
HiLD 2024: 2nd Workshop on High-dimensional Learning Dynamics

Decomposing & Editing Predictions by Modeling Model Computation

author names withheld

Under Review for the Workshop on High-dimensional Learning Dynamics, 2024

Abstract
How does the internal computation of a machine learning model turn inputs into predictions? To
tackle this question, we introduce component modeling, a framework for decomposing a predic-
tion in terms of model components—architectural “building blocks” such as convolution filters or
attention heads. We focus on a sub-case of this framework, component attribution, where the goal
is to estimate the counterfactual impact of individual components on a given prediction. We then
present COAR, a scalable estimator for component attribution, and showcase its effectiveness on
vision and language models. Finally, we show that COAR directly enables effective model editing.

1. Introduction

Despite their predictive power, machine learning models remain black boxes. In particular, the
internal computation that these models perform to transform inputs into predictions makes it difficult
to understand model behavior and, as a result, detect failure modes prior to deployment [9, 44, 101].

In response to this difficulty, a line of work in ML interpretability aims to shed light on model
computation by analyzing model components—“grouped” model parameters such as convolutional
filters or attention heads. Feature visualization methods [47, 102, 113] identify components in vision
models that detect concepts such as curves [85] and objects [6]. Representation-based probes [1]
identify language model components that encode sentiment [91], part-of-speech tags [13], and syn-
tactic structure [56]. Mechanistic interpretability [81, 110] uncovers specific components that en-
code a model behavior of interest, e.g., “knowledge neurons” [26], “induction heads” [87]. Broadly,
these works develop tools to answer: How do individual components shape model behavior?

In this work, we propose a new (and complementary) approach to studying this question. Our
point of start is to rephrase the question, instead asking:

How do changes to model components collectively change individual model predictions?

We turn this question into a concrete framework called component modeling for decomposing and
editing predictions by intervening on model components. Specifically, we:
(1) Introduce the component modeling framework: We formalize our goal of understanding how
model components shape predictions through a framework called component modeling (Def 1).
The objective is to learn a counterfactual estimator, or component model, that predicts the effect of
ablating a subset of components on a model prediction (Equation 1).
(2) Instantiate the framework via component attribution: We focus our attention on a special
“linear” case of component modeling called component attribution, where we assign a score to each
component, and estimate the counterfactual effect of ablating a set of components as the sum of
their corresponding scores (Definition 2).

© .

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

(3) Propose an estimator for component attribution: We develop COAR (component attribution
via regression), a scalable estimator for component attributions (Section 3). Our findings show
that COAR yields component attributions that can accurately predict how predictions of large-scale
vision and language models change in response to component-level ablations (Section 4).
(4) Edit model behavior via component attribution: COAR directly enables zeroth-order model
editing without any additional training. In Section 5, we outline COAR-EDIT, an editing method
that ablates targeted component subsets to induce desired model behavior. We apply COAR-EDIT

to five tasks: boosting subpopulation robustness (§ D.3), fixing model errors (§ D.1), “forgetting”
classes (§ D.2), mitigating typographic attacks (§ D.4), and localizing backdoor attacks (§ D.5).

2. Setup and Problem Statement

Setup. We have a set S of input-label pairs (or examples) zi = (xi, yi), and a trained model M that
maps inputs x to predicted labels M(x). We define the model output fM (z) ∈ R as any statistic that
quantifies the correctness of model M on the example z e.g., cross-entropy loss in a classification
task. We view the model M as a computation graph GM [7], where each parameterized node—
which we call a component—is a function mapping its incoming edges to an outgoing edge.

Component modeling. Viewing the model M as a computation graph GM over components C,
we can restate our goal as: Given a model M and example z, how does every component c ∈ C
combine to output fM (z)? What we want is an interpretable function capturing how components
in C impact fM (z). To make this precise, we define the component counterfactual fM (z, C ′) as

fM (z, C ′) := model output fM (z) on example z after ablating components C ′ ⊆ C, (1)

where “ablating” here corresponds to any intervention that patches the parameters corresponding
to components c ∈ C ′ (e.g., by zeroing out [87] or adding noise [77]). Eq. (1) allows us to
operationalize our goal as the task of estimating component counterfactuals fM (z, C ′) using a much
simpler surrogate function, which we call a component model.

Definition 1 (Component modeling) Fix a model M with computation graph GM , components
C = {c1, . . . , cN}, and model output function fM . For any subset of model components C ′ ⊆ C, let
0C′ be the ablation vector of C ′, a N -dimensional vector where 0C′ [i] = 0 if ci ∈ C ′ and 0C′ [i] = 1
otherwise. Given an example z, a component model for z is a function g(z) : {0, 1}N → R that
maps ablation vectors of subsets C ′ to estimates of the counterfactual fM (z, C ′).

The high-level goal of component modeling is to build an estimator that can simulate counterfactauls
like “what would happen to my classifier’s prediction on a given image if I ablated a specific set of
components C ′ ⊆ C?” without having to intervene on the graph GM and ablate components in C ′.

Component attribution. We focus on a subcase of component modeling—which we call compo-
nent attribution—where the function g(z) is linear in its input.

Definition 2 (Component attribution) Given a model M with model output fM and component a
C = {c1, . . . , cN}, a component attribution for example z is a set of coefficients θ(z) := {w(z)

1 , . . . ,w
(z)
N , b(z)}

that parameterize a linear component model, i.e., fM (z;C ′) ≈ g(z)(0C′) := 0⊤C′w(z) + b(z).

The component attribution for example z assigns a score w
(z)
i to each component ci ∈ C and

predicts the effect of ablating C ′ ⊂ C as the sum over scores corresponding to components in C\C ′.
In doing so, the attributions decompose the output fM (z) into component-wise contributions w(z)

i .

2

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

3. Component attribution with COAR

In this section, we describe COAR (component attribution via regression), a general component
attribution method for models ranging from random forests to deep networks. COAR takes in an
example z and outputs a component attribution vector θ(z) ∈ R|C|+1 (Definition 2) by casting the
task of predicting component counterfactuals as a supervised learning problem in two steps:
(Step 1) Construct a component dataset. We construct a dataset D(z) of component counterfac-
tuals for the example z. where each “datapoint” consists of a component subset Ci ⊆ C and its
counterfactual fM (z, Ci) (see (1)). To compute the latter, we ablate the components in Ci and eval-
uate the model on example z. For simplicity, we choose the component subsets Ci to be random
αtrain-fraction subsets of the component set C, for a ablation fraction hyperparameter αtrain > 0. The
output is a component dataset D(z) = {(Ci, fM (z, Ci))}mi=1 comprising pairs of component subsets
and their counterfactuals. We study the effect of ablation fraction αtrain on COAR in Appendix I.1.
(Step 2) Fit a linear estimator. We then use the dataset D(z) to fit component attribution θ(z) for
each example z (see Definition 2). Specifically, we minimize the squared loss between the compo-
nent counterfactuals and their attribution-based estimates by solving a linear regression problem:

θ(z) := arg min
b∈R,w∈R|C|

∑
D(z)

(b+ 1⊤Ci
w − fM (z, Ci))

2, (2)

where again 0Ci is the ablation vector of Ci (Definition 1). Our component model is then

g(z)(0C′) := 0⊤C′w(z) + b(z). (3)

We provide pseudocode for COAR in Appendix E.1. The resulting component attribution θ(z) :=
(w(z), b(z)) is interpretable: the coefficient w(z)

j estimates how the output on example z would
change if we were to ablate component cj .

Instantiating COAR for classification. In this paper, we use COAR to analyze models evaluated
on classification tasks, for which we use the standard correct-class margin [61] as the model output

fM (z) := (logit for correct class) − (highest logit for incorrect class), (4)

where the sign indicates the correctness of model M on the example z. We choose to ablate com-
ponent subsets C ′ ⊂ S by simply setting the parameters of the components in C ′ to zero [87, 110].
We consider alternative model output functions and ablation methods in Appendices I.3 and I.2.

4. Does COAR learn accurate attributions?

We now apply and evaluate COAR on image classification and language modeling tasks.

Datasets, models, and components. We apply COAR to compute component attributions in three
setups: (A) ResNet-18 on CIFAR-10, (B) ResNet-50 on ImageNet, and (C) Vision Transformer
(ViT-B/16) on ImageNet. The component set in setup {A,B,C} comprises 2, 306 convolutional fil-
ters, 22, 720 convolutional filters, and 82, 944 weight matrix rows. We defer details to Appendix E.2.

3

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

4 2 0 2 4
True counterfactuals fM(z, C) on example z

4

2

0

2

4

C
oa

r E
st

im
at

e
 g

(z
) (C

)

Setup A: ResNet-18 trained on CIFAR-10

Example z

Corr. (z) = 0.80

2 0 2 4
True counterfactuals fM(z, C) on example z

2

0

2

4

C
oa

r E
st

im
at

e
 g

(z
) (C

)

Setup B: ResNet-50 trained on ImageNet

Example z

Corr. (z) = 0.70

4 2 0 2
True counterfactuals fM(z, C) on example z

4

2

0

2

C
oa

r E
st

im
at

e
 g

(z
) (C

)

Setup C: ViT-B/16 trained on ImageNet

Example z

Corr. (z) = 0.81

II NC GP LOO Coar

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

 c
or

re
la

tio
n

E z
[

(z
)]

.00
.06

.15

.38

.68

.01

.09

.18

.42

.71

.01

.11

.24

.52

.75

Fraction of components ablated

0.15 0.125 0.1*

II NC GP LOO Coar

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

 c
or

re
la

tio
n

E z
[

(z
)]

.01 .00
.04

.10

.48

.00 .00

.08

.18

.57

.00 .00

.17

.34

.65

Fraction of components ablated

0.1 0.075 0.05*

II NC GP LOO Coar

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

 c
or

re
la

tio
n

E z
[

(z
)]

.01
.05

.31
.39

.58

.02
.06

.42

.52

.69

.02
.07

.54

.65

.76

Fraction of components ablated

0.1 0.075 0.05*

Figure 1: Evaluating COAR. We compare COAR to four baselines (described in Section 4) on three
setups (one per column). In the first row, each subfigure focuses on a single example
z (visualized in each plot), and shows that the component counterfactuals fM (z, ·) (x-
axis) and attribution-based estimates g(z)(·) (y-axis) exhibit high correlation ρ(z). In the
second row, we observe that COAR attributions exhibit high average correlation Ez[ρ(z)]
over test examples, outperforming all baselines and for all ablation fractions αtest.

Evaluation metric. We evaluate the component attributions for example z based on its ability to
estimate unseen component counterfactuals (1). Specifically, we sample a collection of k component
subsets D(z) := C ′

1, C
′
2, . . . , Ck where each C ′

i ∼ Unif(C ′ ⊂ C : |C ′| = αtest|C|), with αtest as a
hyperparameter. Setting αtest = αtrain (or not) evaluates the in-distribution (or out-of-distribution)
performance of COAR. Using D(z), we compute the Pearson correlation ρ(z) between component
counterfactuals fM (z, C ′

i) and their attribution-based estimates g(z)(0C′
i
):

ρ(z) := ρp

(
{fM (z, C1), . . . , fM (z, Ck)}︸ ︷︷ ︸

ground-truth counterfactuals

, {g(z)(0C′
1
), . . . , g(z)(0C′

k
)}︸ ︷︷ ︸

component attribution estimates

)
(5)

Baselines. We compare COAR to four baselines. The first two are adapted from related work:
internal influence (II) [70] and neuron conductance (NC) [31]. The other two are natural baselines:
leave-one-out (LOO) and gradient-times-parameter (GP). We provide details to Appendix E.3.

Results. The first row of Figure 1 corresponds to an individual example from each setup. We
observe that COAR learns accurate component attributions that obtain high Pearson correlations
ρ(z) with the true counterfactuals. For each task, the second row of Figure 1 compares COAR to the
baselines using the average correlation Ez[ρ(z)] (5) averaged over all test examples. Our method
COAR consistently outperforms all four baselines for multiple values of αtest across all setups.

Applying COAR to language models. Although we focus on vision models in this work, COAR is
modality-agnostic. In Appendix F, we show that COAR yields accurate component attributions for
language models: GPT-2 [92] evaluated on TinyStories [33] and Phi-2 [62] evaluated on BoolQ [23].

Additional evaluation. In Appendix G, we show that COAR attributions are predictive for out-
of-distribution inputs (§G.1), additional architectures (§G.2), additional tasks (§G.3), and different
train-time ablation fractions (§G.4). We also show that COAR outperform baselines when trained
with 2-5× fewer samples in Appendix G.5, and provide qualitative analysis in Appendix G.7.

4

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

5. Do COAR Attributions Enable Editing?

The problem of component attribution and model editing are closely related. The former answers
questions of the form, “how would the model outputs change if we were to ablate a subset of com-
ponents?” while the latter inverts this to “which components, when ablated, would change model
outputs in a specific way?” So, we use attributions to identify components that, when ablated, edit
model behavior in a targeted manner. Specifically, we introduce COAR-EDIT, an editing approach
based on COAR attributions. Given a model M with components C, target examples ST sampled
from DT , and reference examples SR from DR, COAR-EDIT identifies a model edit in three steps:

1. Compute COAR attributions θ(z) = (w(z), b(z)) for all target & reference examples z ∈ ST ∪SR.

2. For each component ci ∈ C, use a t-test in order to quantify the “importance” of component ci
to set of target examples ST relative to reference examples SR:

τ(ci) :=
µ(ST)− µ(SR)√
σ2(ST)
|ST | + σ2(SR)

|SR|

, where

{
µ(S) = 1

|S|
∑

z∈S w
(z)
i

σ2(S) = 1
|S|

∑
z∈S(w

(z)
i − µ(S))2.

(6)

3. Increase the model outputs on target examples ST by ablating a set of components Cedit =
arg bottom-k({τ(ci) : ci ∈ C}) comprising the k most negative scores τi. The hyperparameter
k can be tuned by cross-validation. To decrease outputs, we can replace bottom-k with top-k.

The score τ(ci) in Equation 6 is a t-test statistic with the null hypothesis that component ci has an
equal average effect on the target and reference distributions. Using these scores, we find compo-
nents that, if ablated, change target outputs the most relative to the change in reference outputs.

Applications. In Appendix D, we stress-test COAR-EDIT on five model editing tasks: fixing
model errors (§D.1), “forgetting” specific classes (§D.2), boosting subpopulation robustness (§D.3),
localizing backdoor attacks (§D.5), and improving robustness to typographic attacks (§D.4).

6. Related work

We defer details on related work, limitations, and future work to Appendices A, B, and C.

Localizing model behavior. COAR connects to work in mechanistic interpretability on identifying
“subnetworks” within neural networks responsible for specific behaviors [18, 86, 87, 107, 110], and
in particular finding these subnetworks in an automated manner [8, 25]. While recent work shows
that these methods can be sensitive to design choices [114] and lack actionable insights for model
editing [52], we show that COAR and directly enables model editing (Section 5).

Editing model behavior. Another line of work is on model editing, where one tries to induce or
suppress specific behaviors via targeted changes to model parameters [5, 10, 60, 98]. In Section 5,
we show that COAR can enable editing by simply zeroing out specific components.

7. Conclusion

We introduce component modeling, a framework for decomposing predictions in terms of model
components. We focus on the component attribution sub-case, where the goal is to predict the
counterfactual impact of component ablations on a prediction. Our method, COAR, yields predictive
attributions for large-scale vision and language models, which can directly inform model editing.

5

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

References

[1] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classi-
fier probes. arXiv preprint arXiv:1610.01644, 2016.

[2] Omer Antverg and Yonatan Belinkov. On the pitfalls of analyzing individual neurons in
language models. arXiv preprint arXiv:2110.07483, 2021.

[3] Samyadeep Basu, Nanxuan Zhao, Vlad Morariu, Soheil Feizi, and Varun Manjunatha.
Localizing and editing knowledge in text-to-image generative models. arXiv preprint
arXiv:2310.13730, 2023.

[4] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dis-
section: Quantifying interpretability of deep visual representations. In Computer Vision and
Pattern Recognition (CVPR), 2017.

[5] David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, and Antonio Torralba. Rewriting a
deep generative model. In European Conference on Computer Vision (ECCV), 2020.

[6] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio Tor-
ralba. Understanding the role of individual units in a deep neural network. Proceedings of
the National Academy of Sciences (PNAS), 2020.

[7] Friedrich L Bauer. Computational graphs and rounding error. In SIAM Journal on Numerical
Analysis, volume 11, pages 87–96. SIAM, 1974.

[8] Deniz Bayazit, Negar Foroutan, Zeming Chen, Gail Weiss, and Antoine Bosselut. Dis-
covering knowledge-critical subnetworks in pretrained language models. arXiv preprint
arXiv:2310.03084, 2023.

[9] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In European
Conference on Computer Vision (ECCV), 2018.

[10] Nora Belrose, David Schneider-Joseph, Shauli Ravfogel, Ryan Cotterell, Edward Raff, and
Stella Biderman. Leace: Perfect linear concept erasure in closed form. arXiv preprint
arXiv:2306.03819, 2023.

[11] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector
machines. In International Conference on Machine Learning, 2012.

[12] Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya
Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can explain
neurons in language models. URL https://openaipublic. blob. core. windows. net/neuron-
explainer/paper/index. html.(Date accessed: 14.05. 2023), 2023.

[13] Terra Blevins, Omer Levy, and Luke Zettlemoyer. Deep rnns encode soft hierarchical syntax.
arXiv preprint arXiv:1805.04218, 2018.

[14] Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Coenen, Emily Reif, Fernanda Viégas, and
Martin Wattenberg. An interpretability illusion for bert. arXiv preprint arXiv:2104.07143,
2021.

6

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

[15] Davis Brown, Charles Godfrey, Cody A. Nizinski, Jonathan Tu, and Henry Kvinge. Robust-
ness of edited neural networks. ArXiv, abs/2303.00046, 2023.

[16] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities
in commercial gender classification. In Conference on fairness, accountability and trans-
parency (FAccT), 2018.

[17] Nick Cammarata, Gabriel Goh, Shan Carter, Ludwig Schubert, Michael Petrov, and Chris
Olah. Curve detectors. Distill, 5(6):e00024–003, 2020.

[18] Steven Cao, Victor Sanh, and Alexander M Rush. Low-complexity probing via finding sub-
networks. arXiv preprint arXiv:2104.03514, 2021.

[19] Stephen Casper, Tilman Rauker, Anson Ho, and Dylan Hadfield-Menell. Sok: Toward trans-
parent ai: A survey on interpreting the inner structures of deep neural networks. In First
IEEE Conference on Secure and Trustworthy Machine Learning, 2022.

[20] Lawrence Chan, Adrià Garriga-Alonso, Nicholas Goldowsky-Dill, Ryan Greenblatt, Jenny
Nitishinskaya, Ansh Radhakrishnan, Buck Shlegeris, and Nate Thomas. Causal scrubbing:
A method for rigorously testing interpretability hypotheses. 2022.

[21] Ting-Yun Chang, Jesse Thomason, and Robin Jia. Do localization methods actually localize
memorized data in llms? arXiv preprint arXiv:2311.09060, 2023.

[22] Haozhe Chen, Junfeng Yang, Carl Vondrick, and Chengzhi Mao. Interpreting and controlling
vision foundation models via text explanations. arXiv preprint arXiv:2310.10591, 2023.

[23] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions.
arXiv preprint arXiv:1905.10044, 2019.

[24] Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the ripple
effects of knowledge editing in language models. ArXiv, abs/2307.12976, 2023.

[25] Arthur Conmy, Augustine N Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià
Garriga-Alonso. Towards automated circuit discovery for mechanistic interpretability. arXiv
preprint arXiv:2304.14997, 2023.

[26] Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge
neurons in pretrained transformers. arXiv preprint arXiv:2104.08696, 2021.

[27] Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Belinkov, Anthony Bau, and James
Glass. What is one grain of sand in the desert? analyzing individual neurons in deep nlp
models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
6309–6317, 2019.

[28] Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models.
arXiv preprint arXiv:2104.08164, 2021.

[29] Nicola De Cao, Leon Schmid, Dieuwke Hupkes, and Ivan Titov. Sparse interventions in
language models with differentiable masking. arXiv preprint arXiv:2112.06837, 2021.

7

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

[30] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In Computer Vision and Pattern Recognition (CVPR),
2009.

[31] Kedar Dhamdhere, Mukund Sundararajan, and Qiqi Yan. How important is a neuron? arXiv
preprint arXiv:1805.12233, 2018.

[32] Nadir Durrani, Hassan Sajjad, Fahim Dalvi, and Yonatan Belinkov. Analyzing individual
neurons in pre-trained language models. arXiv preprint arXiv:2010.02695, 2020.

[33] Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english? arXiv preprint arXiv:2305.07759, 2023.

[34] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of
superposition. arXiv preprint arXiv:2209.10652, 2022.

[35] Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering
the long tail via influence estimation. In Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pages 2881–2891, 2020.

[36] Matthew Finlayson, Aaron Mueller, Sebastian Gehrmann, Stuart Shieber, Tal Linzen, and
Yonatan Belinkov. Causal analysis of syntactic agreement mechanisms in neural language
models. arXiv preprint arXiv:2106.06087, 2021.

[37] Dan Friedman, Andrew Lampinen, Lucas Dixon, Danqi Chen, and Asma Ghandehari-
oun. Interpretability illusions in the generalization of simplified models. arXiv preprint
arXiv:2312.03656, 2023.

[38] Yossi Gandelsman, Alexei A Efros, and Jacob Steinhardt. Interpreting clip’s image represen-
tation via text-based decomposition. arXiv preprint arXiv:2310.05916, 2023.

[39] Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. Erasing con-
cepts from diffusion models. arXiv preprint arXiv:2303.07345, 2023.

[40] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell,
Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya
Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy
Zou. A framework for few-shot language model evaluation, 12 2023. URL https:
//zenodo.org/records/10256836.

[41] Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. Causal abstractions of
neural networks. Advances in Neural Information Processing Systems, 34:9574–9586, 2021.

[42] Atticus Geiger, Chris Potts, and Thomas Icard. Causal abstraction for faithful model inter-
pretation. arXiv preprint arXiv:2301.04709, 2023.

8

https://zenodo.org/records/10256836
https://zenodo.org/records/10256836

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

[43] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann,
and Wieland Brendel. Imagenet-trained CNNs are biased towards texture; increasing shape
bias improves accuracy and robustness. In International Conference on Learning Represen-
tations (ICLR), 2019.

[44] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. In
Nature Machine Intelligence, 2020.

[45] Robert Geirhos, Roland S Zimmermann, Blair Bilodeau, Wieland Brendel, and Been Kim.
Don’t trust your eyes: on the (un) reliability of feature visualizations. arXiv preprint
arXiv:2306.04719, 2023.

[46] Kristian Georgiev, Joshua Vendrow, Hadi Salman, Sung Min Park, and Aleksander Madry.
The journey, not the destination: How data guides diffusion models. arXiv preprint
arXiv:2312.06205, 2023.

[47] Amin Ghiasi, Hamid Kazemi, Eitan Borgnia, Steven Reich, Manli Shu, Micah Goldblum,
Andrew Gordon Wilson, and Tom Goldstein. What do vision transformers learn? a visual
exploration. arXiv preprint arXiv:2212.06727, 2022.

[48] Amirata Ghorbani and James Y Zou. Neuron shapley: Discovering the responsible neurons.
Advances in neural information processing systems, 33:5922–5932, 2020.

[49] Gabriel Goh, Nick Cammarata, Chelsea Voss, Shan Carter, Michael Petrov, Ludwig Schubert,
Alec Radford, and Chris Olah. Multimodal neurons in artificial neural networks. Distill,
2021.

[50] Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing
model behavior with path patching. arXiv preprint arXiv:2304.05969, 2023.

[51] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities
in the machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

[52] Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does localization inform
editing? surprising differences in causality-based localization vs. knowledge editing in lan-
guage models. arXiv preprint arXiv:2301.04213, 2023.

[53] Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robustness to
common corruptions and surface variations. In International Conference on Learning Rep-
resentations (ICLR), 2019.

[54] Katherine L Hermann, Hossein Mobahi, Thomas Fel, and Michael C Mozer. On the founda-
tions of shortcut learning. arXiv preprint arXiv:2310.16228, 2023.

[55] Evan Hernandez, Sarah Schwettmann, David Bau, Teona Bagashvili, Antonio Torralba, and
Jacob Andreas. Natural language descriptions of deep visual features. In International Con-
ference on Learning Representations, 2021.

9

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

[56] John Hewitt and Percy Liang. Designing and interpreting probes with control tasks. arXiv
preprint arXiv:1909.03368, 2019.

[57] Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark for
interpretability methods in deep neural networks. arXiv preprint arXiv:1806.10758, 2018.

[58] Jing Huang, Atticus Geiger, Karel D’Oosterlinck, Zhengxuan Wu, and Christopher
Potts. Rigorously assessing natural language explanations of neurons. arXiv preprint
arXiv:2309.10312, 2023.

[59] Badr Youbi Idrissi, Martin Arjovsky, Mohammad Pezeshki, and David Lopez-Paz. Simple
data balancing achieves competitive worst-group-accuracy. In Conference on Causal Learn-
ing and Reasoning, pages 336–351. PMLR, 2022.

[60] Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig
Schmidt, Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv
preprint arXiv:2212.04089, 2022.

[61] Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry.
Datamodels: Predicting predictions from training data. In International Conference on Ma-
chine Learning (ICML), 2022.

[62] Mojan Javaheripi and Sébastien Bubeck. Phi-2: The surprising power of small language mod-
els, Dec 2023. URL https://www.microsoft.com/en-us/research/blog/
phi-2-the-surprising-power-of-small-language-models/.

[63] Alistair EW Johnson, Tom J Pollard, Nathaniel R Greenbaum, Matthew P Lungren, Chih-
ying Deng, Yifan Peng, Zhiyong Lu, Roger G Mark, Seth J Berkowitz, and Steven Horng.
Mimic-cxr-jpg, a large publicly available database of labeled chest radiographs. arXiv
preprint arXiv:1901.07042, 2019.

[64] Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is
sufficient for robustness to spurious correlations. arXiv preprint arXiv:2204.02937, 2022.

[65] Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh, Jonathan
Reynolds, Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan, et al. Cap-
tum: A unified and generic model interpretability library for pytorch. arXiv preprint
arXiv:2009.07896, 2020.

[66] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of
neural network representations revisited. In Proceedings of the 36th International Conference
on Machine Learning (ICML), 2019.

[67] Alex Krizhevsky. Learning multiple layers of features from tiny images. In Technical report,
2009.

[68] Yair Lakretz, German Kruszewski, Theo Desbordes, Dieuwke Hupkes, Stanislas Dehaene,
and Marco Baroni. The emergence of number and syntax units in lstm language models.
arXiv preprint arXiv:1903.07435, 2019.

10

https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

[69] Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Alek-
sander Madry. ffcv. https://github.com/libffcv/ffcv/, 2022.

[70] Klas Leino, Shayak Sen, Anupam Datta, Matt Fredrikson, and Linyi Li. Influence-directed
explanations for deep convolutional networks. In 2018 IEEE international test conference
(ITC), pages 1–8. IEEE, 2018.

[71] Maximilian Li, Xander Davies, and Max Nadeau. Circuit breaking: Removing model behav-
iors with targeted ablation. 2023.

[72] Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and
Yin Tat Lee. Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint
arXiv:2309.05463, 2023.

[73] Yuezun Li, Xin Yang, Pu Sun, Honggang Qi, and Siwei Lyu. Celeb-df: A large-scale chal-
lenging dataset for deepfake forensics. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 3207–3216, 2020.

[74] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In International Conference on Computer Vision (ICCV), 2015.

[75] Pratyush Maini, Michael C Mozer, Hanie Sedghi, Zachary C Lipton, J Zico Kolter, and
Chiyuan Zhang. Can neural network memorization be localized? In International Conference
on Machine Learning, 2023.

[76] Joanna Materzyńska, Antonio Torralba, and David Bau. Disentangling visual and written
concepts in clip. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 16410–16419, 2022.

[77] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT. Advances in Neural Information Processing Systems, 36, 2022.

[78] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning.
Fast model editing at scale. arXiv preprint arXiv:2110.11309, 2021.

[79] Jesse Mu and Jacob Andreas. Compositional explanations of neurons. Advances in Neural
Information Processing Systems, 33:17153–17163, 2020.

[80] Neel Nanda. Attribution patching: Activation patching at industrial scale. 2023. URL
https://www. neelnanda. io/mechanistic-interpretability/attribution-patching, 2023.

[81] Neel Nanda, Lawrence Chan, Tom Liberum, Jess Smith, and Jacob Steinhardt. Progress
measures for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217,
2023.

[82] Lauren Oakden-Rayner, Jared Dunnmon, Gustavo Carneiro, and Christopher Ré. Hidden
stratification causes clinically meaningful failures in machine learning for medical imaging.
In Proceedings of the ACM conference on health, inference, and learning, 2020.

[83] Tuomas Oikarinen and Tsui-Wei Weng. Clip-dissect: Automatic description of neuron rep-
resentations in deep vision networks. arXiv preprint arXiv:2204.10965, 2022.

11

https://github.com/libffcv/ffcv/

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

[84] Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Katherine Ye,
and Alexander Mordvintsev. The building blocks of interpretability. In Distill, 2018.

[85] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan
Carter. An overview of early vision in inceptionv1. Distill, 2020. doi: 10.23915/distill.
00024.002. https://distill.pub/2020/circuits/early-vision.

[86] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan
Carter. Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

[87] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning
and induction heads. arXiv preprint arXiv:2209.11895, 2022.

[88] Vedant Palit, Rohan Pandey, Aryaman Arora, and Paul Pu Liang. Towards vision-language
mechanistic interpretability: A causal tracing tool for blip. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 2856–2861, 2023.

[89] Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and Sanjeev Arora. Task-specific skill
localization in fine-tuned language models. arXiv preprint arXiv:2302.06600, 2023.

[90] Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry.
Trak: Attributing model behavior at scale. In Arxiv preprint arXiv:2303.14186, 2023.

[91] Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. Learning to generate reviews and dis-
covering sentiment. arXiv preprint arXiv:1704.01444, 2017.

[92] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. 2019.

[93] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable
visual models from natural language supervision. In arXiv preprint arXiv:2103.00020, 2021.

[94] Shauli Ravfogel, Michael Twiton, Yoav Goldberg, and Ryan D Cotterell. Linear adversarial
concept erasure. In International Conference on Machine Learning, pages 18400–18421.
PMLR, 2022.

[95] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explain-
ing the predictions of any classifier. In International Conference on Knowledge Discovery
and Data Mining (KDD), 2016.

[96] Elan Rosenfeld and Andrej Risteski. Outliers with opposing signals have an outsized effect
on neural network optimization. arXiv preprint arXiv:2311.04163, 2023.

[97] Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. In International Conference on Learning Representations, 2020.

12

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

[98] Shibani Santurkar, Dimitris Tsipras, Mahalaxmi Elango, David Bau, Antonio Torralba, and
Aleksander Madry. Editing a classifier by rewriting its prediction rules. In Preprint, 2021.

[99] Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli.
The pitfalls of simplicity bias in neural networks. Advances in Neural Information Processing
Systems, 33:9573–9585, 2020.

[100] Harshay Shah, Prateek Jain, and Praneeth Netrapalli. Do input gradients highlight discrimi-
native features? Advances in Neural Information Processing Systems, 34, 2021.

[101] Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng. The woman worked
as a babysitter: On biases in language generation. arXiv preprint arXiv:1909.01326, 2019.

[102] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

[103] Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. Understanding arith-
metic reasoning in language models using causal mediation analysis. arXiv preprint
arXiv:2305.15054, 2023.

[104] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks.
In International Conference on Machine Learning (ICML), 2017.

[105] Curt Tigges, Oskar John Hollinsworth, Atticus Geiger, and Neel Nanda. Linear representa-
tions of sentiment in large language models. arXiv preprint arXiv:2310.15154, 2023.

[106] Joshua Vendrow, Saachi Jain, Logan Engstrom, and Aleksander Madry. Dataset inter-
faces: Diagnosing model failures using controllable counterfactual generation. arXiv preprint
arXiv:2302.07865, 2023.

[107] Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer,
and Stuart Shieber. Investigating gender bias in language models using causal mediation
analysis. Advances in neural information processing systems, 33:12388–12401, 2020.

[108] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The
caltech-ucsd birds-200-2011 dataset. 2011.

[109] Haohan Wang, Songwei Ge, Eric P Xing, and Zachary C Lipton. Learning robust global
representations by penalizing local predictive power. Neural Information Processing Systems
(NeurIPS), 2019.

[110] Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in gpt-2 small, 2022.
URL https://arxiv.org/abs/2211.00593.

[111] Zhenyi Wang, Enneng Yang, Li Shen, and Heng Huang. A comprehensive survey of forget-
ting in deep learning beyond continual learning. arXiv preprint arXiv:2307.09218, 2023.

13

https://arxiv.org/abs/2211.00593

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

[112] Kaiyue Wen, Yuchen Li, Bingbin Liu, and Andrej Risteski. Transformers are uninter-
pretable with myopic methods: a case study with bounded dyck grammars. arXiv preprint
arXiv:2312.01429, 2023.

[113] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
In European conference on computer vision, pages 818–833. Springer, 2014.

[114] Fred Zhang and Neel Nanda. Towards best practices of activation patching in language
models: Metrics and methods. arXiv preprint arXiv:2309.16042, 2023.

[115] Xiaosen Zheng, Tianyu Pang, Chao Du, Jing Jiang, and Min Lin. Intriguing properties of
data attribution on diffusion models. arXiv preprint arXiv:2311.00500, 2023.

[116] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A
10 million image database for scene recognition. In IEEE transactions on pattern analysis
and machine intelligence, 2017.

[117] Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. Revisiting the importance of
individual units in cnns via ablation. arXiv preprint arXiv:1806.02891, 2018.

[118] Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Fe-
lix Yu, and Sanjiv Kumar. Modifying memories in transformer models. arXiv preprint
arXiv:2012.00363, 2020.

[119] Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander
Pan, Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engi-
neering: A top-down approach to ai transparency. arXiv preprint arXiv:2310.01405, 2023.

14

Appendices

15

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

A Related work 17

B Discussion 19

C Future work 21

D Additional COAR-EDIT experiments 22
D.1 Editing individual model predictions . 22
D.2 “Forgetting” a class . 23
D.3 Improving subpopulation robustness . 24
D.4 Improving robustness to typographic attacks . 25
D.5 Mitigating a backdoor attack . 26

E Evaluation setup 28
E.1 Pseudocode . 28
E.2 Datasets, models, components, and applying COAR. 28
E.3 Baselines . 30
E.4 Implementation details . 30

F Applying COAR to language models 32
F.1 Evaluating GPT-2 on the TinyStories dataset . 32
F.2 Evaluating Phi-2 on the BoolQ dataset . 32

G Additional evaluation of COAR 35
G.1 Evaluating COAR on additional datasets . 35
G.2 Evaluating COAR on additional model architectures 35
G.3 Evaluating COAR on additional tasks . 35
G.4 Comparing COAR attributions estimated with different ablation fractions 36
G.5 Comparing COAR attributions estimated with different sample sizes 36
G.6 Analyzing COAR attributions at the example level 36
G.7 Qualitatively analyzing COAR attributions . 36

H Additional evaluation of COAR-EDIT 47
H.1 Editing individual predictions . 47
H.2 Forgetting a class . 47
H.3 Improving subpopulation robustness. 48
H.4 Mitigating backdoor attacks. 48
H.5 Improving robustness to typographic attacks. 49

I Analyzing design choices in COAR 56
I.1 Effect of ablation fraction . 56
I.2 Effect of ablation method . 56
I.3 Effect of model output function . 57

16

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

Appendix A. Related work

Our work relates to several lines of work in machine learning interpretability, which we categorize
into works that localize model behavior, works that interpret specific model components, and works
that perform model editing.

Localizing model behavior. One line of work (within the field of mechanistic interpretability),
attempts to localize specific capabilities or behaviors of neural networks (especially language mod-
els) to specific “subnetworks” or “circuits” [86]. For example, prior work has used a variety of
methods to localize gender bias [107]; specifical factual associations [77]; and other behavior
[50, 71, 105, 110] within model parameters.

More recent work has tried to automate this localization process, using techniques based on fine-
tuning [89], activation patching [25, 50], or differentiable masking [8, 18, 21, 29]. These techniques
(or variants thereof) have been subsequently used to localize properties such as arithmetic reasoning
[103], syntactic agreement [36], visual question answering [88], and visual attributes in diffusion
models [3]. Other work has also developed methods [31, 48, 70, 80] to attribute model behavior to
specific components.

Recently, however, Zhang and Nanda [114] showed that the design choices underlying many
automated localization methods (e.g., the way they ablate components) can drastically change their
results. Furthermore, Hase et al. [52] show that localizing factual associations does not directly
inform how to erase or amplify these associations via model editing. In contrast, COAR can (a)
adapt to any reasonable choice of ablation method (??) and (b) yield actionable insights for model
editing (Section 5).

Editing model behavior. Another related line of work focuses on model editing, the goal of which
is to make small, targeted changes to model representations in order to induce or suppress a specific
behavior. Model editing methods include “hypernetworks” [28, 78], rank-one updates to model pa-
rameters [5, 77, 98], constrained fine-tuning [118], and weight interpolation [60, 119], among other
methods. Recent work has also studied erasing concepts and suppressing spurious correlations from
models using layer-wise linear probing [10, 94], CLIP-specific text-based methods [22, 38], and
fine-tuning variants [39, 64]. In this work, we treat model editing as an application, and show how
attributions can enable model edits that modify individual model predictions (§D.1,§D.2), improve
subpopulation-level robustness (§D.3) and suppress spurious concepts (§D.5, §D.4).

Interpreting specific model components. Instead of starting with a functionality and trying to
localize it to specific components, another line of work introduces methods for studying the func-
tionality of individual model components. Such methods include, feature visualization [47, 85, 113],
activation maps [4, 79], ablations [117], saliency maps [84], probing [27, 32], and natural language
descriptions [12, 55, 83]. Subsequent analyses use these methods to identify and ascribe meaning to
specific model components by labeling them as, e.g., “curve detectors” [17], “knowledge neurons”
[26], “multimodal neurons” [49], and “syntax units” [68] to name a few. Recently, however, the reli-
ability and robustness of these methods has been called into question [2, 14, 45, 56–58, 100]. Here,
our goal is not to interpret specific model components, but rather to study how different components
jointly influence model predictions through the lens of component modeling (Definition 1).

Understanding machine learning models by proxy. Finally, our work connects to a line of re-
search that aims to understand machine learning models by constructing interpretable proxies. For

17

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

example, certain feature attribution methods like LIME [95] approximate a given ML model with a
linear model in input space. Similarly, a line of work on datamodeling [61, 90] approximates a given
learning algorithm by a linear model in “dataset space.” More generally, one can view a component
attribution (or in fact, any component model) as a causal abstraction [41, 42] of a given machine
learning model—that is, a simple, high-level model that predicts how an intricate, low-level process
(in this case, the computation graph GM) behaves.

18

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

Appendix B. Discussion

In this section, we put component modeling in context with work in mechanistic interpretability and
model editing. We also discuss some key limitations of COAR.

How does component attribution differ from mechanistic interpretability? In one sense, com-
ponent attribution falls under the realm of mechanistic interpretability (e.g., Casper et al. [19], Meng
et al. [77], Vig et al. [107], Wang et al. [110]) since our goal is indeed to understand how models
internally process examples. However, our approach differs from a typical “mechanistic approach”
in that rather than attempting to find circuits for a specific capability or uncovering the function of
a specific component, component modeling takes a top-down, capability-agnostic perspective. That
is, our main goal is to find a proxy for model behavior on a specific example as a function of model
components. Analyzing this proxy then turns out to be a reliable way of editing models and uncov-
ering subpopulations, as shown in Section 5. The top-down nature of our approach makes COAR im-
mediately scalable to large models, and our focus on specific examples rather than human-prescribed
capabilities eliminates some subjectivity (and inevitable misspecification) from the method itself,
deferring it instead to a deliberate human decision. Furthermore, recent work [37, 112] demon-
strates that bottom-up mechanistic analyses that solely analyze specific model components or its
hidden representations in isolation can lead to misleading conclusions about model behavior.

Does localization help with model editing? The extent to which localizing specific model be-
havior to a subset of model components helps with model editing remains contested. On one hand,
Hase et al. [52] show that localizing factual associations in language models does not necessar-
ily help with editing these associations. Additional evaluation studies show that model edits can
fail to consistently modify model behavior as targeted [24] and degrade robustness to distribution
shifts [15]. On the other hand, recent work shows that localization methods can in fact recover
“ground truth” localization in controlled settings [21] and improve calibration of fine-tuned lan-
guage models [89]. Our findings in Section 5 substantiate the latter view, as COAR-EDIT directly
enable model editing in a variety of settings. Based on these findings, we hypothesize that the
effectiveness of localization methods for model editing (a) depends on the causal efficacy of the
localization method itself and (b) the intrinsic difficulty of different editing tasks.

Limitations. Our proposed method for estimating component attributions, COAR, is not without
its limitations. First, the major computation bottleneck in COAR is that constructing a compo-
nent dataset for a given example requires a moderately large number of forward passes through the
model. In Appendix G.5, we show that the sample size required to estimate component attributions
can be reduced by 2-5× without significantly impacting the quality of the resulting attributions.
Improving the sample efficiency of component attribution through better sampling or approxima-
tion techniques would further mitigate this bottleneck. Second, specifying the “right” computational
graph for a given task can be tricky. For example, a computation graph over neurons rather than over
attention heads would lead to finer-grained localization, and thus better model editing, but would
also make estimating component attributions more expensive. Similarly, COAR requires a choice of
ablation method (Equation 1). While we use zero ablations due to its simplicity (??), more sophis-
ticated ablations (e.g., Chan et al. [20]) may be more appropriate for different tasks and/or model
architectures [114]. In Appendix G.4, we show that COAR is not dependent on the zero-ablation
method and can be used with an alternative ablation method that simply scales down the activations
of ablated components by a constant factor. Finally, while we extensively test the effectiveness of

19

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

COAR in editing model behavior, we do so in a proof-of-concept manner. Developing finer-grained
editing methods that leverage component attributions as a building block is an interesting avenue
for future work.

20

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

Appendix C. Future work

Below, we highlight a few directions that, while outside the scope of this work, may be interesting
avenues for future work to explore.

Attributing generative models. In this work, we focus our study to image classifiers. However,
COAR is a general method in that given an appropriate model output function, it can estimate com-
ponent attributions for any given machine learning model. Future work might thus explore possible
model output functions (and their corresponding component attributions) for generative models. For
diffusion-based generative models, one might study the denoising error for a fixed timestep, as in
[46, 115]. For language models, a possible point of start (following Park et al. [90]) would be to use
the average correct-class margin (4) of a sequence of tokens as the model output function. In fact,
our preliminary experiments in Appendix F demonstrate that COAR yields predictive component
attributions for GPT-2 [92] and Phi-2 [62] without requiring any modifications to the algorithm.
In general, estimating and applying component attributions for generative models is a promising
avenue for future work.

Beyond linear attributions. Recall from Definition 2 that component attribution is a linear in-
stantiation of the component modeling task (Definition 1). Linearity makes component attributions
rather interpretable, and our results (Section 4) indicate that component attributions can still accu-
rately predict model behavior. Still, the fact that component attributions’ predictiveness decreases
on out-of-distribution component subsets (i.e., when αtest ̸= αtrain) suggests that linear models
might not be expressive enough to fully capture the map between model components and outputs.
An potential avenue for future work would thus be to explore other (non-linear) model classes that
map between ablated components and model output (e.g., decision trees or kernel methods). Note
that the generality of COAR allows one to learn component models for any model class of choice.

Studying neural network representations. Finally, another interesting direction for future work
would be to use component attribution (and component models, more generally) to study empiri-
cally documented phenomena in deep learning. There are a plethora of questions to ask here which,
although beyond the scope of this work, are natural extensions of the results here. For example,
extending our results from Appendix D.1, can we use component attribution to better isolate “con-
flicting features” [61, 96] for a given task, and to understand their role in the training process [96]?
Can we study redundancy in how concepts are represented by neural networks, and how this rep-
resentation evolves over the course of training? Similarly, can we develop improved methods for
localizing memorized inputs to specific model components [35, 75]? Given that component at-
tributions are causally meaningful, can we use them as a kernel with which to compare different
models [66] or learning algorithms [?]? Relatedly, are component models transferable across tasks
(allowing us to view them as sparse “subpopulation vectors” [60])?

21

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

0 1 2 3 4 5 6 7 8

Number of model components ablated

3

2

1

0

1

2

3

4

C
or

re
ct

-c
la

ss
 m

ar
gi

n
f M

()
(a) Editing a misclassified ImageNet example

Before: "Keyboard"
After: "Ballpoint Pen"

Train example z

Train set (avg) Val set (avg) Example z

80 81 82 83 84 85 86

Accuracy on train set

D
en

si
ty

(c) Effect of edits on overall performance

Model accuracy

Before edit: 86.09%

After edit: 85.93% (median)

70 71 72 73 74 75

Accuracy on val set

D
en

si
ty

Model accuracy

Before edit: 75.36%

After edit: 75.18% (median)

(b) Effect of edit on ImageNet val examples

0.0 0.0
Examples on which margin does not change

0.0

+3.59 +3.49
Examples on which margin increases

+2.70

-5.44 -5.32
Examples on which margin decreases

-5.09

Figure 2: Editing individual model predictions with COAR-EDIT. We edit a ResNet50 model
to correct a misclassified ImageNet example z shown on the left. Ablating a few compo-
nents via COAR-EDIT (see (??)) increases the correct-class margin (4) on example z (red)
without changing the average margin on the train set (light blue) or validation set (dark
blue). In the middle, we observe that the examples on which model outputs change the
least (top row) due to the edit are visually dissimilar to example z as well as examples on
which model outputs change most positively (middle row) and negatively (bottom row).
On the right, we find that individually performing model edits to correct every misclassi-
fied example in the validation set incurs a median accuracy drop of at most 0.2% on the
train set (top row) and validation set (bottom row).

Appendix D. Additional COAR-EDIT experiments

D.1. Editing individual model predictions

In this section, we test whether COAR-EDIT can modify individual predictions of an ImageNet
ResNet50 classifier (Setup B in Section 4) without impacting its overall performance. Specifically,
we study the case where the target distribution DT is a singleton example on which we want to
improve performance. An effective model edit (??) here would increase the model margin (4) on z
to be greater than zero without degrading overall performance.

Results. We apply COAR-EDIT to edit individual misclassified examples z, setting ST = {z} and
SR to be a small set of random samples from the ImageNet dataset. We present our findings in Fig-
ure 2. Figure 2a illustrates a single such edit, where we correct the model’s prediction on a specific
ImageNet example from “keyboard” to “ballpoint pen” by ablating k = 3 components (0.01% of all
components). Specifically, increasing the number of ablated components k consistently improves
the correct-class margin on target example z (red) without changing the average margin over the
training set (light blue) or validation set (dark blue). Figure 2b then visualizes (again, for the spe-
cific example being edited in Figure 2a) the examples on which model outputs changes most (and
least) drastically. Finally, Figure 2c shows that we can individually fix every misclassification in the
ImageNet validation set while incurring a median accuracy drop of 0.2% on the training set (top
row) and validation set (bottom row). We defer additional details and results to Appendix H.1.

22

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

D.2. “Forgetting” a class

We now consider “selective forgetting” problem [111], where the goal is to impair model per-
formance on (only) a specific set of examples. In this experiment, we edit the same ImageNet
ResNet-50 classifier (Setup B) as in Appendix D.1, with the goal of forgetting the entire “chain-link
fence” class. Like before, we use our editing approach COAR-EDIT (see (6) and (??)) to identify
components that, when ablated, decrease the model’s correct-class margin on examples from the
“chain-link fence” class, but not on reference examples from other classes.

Results. Figure 3 summarizes our findings. In Figure 3a, we show that ablating just eight (out
of 22, 720) model components degrades accuracy on the “chain fence” class from 66% to 20%
while preserving overall accuracy on the train and validation set. Then, in Figure 3b, a comparison
of class-wise accuracies before and after the edit shows that our approach specifically targets the
“chain fence” class without impacting performance on any other class. Finally, Figure 3c uses the
ImageNet-Sketch [109] (top) and ImageNet⋆ [106] (bottom) datasets to show that the our edit is
robust to distribution shifts in both the target and reference distribution.

Through additional experiments in Appendix H.2, we highlight that (a) our approach is sample-
efficient, not needing many samples from the target and reference distributions to find effective
edits; and (b) our findings are robust to the choice of class to forget.

0 1 2 3 4 5 6 7 8
Number of model components ablated

20

30

40

50

60

70

80

90

100

M
od

el
 a

cc
ur

ac
y

(%
)

(a) Editing to "forget" an ImageNet class

Accuracy over

Train set Test set Class "chain fence"

10 20 30 40 50 60 70 80 90 100
Class-level accuracy before edit (%)

10

20

30

40

50

60

70

80

90

100

C
la

ss
-le

ve
l a

cc
ur

ac
y

af
te

r e
di

t (
%

)

-46%

(b) Effect of edit on ImageNet classes

All classes

Class "chain fence" before edit

Class "chain fence" after edit

(c) Edit generalizes to OOD ImageNet data

Class "chain fence" All classes
0

20

40

60

A
cc

ur
ac

y
(%

)

54.9%

24.5%27.5% 24.5%

Dataset: ImageNet-Sketch

Before edit

After edit

Class "chain fence" All classes
0

20

40

60

80

A
cc

ur
ac

y
(%

)

70.3%
60.8%

42.9%

60.8%

Dataset: ImageNet*

Figure 3: “Forgetting” a class with COAR-EDIT. We edit an ImageNet-trained ResNet-50 (Setup
B from Section 4) to forget the “chain-link fence” class. On the left, we show how model
accuracy on the class of interest (red) degrades as a function of k (the number of com-
ponents removed), while model accuracy on the train (blue) and test (black) sets remains
constant. In the center panel, we show the per-class accuracy of the model before and
after an edit with k = 8 components—while accuracy on the chain-link fence class de-
grades significantly, accuracy on other classes stays roughly constant. Finally, on the right
we evaluate the effects of the edit on class-specific and overall accuracy for distribution-
shifted versions of ImageNet (namely ImageNet-Sketch [109] and ImageNet⋆ [106]). As
desired, our edit has a significant effect on the chain-link fence class, while leaving aver-
age model performance unchanged.

23

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

0 30 60 90 120 150 180 210

Number of model components ablated

60

65

70

75

80

85

90
Te

st
 a

cc
ur

ac
y

(%
)

64%

83%

(a) Waterbirds dataset

Averaged over examples Averaged over subpopulations On worst-performing subpopulation.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of model components ablated

45

55

65

75

85

95

Te
st

 a
cc

ur
ac

y
(%

)

47%

85%

(b) CelebA dataset

Figure 4: Improving subpopulation robustness with COAR-EDIT. We edit pre-trained ResNet-
50 models to improve their worst-subpopulation accuracy on Waterbirds [97] and CelebA
[74]. Before editing, Waterbirds and CelebA models attain 87% and 96% test accuracy
but only 64% and 47% accuracy on their worst-performing subpopulations, respectively.
On the left, applying COAR-EDIT by ablating 210 of 22, 720 components in the Water-
birds model increases its worst-subpopulation accuracy from 64% to 83% without degrad-
ing its accuracy on examples (light blue) and subpopulations (dark blue). On the right,
editing the CelebA model by ablating just 26 components improves worst-subpopulation
accuracy from 47% to 85%.

D.3. Improving subpopulation robustness

Machine learning models often latch onto spurious correlations in the training dataset [43, 54, 99],
resulting in subpar performance on subpopulations where these correlations do not hold [16, 82]. In
this section, we test whether our editing approach can boost performance on such underperforming
subpopulations without degrading overall performance.

In particular, we evaluate COAR-EDIT on two benchmarks —Waterbirds [97] and CelebA
[74]—where models fare poorly on subpopulations that are underrepresented in the training data.
On both datasets, our goal is to improve a given model’s worst-subpopulation accuracy—we defer
details to Appendix H.3.

Results. On both datasets, COAR successfully identifies component subsets that correspond to
effective model edits. On Waterbirds (Figure 4a), ablating 0.9% of all components improves worst-
subpopulation accuracy from 64% to 83% (red) without degrading its accuracy uniformly averaged
over examples and subpopulations. On CelebA, Figure 4b shows that zeroing out 26 of 22, 720
components improves worst-subpopulation accuracy from 47% to 85% and average-subpopulation
accuracy from 84% to 90% while only incurring a 5% drop in test set accuracy.

Before continuing, we make two observations. First, COAR-EDIT is sample-efficient—it does
not require subpopulation-level annotations for the training set; only 20 random examples from each
subpopulation suffice. Second, our results show that simply ablating a few components from models
trained via “standard” empirical risk minimization (ERM) can lead to worst-subpopulation accuracy
improvements comparable to gains from specialized methods (e.g., via robust optimization [97],
dataset selection [59])

24

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

(a) Effect of attacks on model predictions

 heater

Test data

 books hat

 taxi

+ synthetic typographic attacks

 twitter EU

 taxi

+ real typographic attacks

 twitter EU

(b) Improving robustness to synthetic attacks

0 50 100 150 200 250 300

Number of model components ablated

45

55

65

75

85

95

M
od

el
 a

cc
ur

ac
y

(%
)

(c) Robustness transfers to real attacks

0 50 100 150 200 250 300

Number of model components ablated

45

55

65

75

85

95

M
od

el
 a

cc
ur

ac
y

(%
)

Model accuracy on
Test data

+ all attacks (averaged)

+ "twitter" attack

+ "taxi" attack

+ "EU" attack

+ "iPad" attack

Figure 5: Improving robustness to typographic attacks with COAR-EDIT. We edit a zero-shot
CLIP ViT-B/16 classifier to improve its robustness to typographic attacks [49]. On the
left, we find that predictions on images of household objects (top row) can be manipu-
lated to “taxi”, “twitter”, or “EU” via synthetic (middle row) and real (last row) attacks.
In the center panel, we use COAR-EDIT to identify components that, when ablated, im-
prove average accuracy on examples with synthetic attacks (red) from 51% to 89% while
maintaining accuracy on examples without attacks (blue). On the right, we find that the
edit transfers robustness to real attacks too, improving accuracy from 54% to 86% on
average.

D.4. Improving robustness to typographic attacks

Zero-shot CLIP classifiers [93] are vulnerable to typographic attacks [49] that simply overlay text
on images to induce misclassifications. We evaluate whether COAR-EDIT can improve the zero-shot
robustness of a CLIP ViT-B/16 classifier using data [76] comprising 180 images with and without
multiple typographic attacks. Specifically, we use COAR-EDIT to identify component subset that,
when ablated, fix the misclassifications induced by synthetic attacks without impacting predictions
on images without attacks. We defer details to Appendix H.5.

Results. Figure 5 summarizes our findings. In Figure 5a, we show that the predictions of a zero-
shot CLIP ViT-B/16 classifier on images of household objects (top row) can be manipulated to
“taxi”, “twitter”, or “EU” via synthetic (middle row) or real (last row) typographic attacks. More
quantitatively, we find that the zero-shot accuracy on images with synthetic and real typographic
attacks drops from 95% to 51% and 54%, respectively. Figure 5b shows that ablating a subset
of 300 components (0.4%) identified via COAR-EDIT improves the accuracy on held-out images
with synthetic typographic attacks from 51% to 89% on average (red), without impacting accuracy
on images without attacks (dark blue). Furthermore, in Figure 5c, we find that our edit transfers
robustness to real typographic attacks as well, improving accuracy on held-out images from 54% to
86% on average. Similar to previous experiments, our approach is sample-efficient in that it only
requires 15 pairs of target and reference examples with and without synthetic attacks to identify the
edit described above.

Additional experiments. We also apply COAR-EDIT to two additional settings in Appendix D:
selectively “forgetting” a class (§D.2) and localizing backdoor attacks (§D.5).

25

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

To summarize, simply ablating targeted subsets of components identified via COAR-EDIT can
induce specific model behavior without requiring additional training. More broadly, our findings
highlight how accurate component attribution alone can directly inform model editing.

D.5. Mitigating a backdoor attack

We now use COAR to edit a model in order to reduce its sensitivity to backdoor attacks [11, 51].
In a backdoor attack, an adversary introduces an artificial correlation into the training dataset of
a machine learning model, causing the resulting model to rely on a spurious signal at test time.
(For example, Gu et al. [51] place a small square in the top corner of a random subset of training
examples and relabel them with the “horse” class—models trained on this dataset will label any
image containing a square as a horse.)

Experiment setup. In this experiment, our goal is to edit a model and remove its dependence on
a spurious backdoor feature. We consider a ResNet18 with a computation graph that comprises all
2, 344 convolution filters that is trained on a modified CIFAR-10 dataset. Specifically, the dataset
is “backdoored” in that an adversary has constructed a spurious correlation between a small blue-
squared pattern and the “airplane” class (Figure 6a). As shown in Figure 6a, the resulting model
latches on to the spurious pattern—simply adding the “airplane” trigger to CIFAR-10 test examples
drops model accuracy from 89% (middle row) to 37% (bottom row).

Results. To edit this model, we apply COAR-EDIT over paired examples—i.e., examples with
and without the backdoor trigger—to identify and ablate trigger-specific components. The trigger-
specific components correspond to components that, when ablated, correct the misclassifications
induced by the trigger without impacting predictions on test examples without the trigger. Figure 6b
shows that ablating 25 components (1%) is sufficient to boost model accuracy on test examples
with the trigger (red) from 37% to 84%—a 47% improvement. Furthermore, the model edit does
not degrade accuracy on test examples without the trigger (blue) by more than 1%. In Figure 6c,
we compare how model outputs on paired test examples with the trigger (y-axis) and without the
trigger (x-axis) correlate before (top) and after the edit (bottom). Both subplots show that the model
edit suppresses the effect of the trigger even at the example level, improving correlation between
model outputs on examples with and without the trigger from 0.41 to 0.92. We also note that
our approach is sample-efficient, requiring only 5 paired target and reference examples with and
without the trigger to effectively “remove” the trigger via model editing. We defer additional details
to Appendix H.4.

26

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

(a) Effect of backdoor trigger on model predictions
CIFAR-10 training data with airplane-specific trigger

 car horse airplane airplane

CIFAR-10 test data without trigger (89% accuracy)

 frog ship horse airplane
CIFAR-10 test data with trigger (37% accuracy)

 airplane airplane airplane airplane

(b) Editing to "remove" the trigger

0 5 10 15 20 25
Number of model components ablated

40

50

60

70

80

90
M

od
el

 a
cc

ur
ac

y
(%

)

88%

89%

84%

37%

Model accuracy on
Test data without trigger

Test data with trigger

(c) Effect of edit on model outputs

-4 4Examples w/o trigger

-6

6

Ex
am

pl
es

 w
/

tr
ig

ge
r

Model outputs before edit

= 0.41

-4 4Examples w/o trigger

-4

4

Ex
am

pl
es

 w
/

tr
ig

ge
r

Model outputs after edit

= 0.92

Figure 6: Mitigating backdoor attacks with COAR-EDIT. We edit a ResNet18 trained on a back-
doored CIFAR-10 dataset to remove its dependence on a planted blue-squared trigger that
is spuriously correlated with the “airplane” class. On the left, we show that the model is
sensitive to the trigger—adding the blue trigger to CIFAR-10 test examples drops model
accuracy from 89% (middle row) to 37% (bottom row). In the center panel, we show that
ablating 25 components (1%) is sufficient to boost model accuracy on test examples with
the trigger (red) from 37% to 84% without impacting accuracy on test examples without
the trigger (blue). On the right, we show that the model edit suppresses the effect of the
trigger even at the example level—the correlation between model outputs on paired test
examples with and without the trigger improves from 0.41 to 0.92.

27

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

Appendix E. Evaluation setup

In this section, we outline the experiment setup—datasets, models, baselines, implementation details—
used in Section 4 to evaluate whether COAR attributions can accurately estimate ground-truth com-
ponent counterfactuals.

E.1. Pseudocode

Figure 7: Pseudocode for estimating component attributions with COAR.

E.2. Datasets, models, components, and applying COAR.

We now outline the datasets and models used to evaluate COAR (§4) and COAR-EDIT (§5).

CIFAR-10. We use the standard CIFAR-10 [67] image classification dataset to evaluate COAR

attributions (Section 4, Appendix G.2) and for an editing task (Appendix D.5). We train ResNet,
ViT, and MLP models that attain test accuracies of 91%, 83% and 56% respectively. We specify
a computation graph over 2, 344 components for the ResNet-18 model, 31, 728 components for
the ViT model, and 3, 072 components for the MLP model. Each component in the ResNet-18
model corresponds to a convolution filter. Similarly, each component in the ViT and MLP models
corresponds to a neuron.

ImageNet. We use the standard ImageNet [30] image classification dataset to evaluate COAR

attributions in Section 4 and for editing tasks in Appendix D.2. We use ImageNet-Sketch [109]
and five random shifts from ImageNet⋆ [106]—“in the water”, “at dusk simple”, “orange”, “pencil
sketch”, “green”— to evaluate the out-of-distribution performance of edited ImageNet models in
Appendix D.2. We use the pre-trained ResNet50 and ViT-B/16 models1 that attain test accuracies
of 75.4% and 80.7% respectively. For the ResNet-50 model, we specify a computation graph over
22, 720 components, each corresponding to a convolution filter. Similarly, for the ViT-B/16 model,
we specify a computation graph over 82, 944 components, each corresponding to a neuron.

Waterbirds. The Waterbirds dataset [97] comprises images of birds taken from the CUB dataset
[108] and pasted on backgrounds from the Places dataset [116]. The task here is to classify “water-
birds” and “landbirds” in the presence of spurious correlated “land” and “water” backgrounds in the

1. Model and pre-trained weights taken from torchvision: https://pytorch.org/vision/stable/models.
html

28

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

training dataset. Sagawa et al. [97] introduce Waterbirds as a benchmark to improve model perfor-
mance under subpopulation shifts induced by spurious correlations. We use this dataset to evaluate
whether COAR-EDIT can improve subpopulation robustness via model editing. In this experiment,
we fine-tune an ImageNet ResNet50 model and use a computation graph over 22, 720 components,
each corresponding to a convolution filter.

CelebA. The CelebA dataset [73] comprises images of celebrities with binary attributes such as
“smiling”, “wearing hat”, “wearing lipstick”, etc. Similar to previous work on subpopulation ro-
bustness (e.g., [97]), we repurpose CelebA as a binary classification task where the goal is to predict
whether a person in a given image has blond hair. The attributes “hair color” and “gender” are spu-
riously correlated in the training dataset, resulting in models that latch on to a “gender → blond
hair” shortcut and underperform on the “blond males” subpopulation. Similar to the Waterbirds
setting, we fine-tune an ImageNet ResNet50 model and specify a computation graph over 22, 720
components, each corresponding to a convolution filter.

Typographic attacks dataset. We use a dataset of typographic attacks [76] for an editing task
in Appendix D.4. This dataset comprises 180 images of household objects with and without eight
typographic attacks such as “taxi”, “twitter”, “EU”, and “iPad”. We visualize some examples from
this dataset in Figure 5. Our experiment in Appendix D.4 uses this dataset along with a zero-shot
CLIP ViT-B/16 classifier [93]. For this model, we specify a computation graph over all 82, 944
components, corresponding to the set of all weight vectors (individual rows in weight matrices) in
all self-attention and MLP modules. See Appendix H.5 for more details.

TinyStories. We use the TinyStories dataset [33] to evaluate COAR attributions over the GPT-2
language model (Appendix F). This dataset contains short stories synthetically generated by GPT-
3.5 and GPT-4. To compute component attributions for GPT-2, we specify a computation graph
over 64, 512 components, which correspond to the set of all weight vectors, i.e., in every self-
attention module and feed-forward module of the model. See Appendix F.1 for experiment details
and findings.

BoolQ. We use the BoolQ dataset [23] to evaluate COAR attributions for the Phi-2 model [72].
Each example in this dataset comprises a passage of text, a question, and a binary answer. We eval-
uate the zero-shot performance of Phi-2 using the prompting and evaluation procedure from Gao
et al. [40]2. Given the size of the Phi-2 model, we specify a computation graph over 55, 552 compo-
nents, each corresponding to a contiguous block of 10 weight vectors in every self-attention module
and feed-forward module of the model. See Appendix F.2 for experiment details and findings.

Applying COAR. We use COAR to obtain component attributions (one for each test example) in
each setup. Specifically, for a given model, we first construct a component dataset D(z) for each
example z (as in Step 1 of Section 3) by randomly ablating αtrain fraction of all components and
evaluating the resulting margin (4) on z, where αtrain = {10%, 5%, 5%} for setup {A,B,C} above.
We repeat this m times, yielding a component dataset D(z) of size m for each example z—we use
m = {50000, 100000, 200000} for setup {A,B,C} above. We then run linear regressions on these
datasets (as in Step 2 of Section 3) to yield the component attributions. We defer details to Ap-
pendix E.4 and study the effect of the dataset size m and ablation fraction αtrain on the attributions
in Appendices G.4 and G.5.

2. https://github.com/EleutherAI/lm-evaluation-harness/

29

https://github.com/EleutherAI/lm-evaluation-harness/

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

E.3. Baselines

In Section 4, we compare COAR against four baseline methods for estimating component attribu-
tions: Leave-One-Out (LOO), Gradient-times-parameters (GP), Neuron Conductance (NC), and In-
ternal Influence (II). Each baseline computes an attribution vector w(z) ∈ R|C| for a given example
z by assigning an “importance” score w

(z)
j to each component cj ∈ C. Then, as per Equation 3, we

estimate a component counterfactual fM (z, C ′) as the sum of importance scores of components in
C \ C ′, i.e., scores of components that are not ablated. We describe each baseline in more detail
below:
• Leave-One-Out (LOO): This method ablates each component cj ∈ C and sets the coefficient
θ(z)j to the change in model output fM (z) before and after ablation:

w(z)
j = fM (z, {cj})− fM (z, ∅)

• Gradient-times-Parameters (GP): This method approximates the leave-one-out estimate de-
scribed above. Specifically, it estimates the leave-one-out effect of each component cj ∈ C
using a first-order Taylor approximation of fM (z, {cj}) around fM (z, ∅):

w
(z)
j = ∇cjfM (z, ∅) · δcj

where δcj is the parameter-space change in cj induced by the ablation method of choice.

• Neuron Conductance (NC) [31]: This method extends the Integrated Gradients method [104]—
an input-space feature attribution method—to compute importance scores for each component
cj ∈ C. Intuitively, NC modifies the computation in Integrated Gradients in order to quantify the
“flow” through each component cj ∈ C. See Equation 3 in [31] for a formal description.

• Internal Influence (II) [70]: Similar to NC, this method also adapts Integrated Gradients [104] to
compute importance scores. At a high level, II directly applies Integrated Gradients to layerwise
activations by treating the output of each layer as an input to subsequent layers. See Definition 1
in [70] for a formal description.

We implement the first two baselines (LOO and GP) from scratch3 and use the captum library [65] 4

to implement NC and II. As per Definition 2, we estimate the component counterfactual fM (z, C ′)
using these baselines by setting the bias term b(z) to zero and taking the sum over attribution scores
of components that are not ablated.

E.4. Implementation details

Sample size for component attribution estimation. The computational cost of our approach
linearly scales with the sample size m used to estimate component attributions (see Figure 7). Each
sample in the component dataset D(z) corresponds to a single forward pass through the model M
in order to compute the counterfactual fM (z, C ′) (1), i.e., model output fM (z) after ablating a
subset of components C ′ ⊂ C. The setups {A,B,C} considered in Section 4 use sample size
m = {50000, 100000, 200000} respectively. In Appendix G.5, we show that the sample size m
used in Section 4 can be reduced by 2-5×, resulting in a direct speedup while only reducing the
predictive power of COAR attributions by a small amount.

3. Our code is available at https://github.com/MadryLab/modelcomponents
4. Github repository: https://github.com/pytorch/captum

30

https://github.com/MadryLab/modelcomponents
https://github.com/pytorch/captum

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

Data loading. We use the FFCV library5 [69] to train and evaluate models. FFCV removes the
data loading bottleneck for small models, gives a 3-4× improvement in throughput compared to
standard PyTorch data loading.

Speeding up regression. The second step of COAR—fitting component attributions to the com-
ponent dataset (??)—requires solving a linear regression problem (Equation 2) for each example
z. We parallelize this step by using the fast-l1 package6, a SAGA-based GPU solver for linear
regression.

Computing resources. We train our models and compute COAR attributions on a cluster of ma-
chines, each with 9 NVIDIA A100 or V100 GPUs and 96 CPU cores. We also use half-precision to
increase training speed.

5. Github repository: https://github.com/libffcv/ffcv
6. Github repository: https://github.com/MadryLab/fast_l1

31

https://github.com/libffcv/ffcv
https://github.com/MadryLab/fast_l1

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

Appendix F. Applying COAR to language models

In Section 4 and Appendix G, we showed that our proposed method COAR attributions accurately
estimate component counterfactuals (1) on large-scale vision tasks across several datasets and model
architectures. In this section, we apply COAR to language models. Specifically, we consider two
experiments: (a) GPT-2 [92] evaluated on the next-token prediction task and (b) Phi-2 [72] evaluated
on a zero-shot classification task. In both cases, we show that COAR attributions accurately predict
how model outputs change in response to component ablations.

F.1. Evaluating GPT-2 on the TinyStories dataset

Task and model output function. We apply COAR to the next-token prediction task. Follow-
ing Park et al. [90], we interpret this task as a sequence as a v-way classification problem, where v
is the vocabulary size, and set the model output function to be the average correct-class margin (4)
over all tokens in a given sequence.

Model and dataset. In this experiment, we consider the GPT-2 model7 [92], with a computation
graph over 64, 512 components. These components correspond to the set of weight vectors in every
self-attention module and feed-forward module in the model. We evaluate model performance on
the next-token prediction task using the TinyStories dataset8 [33], where each sequence corresponds
to a synthetically generated short story.

Computing COAR attributions. We apply COAR (without any modifications) to compute com-
ponent attributions for a random subset of 1000 examples in the TinyStories validation set using a
component dataset of 200, 000 component counterfactuals (??) and a ablation fraction of α = 2.5%.

Evaluating COAR attributions. Similar to the results in Section 4, COAR attributions are predic-
tive in the language modeling setting as well. Specifically, these attributions accurately predict the
effect of ablating components on the average correct-class margin of GPT-2 on examples from the
TinyStories validation set. In Figure 8a, we pick a random example z from the TinyStories valida-
tion set and compute the correlation between ground-truth component counterfactuals fM (z, ·) and
the corresponding estimate (3) using its COAR attributions θ(z), as defined in Equation 5. In Fig-
ure 8b, we plot a histogram over example-level correlations of 1000 examples and find that COAR

attributions attain an average correlation of {0.83, 0.85, 0.89} with ground-truth component coun-
terfactuals sampled using ablation fraction α = {5%, 2.5%, 1%} respectively.

F.2. Evaluating Phi-2 on the BoolQ dataset

Task and model output function. We now turn to a reading comprehension task, where the goal
is to answer a question given a passage of text. We evaluate this classification task in a zero-shot
manner: the language model is prompted with a passage of text and a question, and the goal is to
output the correct answer from {yes, no}. Like in vision tasks (Section 4), we use the correct-class
margin (4) as the model output function for this zero-shot binary classification task.

7. https://huggingface.co/gpt2
8. https://huggingface.co/datasets/roneneldan/TinyStories

32

https://huggingface.co/gpt2
https://huggingface.co/datasets/roneneldan/TinyStories

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

Model and dataset. We consider the Phi-2 model9 [72] and specify a computation graph over
55, 552 components. Here, each component corresponds to a contiguous block of 10 weight vectors
in the model. We evaluate this model on the BoolQ dataset10 [23], where each example consists of
a passage of text, a question, and a binary {yes, no} answer. Using the prompting and evaluation
procedure from the Gao et al. [40]11, Phi-2 attains an 83.6% accuracy on this task.

Computing COAR attributions. Like in Appendix F.1, we apply compute COAR attributions
for a random subset of 500 examples in the BoolQ validation set using a component dataset of
m = 100, 000 component counterfactuals (??) and a ablation fraction of α = 0.025.

Evaluating COAR. We find that COAR attributions are predictive of unseen component coun-
terfactuals on this task as well. Figure 9a plots the correlation between ground-truth component
counterfactuals fM (z, ·) and the corresponding COAR estimate (3) of a random BoolQ example z.
The histograms in Figure 9b show that COAR attributions attain correlation {0.58, 0.66, 0.66} with
component counterfactuals sampled using ablation fraction α = {5%, 2.5%, 1%} respectively.

9. https://huggingface.co/microsoft/phi-2
10. https://huggingface.co/datasets/google/boolq
11. https://github.com/EleutherAI/lm-evaluation-harness

33

https://huggingface.co/microsoft/phi-2
https://huggingface.co/datasets/google/boolq
https://github.com/EleutherAI/lm-evaluation-harness

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

6 5 4 3 2 1 0 1
Ground-truth model output (avg margin over tokens)

6

4

2

0

Es
tim

at
ed

 m
od

el
 o

ut
pu

t v
ia

 C
oa

r

Once upon a time, there was a 3 year old boy named...

Correlation: 0.85

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Model output correlation

0

20

40

60

80

100

120

Co
un

t

Average correlation
Subsampling fraction and avg correlation

0.050 (0.83)
0.025 (0.85)
0.010 (0.89)

Attributing GPT-2 on TinyStories | Next-token prediction task

Figure 8: Evaluating COAR on GPT-2. We apply COAR to the GPT-2 model [92] on the TinyS-
tories dataset [33]. The resulting component attributions are predictive of component
counterfactuals. The left plot shows that component attributions can estimate the effect
of ablating components on the average correct-class margin (over tokens in a sequence)
of GPT-2 on a random TinyStories example with high correlation. The histograms in the
right plot show that COAR attributions attain high average correlation for multiple values
of ablation fraction α.

2 1 0 1 2 3
Ground-truth model output (correct-class margin)

2

1

0

1

2

3

Es
tim

at
ed

 m
od

el
 o

ut
pu

t v
ia

 C
oa

r

will there be a season 5 of steven universe?

Correlation: 0.67

0.45 0.50 0.55 0.60 0.65 0.70 0.75
Model output correlation

0

10

20

30

40

50

60

70

Co
un

t

Average correlation
Subsampling fraction and avg correlation

0.050 (0.58)
0.025 (0.66)
0.010 (0.66)

Attributing Phi-2 on BoolQ | Zero-shot classification

Figure 9: Evaluating COAR on Phi-2. We apply COAR to the Phi-2 model [62] on the BoolQ
dataset [23]. The resulting component attributions are predictive of component coun-
terfactuals. The left plot shows that component attributions can estimate the effect of
ablating components on the average correct-class margin of Phi-2 on a random BoolQ
example with high correlation. The histograms in the right plot show that COAR attribu-
tions attain high average correlation for multiple values of ablation fraction α.

34

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

Appendix G. Additional evaluation of COAR

In this section, we first show that COAR learns accurate component attributions on additional
datasets, model architectures, and tasks (Appendices G.1 to G.3). This supplements our findings
in Section 4, where we showed that COAR learns component attributions that accurately predict
component counterfactuals (1) on three image classification setups: CIFAR-10 ResNet-18, Ima-
geNet ResNet-50, and ImageNet ViT-B/16. Then, we show that COAR attributions retain its predic-
tive power when estimated with fewer samples (Appendix G.5) or with different ablation fractions
(Appendix G.4). Finally, we supplement our example-level evaluation of COAR attributions in Sec-
tion 4 with additional example-level comparisons of ground-truth component counterfactuals and
attribution-based estimates (Appendix G.6).

G.1. Evaluating COAR on additional datasets

Our experiments in Section 4 evaluated the predictiveness of COAR attributions corresponding to
in-distribution test examples from the CIFAR-10 and ImageNet datasets. Now, we show that COAR

attributions remain predictive on training examples as well as out-of-distribution examples. Specif-
ically, we apply COAR to compute attributions of ResNet-18 predictions on the CIFAR-10 training
set and on six corrupted versions of the CIFAR-10 test set [53]. as shown in Figure 10, COAR

attributions exhibit high correlation on average (between 0.6 and 0.8) depending on the ablation
fraction α used to ablate random α-fraction sized components subsets. Note that the correlation is
maximum when α = 0.05 because the component attributins are estimated with the same ablation
fraction, i.e., αtrain = 0.05.

G.2. Evaluating COAR on additional model architectures

Recall that COAR is model-agnostic in that it is not tied to any specific model architecture. In Sec-
tion 4, we applied COAR to ResNets trained on CIFAR-10 and ImageNet and a ViT-B/16 model
trained on ImageNet. In this section, we apply COAR to two additional model architectures: a ViT
model trained on CIFAR-10 (83% accuracy) and a one-layer fully-connected network trained on
CIFAR-10 (56% accuracy). Figure 11 shows that COAR attributions on both architectures yield
accurate estimates of how model outputs change in response to ablating random α-fraction sized
components subsets, with correlation 0.65 and 0.85 for the ViT and MLP models when α = αtrain
respectively.

G.3. Evaluating COAR on additional tasks

We now evaluate COAR attributions on four additional tasks:
• First, we apply COAR to pre-trained ImageNet ResNet50 model fine-tuned on two datasets—

Waterbirds and CelebA—that we use in Appendix D.3—see first row of Figure 12. We find that
COAR attributions are predictive on both datasets, attaining higher correlation with ground-truth
component counterfactuals when α is closer to αtrain = 0.05.

• Second, we apply COAR to a pre-trained ImageNet ResNet50 model fine-tuned on MIMIC-
CXR [63], a dataset of labeled chest radiographs. In this case, we set the model output function to
be the logit of the “Cardiomegaly” class instead of correct-class margin that we use in Section 4.
Figure 12 shows that COAR attributions attain a correlation of 0.7 and 0.6 with ground-truth logits
when α = αtrain = 0.05 and α = 0.10 respectively.

35

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

• The fourth plot in Figure 12 corresponds to the CLIP setting considered in Section 5. In this
setting, we take the zero-shot CLIP ViT-B/16 classifier and evaluate it on a dataset of images
with and without typographic attacks [76]. As shown in the plot, the correlation between COAR

attributions and ground-truth margins is close to 0.7 when α = αtrain = 0.03, i.e., ablating 3% of
the components in the CLIP model.

G.4. Comparing COAR attributions estimated with different ablation fractions

We now analyze how changing the ablation fraction αtrain used to fit COAR attributions affects their
predictiveness over different ablation fractions at test time. Specifically, we consider the ImageNet
ResNet-50 setting from Section 4 and compute two sets of COAR attributions, corresponding to two
values of αtrain: 0.05 and 0.10. Then, for each of these two sets of attributions, we evaluate its
correlation with ground-truth component counterfactuals over a range of ablation fractions α. As
shown in Figure 13, the correlation “profile” over α depends on the value of αtrain used to fit the
attributions. When α is small, the correlation is higher for attributions estimated with αtrain = 0.05.
Analogously, when α is large, the correlation is higher for attributions estimated with αtrain = 0.10.
This is because the component attributions fare better as counterfactual predictors on component
counterfactuals that are “similar” to the ones used to fit them—i.e., when αtest ≈ αtrain.

G.5. Comparing COAR attributions estimated with different sample sizes

In Section 4, we computed COAR attributions using sample sizes m = 50000 for the ResNet-18
model trained on CIFAR-10 and m = 100000 for the ResNet-50 model trained on ImageNet. Recall
that the sample size m here corresponds to the number of component counterfactuals used to fit the
component attributions. In this section, we vary the sample size m and show that COAR attributions
remain predictive even when trained on k× fewer examples, where k ∈ {2, 5, 10}. Specifically, the
left column of Figure 14 shows that COAR attributions estimated on CIFAR-10 and ImageNet data
with sample size m and m/k have high cosine similarity on average, with the similarity increasing
as k decreases. The right column of Figure 14 shows that decreasing the sample size m by a factor of
k ∈ {2, 5, 10} does not significantly impact the correlation between COAR attributions and ground-
truth component counterfactuals. For example, reducing the sample size by 5× only reduces the
correlation from 0.7 to 0.65 in the CIFAR-10 ResNet-18 setting. Additionally, we observe that
COAR attributions fare better than attributions estimated with the best-performing baseline (LOO)
even when trained on 10× fewer examples on CIFAR-10 and 5× fewer examples on ImageNet.

G.6. Analyzing COAR attributions at the example level

To supplement our evaluation in Section 4, we provide additional example-level scatterplot compar-
isons between ground-truth component counterfactuals and the corresponding estimates obtained
using component attributions estimated with COAR and all baselines from Section 4. We plot these
comparisons on CIFAR-10 examples in Figure 15 and on ImageNet examples in Figure 16. Our
findings further substantiate that COAR attributions exhibit higher correlation with ground-truth
component counterfactuals than all four baseliens on both CIFAR-10 and ImageNet.

G.7. Qualitatively analyzing COAR attributions

We qualitatively analyze COAR attributions using two visualization techniques:

36

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

Visualizing component-specific attributions across examples. Given examples {z1, . . . , zn}
with corresponding component attributions {θ(z1), . . . , θ(zn)}, we analyze how the attribution es-
timates of individual components vary across the set of examples. Specifically, for a component
ci ∈ C, we visualize the examples with the most positive attribution values θ

(z)
i for component

ci. In this experiment, we visualize a random subset of components from the ImageNet ResNet-50
model (setup B in Section 4). As shown in Figure 17, the examples with the most positive attribu-
tions for a given component exhibit high visual similarity at different levels of granularity:
• The first, third and fifth row in Figure 17 show that the examples with the most positive attri-

butions for layer4.0.conv3[477] and layer4.2.conv3[53] contain purple flowers,
watch faces, and glass-shaped objects respectively.

• However, consistent with recent work on superposition in deep networks [34], we observe that
some components such as layer4.2.conv2[336] in the second row as well as layer3.1.conv3[655]
in the last row can surface dissimilar subsets of examples and do not readily map to a single se-
mantic concept.

Visualizing nearest neighbors in attribution space. We also use component attributions as fea-
ture embeddings in order to visualize the nearest neighbors of a given example in “component at-
tribution” space. Intuitively, this technique allows us to identify examples on which model outputs
change similarly in response to component ablations. In this experiment, we visualize a random
subset of examples from the CelebA dataset along with their 5 nearest neighbors using COAR at-
tributions of a fine-tuned ImageNet ResNet-50 model. Figure 18 shows that the nearest neighbors
of a given example in attribution space high visual similarity, i.e., similar facial attributes such as
background (first row), hair color (second and fourth row), accessories (third row), or even the same
person in different poses (last row).

37

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

0.2 0.1 0.05* 0.03 0.01
0.0

0.2

0.4

0.6

0.8

Av
g.

 M
od

el
 O

ut
pu

t C
or

re
la

tio
n

Dataset = Train

0.2 0.1 0.05* 0.03 0.01
0.0

0.2

0.4

0.6

0.8

Dataset = Test

0.2 0.1 0.05* 0.03 0.01
0.0

0.2

0.4

0.6

0.8

Dataset = Brightness corruption

0.2 0.1 0.05* 0.03 0.01
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

Av
g.

 M
od

el
 O

ut
pu

t C
or

re
la

tio
n

Dataset = Gaussian Blur corruption

0.2 0.1 0.05* 0.03 0.01
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

Dataset = Gaussian Noise corruption

0.2 0.1 0.05* 0.03 0.01
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

Dataset = Snow corruption

Figure 10: Do COAR attributions generalize to out-of-distribution examples? COAR attribu-
tions remain predictive on the CIFAR-10 training set and on six corrupted versions of
the CIFAR-10 test set [53] over a range of ablation fractions α. See Appendix G.1 for
more details.

38

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

0.05 0.1* 0.15 0.2
Subsampling fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
g.

 M
od

el
 O

ut
pu

t C
or

re
la

tio
n

Evaluating Coar on a CIFAR-10 ViT

0.1 0.25 0.5* 0.8
Subsampling fraction

0.0

0.2

0.4

0.6

0.8
Av

g.
 M

od
el

 O
ut

pu
t C

or
re

la
tio

n

Evaluating Coar on a CIFAR-10 MLP

Figure 11: Do COAR attributions generalize to other model architectures? COAR attributions
yield accurate estimates of component counterfactuals on two additional model architec-
tures: a ViT-based model (left) and a one-layer fully-connected network (right) trained
on CIFAR-10. See Appendix G.2 for more details.

39

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

0.01 0.03 0.05* 0.1 0.15
Subsampling fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
od

el
 o

ut
pu

t c
or

re
la

tio
n

ImageNet ResNet50 fine-tuned on Waterbirds

0.03 0.05* 0.1 0.15
Subsampling fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
od

el
 o

ut
pu

t c
or

re
la

tio
n

ImageNet ResNet50 fine-tuned on CelebA

0.03 0.05* 0.1 0.15
Subsampling fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
od

el
 o

ut
pu

t c
or

re
la

tio
n

ImageNet ResNet50 fine-tuned on MIMIC-CXR
 ("Cardiomegaly" logit as model output)

0.01 0.03 0.05* 0.1
Subsampling fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
od

el
 o

ut
pu

t c
or

re
la

tio
n

Zero-shot CLIP ViT-B/16 classifier evaluated
 on images with typographic attacks

Figure 12: Evaluating COAR attributions on additional tasks. We find that component attribu-
tions estimated using COAR are predictive on four additional tasks: fine-tuning Ima-
geNet ResNet50 on Waterbirds, CelebA and MIMIC-CXR, and a zero-shot CLIP ViT-
B/16 classification task on a dataset containing typographic attacks (Appendix D.4).
Note that the MIMIC-CXR setting uses the logit of the “Cardiomegaly” class as the
model output function. See Appendix G.3 for additional information about these tasks.

40

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

0.3 0.2 0.1 0.05 0.03 0.01
Subsampling fraction used at evaluation time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

m
od

el
 o

ut
pu

t c
or

re
la

tio
n

Effect of train-time subsampling fraction
 on model output correlation

Train-time subsampling fraction
= 0.10 = 0.05

Figure 13: Comparing COAR attributions estimated with different ablation fractions α. COAR

attributions estimated with different ablation fractions αtrain attain a different correla-
tion “profile” over α at test time. The correlation between ground-truth component
counterfactuals and attribution-based estimates is higher for attributions estimated with
αtrain = 0.05 when α is small, and higher for attributions estimated with αtrain = 0.10
when α is large. This empirically shows that COAR attributions are more predictive on
component counterfactuals that are “similar” to the ones used to fit them—i.e., when
αtest ≈ αtrain. See Appendix G.4 for more details.

41

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Cosine similarity with attributions trained with 50000 samples

0

10000

20000

30000

40000

50000

Co
un

t

Comparing CIFAR-10 attributions
 estimated with different sample sizes

Sample size m
5000
10000
15000
20000
25000
30000
35000
40000
45000
50000

5000 10000 25000 50000
Sample size used to compute attributions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

m
od

el
 o

ut
pu

t c
or

re
la

tio
n

Evaluating CIFAR-10 attributions estimated with
 different sample sizes (ablation fraction 0.1)

Best baseline (LOO): 0.52

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cosine similarity with attributions trained with 100000 samples

0

10000

20000

30000

40000

Co
un

t

Comparing ImageNet attributions
 estimated with different sample sizes

Sample size m
10000
20000
30000
40000
50000
60000
70000
80000
90000

10000 20000 50000 100000
Sample size used to compute attributions

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

m
od

el
 o

ut
pu

t c
or

re
la

tio
n

Evaluating ImageNet attributions estimated with
 different sample sizes (ablation fraction 0.05)

Best baseline (LOO): 0.34

Figure 14: Comparing COAR attributions estimated with different sample sizes. COAR attri-
butions for CIFAR-10 ResNet-18 and ImageNet ResNet-50 (Setup A and B respectively
in Section 4) estimated with smaller sample sizes m are still predictive of component
counterfactuals. On the left, we show that COAR attributions estimated with sample size
m and m/k have high cosine similarity on average, with the similarity increasing as
k decreases. On the right, we show that decreasing the sample size m by a factor of
k ∈ {2, 5, 10} does not significantly affect the correlation between COAR attributions
and ground-truth component counterfactuals. In particular, COAR outperforms the best-
performing baseline (LOO) even with 10× fewer samples on CIFAR-10 (top row) and
5× fewer samples on ImageNet (bottom row).

42

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e
Coar | #6820

Corr. 0.80

2 0 2
Ground-truth margin

2
1
0
1
2
3

Co
ar

 e
st

im
at

e

Leave-one-out | #6820
Corr. 0.56

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Grad-times-param | #6820
Corr. 0.35

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Neuron cond. | #6820
Corr. 0.29

0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Int. Infl. | #6820
Corr. 0.01

2.5 0.0 2.5
Ground-truth margin

3
2
1
0
1
2

Co
ar

 e
st

im
at

e

Coar | #8458
Corr. 0.81

2.5 0.0 2.5
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Leave-one-out | #8458
Corr. 0.69

2 0 2
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Grad-times-param | #8458
Corr. 0.33

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Neuron cond. | #8458
Corr. 0.05

2.5 0.0 2.5
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Int. Infl. | #8458
Corr. 0.13

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Coar | #4756
Corr. 0.78

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Leave-one-out | #4756
Corr. 0.56

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Grad-times-param | #4756
Corr. 0.28

2 0 2
Ground-truth margin

3

2

1

0

1

2

Co
ar

 e
st

im
at

e

Neuron cond. | #4756
Corr. -0.06

2 0 2
Ground-truth margin

2

1

0

1

2

3

Co
ar

 e
st

im
at

e

Int. Infl. | #4756
Corr. 0.15

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Coar | #4518
Corr. 0.82

2 0 2
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Leave-one-out | #4518
Corr. 0.65

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Grad-times-param | #4518
Corr. 0.25

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Neuron cond. | #4518
Corr. 0.21

2.5 0.0 2.5
Ground-truth margin

3

2

1

0

1

2

Co
ar

 e
st

im
at

e

Int. Infl. | #4518
Corr. 0.09

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Coar | #7168
Corr. 0.78

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Leave-one-out | #7168
Corr. 0.71

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Grad-times-param | #7168
Corr. 0.40

2 0
Ground-truth margin

3
2
1
0
1
2

Co
ar

 e
st

im
at

e

Neuron cond. | #7168
Corr. 0.03

2 0 2
Ground-truth margin

2

1

0

1

2

3

Co
ar

 e
st

im
at

e

Int. Infl. | #7168
Corr. -0.00

Example-level evaluation of component attributions | CIFAR-10 ResNet-18

Figure 15: Additional example-level evaluation of component attributions on CIFAR-10. Each
row corresponds to a different example z randomly picked from the CIFAR-10 test set
and each column corresponds to a different attribution method. The left-most subfigure
in each row shows that COAR attributions and the corresponding ground-truth compo-
nent counterfactuals exhibit high correlation on example z. In comparison, the other
subfigures in each row, one for baseline method, consistently exhibit lower correlation.
See Appendix G.5 for more details.

43

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e
Coar | #4838

Corr. 0.70

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Leave-one-out | #4838
Corr. 0.47

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Grad-times-param | #4838
Corr. 0.41

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Neuron cond. | #4838
Corr. 0.02

0 5
Ground-truth margin

4

2

0

2

Co
ar

 e
st

im
at

e

Int. Infl. | #4838
Corr. -0.00

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Coar | #9960
Corr. 0.73

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Leave-one-out | #9960
Corr. 0.59

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Grad-times-param | #9960
Corr. 0.34

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Neuron cond. | #9960
Corr. 0.08

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Int. Infl. | #9960
Corr. -0.01

5 0
Ground-truth margin

4

2

0

2

Co
ar

 e
st

im
at

e

Coar | #8630
Corr. 0.67

2 0 2
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Leave-one-out | #8630
Corr. 0.39

2.5 0.0
Ground-truth margin

2
1
0
1
2
3

Co
ar

 e
st

im
at

e

Grad-times-param | #8630
Corr. 0.20

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Neuron cond. | #8630
Corr. -0.06

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Int. Infl. | #8630
Corr. -0.02

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Coar | #9788
Corr. 0.77

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Leave-one-out | #9788
Corr. 0.61

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Grad-times-param | #9788
Corr. 0.50

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Neuron cond. | #9788
Corr. 0.01

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Int. Infl. | #9788
Corr. 0.04

2.5 0.0 2.5
Ground-truth margin

4

2

0

2

Co
ar

 e
st

im
at

e

Coar | #4871
Corr. 0.66

2 0 2
Ground-truth margin

2
1
0
1
2
3

Co
ar

 e
st

im
at

e

Leave-one-out | #4871
Corr. 0.28

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Grad-times-param | #4871
Corr. 0.22

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Neuron cond. | #4871
Corr. 0.01

5 0
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Int. Infl. | #4871
Corr. 0.03

Example-level evaluation of component attributions | ImageNet ResNet-50

Figure 16: Additional example-level evaluation of component attributions on ImageNet. Sim-
ilar to the results in Figure 15, each row corresponds to a different example z randomly
picked from the ImageNet test set. The left-most subfigure in each row shows that COAR

attributions and the corresponding ground-truth component counterfactuals exhibit high
correlation on example z. In comparison, the other subfigures in each row, correspond-
ing to a baseline method, consistently exhibit worse correlation. See Appendix G.5 for
more details.

44

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

la
ye

r4
.0
.c
on

v3
[4
77

] 0.019 0.018 0.018 0.018 0.017 0.017 0.017

la
ye

r4
.2
.c
on

v2
[3
36

] 0.025 0.023 0.023 0.022 0.021 0.021 0.017

la
ye

r4
.2
.c
on

v3
[5
3] 0.025 0.023 0.022 0.021 0.021 0.021 0.021

la
ye

r3
.5
.c
on

v2
[4
4] 0.042 0.04 0.033 0.029 0.026 0.024 0.023

la
ye

r4
.0
.c
on

v3
[1
16

5] 0.038 0.032 0.03 0.027 0.025 0.025 0.023

la
ye

r3
.1
.c
on

v3
[6
55

] 0.041 0.034 0.028 0.028 0.027 0.027 0.027

Figure 17: Visualizing component-specific attributions across examples. We sample a random
set of components from the ImageNet ResNet-50 model (setup B in Section 4) and
visualize the examples with the most positive attributions for each component. In
general, the examples with the most positive attributions for a given component ex-
hibit visual similarity at different levels of granularity. For example, the first, third
and fifth row in Figure 17 show that the examples with the most positive attributions
for layer4.0.conv3[477] and layer4.2.conv3[53] contain purple flowers,
watch faces, and glass-shaped objects respectively. However, consistent with recent
work on superposition in deep networks [34], we observe that some components such as
layer4.2.conv2[336] (second row) and layer3.1.conv3[655] (last row)
can surface dissimilar subsets of examples or do not readily map to a single semantic
concept.

45

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

Query Neighbor #1 Neighbor #2 Neighbor #3 Neighbor #4 Neighbor #5

Figure 18: Visualizing nearest neighbors in COAR attribution space. We also use component
attributions as feature embeddings in order to visualize the five nearest neighbors of
examples from the CelebA dataset in “component attribution” space. Intuitively, this
technique allows us to identify examples on which model outputs change similarly in
response to component ablations. In general, we observe that the nearest neighbors of
a given example in attribution space high visual similarity, e.g, similar facial attributes
such as background (first row), hair color (second and fourth row), accessories (third
row), or even the same person in different poses (last row).

46

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

Appendix H. Additional evaluation of COAR-EDIT

We use COAR-EDIT in five different editing tasks: correcting misclassifications (§D.1); forgetting
a class (§D.2); improving subpopulation robustness (§D.3); localizing backdoor attacks (§D.5); and
improving robustness to typographic attacks (§D.4). In this section, we provide additional details
and/or supplementary experiments for each task.

H.1. Editing individual predictions

Experiment details. In Appendix D.1, we use COAR-EDIT to correct misclassifications of a
ResNet-50 model on ImageNet examples. In this experiment, we set the “target” example to be
a misclassified ImageNet example and the “reference” example to a set of 50 randomly selected Im-
ageNet examples. Then, we use these examples to identify and ablate components (??) that increase
the correct-class margin (4) of the target example without impacting the average margin over the
reference examples.

Additional experiments. We first show that COAR-EDIT is not sensitive to the choice of misclas-
sified examples, model, or dataset. In Figure 20, we reproduce the experiment in Appendix D.1 on
additional ImageNet examples misclassified by a ResNet-50 model. In Figure 19, we use COAR-
EDIT to similarly fix misclassifications of a ResNet-18 model on the CIFAR-10 dataset. In Fig-
ure 21, we show that COAR-EDIT can also be used to adversarially induce misclassifications on
ImageNet examples by ablating the top-k components corresponding to the “target” example. Sim-
ilar to our findings in Appendix D.1, we observe that ablating a few components via COAR-EDIT is
sufficient to change the individual example-level prediction without changing overall model perfor-
mance.

Additional analysis. Which components does COAR-EDIT ablate to correct misclassifications?
To answer this question, we first aggregate all components ablated by COAR-EDIT in order to (indi-
vidually) correct ImageNet examples misclassified by a ResNet-50 model. Then, we plot the most
common convolution layers corresponding to these ablated components in Figure 22. We find that
COAR-EDIT primarily targets convolution filters from the last few layers (closet to the output) of the
ResNet-50 model in order to make fine-grained edits that do not impact overall model performance.
For example, more than 25% of the ablated components belong to layer4.{0,1,2}.conv3—
the last convolution layer in the first three residual blocks of the last layer group of the ResNet-50
model.

H.2. Forgetting a class

Experiment details. In Appendix D.2, we use COAR-EDIT to selectively forget a class of a
ResNet-50 model on ImageNet. In this experiment, we set the “target” examples to be set of 10
examples from the class to be forgotten and the “reference” examples to be a set of 50 randomly
selected ImageNet examples. Using these examples, we use COAR-EDIT to ablate components
(??) that decrease the average correct-class margin (4) of the target examples without impacting the
average margin over the reference examples.

Additional experiments We show that COAR-EDIT can be used to selectively forget additional
ImageNet classes. Specifically, in Figure 23, we reproduce the COAR-EDIT experiment in Ap-
pendix D.2 on three additional ImageNet classes: “folding chair”, “military uniform”, and “re-

47

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

volver”. Like in Figure 3, we again observe that COAR-EDIT can specifically degrade the accuracy
on the target class without impacting the average accuracy over the train or test set by ablating a few
components (convolution filters) in the ResNet-50 model.

H.3. Improving subpopulation robustness.

Experiment details. In Appendix D.3, we use COAR-EDIT to improve subpopulation robustness
of models trained on two benchmark datasets: Waterbirds and CelebA. In both cases, we fine-tune
a ResNet-50 model via standard “empirical risk minimization” using SGD hyperparameters taken
from Sagawa et al. [97]. The resulting fine-tuned models attain 64% and 47% worst-subpopulation
accuracy on the Waterbirds and CelebA test sets, respectively. To improve subpopulation robust-
ness on Waterbirds, we set the “target” examples to a set of 10 random training examples from
the “waterbirds on land” (the worst-performing subpopulation) and the “reference” examples to be
10 random examples from other subpopulations. Analogously, for CelebA, we set the “target” ex-
amples to the set of 20 random examples from the “blond male” worst-performing subpopulation
and the “reference” examples to 20 random examples from other subpopulations. Then, we use
COAR-EDIT to identify components that, when ablated, increase the average correct-class margin
(4) of the target examples without impacting the average margin over the reference examples. In
both cases, the number of components to ablate is a hyperparameter that we select by tracking the
worst-subpopulation accuracy on a validation set.

H.4. Mitigating backdoor attacks.

Experiment details. We now describe the experiment setup in Appendix D.5, where we used
COAR-EDIT to mitigate the effect of a backdoor attack on a ResNet-18 model trained on a back-
doored CIFAR-10 dataset. The CIFAR-10 dataset is modified by adding a small blue-squared trigger
to the upper left corner of 50% of examples in the “airplane” class. Training a model with standard
SGD hyperparameter on this dataset causes the model to spuriously associate the trigger with the
“airplane” class, leading to a backdoor attack. That is, while the resulting model attains 89% test
accuracy, applying the attack to examples in the test set causes the model to misclassify them as
“airplanes”, resulting in 37% accuracy on test examples with the trigger. To mitigate the effect
of the backdoor attack, we first sample ten examples from the training set. Then, we set the “tar-
get” examples to these two examples with the trigger and the “reference” examples to these two
examples without the trigger. Then, we use COAR-EDIT to ablate components (??) that increase
the correct-class margin (4) of the target examples without impacting the average margin over the
reference examples.

Additional analysis. Recall that our experiment in Appendix D.5 shows that COAR-EDIT can
significantly mitigate the effect of a backdoor attack on a ResNet-18 model by ablating a few
backdoor-specific components. We now qualitatively analyze the components ablated via COAR-
EDIT to mitigate the effect of a backdoor attack in Figure 24. Specifically, we visualize the ablated
components (convolution filters in this case) using the input-times-gradient saliency map method
from the Captum library [65]. As shown in Figure 24, these visualizations suggest that the ablated
components are sensitive to the blue-squared trigger.

48

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

H.5. Improving robustness to typographic attacks.

Experiment details. In Appendix D.4 and Figure 5 in particular, we show that COAR-EDIT can be
used to improve robustness of zero-shot CLIP classifiers to typographic attacks. In this experiment,
we consider a zero-shot CLIP ViT-B/16 classifier [93] and specify a computation graph over 82, 944
components, where each component corresponds to a weight vector in the ViT (across all layers).
We evaluate the robustness of this model in a zero-shot setting on 180 images and four real-world
typographic attacks—“taxi”, “twitter”, “EU”, and “iPad”—taken from the dataset in [76]. We also
consider synthetic typographic attacks, where we render a blob of text on a white background and
place it in the center of a given image. The zero-shot performance of the CLIP model drops from
95% to 51% and 54% on the real and synthetic typographic attacks, respectively. To improve
robustness, we set the “target” examples to be the 25 examples with a randomly picked synthetic
attack and the “reference” examples to the same set of examples without any attack. Then, we
use COAR-EDIT to ablate components (??) that increase the average correct-class margin (4) of
the target examples without impacting the average margin over the reference examples. We use a
validation set comprising examples with and without the synthetic attack to select the number of
components to ablate from the model.

49

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

Figure 19: Correcting misclassified CIFAR-10 examples via COAR-EDIT. We reproduce the
COAR-EDIT experiment from Appendix D.1 on the CIFAR-10 dataset. Specifically,
each row corresponds to CIFAR-10 test example that is misclassified by a ResNet-18
model. The left subplot in each row shows how applying COAR-EDIT (by ablating
components (??)) increases the correct-class margin (4) of the misclassified example
without impacting the average margin over the train or test set. The right subplot reports
the drop in overall test accuracy and visualizes examples with correct-class margins that
change the most or least due to the edit.

50

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

Figure 20: Correcting misclassified ImageNet examples via COAR-EDIT. We reproduce the
COAR-EDIT experiment from Appendix D.1 on additional ImageNet examples (one
per row) misclassified by a ResNet-50 model. The left subplot shows that applying
COAR-EDIT (by ablating components (??)) increases the correct-class margin (4) of the
misclassified example without impacting the average margin over the train or test set.
(Right) The right subplot visualizes examples with margins that change the most or least
due to the edit.

51

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

Figure 21: Adversarially inducing misclassifications on ImageNet examples via COAR-EDIT.
Each row corresponds to an ImageNet test example that is correctly classified by a
ResNet-50 model. In the left subplot of each row, we show that applying COAR-EDIT

(by ablating the top-k components (??)) decreases the correct-class margin (4) of the
correctly classified example without impacting the average margin over the train or test
set. On the right, we shw that the edit does not impact visually dissimilar examples,
but does increase or decrease the correct-class margin of examples containing visually
similar objects, e.g., tennis balls in the second row.

52

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

0 2 4 6 8 10 12
Percent of ablated components from the given layer

layer4.0.conv3
layer4.1.conv3
layer4.2.conv3
layer4.2.conv1
layer4.0.conv1
layer4.0.conv2
layer3.0.conv3
layer4.2.conv2
layer4.1.conv2
layer4.1.conv1
layer3.1.conv3
layer3.2.conv3
layer3.3.conv3
layer3.4.conv3
layer3.5.conv3
layer3.0.conv1
layer3.5.conv1
layer3.5.conv2
layer3.0.conv2
layer2.0.conv3
layer2.1.conv3
layer3.4.conv1
layer3.4.conv2
layer3.1.conv2
layer3.2.conv2
layer3.3.conv2
layer3.3.conv1
layer2.2.conv3
layer3.1.conv1
layer2.3.conv3

Co
nv

ol
ut

io
n

La
ye

r i
n

Im
ag

eN
et

 R
es

Ne
t5

0
m

od
el

Layers from which Coar-Edit ablates
 components in order to fix model errors

Percent
2
4
6
8
10

Figure 22: Which components does COAR-EDIT target to fix model errors? We analyze the
specific convolution layers from which COAR-EDIT ablates components (convolution
filters) to correct ImageNet examples misclassified by a ResNet-50 model. On the y-
axis, we plot the 30 most common convolution layers corresponding to the ablated com-
ponents. On the x-axis, we plot the percentage of ablated components that belong to
each convolution layer. We find that COAR-EDIT primarily targets convolution filters
from the last few layers (closet to the output) of the ResNet-50 model in order to make
fine-grained edits that do not impact overall model performance. For example, more
than 25% of the ablated components belong to layer4.{0,1,2}.conv3—the last
convolution layer in the first three residual blocks of the last layer group of the ResNet-
50 model.

53

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

0 2 4 6 8 10 12 14
Number of model components ablated

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Class: "folding chair"

Train set
Val set
Class "folding chair"

0 2 4 6 8 10 12 14
Number of model components ablated

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Class: "military uniform"

Train set
Val set
Class "military uniform"

0 2 4 6 8 10 12 14
Number of model components ablated

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Class: "chain-link fence"

Train set
Val set
Class "chain-link fence"

0 2 4 6 8 10 12 14
Number of model components ablated

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Class: "revolver"

Train set
Val set
Class "revolver"

Forgetting ImageNet classes via Coar-Edit

Figure 23: Forgetting ImageNet classes via COAR-EDIT. We reproduce the COAR-EDIT exper-
iment from Appendix D.2 on additional ImageNet classes (one per subplot). Specifi-
cally, in each subplot, we find that ablating 15 of 22, 720 convolution filters (identified
via COAR-EDIT) suffices to significantly degrade the accuracy of a ResNet-50 model
on a specific class (in green). This edit is targeted in that it does not impact the average
accuracy over the train set (in blue) or test set (in orange).

54

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

CIFAR-10 examples with backdoor patch

(1) block2.conv1:120

(2) block1.conv2:134

(3) block3.conv1:98

(4) block1.conv1:99

(5) block2.conv2:118

(6) block2.conv1:177

(7) block1.conv2:33

(8) block2.conv2:31

Figure 24: Visualizing components ablated via COAR-EDIT to mitigate a backdoor attack.
Recall that in Appendix D.5, we used COAR-EDIT to mitigate the effect of a backdoor
attack (a blue-squared spurious trigger) on a ResNet-18 model trained on a backdoored
CIFAR-10 dataset. Here, we visualize the components ablated via COAR-EDIT to re-
duce the model’s reliance on this spurious feature. The first row shows a set of random
examples from the modified CIFAR-10 test set that contain the trigger. Each subsequent
row corresponds to an ablated component—a convolution filter of the ResNet-18 model
in this case. In each of these rows, we use the input-times-gradient saliency map method
from the Captum library [65] to (qualitatively) highlight parts of the examples that are
most “important” for the ablated component’s output. These maps suggest that all ab-
lated components are sensitive to the blue-squared trigger.

55

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

Appendix I. Analyzing design choices in COAR

In this section, we analyze three design choices in COAR: (a) the train-time ablation fraction α
used to sample a subset of components C ′ ⊂ C of size α|C|, (b) the ablation method (??) used to
intervene on the sampled components C ′, and (c) the specific model output function used to compute
component counterfactuals fM (·, C ′) (1), i.e., model output fM (·) after ablating the component
subset C ′.

I.1. Effect of ablation fraction

The first step of COAR—constructing a component dataset (??)—requires choosing a ablation frac-
tion α ∈ (0, 1). This hyperparameter determines the size of the random α-fraction subsets C ′ ⊂ C
used to compute component counterfactuals. A priori, however, it is not clear which ablation frac-
tion α is best suited for learning accurate component attributions. For example, ablating too large
a component subset (large α) can induce a significant drop in model performance to a point where
the ablated model is no longer representative of the original model.

Effect of train-time ablation fraction αtrain We use two metrics to quantify the effect of ablation
fraction α on model outputs:
• Change in model performance. We measure the effect of ablating random α-fraction subsets
C ′ ⊂ C of components on model performance, e.g., test accuracy.

• Correlation between example-level model outputs. We measure the correlation between model
outputs before and after ablation, e.g., logits or margins.

We use these (heuristic) metrics to ensure that the ablations are not too severe to nullify model
performance and that the outputs of the ablated models are still predictive of the outputs of the
original model.

Effect of train-time ablation fraction αtrain. Figure 25 evaluates how varying the train-time
ablation fraction αtrain changes both metrics—model performance and correlation between model
outputs—for all three settings considered in Section 4: CIFAR-10 ResNet-18, ImageNet ResNet-50,
and ImageNet ViT-B/16. In all three settings, we find that model accuracy and margin correlation
decrease as the ablation fraction α increases. For instance, ablating 15% of components (α = 0.15)
results in a significant accuracy drop for ResNets, but not for ViTs. On the other hand, ablating
1% of all components (α = 0.01) results in a small drop in accuracy and correlation, e.g., for
the ResNet-18 model trained on CIFAR-10 (first row of Figure 25). Therefore, our experiments
in Section 4 use α = 0.10 for the CIFAR-10 model and α = 0.05 for both ImageNet models. These
findings also suggest that the choice of α depends on the model architecture and the task at hand,
e.g., ViTs are more robust to zero ablations than ResNets.

I.2. Effect of ablation method

As discussed in ??, we use a simple ablation method that sets the weights/activations of a subset of
components C ′ ⊂ C to zero. However, our method COAR is not dependent on any specific ablation
method, and can be used to compute component attributions with other ablation methods as well.

Alternative ablation method based on scaling. In this section, we consider an alternative abla-
tion method that scales down the activations of a component by a factor of γ ∈ [0, 1]. Note that

56

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

setting γ = 0 corresponds to the zero ablation method described in ??; we use γ = 0.5 in our
experiments.

Experiment results. We find that the alternative scaling-based ablation maintains high correlation
between model outputs before and after ablations, resulting in accurate component attributions.
Specifically, we make three key observations.
• We first observe that on a ResNet-18 model trained on CIFAR-10, the scaling-based ablation

method described above maintains high correlation between model outputs before and after abla-
tion, even at high ablation fractions α ∈ {0.30, . . . , 0.05} (fourth row of Figure 25).

• Then, in Figure 26, we apply COAR with the scaling-based ablation method to a CIFAR-10
ResNet-18 model. The resulting component attributions attain an average correlation of more
than 0.75 for most ablation fractions α ∈ {0.40, . . . , 0.01}. The correlation between COAR at-
tribution estimates and ground-truth counterfactuals is high across a range of ablation fractions α
from 0.01 to 0.45.

• In Figure 27, we compare COAR attributions computed with the scaling ablations to attributions
computed with zero-ablations. We find that (a) these attributions exhibit high cosine similar-
ity (Figure 27a) and that (b) attributions learned with scaling-based ablations are predictive of
ground-truth component counterfactuals computed using zero-ablations (Figure 27b). This indi-
cates that both ablations—scaling down the activations of a component by a factor of γ = 0.5 and
setting the activations of a component to zero—change model outputs in a similar manner.

I.3. Effect of model output function

Recall that in Section 4, we use the correct-class margin (4) as the model output function to estimate
COAR attributions for classification tasks. However, our approach is not tied to a specific model
output function. Depending on the task at hand, one can use an alternative model output function
to estimate COAR attributions. For example, in a multi-label classification task, we can also use
the logit of a fixed class of interest as the model output function to estimate COAR attributions.
In Figure 12, we apply COAR to a pre-trained ImageNet ResNet50 model fine-tuned on MIMIC-
CXR [63]—a dataset of labeled chest radiographs—and set the model output function to be the logit
of the “Cardiomegaly” class. Our results show that COAR attributions remain predictive with this
model output function, and attain a correlation of 0.7 and 0.6 with the ground-truth counterfactuals
on “Cardiomegaly” logits when α = αtrain = 0.05 and α = 0.10 respectively. Additionally,
in Appendix F, we also apply COAR to the next-token prediction task in language modeling, using
average correct-class margin over all tokens in a given sequence as the model output function.

57

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

0.01 0.05 0.1 0.15
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

M
od

el
 a

cc
ur

ac
y

Setting: ResNet-10 trained on CIFAR-10

0.01 0.05 0.1 0.15
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

1.0

M
ar

gi
n

co
rre

la
tio

n

Setting: ResNet-10 trained on CIFAR-10

0.01 0.025 0.05 0.1
Subsampling fraction

0.0

0.2

0.4

0.6

M
od

el
 a

cc
ur

ac
y

Setting: ResNet-50 trained on ImageNet

0.01 0.025 0.05 0.1
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

M
ar

gi
n

co
rre

la
tio

n

Setting: ResNet-50 trained on ImageNet

0.01 0.025 0.05 0.1
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

M
od

el
 a

cc
ur

ac
y

Setting: VIT-B/16 trained on ImageNet

0.01 0.025 0.05 0.1
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

1.0

M
ar

gi
n

co
rre

la
tio

n

Setting: VIT-B/16 trained on ImageNet

0.05 0.1 0.15 0.2 0.25 0.3
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

M
od

el
 a

cc
ur

ac
y

Setting: ResNet-10 trained on CIFAR-10
 with alternative ablation method

0.05 0.1 0.15 0.2 0.25 0.3
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

1.0

M
ar

gi
n

co
rre

la
tio

n

Setting: ResNet-10 trained on CIFAR-10
 with alternative ablation method

Effect of subsampling fraction on model outputs

Figure 25: Effect of ablation fraction α on model outputs. We evaluate the effect of ablating
α-fraction subsets C ′ ⊂ C of components (x-axis) on model accuracy (y-axis in the left
column) and the correlation between model outputs before and after ablation (y-axis in
the right column). In all settings considered in Section 4 (one per row), we find that
model accuracy and margin correlation gradually decrease as the ablation fraction α
increases. See Appendix I.1 for more details.

58

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

0.01 0.03 0.05 0.10 0.15 0.20* 0.25 0.30 0.35 0.40
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n

Evaluating COAR attributions | CIFAR-10 ResNet-18 | Alternative ablation method

Figure 26: Effect of ablation method on COAR attributions. We estimate COAR attributions for
a CIFAR-10 ResNet-18 model using an alternative ablation method that scales down the
activations of a subset of components C ′ ⊂ C by a factor of γ (0.5 in this case) in-
stead of setting them to zero. The resulting attribution-derived estimates (3) exhibit high
correlation (y-axis) with ground-truth component counterfactuals. See Appendix I.2 for
more details.

0.50 0.55 0.60 0.65 0.70 0.75 0.80
Cosine similarity

0

20

40

60

80

100

120

Co
un

t

Comparing CIFAR-10 attributions
 corresp. to 0x and 0.5x ablation methods

0.01 0.03 0.05 0.10 0.15
Subsampling fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Co
rre

la
tio

n

Predicting 0x-ablation counterfactuals
 using 0.5x-ablation attributions

Effect of ablation method | CIFAR-10 ResNet-18

Figure 27: Comparing COAR attributions estimated with different ablation methods. We
compare COAR attributions on a CIFAR-10 ResNet18 model computed with the zero-
ablation method ?? to attributions computed with the alternative ablation method de-
scribed in Appendix I.2. The left plot shows that the paired attributions (corresponding
to each example) exhibit high cosine similarity. The right plot shows that the counterfac-
tual estimates (3) computed using attributions from the alternative ablation method are
predictive of ground-truth component counterfactuals computed using the zero ablation
method. See Appendix I.2 for more details.

59

DECOMPOSING AND EDITING PREDICTIONS BY MODELING MODEL COMPUTATION

60

	Introduction
	Setup and Problem Statement
	Component attribution with Coar
	Does Coar learn accurate attributions?
	Do Coar Attributions Enable Editing?
	Related work
	Conclusion
	Appendices
	Related work
	Discussion
	Future work
	Additional Coar-Edit experiments
	Editing individual model predictions
	``Forgetting'' a class
	Improving subpopulation robustness
	Improving robustness to typographic attacks
	Mitigating a backdoor attack

	Evaluation setup
	Pseudocode
	Datasets, models, components, and applying Coar.
	Baselines
	Implementation details

	Applying Coar to language models
	Evaluating GPT-2 on the TinyStories dataset
	Evaluating Phi-2 on the BoolQ dataset

	Additional evaluation of Coar
	Evaluating Coar on additional datasets
	Evaluating Coar on additional model architectures
	Evaluating Coar on additional tasks
	Comparing Coar attributions estimated with different ablation fractions
	Comparing Coar attributions estimated with different sample sizes
	Analyzing Coar attributions at the example level
	Qualitatively analyzing Coar attributions

	Additional evaluation of Coar-Edit
	Editing individual predictions
	Forgetting a class
	Improving subpopulation robustness.
	Mitigating backdoor attacks.
	Improving robustness to typographic attacks.

	Analyzing design choices in Coar
	Effect of ablation fraction
	Effect of ablation method
	Effect of model output function

