

4Thus, Proposition 1, or that the ensemble is modest over ambiguous samples, is equivalent to that the
ensemble provides moderate confidence over ambiguous samples
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Lemma 4. Let Πk (1 ≤ k ≤ K) be K continuous random variables, and C := maxk Πk. Then we
have

pC(κ) ≤
K∑
k=1

pΠk(κ). (14)

Finally, since Cens = maxk Πk
ens, Lemma 3 and Lemma 4 derive that when κens → 1−,

pCens
(κens|A) ≤

K∑
k=1

pΠk
ens

(κens|A) = O((1− κens)
M−1),

and thus Proposition 1 holds.

B.1.1 PROOF OF LEMMA 3

We first derive the PDF of the average of multiple continuous random variables in terms of the
PDFs of these random variables (Lemma 5), which helps us to analyze the PDF of the ensemble’s
predictive probabilities.
Lemma 5. Let X1,X2, . . . ,XM be M continuous random variables, and their average is Xavg :=
1
M

∑M
i=1 Xi. Then the PDF of Xavg is

pXavg
(xavg) =M

∫
RM−1

dx1dx2 · · · dxM−1 · p~X(x1, x2, . . . , xM−1,Mxavg −
M−1∑
i=1

xi), (15)

where p~X is pX1,X2,...,XM
for short.

Proof. The distribution function of Xavg is

FXavg
(xavg) =

∫
∑

i xi≤Mxavg

dx1 · · · dxM−1dxM · p~X(x1, . . . , xM )

=

∫
RM−1

dx1 · · · dxM−1

∫ Mxavg−
∑M−1

i=1 xi

−∞
dxM · p~X(x1, · · · , xM ).

Let xM = u−
∑M−1
i=1 xi, then the integral above is equal to∫
RM−1

dx1 · · · dxM−1

∫ Mxavg

−∞
du · p~X(x1, . . . , xM−1, u−

M−1∑
i=1

xi)

=

∫ Mxavg

−∞
du

∫
RM−1

dx1 · · · dxM−1 · p~X(x1, . . . , xM−1, u−
M−1∑
i=1

xi). (16)

The PDF of Xavg is the derivative of FXavg
, which, combined with (,16) derives

pXavg
(xavg) =F ′Xavg

(xavg)

=
d(Mxavg)

dxavg
·

dFXavg

d(Mxavg)

=M

∫
RM−1

dx1 · · · dxM−1 · p~X(x1, . . . , xM−1,Mxavg −
M−1∑
i=1

xi),

which is exactly (15).

Proof of Lemma 3. Based on Lemma 5 and Assumption 3, we prove Lemma 3 as follows.

Proof. With Lemma 5 applied to Πk
i , 1 ≤ i ≤M , we have

pΠk
ens

(πkens|A) =M

∫
RM−1

dπk1 · · · dπkM−1 · p~Πk(πk1 , . . . , π
k
M−1,Mπkens −

M−1∑
i=1

πki |A), (17)
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where p~Πk is pΠk
1 ,...,Π

k
M

for short. The integrand in the right-hand side of (17) being non-zero
requires {

0 ≤ πki ≤ 1, i = 1, 2, . . . ,M − 1

0 ≤Mπkens −
∑M−1
i=1 πki ≤ 1

. (18)

Firstly, we prove (10) and (12). When 0 ≤ πkens ≤ 1
M , it easy to verify that (18) is equivalent to

0 ≤ πk1 ≤Mπkens

0 ≤ πk2 ≤Mπkens − πk1
· · ·
0 ≤ πki ≤Mπkens − πk1 − · · · − πki−1

· · ·
0 ≤ πkM−1 ≤Mπkens − πk1 − · · · − πkM−2

. (19)

Thus, (17) transforms into

pΠk
ens

(πkens|A) =M

∫ Mπk
ens

0

dπk1 · · ·
∫ Mπk

ens−
∑i−1

j=1 π
k
j

0

dπki · · ·
∫ Mπk

ens−
∑M−2

j=1 πk
j

0

dπkM−1

· p~Πk(πk1 , . . . , π
k
M−1,Mπkens −

M−1∑
i=1

πki |A).

Considering that p~Πk(·|A) is bounded, as Assumption 3 claims, let B be one of its upper bounds.
Then we have

pΠk
ens

(πkens|A) ≤M
∫ Mπk

ens

0

dπk1 · · ·
∫ Mπk

ens−
∑i−1

j=1 π
k
j

0

dπki · · ·
∫ Mπk

ens−
∑M−2

j=1 πk
j

0

dπkM−1B

≤M
∫ Mπk

ens

0

dπk1 · · ·
∫ Mπk

ens

0

dπki · · ·
∫ Mπk

ens

0

dπkM−1B

= MB ·
∫ Mπk

ens

0

dπk1 · · ·
∫ Mπk

ens

0

dπkM−1

= MB · (Mπkens)
M−1

= MMB · (πkens)
M−1, (20)

which directly derives (10) and (12) (note that the PDF is non-negative).

Secondly, we prove (11) and (13). These two equations could be derived like (10) and (12).
However, here we take another way that uses a little trick to simplify the proof. Let Πk

i and
Πk

ens be the corresponding random variables of πki and πkens respectively, and Ui = 1 − Πk
i ,

Uens = 1
M

∑M
i=1 Ui = 1−Πk

ens. Applying (20) to Ui and Uens, we get that when 0 ≤ uens ≤ 1
M ,

pUens(uens|A) ≤MMB · uM−1
ens . (21)

It is easy to see that pUens(uens|A) = pΠk
ens

(1− uens|A). Sticking this into (21), we have

pΠk
ens

(1− uens|A) ≤MMB · uM−1
ens ,

when 0 ≤ uens ≤ 1
M . With the (1− uens) in the equation above replaced with πkens, we have

pΠk
ens

(πkens|A) ≤MMB · (1− πkens)
M−1,

when 1− 1
M ≤ π

k
ens ≤ 1, which directly derives (11) and (13).

B.1.2 PROOF OF LEMMA 4

Proof. First of all, we prove ∀κ1, κ2, κ1 < κ2,

FC(κ2)− FC(κ1) ≤
K∑
k=1

FΠk(κ2)− FΠk(κ1) (22)
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It is easy to see that

FC(κ) = FΠ1,...,ΠK (κ, . . . , κ) =

∫
(−∞,κ]K

dπ1 · · · dπK pΠ1,...,ΠK (π1, · · · , πK),

so the left-hand side of (22) is∫
(−∞,κ2]K

dπ1 · · · dπK pΠ1,...,ΠK (π1, · · · , πK)

−
∫

(−∞,κ1]K
dπ1 · · · dπK pΠ1,...,ΠK (π1, · · · , πK)

=

∫
(−∞,κ2]K\(−∞,κ1]K

dπ1 · · · dπK pΠ1,...,ΠK (π1, · · · , πK), (23)

where the last equality is due to (−∞, κ1] ⊂ (−∞, κ2], and the right-hand side of (22) is
K∑
k=1

∫
[κ1,κ2]

dπk pΠk(πk)

=

K∑
k=1

∫
Rk−1×[κ1,κ2]×RK−k

dπ1 · · · dπK · pΠ1,...,ΠK (π1, · · · , πK)

≥
∫
⋃K

k=1 Rk−1×[κ1,κ2]×RK−k

dπ1 · · · dπK · pΠ1,...,ΠK (π1, · · · , πK), (24)

where the last inequality is because Rk−1× [κ1, κ2]×RK−k for different k, 1 ≤ k ≤ K, may have
an intersection. To prove (22), we only need to prove that the right-hand side of (23) is less than or
equal to the right-hand side of (24), which is equivalent to prove

(−∞, κ2]K \ (−∞, κ1]K ⊂
K⋃
k=1

Rk−1 × [κ1, κ2]× RK−k. (25)

Now we prove (25). ∀(π1, . . . , πK) ∈ (−∞, κ2]K \ (−∞, κ1]K , we have

∀k, 1 ≤ k ≤ K,πk ≤ κ2, (26)

∃k0, 1 ≤ k0 ≤ K,πk0 > κ1, (27)

where (27) is because if all πk is less than or equal to κ1 instead, then (π1, . . . , πK) ∈ (−∞, κ1]K ,
which contradicts with (π1, . . . , πK) ∈ (−∞, κ2]K \ (−∞, κ1]K . Thus, πk0 ∈ [κ1, κ2], so

(π1, . . . , πK) ∈ Rk0−1 × [κ1, κ2]× RK−k0 ⊂
K⋃
k=1

Rk−1 × [κ1, κ2]× RK−k,

which is precisely (25), and therefore (22) is proved.

With (22) and the definition of derivatives, it is easy to see that F ′C(κ) ≤
∑K
k=1 F

′
Πk(κ), which is

equivalent to pC(κ) ≤
∑K
k=1 pΠk(κ). Thus, Lemma 4 is proved.

B.2 PROOF OF THEOREM 2

The intuition of the proof is as follows. Intuitively, since the ensemble is more modest than the
individual over ambiguous samples and is the same modest as the individual model over definite
samples, the ensemble tends to select more definite samples when the confidence threshold ap-
proaches 1, compared with the individual model (Lemma 7). Thus, (still intuitively) as long as the
selective risk over definite samples is lower than that over ambiguous samples when the confidence
threshold approaches 1 (Assumption 1), the ensemble is certainly to have a lower selective risk when
the confidence threshold approaches 1.

Although the intuition is straightforward, the rigorous proof is not easy. For the convenience of
the proof, we show Lemma 6 and Lemma 7 first. Lemma 6 claims that for the individual model,
the selective risk given definite samples is lower than the overall selective risk. Lemma 7 claims
that the ensemble is unlikely to select ambiguous samples to predict when the confidence threshold
approaches 1.
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Lemma 6. If Assumption 1-2 holds, then for any individual SR model,

lim
τ→1−

R(φ(τ)) > lim
τ→1−

Pr(Err|D,C ≥ τ), (28)

where the notation follows those of Assumption 1-2.

Proof. Using Bayes’ rule, we have

Pr(A|C ≥ τ) =
Pr(C ≥ τ |A)Pr(A)

Pr(C ≥ τ |A)Pr(A) + Pr(C ≥ τ |D)Pr(D)
. (29)

Using L’Hospital’s rule, we have

lim
τ→1−

Pr(C ≥ τ |D)

Pr(C ≥ τ |A)
= lim
τ→1−

∫ 1

τ
pC(κ|D)dκ∫ 1

τ
pC(κ|A)dκ

= lim
τ→1−

−pC(τ |D)

−pC(τ |A)

= lim
τ→1−

pC(τ |D)

pC(τ |A)

>0, (30)

where the last inequality is due to Assumption 2. Combining this with (29), we have

lim
τ→1−

Pr(A|C ≥ τ) =
Pr(A)

Pr(A) + Pr(D) limτ→1−
Pr(C≥τ |D)
Pr(C≥τ |A)

,

=
Pr(A)

Pr(A) + Pr(D) limτ→1−
pC(τ |D)
pC(τ |A)

,

>0. (31)

Now we derive (28).

R(φ(τ)) =Pr(Err,A|C ≥ τ) + Pr(Err,D|C ≥ τ)

=Pr(Err|A,C ≥ τ)Pr(A|C ≥ τ) + Pr(Err|D,C ≥ τ)Pr(D|C ≥ τ)

=Pr(Err|A,C ≥ τ)Pr(A|C ≥ τ) + Pr(Err|D,C ≥ τ)[1− Pr(A|C ≥ τ)]

=[Pr(Err|A,C ≥ τ)− Pr(Err|D,C ≥ τ)]Pr(A|C ≥ τ) + Pr(Err|D,C ≥ τ).

According to the equation above, we have

lim
τ→1−

R(φ(τ)) =[ lim
τ→1−

Pr(Err|A,C ≥ τ)− lim
τ→1−

Pr(Err|D,C ≥ τ)]

· lim
τ→1−

Pr(A|C ≥ τ) + lim
τ→1−

Pr(Err|D,C ≥ τ) (32)

Due to (31) and Assumption 1, the first term of the equation above is positive, so (28) is derived.

Lemma 7. If Assumption 2-3 hold, then

lim
τens→1−

Pr(A|Cens ≥ τens) = 0, (33)

where the notation follows those of Assumption 2-3.

Proof. Similar to (31), with Bayes’ rule and L’Hospital’s rule, we can derive that

lim
τens→1−

Pr(A|Cens ≥ τens) =
Pr(A) limτens→1−

Pr(Cens≥τens|A)
Pr(Cens≥τens|D)

Pr(A) limτens→1−
Pr(Cens≥τens|A)
Pr(Cens≥τens|D) + Pr(D)

,

=
Pr(A) limτens→1−

pCens (τens|A)
pCens (τens|D)

Pr(A) limτens→1−
pCens (τens|A)
pCens (τens|D) + Pr(D)

, (34)
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where Cens is the confidence score of the ensemble. Because for a definite sample, the confidence
score of the ensemble is equal to that of the individual model, we have

lim
τens→1−

pCens
(τens|A)

pCens
(τens|D)

= lim
τens→1−

pCens
(τens|A)

pC(τens|D)
= 0,

where the last equality is due to Proposition 1 and Assumption 2. Substituting this to (34), we obtain
(33).

Proof of Theorem 2.

Proof. First, for the convenience of the proof, given an SR model (f, g), we define a threshold-to-
coverage function ρ(f,g) of (f, g) that maps the confidence threshold to the corresponding coverage,

ρ(f,g) : (0, 1)→ (0, 1), τ 7→ φ(f, g; τ).

Second, we prove that ∃δ ∈ (0, 1), ∀τens ∈ (1− δ, 1),
Pr(A|Cens ≥ τens)− Pr(Errind|C ≥ τ) + Pr(Errens|D,Cens ≥ τens) < 0, (35)

τ = max ρ−1 ◦ ρens(τens) (36)
where C is the confidence score of the individual SR model, Errind is the event that the individual
model makes an error prediction, Errens is the event that the ensemble makes an error prediction, ρ
and ρens are the threshold-to-coverage functions of the individual model and the ensemble respec-
tively. Note that the symbol ρ−1 denotes the preimage under ρ, rather than the inverse function of ρ.
Because when τens → 1−, the coverage of the ensemble ρens(τens) approaches 0, and the coverage
of the individual model is equal to the coverage of the ensemble, i.e., ρ(τ) = ρens(τens), we have
τ → 1− when τens → 1−. Thus,

lim
τens→1−

Pr(Errind|C ≥ τ) = lim
τ→1−

Pr(Errind|C ≥ τ). (37)

In addition, for definite samples, the confidence score of the ensemble and that of the individual
model are the same, and the ensemble and the individual model make error predictions on the same
set of samples, i.e. Errind = Errens, so

lim
τens→1−

Pr(Errens|D,Cens ≥ τens) = lim
τens→1−

Pr(Errens|D,C ≥ τens)

= lim
τ→1−

Pr(Errens|D,C ≥ τ)

= lim
τ→1−

Pr(Errind|D,C ≥ τ), (38)

where the second equality is just a variable substitution. Finally, we have
lim

τens→1−
[Pr(A|Cens ≥ τens)− Pr(Errind|C ≥ τ) + Pr(Errens|D,Cens ≥ τens)]

= lim
τens→1−

[0− Pr(Errind|C ≥ τ) + Pr(Errens|D,Cens ≥ τens)]

=− lim
τens→1−

Pr(Errind|C ≥ τ) + lim
τens→1−

Pr(Errind|D,C ≥ τ)

=− lim
τ→1−

Pr(Errind|C ≥ τ) + lim
τ→1−

Pr(Errind|D,C ≥ τ)

<0, (39)
where the first equality is due to Lemma 7, the second equality is due to (37) and (38), and the last
inequality is due to Lemma 6. Thus, with (39), it is easy to see that (35) holds.

Third, we have
Pr(Errens|Cens ≥ τens) =Pr(Errens, A|Cens ≥ τens) + Pr(Errens, D|Cens ≥ τens)

=Pr(Errens|A,Cens ≥ τens)Pr(A|Cens ≥ τens)

+ Pr(Errens|D,Cens ≥ τens)Pr(D|Cens ≥ τens)

=Pr(Errens|A,Cens ≥ τens)Pr(A|Cens ≥ τens)

+ Pr(Errens|D,Cens ≥ τens)[1− Pr(A|Cens ≥ τens)]

=[Pr(Errens|A,Cens ≥ τens)− Pr(Errens|D,Cens ≥ τens)]

· Pr(A|Cens ≥ τens) + Pr(Errens|D,Cens ≥ τens)

≤Pr(A|Cens ≥ τens) + Pr(Errens|D,Cens ≥ τens), (40)
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where the last inequality is because any probability is in [0, 1]. Combining this with (35), we have
∃δ ∈ (0, 1), ∀τens ∈ (1− δ, 1),

Pr(Errens|Cens ≥ τens) ≤Pr(A|Cens ≥ τens) + Pr(Errens|D,Cens ≥ τens)

<Pr(Errind|C ≥ τ)− Pr(Errens|D,Cens ≥ τens)

+ Pr(Errens|D,Cens ≥ τens)

=Pr(Errind|C ≥ τ), (41)

where the second inequality is due to (35). Pr(Errens|Cens ≥ τens) is the selective risk of the en-
semble given the confidence threshold of τens (or given coverage of ρens(τens)), and Pr(Errind|C ≥
τ) is the selective risk of the individual model given the confidence threshold of τ (or given cover-
age of ρ(τ) = ρens(τens)). These two selective risks are under the same coverage ρens(τens). Thus,
(41) is equivalent to that ∃δ ∈ (0, 1), ∀τens ∈ (1 − δ, 1), the ensemble has a lower selective risk
than the individual model given the coverage of φ = ρens(τens). This statement can be simplified
as ∃δ ∈ (0, 1), ∀φ ∈ (0, ρens(1 − δ)), the ensemble has a lower selective risk than the individual
model, given the coverage of φ.

C DETAILS OF EXPERIMENTS

C.1 DATASETS

The experiments were conducted on multiple data sets of image classification and text classification.
The image classification datasets are CIFAR-10, CIFAR-100, (Krizhevsky, 2009) and SVHN (Net-
zer et al., 2011), whose image sizes are all 32 × 32 × 3 pixels. The datasets of text classification
are MRPC (Dolan & Brockett, 2005), MNLI (Williams et al., 2018) and QNLI (Wang et al., 2018).
The task of MRPC is to judge whether two paragraphs of text are semantically equivalent. MNLI’s
task is to judge the inferential relationship between sentences (three categories). The task of QNLI
is to determine whether a paragraph has the answer to a given question. The sizes of the training
set, development set, and test set of each data set used in experiments are shown in Table 2. MNLI’s
development set and test set are divided into matched and mismatched parts. In the table, (m) rep-
resents matched, and (mm) represents mismatched. The matched parts are sampled from the same
source as the training set, while the mismatched parts are sampled from different sources. Current
selective classification only considers test samples from the same distribution as the training set, so
only the matched parts are used in experiments. In addition, test sets of MRPC, QNLI, and MNLI
are not accessible, so we use their development sets as test sets. According to Liu et al. (2019);
Huang et al. (2020), since CIFAR-10, CIFAR-100 and SVHN originally had no development set,
their development sets were 2000 samples randomly divided from corresponding test sets.

Table 2: Sizes of training sets, development sets, and test sets for each dataset used in experiments

Datasets Training Set Development Set Test Set Number of Classes

CIFAR-10 50.0k 10.0k 10
CIFAR-100 50.0k 10.0k 100

SVHN 73.3k 26.0k 10
MRPC 3.7k 0.4k 1.7k 2
QNLI 104.7k 5.5k 5.5k 2
MNLI 392.7k 9.8k (m)/ 9.8k(mm) 9.8k(m)/9.8k(mm) 3

C.2 MODEL IMPLEMENTATIONS AND TRAINING PROCEDURES

For image classification, the backbone model is VGG-16 (Simonyan & Zisserman, 2014) with
Dropout (Srivastava et al., 2014), batch normalization (Ioffe & Szegedy, 2015). It is trained in
the same way as Huang et al. (2020). The model is optimized using SGD with an initial learning
rate of 0.1 (the learning rate decays by half in every 25 epochs), the momentum of 0.9, weight de-
cay of 0.0005, batch size of 128, and a total training epoch of 300. Data preprocessing includes
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data augmentation (random cropping and flip) and normalization. The implementations of the back-
bone model and data preprocessing are based on the official open-sourced implementation of SAT
to ensure a fair comparison.

For text classification, the backbone model of selective classifiers is BERT-base (Devlin et al., 2019).
Pretrained BERT-base is provided by the Huggingface Transformer Library (Wolf et al., 2020). It
is trained/fine-tuned in the same way as Xin et al. (2021), except on dataset MRPC. On QNLI and
MNLI, the model is trained/fine-tuned using AdamW (Loshchilov & Hutter, 2017) for 3 epochs,
with a learning rate of 2 × 10−5, batch size of 32, and the maximum input sequence length of 128.
On MRPC, the model is trained/fine-tuned for 10 epoch, with other settings the same as those on
QNLI and MNLI. This unique setting of training epoch is due to the small number of samples in
MRPC, which makes the training require more epochs to reach convergence on MRPC.

C.3 HYPERPARAMETERS OF SELECTIVE CLASSIFIERS

For the hyperparameter c of SN, we choose c = 0.9 for evaluating its selective risk, given the
coverage of 90%. The results of SN are reported in Appendix E. For the hyperparameter o of
Gambler, we tune o on validation sets in the same way as Liu et al. (2019). For the hyperparameter
α of SAT, we set α = 0.99, the same as Huang et al. (2020). For the hyperparameter λ of Reg-curr,
we set λ = 0.05.

D ADDITIONAL EXPERIMENTAL RESULTS

Table 3 and 4 shows the selective risks of ensembles under coverage 10%-100% on each dataset,
where hyperparameters of Gambler are the same as those in Table 1. Notably, no ensemble consis-
tently outperforms others under all coverage on all datasets, so it is not easy to tell which ensemble
is state-of-the-art in this regard. This phenomenon is because different ensembles have similar over-
all performance but adopt different trade-offs between coverage and selective risk. In this case, we
need a comprehensive metric, e.g., AURC, to identify the state-of-the-art (see Table 1).

E EMPIRICAL RESULTS OF SN

With the hyperparameter c of 0.9, we report the selective risks given the coverage of 90% of SN
ensembles and the individual SN in Figure 5. The coverage is set to 90% because the target coverage
of the SN is c (Geifman & El-Yaniv, 2019)), and c is 0.9 in our experiments. The results show that
each ensemble of SN has a lower selective risk than the individual SN.

F FURTHER PROPERTIES OF SELECTIVE CLASSIFIER ENSEMBLE

F.1 THE EFFECT OF NUMBER OF MEMBERS ON SELECTIVE CLASSIFIER ENSEMBLE

We evaluate AURCs of the SR ensemble, Gambler ensemble, and SAT ensemble of different num-
bers of members on CIFAR10, and find that an ensemble with more members has a better perfor-
mance, but is less efficient. The results are shown in Figure 6. In most cases, the AURC on the test
set of CIFAR-10 decreases as the number of members in the ensemble increases. In addition, as
the number of members in the ensemble grows, the effect of adding one member drops. On the one
hand, the result shows that an ensemble with a small number of members has good selective clas-
sification performance. On the other hand, it indicates that when the number of member models is
large, increasing the number of members to improve the performance of the selective classification
ensemble is inefficient.

F.2 GOOD CLASSIFICATION PERFORMANCE DOES NOT IMPLY GOOD SELECTIVE
CLASSIFICATION PERFORMANCE

It is well known that the ensemble has better classification performance than an individual model,
but this does not guarantee a better selective classification performance of the ensemble. To demon-
strate this, we design an SR model with a big backbone, and show that it has as good classification
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Table 3: The selective risks of ensembles under coverage 10%-100% on image classification
datasets. The means and standard deviations are calculated over three trials. The best entries and
those that overlap with the best entries are marked in bold.

Dataset coverage (%) SR ensemble Gambler ensemble SAT ensemble Reg-curr ensemble

CIFAR-10

100 5.31±0.03 5.29±0.03 5.47±0.04 5.74±0.07
90 1.68±0.02 1.99±0.01 2.15±0.06 1.89±0.02
80 0.45±0.05 0.51±0.02 0.63±0.03 0.61±0.09
70 0.17±0.01 0.21±0.01 0.26±0.01 0.18±0.02
60 0.11±0.01 0.18±0.03 0.17±0.01 0.08±0.00
50 0.11±0.01 0.14±0.02 0.11±0.01 0.07±0.01
40 0.12±0.03 0.15±0.02 0.06±0.01 0.07±0.01
30 0.13±0.05 0.13±0.03 0.06±0.02 0.08±0.03
20 0.12±0.02 0.17±0.05 0.00±0.00 0.02±0.02
10 0.10±0.08 0.14±0.05 0.00±0.00 0.00±0.00

SVHN

100 2.44±0.01 2.42±0.02 2.36±0.01 2.41±0.01
90 0.59±0.00 0.60±0.03 0.50±0.01 0.54±0.02
80 0.42±0.03 0.38±0.01 0.34±0.01 0.39±0.02
70 0.34±0.02 0.32±0.01 0.31±0.01 0.35±0.01
60 0.32±0.02 0.30±0.01 0.28±0.01 0.35±0.01
50 0.29±0.02 0.26±0.01 0.26±0.00 0.30±0.01
40 0.25±0.02 0.27±0.02 0.25±0.01 0.28±0.01
30 0.22±0.03 0.26±0.01 0.20±0.01 0.25±0.03
20 0.22±0.01 0.26±0.01 0.18±0.02 0.19±0.03
10 0.21±0.02 0.23±0.00 0.17±0.02 0.18±0.03

CIFAR-100

100 24.66±0.08 25.50±0.05 25.23±0.13 25.70±0.09
90 19.15±0.15 19.88±0.05 19.77±0.28 20.16±0.14
80 14.32±0.22 15.75±0.09 15.00±0.20 15.22±0.07
70 9.78±0.13 12.11±0.18 10.29±0.24 10.41±0.38
60 5.81±0.06 8.89±0.16 6.43±0.20 6.58±0.27
50 2.95±0.04 6.22±0.10 3.41±0.15 3.45±0.05
40 1.40±0.13 4.37±0.06 1.96±0.13 1.74±0.11
30 0.75±0.05 2.67±0.01 1.13±0.02 0.89±0.06
20 0.62±0.06 1.91±0.04 0.72±0.06 0.62±0.04
10 0.33±0.09 1.42±0.16 0.57±0.09 0.13±0.05

performance as an SR ensemble with a standard backbone but worse selective classification perfor-
mance than an SR model with a standard backbone. The big backbone is designed to have twice as
many filters in every convolutional layer and neurons in every fully connected hidden layer as those
of the standard VGG-16, which is therefore called Big VGG-16. It is easy to see that its number
of parameters is approximately 22 = 4 times as many as that of standard VGG-16. We train an
SR ensemble of 4 VGG-16s and an SR model with a backbone of Big VGG-16 on CIFAR-10 and
show the evaluation results in Figure 7 and Table 5. Figure 7 shows that when coverage is high, the
ensemble and the big individual model have similar selective risks, and especially, the classification
error rates (i.e., selective risk of 100% coverage) of the ensemble and the big individual model are
similar. However, when coverage is low, the big individual model has significantly higher selective
risk than the ensemble. Table 5 shows that the AURC of Big VGG-16 is much higher than the
ensemble of 4 VGG-16s and even higher than SR. In summary, we show that a selective classifier
with a good classification performance is not guaranteed to have good selective classification per-
formance, so the good selective classification performance of the ensemble is not a trivial result of
its good classification performance.

F.3 THE EFFECTS OF LABEL NOISE OF SVHN ON SELECTIVE CLASSIFIER ENSEMBLES

In this section, we compare the effect of label noise of SVHN on the SR ensemble with that on
SAT ensemble, whose result might explain the abnormal experimental results (compared to results
on other datasets) on SVHN in Section 6.2. SVHN is not a clean dataset, and much more label
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Table 4: The selective risks of ensembles under coverage 10%-100% on text classification datasets.
The means and standard deviations are calculated over three trials. The best entries and those that
overlap with the best entries are marked in bold.

Dataset coverage (%) SR ensemble Gambler ensemble SAT ensemble Reg-curr ensemble

MRPC

100 14.13±0.23 14.62±0.23 13.64±0.23 15.28±0.31
90 11.41±1.02 11.50±0.46 10.69±0.13 11.68±0.44
80 7.75±0.29 9.99±0.88 8.46±0.63 8.36±0.29
70 6.41±0.33 8.51±0.72 7.93±0.44 6.64±0.29
60 5.71±0.33 7.35±1.20 6.39±0.19 6.12±0.33
50 4.08±1.29 4.41±0.40 3.59±1.01 4.74±0.23
40 3.25±0.29 3.86±0.76 3.25±0.76 3.66±0.50
30 3.25±0.00 3.52±0.38 3.52±0.38 2.98±0.77
20 2.44±1.72 3.25±0.58 3.25±0.58 3.66±0.00
10 3.25±2.30 4.88±0.00 1.63±1.15 5.69±1.15

QNLI

100 8.16±0.04 8.18±0.20 8.03±0.09 8.17±0.01
90 4.74±0.04 5.04±0.14 5.03±0.09 4.74±0.12
80 2.94±0.11 3.08±0.08 2.97±0.04 2.98±0.01
70 1.84±0.10 1.91±0.04 1.92±0.11 1.88±0.06
60 1.20±0.05 1.27±0.05 1.36±0.01 1.30±0.08
50 1.04±0.05 1.04±0.08 1.13±0.03 0.98±0.03
40 0.72±0.02 0.73±0.04 1.02±0.11 0.70±0.06
30 0.45±0.03 0.51±0.03 0.83±0.08 0.43±0.09
20 0.30±0.11 0.37±0.15 0.67±0.04 0.30±0.09
10 0.30±0.09 0.12±0.09 0.61±0.34 0.12±0.09

MNLI

100 15.04±0.06 14.82±0.15 15.03±0.06 14.89±0.14
90 11.01±0.11 11.78±0.09 11.37±0.06 11.21±0.17
80 7.93±0.08 9.62±0.08 8.26±0.20 8.02±0.07
70 5.81±0.04 8.03±0.23 5.81±0.12 5.85±0.22
60 4.28±0.07 6.41±0.25 4.08±0.19 4.05±0.10
50 3.22±0.04 4.95±0.10 2.99±0.18 3.04±0.10
40 2.69±0.11 3.57±0.21 2.08±0.03 2.22±0.06
30 2.13±0.14 2.35±0.18 1.57±0.03 1.75±0.06
20 1.34±0.10 1.53±0.17 1.39±0.13 1.36±0.06
10 0.98±0.05 1.32±0.14 0.71±0.22 0.71±0.08

Table 5: The AURCs(/10−4) of Big VGG-16, a vanilla VGG-16, and the ensemble of 4 VGG-16s
on CIFAR-10. The best entries are marked in bold.

Dataset Big VGG-16 VGG-16 Ensemble

CIFAR-10 89.2 69.6 49.3

noise can be detected in SVHN than in CIFAR-10 and CIFAR-100. Using the soft label of SAT
(Huang et al., 2020), we detect label noise in SVHN, CIFAR-10, and CIFAR-100, and find that
SVHN has significantly more label noise than CIFAR-10 and CIFAR-100. The result is presented in
the following. In addition, it is known that SAT is robust to label noise (Huang et al., 2020), while
SR is not so, so we conjecture that the label noise of SVHN is why the SR ensemble is inferior to
SAT on SVHN.

We detect label noise with the help of the soft label of SAT. For a sample xi, the soft label of SAT
(Huang et al., 2020), ti,yi , is used to measure xi’s learning difficulty. The soft label of SAT is
initialized as 1 and updated at every training epoch as below

ti,yi ← α× ti,yi + (1− α)× pθ(yi|xi),
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Figure 5: Selective risks of SN ensembles (with 2 to 5 members) and the individual SN (with only 1
member) given the coverage of 90%
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Figure 6: The AURCs on the test set of CIFAR-10 of the SR ensemble, Gambler ensemble, and SAT
ensemble of different numbers of members

where pθ(Y |x) is the predictive probability distribution of the classifier, yi is the label of xi, α is a
hyperparameter. The smaller the ti,yi is, the lower the true class predictive probability of the classi-
fier on xi during training time, indicating that xi is more difficult to learn. By selecting a percentage
of samples with the lowest ti,yi , we get the most difficult samples to learn for the classifier, from
which we can easily detect label noise manually.

In training sets of SVHN, CIFAR-10, and CIFAR-100, we detect label noise manually among the
top-0.1% difficult (measured by the soft label of SAT) samples. The numbers of mislabeled sam-
ples detected in SVHN, CIFAR-10, and CIFAR100 are shown in Table 6. The result shows that
SVHN has significantly more mislabeled samples detected than CIFAR-10 and CIFAR-100, indicat-
ing much more label noise in SVHN than in CIFAR-10 and CIFAR-100.

To verify the effect of label noise, the following experiments are designed. Firstly, we detect label
noise manually among the 1% of the hardest-to-learn samples of SVHN training set and test set,
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Table 6: Numbers of mislabeled samples in the top-0.1% difficult training samples of SVHN,
CIFAR-10, and CIFAR-100.

Dataset #Mislabeled #Top-0.1% Proportion

SVHN 73 73 100%
CIFAR-10 1 50 2%

CIFAR-100 1 50 2%

using the soft label of SAT. Secondly, we remove the detected mislabeled samples from the original
dataset. The remaining SVHN dataset is called the clean SVHN. Accordingly, the original dataset
is called the original SVHN. Finally, we retrain and test the SR ensemble and SAT ensemble and
compare their test results. In the second step, the reason for removing mislabeled samples rather
than modifying them is that some samples cannot be classified even by humans, and some samples
are not in the range of categories of SVHN. Thus, the label noise cannot be eliminated by modifying
the labels but by removing mislabeled samples.

The test results of the SR ensemble and SAT ensemble on clean SVHN are shown in Table 7. It
is not surprising that the AURCs of the SR ensemble and SAT ensemble are significantly lower
on the clean SVHN than the original SVHN. Furthermore, on the clean SVHN, when the number
of members is 5, the AURC of the SR ensemble is lower than that of SAT ensemble. Combined
with results on the original SVHN, where the AURC of the SR ensemble is higher than that of SAT
ensemble, we conclude that label noise in SVHN is why the SR ensemble has a higher AURC than
SAT ensemble. In other words, label noise is why the SR ensemble performs worse in selective
classification than SAT ensemble on SVHN.

Table 7: AURC/10−4 of SR ensemble and SAT ensemble on the clean SVHN

Dataset #Member SR SAT

clean SVHN

1
2
3
4
5

12.3
8.2
7.3
6.8
6.4

7.8
7.1
6.8
6.8
6.8
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In summary, by experiments, we show that the SR ensemble is not as robust to label noise as SAT
ensemble, and label noise in SVHN is why the SR ensemble is not as good as SAT ensemble on
SVHN. We construct the clean SVHN, which is SVHN without some mislabeled samples. On the
clean SVHN, we compare the SR ensemble with SAT ensemble and find that the SR ensemble is
superior to SAT ensemble in selective classification performance. Combined with former experi-
mental results, we conclude that label noise in SVHN is why the SR ensemble is inferior to SAT on
SVHN.

Considering the experimental results on the clean SVHN and previous experimental results on
CIFAR-10 and CIFAR-100 (see Table 7 and Table 1), the SR ensemble is superior to SAT ensemble
in selective classification on clean image classification datasets, Thus, SR ensemble is the state-of-
the-art selective classification method on clean image classification datasets, but is not as robust to
label noise as SAT ensemble.

G AN EXTENSION OF THEOREM 2

This section discusses the lower bound of φ0 mentioned in Theorem 2. We aim to calculate φ0’s
lower bound without training an ensemble (otherwise, we can measure it directly on the ensemble).

Preliminaries. The φ0 can be obtained by solving the following optimization problem.

max
φ

φ

s.t. Rens(φ) < R(φ),

where Rens(φ) and R(φ) are the selective risks of the ensemble and the individual model under
coverage φ, respectively. Suppose we know all about the individual model, e.g., the mapping from
φ to R is known. Since maximizing coverage is equivalent to minimizing the confidence threshold
for a fixed model, the original optimization problem can be substituted by

min
τ,τens

τ (42)

s.t. φens(τens) = φ(τ)

Rens(φens(τens)) < R(φ(τ)),

where φens(τens) is coverage of the ensemble with confidence threshold τens, and φ(τ) is coverage
of the individual model given the confidence threshold τ , and then φ0 = φ(τ∗), where τ∗ is the
optimal solution to (42). Assume that R is a monotone increasing function and that φ is a monotone
decreasing function5, then it is easy to show, using proof by contradiction, that (42) can be further
transformed into

min
τ,τens

τ (43)

s.t. φens(τens) ≥ φ(τ)

Rens(φens(τens)) < R(φ(τ)).

To solve (43), we need more information about the ensemble. Besides the number of classes K,
assume that we know: an oracle that tells whether a sample is definite; M , the number of member
models; and B, the upper bound of pΠk

1 ,...,Π
k
M

(·|A) for all k ∈ {1, 2, ...,K}. It is natural to know K

andM , and we need the oracle andB because they provide critical information about the ensemble’s
behavior. The oracle can be implemented by an ensemble with M ′ (M ′ �M ) members.

Eliminating the Unknowns. We are now committed to translating the unknowns in the (43) into
known quantities. Firstly, we eliminate the unknowns in the first constraint. According to (20) and
Lemma 4, it is easy to prove (by an integral)

Pr(Cens ≥ τens|A) ≤ β(1− τens)
M , (44)

where C and Cens are the confidence scores of the individual model and the ensemble, respectively,
A/D represents the event that the input sample is ambiguous/definite, β = K ·MM−1·B. Combining

5The latter is actually an obvious fact.
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(44) with φens = Pr(C ≥ τens, A)+Pr(C ≥ τens, D) = Pr(C ≥ τens|A)Pr(A)+Pr(C ≥ τens, D),
we have

Pr(C ≥ τens, D) ≤ φens(τens) ≤ β(1− τens)
MPr(A) + Pr(C ≥ τens, D). (45)

Thus, we can intensify the first constraint as

φ(τ) ≤ Pr(C ≥ τens, D). (46)

Secondly, we eliminate the unknowns in the second constraint. according to (41), (35) is a sufficient
condition of Rens < R. We rewrite (35) as

Pr(A|Cens ≥ τens) + Pr(Err|D,C ≥ τens) < R(φ(τ)), (47)

where Cens is the confidence score of the ensemble, and Err represents the event that the individual
model makes an error prediction. Note that the first term in the second constraint of (47) contains
Cens, which is unknown, so we cannot directly replace (43)’s second constraint with (47). We
eliminate Cens as follows:

Pr(A|Cens ≥ τens) =
Pr(A,Cens ≥ τens)

Pr(Cens ≥ τens)

=
Pr(A,Cens ≥ τens)

φens(τens)

=
Pr(A) · Pr(Cens ≥ τens|A)

φens(τens)

≤Pr(A) · β(1− τens)
M

φens(τens)

≤Pr(A) · β(1− τens)
M

φ(τ)
,

where the first inequality is due to (44), and the second inequality is due to (45) and (46). Thus, a
sufficient condition of (47) is

Pr(A) · β(1− τens)
M

φ(τ)
+ Pr(Err|D,C ≥ τens) < R(φ(τ)), (48)

with which we replace the second constraint of (43). In summary, we can intensify the constraints
of (43) and obtain the following optimization problem that does not contain the unknowns. It is easy
to see that the optimal solution to (49) is an upper bound of that to (43).

min
τ,τens

τ (49)

s.t. φ(τ) ≤ Pr(C ≥ τens, D)

Pr(A) · β(1− τens)
M

φ(τ)
+ Pr(Err|D,C ≥ τens) < R(φ(τ)).

Further Simplification and Final Result. It is easy to show, by proof of contraction, that the first
constraint of (49) can be substituted by

φ(τ) = Pr(C ≥ τens, D).

Thus, the second constraint of (49) can be simplified as

Pr(A) · β(1− τens)
M + Pr(Err|D,C ≥ τens)φ(τ) < R(φ(τ))φ(τ)

⇔Pr(A) · β(1− τens)
M + Pr(Err|D,C ≥ τens)Pr(D,C ≥ τens) < R(φ(τ))φ(τ)

⇔Pr(A) · β(1− τens)
M + Pr(Err,D,C ≥ τens) < R(φ(τ))φ(τ)

⇔Pr(A) · β(1− τens)
M + Pr(Err,D,C ≥ τens) < Pr(Err,C ≥ τ).

Thus, the final version of the optimization problem with respect to τ is

min
τ,τens

τ (50)

s.t. φ(τ) = Pr(C ≥ τens, D)

Pr(A) · β(1− τens)
M + Pr(Err,D,C ≥ τens) < Pr(Err,C ≥ τ).
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Algorithm 1: A Lower Bound of φ0.

Input: the individual model θ; the test set D = {(xi, yi)}Ni=1; the number of classes K; the
oracle Ω : X → {0, 1} that tells whether a sample is definite; the number of member
models M ; and B, the upper bound of pΠk

1 ,...,Π
k
M

(·|A) for all k ∈ {1, 2, ...,K}.
Output: An lower bound of φ0 mentioned in Theorem 2

left = 0
right = 1
ε = 10−9

while right− left > ε do
τ = (left+ right)/2
τens = SEARCHFORTAUENS(τ, θ,D,Ω)
if τens is not None and VERIFYSECONDCONSTRAINT(τ , τens, θ, D, Ω, K, M , B) is True

then
right = τ

else
left = τ

τ∗ = (left+ right)/2

return 1
N

∑N
i=1 I{C(xi; θ) ≥ τ∗} // C(xi; θ) is the confidence of θ on sample xi.

Suppose φ0 = φ(τ0), since τ0 is the optimal solution to (43), the optimal solution to (50) (denoted
as τ∗) provides an upper bound of τ0. Thus, considering φ is a monotone decreasing function of τ ,
φ(τ∗) is a lower bound of φ0 = φ(τ0).

Algorithm.

We design Algorithm 1 to search for the solution to (50) and then obtain the lower bound of φ0.
Since τens is determined by τ (the first constraint of (50)), (50) can be reduced to a one-dimensional
search problem. Our algorithm adopts a binary search for efficiency, although this method might
provide a suboptimal solution. The procedure of Algorithm 1 in each iteration of the binary search
is as follows.

1. Given current τ , Algorithm 1 determines τens using SEARCHFORTAUENS (see Algorithm
2), a procedure that searches for τens ∈ [0, 1] using binary search s.t. φ(τ) = Pr(C ≥
τens, D). Note that τens might not exist, as long as τ is so low that φ(τ) > Pr(D) =
supτens

Pr(C ≥ τens, D). This problem will be addressed shortly.
2. Algorithm 1 exams whether τens exists. If τens exists, Algorithm 1 then examines whether

the second constraint of (50) holds for current τ and τens, which is implemented by VERI-
FYSECONDCONSTRAINT (see Algorithm 3).

3. If τens exists and the second constraint holds, Algorithm 1 searches for a smaller τ in the
left half feasible area; otherwise, Algorithm 1 searches for a greater τ in the right half
feasible area.

Once the binary search completes and outputs τ∗, Algorithm 1 returns the coverage of θ with confi-
dence threshold τ∗.

An Example.

To show that Algorithm 1 works in reality, we run this algorithm on CIFAR-10, using the same
individual model as Section 6. In this example, K = 10, M = 5, the oracle is implemented by
another ensemble with two individual models (the oracle outputs True if and only if the STD over
member models’ predictive distributions < 10−3). Note that it is difficult to estimate B. On the one
hand, we need to train an ensemble with M models to estimate B, which is costly. On the other
hand, the domain of pΠk

1 ,...,Π
k
M

(·|A) has high dimension, so the observed data points are sparse in
this domain, which makes the estimation of B more difficult. Thus, we do not estimate B but try
several hypothetical values of B to see at what B the lower bound of φ0 is big. With different Bs,
we obtain different lower bounds of φ0 as Table 8 shows. We can see that when B ≤ 108, the lower
bound of φ0 is greater than 50%, which indicates that Algorithm 1 may be robust to the choice of B.
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Algorithm 2: SEARCHFORTAUENS

Input: the confidence threshold τ ; the individual model θ; the test set D = {(xi, yi)}Ni=1; the
oracle Ω : X → {0, 1} that tells whether a sample is definite.

Output: τens ∈ [0, 1] that satisfies the first constraint of (50).

φ = 1
N

∑N
i=1 I{C(xi; θ) ≥ τ} // C(xi; θ) is the confidence of θ on sample xi.

if φ > 1
N

∑N
i=1 Ω(xi) then

return None
left = 0
right = 1
ε = 10−9

while right− left > ε do
τens = (left+ right)/2

if 1
N

∑N
i=1 I{C(xi; θ) ≥ τens} · Ω(xi) < φ then

right = τens

else
left = τens

return (left+ right)/2

Algorithm 3: VERIFYSECONDCONSTRAINT

Input: the confidence threshold τ ; τens; the individual model θ; the test set D = {(xi, yi)}Ni=1;
the oracle Ω : X → {0, 1} that tells whether a sample is definite; the number of classes
K; the number of member models M ; and B, the upper bound of pΠk

1 ,...,Π
k
M

(·|A) for all
k ∈ {1, 2, ...,K}.

Output: True if and only if τ and τens satisfy the second constraint of (50)

PA = 1
N

∑N
i=1[1− Ω(xi)]

β = K ·MM−1 ·B
leftHandSide = PA · β(1− τens)

M + 1
N

∑N
i=1 I{f(xi; θ) 6= yi} ·Ω(xi) · I{C(xi; θ) ≥ τens}

rightHandSide = 1
N

∑N
i=1 I{f(xi; θ) 6= yi} · I{C(xi; θ) ≥ τ}

return I{leftHandSide < rightHandSide}

This example also indicates the relationship between the ensemble’s diversity and its selective clas-
sification performance. Since an ensemble with a smaller B seems to have more diversity over
ambiguous samples, the result in Table 8 suggests that as long as the ensemble has enough diver-
sity over ambiguous samples, the ensemble is guaranteed to have a lower selective risk than the
individual model under a considerable range of coverage.

Table 8: The relationship between φ0’s lower bound and B on CIFAR-10, where the individual
model is the same as Section 6.

B 1 10 102 103 104 105 106 107 108 109 1010 1011 1012 1013 1014

lower bound of φ0 0.737 0.737 0.737 0.737 0.736 0.735 0.729 0.705 0.599 0 0 0 0 0 0
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