
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

JUDGE DECODING: FASTER SPECULATIVE SAMPLING
REQUIRES GOING BEYOND MODEL ALIGNMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

The performance of large language models (LLMs) is closely linked to their un-
derlying size, leading to ever-growing networks and hence slower inference. Spec-
ulative decoding has been proposed as a technique to accelerate autoregressive
generation, leveraging a fast draft model to propose candidate tokens, which are
then verified in parallel based on their likelihood under the target model. While
this approach guarantees to reproduce the target output, it incurs a substantial
penalty: many high-quality draft tokens are rejected, even when they represent
objectively valid continuations. Indeed, we show that even powerful draft models
such as GPT-4o, as well as human text cannot achieve high acceptance rates un-
der the standard verification scheme. This severely limits the speedup potential of
current speculative decoding methods, as an early rejection becomes overwhelm-
ingly likely when solely relying on alignment of draft and target.

We thus ask the following question: Can we adapt verification to recognize cor-
rect, but non-aligned replies? To this end, we draw inspiration from the LLM-as-
a-judge framework, which demonstrated that LLMs are able to rate answers in a
versatile way. We carefully design a dataset coined TokenCourt to elicit the
same capability in the target model by training a compact module on top of the
embeddings to produce “judgements” of the current continuation. We showcase
our strategy on the Llama-3.1 family, where our 8b/405B-Judge achieves a
speedup of 9× over Llama-405B, while maintaining its quality on a large range
of benchmarks. These benefits remain present even in optimized inference frame-
works, where our method reaches up to 141 tokens/s for 8B/70B-Judge and
129 tokens/s for 8B/405B on 2 and 8 H100s respectively.

 -8b/ -405b Judge Verification:

User Question:

Chenny is 10 years old. Alyana
is 4 years younger than Chenny.

How old is Anne if she is 2
years older than Alyana?

To find Alyana's age, we need to subtract 4 from
Chenny's age.
Chenny's age: 10 years
Alyana's age: 10 - 4 = 6 years

To find Anne's age, we need to add 2 to Alyana's age.
Anne's age: 6 + 2 = 8 years
So, Anne is 8 years old.

 -8b/ -405b Standard Verification:

To find Alyana's age, we need to subtract 4 from

Figure 1: Standard speculative decoding versus our judge decoding strategy for Llama-3.1-8B as
draft and Llama-3.1-405B as target. Accepted (rejected) tokens are highlighted in green (red).
SD verification rejects tokens due to misalignment, even if these tokens are correct within the context
of the response. Our judge decoding recognizes the correct tokens, leading to high acceptance rate.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

Large language models have transformed the field of natural language processing in recent years,
displaying astounding capabilities across various tasks (Radford et al., 2019; OpenAI et al., 2024).
The performance of these models is closely tied to their underlying size, with bigger models often
achieving significantly better results across benchmarks (Kaplan et al., 2020; Hoffmann et al., 2022).
For example, Meta recently released their largest and best model to date with Llama-3.1-405B,
boasting an enormous parameter count of 405 billion (Dubey et al., 2024).

While offering great performance, such big models require a vast amount of resources to be de-
ployed, and inference efficiency starts to pose a critical problem. Due to the autoregressive nature of
decoding coupled with the large parameter count, token generation becomes a memory-bound pro-
cess, especially at small batch sizes (Shazeer, 2019; Ivanov et al., 2021; Pope et al., 2023). To speed
up inference in such a setting, speculative decoding (SD) has been proposed (Stern et al., 2018; Xia
et al., 2023; Chen et al., 2023; Leviathan et al., 2023), a technique that leverages the fact that pro-
cessing several tokens in parallel comes at no additional latency cost in the memory-bound regime.
More concretely, a small but fast draft model produces a sequence of M candidate tokens, which are
then verified in parallel by the model of interest, usually referred to as the target model. In standard
SD, the target model accepts a candidate token if it assigns the same or higher probability given the
context, otherwise a biased coin is flipped. If at least one candidate token is accepted, inference time
is reduced as the large model needs to be called only once to produce multiple tokens. As shown
in Chen et al. (2023), such a strategy provably preserves the distribution of the target model while
achieving significant speedups.

Relying on target probabilities guarantees the same output, but as a consequence, a token is solely
judged based on its alignment with the target model, and not by its inherent contextual quality. As a
consequence, current approaches set the number of candidate tokens to small numbers M ∈ {5, 7},
as an early rejection becomes overwhelmingly likely when drafting more. On the other hand, the
quality of “small” language models (and thus the quality of candidate tokens) has been rapidly im-
proving recently. GPT-4o and the recently introduced GPT-4o-mini show strong performance
across many benchmarks, with OpenAI actively recommending these models over the more expen-
sive GPT-4. Similarly, Llama-3.1-8B has achieved bigger gains in performance over its prior
iterations, compared to the larger Llama-3.1-70B (Dubey et al., 2024), highlighting as well that
small models are catching up. Phi-3-mini is another small model at “only” three billion param-
eters that despite its size manages to match the performance of GPT-3.5 (Abdin et al., 2024).

While draft models are rapidly improving and providing increasingly high-quality answers,
alignment-based verification fails to reflect this progress, still rejecting tokens that are not perfectly
aligned with the target response (see Fig. 1 for an example). Motivated by this insight, we explore
the following question in this paper:

Can we adapt verification to assess token quality rather than alignment?
We draw inspiration from the LLM-as-a-judge framework, where LLMs are used to judge the qual-
ity of other model responses to user questions (Zheng et al., 2023). These judgements exhibit very
strong correlation with human ratings, making this a cheap and scalable approach for model quality
evaluation. Interestingly, LLM-judges display the ability to rate answers in a versatile way, allowing
them to appreciate correct but potentially unaligned responses. To equip the target model with sim-
ilar capabilities, we design a small dataset consisting of correct and wrong replies to user questions.
We create a diverse set of responses from several models and precisely annotate the location of the
mistaken tokens. We then leverage the powerful target embeddings to train a small module with the
objective of predicting the correctness of a given token, mimicking the LLM-judge mechanism.

In summary, we make the following contributions:

• We demonstrate through a series of experiments how the decision mechanism in speculative
decoding rejects many high quality tokens, identifying a key limitation of the technique.

• We adapt verification using ideas from LLM-as-a-judge, eliciting the same versatile rating
capability in the target by adding a simple linear layer that can be trained in under 1.5 hours.

• Using a Llama 8B/70B-Judge, our approach obtains speedups of 9× over standard
decoding, achieving an unprecedented 129 tokens/s, while maintaining the quality of
Llama-405B on a range of benchmarks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORKS

Speculative decoding has been used and extended in a range of works, leading to significant
speedups across many model families and datasets. Several ideas for draft models have been ex-
plored in the literature. Early papers rely on specialized draft models (Sun et al., 2021; Xia et al.,
2023) or smaller versions of the target model (Chen et al., 2023; Leviathan et al., 2023), usually
trained using the same data and learning protocol. Another line of work uses shallow networks on
top of the target embeddings as a drafter with the goal to predict multiple tokens into the future
(Stern et al., 2018; Cai et al., 2024; Li et al., 2024a;b; Zhang et al., 2024a; Wertheimer et al., 2024;
Ankner et al., 2024; Gloeckle et al., 2024; Bhendawade et al., 2024). Other approaches use a sub-
network of the target model, e.g. Schuster et al. (2022); Zhang et al. (2024b); Elhoushi et al. (2024);
Liu et al. (2024b;a) skip a percentage of the layers to produce candidate tokens. Other architectures
have also been explored: Wang et al. (2024) develop a SD variant for Mamba models (Gu & Dao,
2024), while Christopher et al. (2024) explore diffusion-based language models as drafters. Other
components of the process have been investigated as well; Huang et al. (2024); Liu et al. (2024c)
analyze the number of draft tokens M with the goal of learning to choose it dynamically. Kim et al.
(2023) take a similar approach aiming to measure the uncertainty of the draft model, allowing the
target to take over when needed. Monea et al. (2023); Bachmann & Nagarajan (2024) on the other
hand explore parallel decoding without a draft by conditioning on “look-ahead” tokens or using Ja-
cobi iterations (Santilli et al., 2023; Fu et al., 2024), allowing the target to produce several tokens in
one step.

Many works have aimed to improve the acceptance rates in SD: Zhou et al. (2024) encourage higher
alignment by finetuning with a distillation loss, Li et al. (2024a); Cai et al. (2024); Ankner et al.
(2024); Miao et al. (2024); Chen et al. (2024) construct token trees out of the top-K predictions in
various ways and verify them in parallel using tree-attention, covering thus a larger space of token
combinations. Other methods propose to exchange more information between draft and target: Du
et al. (2024) allow the draft to access the key-value cache of the target, while in S et al. (2024) the
draft is further conditioned on target activations. All these methods improve acceptance rates by
either encouraging better alignment with more information or producing more guesses in parallel.
This is different from our work, which seeks to change the verification scheme itself.

3 VERIFICATION IN SPECULATIVE DECODING

3.1 BACKGROUND

Speculative decoding. Denote by LLMtarg and LLMdraft the target and draft model respectively. We
use V = {1, . . . , V } for the vocabulary. Let M ∈ N represent the number of candidate tokens, m∗
the number of accepted tokens and s ∈ VL the context. Let us denote by

(t1,p1), . . . , (tm,pm) = LLM(m)(s) (1)

an autoregressive sampling of m tokens from LLM given context s, where t1, . . . , tm ∈ V are the
sampled tokens and pi ∈ RV the corresponding softmax probabilities. Further, we denote by

p1, . . . ,pm+1 = LLM(t1, . . . , tm; s) (2)

running the (parallel) forward pass of LLM on tokens t1, . . . , tm. Notice that this produces one more
probability vector pm+1 as we now also process token tm.

In SD, the draft model autoregressively produces M candidate tokens given the current context s
using any sampling scheme (but usually greedy),

(c1, q1), . . . , (cM , qM) = LLM(M)
draft (s) (3)

where c1, . . . , cM are the sampled candidate tokens and qi ∈ RV for i = 1, . . . ,M are the corre-
sponding probability vectors over the vocabulary. The probability of token ci under the draft model
is thus qi[ci]. The target model then processes these tokens in parallel, resulting in probability
vectors p1, . . . ,pM+1 = LLMtarg (c1, . . . , cM ; s). Rejection now works as follows:

Accept ci if all previous tokens are accepted and ϵi <
pi[ci]

qi[ci]
for ϵi ∼ U ([0, 1]) (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Left: Average number of generated tokens as a function of the number of draft tokens M
for Llama-8B/405B with standard and judge verification. Right: Number of accepted tokens on
high-quality human text (top) and for both 8B/405B and 405B/8B (bottom), both standard SD.

In words, a candidate ci is accepted if the probability under the target model is even larger. If
the probability is smaller, a stochastic decision is made according to the discrepancy between the
probabilities. Crucially, one is always guaranteed to produce at least one valid token: p1 is solely
a function of the current context s and can thus be used to sample a token according to the target
distribution. Similarly, if ci is the first rejected token, one can sample a correct token from pi.
Finally, when all candidate tokens are accepted, an extra token can be sampled from pM+1. The
accepted tokens are then added to the current context s and we repeat the steps until completion.

Number of draft tokens. An immediate question comes to mind when examining speculative
decoding: How many draft tokens should one choose for optimal speedup? On the one hand, if
the draft model produces good tokens, one would ideally want to draft a high number of candidate
tokens M to avoid invoking the expensive target model too many times. On the other hand, if
many candidates end up being rejected, one wants to avoid spending the unnecessary drafting time.
The ideal M thus heavily depends on the acceptance rate, which in turn naturally depends on the
verification scheme. In Fig. 2 we plot the average number of accepted tokens as a function of M for
the model pair Llama-3.1-8B and Llama-3.1-405B evaluated on MT-Bench (Zheng et al.,
2023) and GSM8K (Cobbe et al., 2021) (yellow curve). We observe that the number of accepted
tokens quickly saturates as a function of M and the acceptance rates thus decrease rapidly. As a
result, choosing a large number of draft tokens M solely calls the draft model more in vain, leading
to inefficient inference overall. This is the reason why prior work is limited largely to M ≤ 7.

3.2 LIMITATIONS OF STANDARD VERIFICATION

Rejected tokens. What types of tokens get rejected in such a setup? In order to obtain an intu-
ition, we explore the behaviour of SD on several benchmarks including GSM8K, MT-Bench and
HumanEval (Chen et al., 2021). We use Llama-8B as the draft and Llama-405B as the target
model. While there is a significant discrepancy in terms of performance between these two models,
it is worth highlighting that the draft model achieves competitive scores on all these tasks. Higher
acceptance rates would thus not necessarily reduce the quality of the output on many of these ex-
amples. In fact, a large number of draft answers could be accepted as they are, especially those
addressing relatively simple queries.

Notably, even in instances where the draft model produces entirely accurate solutions, the target
model frequently rejects numerous tokens due to the stringent nature of the verification process. This
rejection occurs despite the correctness of the solution, as the target model seeks alignment with its
own response rather than contextual accuracy (Liu et al., 2023). As illustrated in Fig 1, a correct
answer can be rejected after only two tokens, underscoring the potential for relaxed verification

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

 -4o/

User Question: Here's a Python function that takes

 -4o/

Write me a Python
function that
takes a list of
integers, repeats
every even integer
and deletes every
odd integer.

Here’s a Python function that takes a
list of integers, repeats every even
integer, and deletes every odd integer:

def modify_list(numbers):
 result = []
 for num in numbers:
 # Repeat even numbers
 if num % 2 == 0:
 result.extend([num, num])
 # Odd numbers are skipped
 return result

-405b Judge Verification:

-405b Standard SD Verification:

Figure 3: Left: Standard SD and our judge decoding when GPT-4o is drafting and Llama-405B
is verifying. Green denotes accepted and red rejected tokens. Right: Number of accepted tokens for
GPT-4o as draft and Llama-405B as target for standard speculative and our judge verification.

schemes.1 Intuitively, one would expect from a well-calibrated verification scheme to allow for
accepting candidate tokens whenever they are contextually correct. However, as we show in the
following two paragraphs, this not the case for standard logits-based verification.

High-quality draft model. To further demonstrate how valid responses incur high rejection rates,
we perform the following experiment: We take a very powerful LLM as the draft model and evaluate
whether the target model accepts more candidate tokens, which are now guaranteed to be of high
quality. While such a setup does not make sense for SD from an efficiency point of view (a powerful
drafter is of course too slow), it further investigates if acceptance rates improve with the quality of
responses. To that end we use GPT-4o as draft model for the target Llama-405B. We generate
full answers with GPT-4o on MT-Bench, GSM8K and HumanEval and simply check how many
tokens the target accepts under greedy decoding before the first rejection, as there is no way to
properly perform SD with closed-source models. In order to ensure that the target model is able to
“recognize” the high-quality tokens, we use the performant Llama-405B. We display the average
acceptance length and an example prompt in Fig. 3. Counter-intuitively, we find that the target
model does not reward the higher quality of tokens, accepting only roughly two before encountering
the first rejection. To further explore if this observation changes when running the complete process
of SD, we reverse the roles of our standard setup and use Llama-405B as draft for a Llama-8B
target model. Similarly, we find that reversing the roles reduces the number of accepted tokens
slightly (see Fig. 2, right side), even though they are of better quality now. We thus conclude that
acceptance rates do not improve with the quality of the responses.

Human expert drafting. Finally, we evaluate the efficacy of human annotations as can-
didate tokens for Llama-405B by processing Wikipedia articles. Using a subset of the
wikipedia-summary dataset (Scheepers, 2017), which contains high-quality, community-
reviewed abstracts, we assess token acceptance rates under greedy SD verification when prompting
the model to summarize these articles. As illustrated in Fig. 2 (right), a substantial proportion of
tokens face rejection, even within this high-quality context.

In summary, we conclude that SD verification in its current form is highly inefficient, as large por-
tions of correct answers are rejected. Motivated by this insight, the following section presents a
more effective verification scheme that goes beyond model alignment in order to increase efficiency.

1Additional examples of this phenomenon are provided in Appendix C.1 for further examination.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Input Question:

What countries border
France?

Correct Answer:

France shares its borders
with Belgium, Luxembourg,
Germany, Switzerland,
Italy, Spain, Andorra,
and Monaco.

Wrong Answer:

France shares its borders
with Belgium, Luxembourg,
Germany, Switzerland,
Italy, Spain, Portugal,
and Poland.

Input Question:

If I hang 5 shirts outside
and it takes them 5 hours
to dry, how long would it
take to dry 30 shirts?

Correct Answer:

If the drying process is not
affected by the number of
shirts, it would still take
5 hours to dry 30 shirts,
just like it took 5 hours to
dry 5 shirts.

Wrong Answer:

It would take 30 hours to
dry 30 shirts, as each shirt
needs an additional hour to
dry.

Figure 4: Two examples from our dataset TokenCourt. We highlight the incorrect tokens in the
wrong answer in red.

4 JUDGE DECODING

As demonstrated by previous experiments, we need a more flexible method of verifying sequences
to increase the number of accepted draft tokens, especially as draft models continue to improve in
quality. Recent work by Zheng et al. (2023) showed that large LLMs can reliably act as judges to
evaluate responses generated by less capable models, correlating highly with human ratings. This
judging approach allows for more versatile evaluation, focusing on correctness and contextual qual-
ity rather than strict alignment. However, using LLM-judges directly is not feasible because (a) they
require lengthy system prompts and often chain-of-thought reasoning, slowing inference, and (b)
they evaluate full answers, whereas SD requires evaluating short, sometime partial continuations.

We thus aim to achieve this judge-like behavior efficiently while retaining the advantages of the orig-
inal verification method, which ensures accurate next-token predictions in case of rejection. Since
this involves computing embeddings for each draft token, we explore whether these embeddings
contain sufficient information to enable rapid, reliable judgments.

4.1 VERSATILE AND ACCURATE VERIFICATION WITH TOKEN EMBEDDINGS

Token embeddings signal errors. Contrary to standard SD, which accepts or rejects a given to-
ken based on its softmax probabilities (see Eq. 4), we find that the model’s reaction to processing
the incorrect token itself reveals surprisingly valuable information. Specifically, our experiments
show that last hidden layer embeddings of erroneous tokens effectively ”flag” errors and contradic-
tions, prompting the model to generate subsequent tokens that attempt to correct the mistake. This
phenomenon is strikingly illustrated in Fig. 5, where we condition Llama-405B on wrong replies
(highlighted in red) and observe the model’s immediate efforts to rectify its response (highlighted
in green). For instance, when forced to start with the incorrect statement ”The capital of France
is Berlin”, the model continues with ”... just kidding, it’s actually Paris”. More such examples
can be found in Appendix C.3. This unexpected behavior suggests the feasibility of leveraging the
embedding of the current token as a means of verifying its correctness. In fact, we will show in
the following that a simple logistic regression head on top of these embeddings achieves high ac-
curacy and can be trained in under 1.5 hours. Prior, embeddings have also been used to discover
latent knowledge in LLMs or edit their behaviour (Burns et al., 2023; Zou et al., 2023a; Marks &
Tegmark, 2024; von Rütte et al., 2024), further underscoring their richness.

Dataset curation. In order to leverage token embeddings for verification, we carefully craft a
dataset consisting of high-quality user inputs, along with a correct and wrong answer pair, coined
TokenCourt. The set of input prompts are a mixture of newly-created questions and two public
datasets that we heavily filtered (Alpaca (Taori et al., 2023) and ARC (Clark et al., 2018)). Im-
portantly, we only use the input questions and none of the answers. We leverage several models to
produce a diverse set of correct and wrong answers, including Mistral-Large-2, Llama-8B
and Llama-405B, thereby fostering robustness of the trained judge to recognize correct but differ-
ently aligned solutions. All answers were manually reviewed and corrected by the authors, who also

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

annotated the precise location of errors in wrong answers2. In total we collected 500 high-quality
question, correct answer, wrong answer tuples. For training, we label every token from the correct
answer as positive, every token from the wrong answer up until the point of mistake as positive, and
finally every mistaken token as negative. Two examples from our dataset are depicted in Fig. 4. Nat-
urally, the dataset exhibits a strong imbalance, leading to roughly 20× more positive than negative
examples.

Model design and training. Equipped with the dataset, we train a linear head fjudge on top of the
target embeddings, using a weighted cross entropy loss as the objective to counter the imbalance in
the dataset. We place larger weight on the negative examples in order to ensure that the resulting
judge does not falsely accept wrong tokens to limit quality degradation and perform early-stopping
to reduce overfitting. We tune all hyperparameters on a small test split from TokenCourt. We
experiment with embeddings from several layers and find that deeper layers perform best with only
insignificant differences, while too shallow layers are clearly worse, consistent with similar obser-
vations in previous works (Zou et al., 2023b; Gurnee & Tegmark, 2023; von Rütte et al., 2024). For
simplicity, we thus stick to using the last embedding of the target before the RMS normalization
(Zhang & Sennrich, 2019) and the language modelling (LM) head. While we experimented with
more complex architectures, including MLPs and shallow Transformer networks, a simple linear
head proved most effective, demonstrating excellent performance without overfitting. This linear
classifier offers significant practical advantages: we train only 16.4k parameters on just 30k tokens
in less than 1.5 hours, with all target model parameters remaining frozen. Additional details are
provided in Appendix B.1.

Inference. How is the judge head now combined with the standard elements of SD? In essence, we
use fjudge as an additional evaluator for a given token ci (or rather its embedding ei ∈ RD) and accept
it if σ (fjudge(ei)) > δ for δ ∈ [0.5, 1], where σ is the sigmoid function. In other words, δ serves
as a threshold for the confidence of acceptance and practitioners can thus choose how much to trust
the judge layer. In practice we observed that there is no need to tune this value to ensure quality and
leave it at the natural value δ = 0.5. Given a sequence of candidate tokens c1, . . . , cM , we thus get
two accept/reject masks from the target model: zstand ∈ {0, 1}M as in standard SD verification and
zjudge ∈ {0, 1}M from the judge head. We take the logical OR between the two, z = zstand ∨ zjudge,
since when the judge rejects and standard SD accepts, the corrected token according to the target
will exactly be the same token. We can thus already accept it. We illustrate this mechanism in more
detail in Appendix B.2. Note that δ = 1 reduces to SD.

5 EVALUATION OF JUDGE DECODING

First, we revisit the initial experiments outlined in Sec. 3.2 where we use GPT-4o as the draft model,
as well as human generated text as candidate tokens. In both cases, the average number of accepted
tokens is significantly higher for our method across datasets (see Fig 2 and 3). The example prompt
in Fig. 3 (left) shows that the correct response of GPT-4o is fully accepted by judge decoding
while standard SD rejects after two words. This illustrates that our verification scheme offers more
versatile decisions.

5.1 PERFORMANCE BENCHMARK

We now evaluate our verification method on standard benchmarks in the SD literature, including
GSM8K (Cobbe et al., 2021), HumanEval (Chen et al., 2021) and MT-Bench (Zheng et al., 2023).
In contrast to standard SD works, we do need to report the achieved accuracy values of our strategy,
as adapting verification comes with the possibility of accepting wrong tokens and thus worse per-
formance. To give a more complete picture, we further include multiple-choice benchmarks ARC
(Clark et al., 2018) and MMLU (Hendrycks et al., 2021), which are atypical tasks for standard SD as
only a few tokens need to be produced, but further serves as a check that our verification scheme
does not degrade performance. We use the prompting templates from Dubey et al. (2024).

2Using LLMs to that end proved to be too imprecise, which is consistent with recent observations in Tyen
et al. (2024).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Transformer
Blocks

User Question:

What is the capital of France?
Tell me something about the
city.

Assistant:

The capital of France is
Berlin... No just kidding.
The capital of France is
actually Paris. [...]

User Question:

What is 402 + 335?

Assistant:

402 + 335 = 736 + 1 = 737

Transformer
Blocks

User Question:

What is the capital of France?
Tell me something about the
city.

Assistant:

The capital of France is
Berlin... No just kidding.
The capital of France is
actually Paris. [...]

User Question:

What is 402 + 335?

Assistant:

402 + 335 = 736 + 1 = 737

Figure 5: Left: Conditioning Llama-405B on wrong outputs. The part of the assistant response
in red was forced, while parts in green were generated freely. Right: Judge illustration where sL is
the last token from the context s and c1, . . . , cM are candidate tokens. Orange denotes embeddings,
green denotes the LM-head output and red denotes the produced judgements.

Table 1: Average acceptance length (m∗) and speedup factor over standard decoding in HuggingFace
and gpt-fast for batch size 1. We report generation tokens/s for gpt-fast for 512 input and output
tokens, quantized to 8-bit. All 70B (405B) models run on 2 (8) H100 GPUs, except for ∗Medusa
(Nvidia, 2024), which runs on significantly faster H200s with NVLink Switch and TensorRT.

m∗ HUGGINGFACE GPT-FAST TOKENS/S (512 + 512)

8B/70B-STANDARD 6.4 1.5× 1.7× 76.7

8B/70B-JUDGE (OURS) 18.8 2× 3× 141.8
70B-EAGLE-2 4.5 3.3× 1.9× 88.1

8B/405B-STANDARD 6.3 5.3× 1.78× 58.7

8B/405B-JUDGE (OURS) 19.7 9.7× 3.9× 129.3
405B-MEDUSA < 6 < 6× 1.9× 108∗

Training-free baseline. To provide more context for our results and to demonstrate that our judg-
ing strategy goes beyond simple heuristics, we also explore a simple training-free method to relax
the acceptance scheme. In particular, we investigate top-K verification, where a candidate token ci
is accepted, if it is among the K highest valued probabilities pi produced by token ci−1. K ∈ N is
a hyper-parameter of the decoding technique that trades-off quality against speed. Setting K = V
reduces to running just the fast draft model, while K = 1 results in standard SD.

Preserving target performance. We display the accuracy of judge decoding alongside the
vanilla draft and target models, as well as top-K decoding in Fig. 6 for both Llama-405B and
Llama-70B. We observe that judge decoding almost exactly preserves target performance for all

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

benchmarks, showing hence that up to ∼ 20 tokens can be accepted on average from modern draft
models without loss of quality. The simple heuristic baseline, on the other hand, is hardly able to
improve over the draft model (even for K = 5), highlighting the difficulty of the problem we address
with the learned head.

5.2 SPEED BENCHMARK

The end-to-end speed-ups achieved by SD methods improve as mainly two factors increase: (1) the
number of accepted tokens and (2) the latency gap between draft and target model. Importantly, the
latter is heavily dependent on whether or not orthogonal inference time optimizations like quantiza-
tion, model parallelism and graph/kernel optimization techniques (like torch.compile and TensorRT)
are applied. Unfortunately, prior works on SD have almost excursively relied on the user-friendly
– but un-optimized – library HuggingFace (Wolf et al., 2020) to implement their methods. Yet,
as rightfully pointed out by (Wertheimer et al., 2024), speed-ups of prior SD methods reported in
HuggingFace tend to shrink significantly when moving to optimized inference frameworks. For ex-
ample, the acceleration of Eagle on Llama-2-7B reduces from 3× to merely 1.5× when using
gpt-fast as reported in Li et al. (2024a). In fact, vanilla Llama-70B without any speculative decod-
ing achieves a higher throughput in gpt-fast than the state-of-the-art SD method Eagle-2 does on
the same model in HuggingFace (∼45 vs ∼33 tokens/s).

To offer a complete picture, we here provide latency benchmarks in both frameworks, HuggingFace
to facilitate comparison, as well as the arguably more relevant and optimized gpt-fast framework
(Pytorch-Team, 2023). If not stated otherwise, we run Llama-70B and Llama-405B on 2 and 8
Nvidia H100 GPUs respectively. Our results are summarized in Table 2.

Llama-3.1-70B. When drafting with Llama-8B for Llama-70B with batch size 1 in simple
frameworks, the latency delta between the two models is relatively small, limiting the speed-ups
of judge decoding. This is particularly evident when compared to SD methods that leverage small
LM heads as draft modules (such as Eagle-2 Li et al. (2024b) and Medusa Cai et al. (2024)).
However, in the more realistic setting of deployment within an optimized inference framework,
several latency bottlenecks (like CPU instruction and memory I/O) are alleviated, resulting in a
more pronounced latency delta between the target and draft models. Consequently, our method
effectively capitalizes on this increased latency disparity and outperforms the current state-of-the-
art by a substantial margin (see right-hand side of Table 2).

Llama-3.1-405B. Replacing the target model with the more powerful Llama-405B model sig-
nificantly increases verification latency. As a result, drafting (and accepting) longer sequences be-
comes more crucial for the overall runtime. In such settings, judge decoding shines because the
average number of accepted tokens is > 3× larger than prior works (left-hand side of Table 2). In
particular, both Medusa and Eagle-23 are limited to drafting ≤ 6 token at the time, by the num-
ber of heads and the draft tree depth respectively. Our 8B/405B-Judge, however, accepts close
to 20 tokens at a time and thereby achieves a 9.7× speed-up in HuggingFace and unprecedented 129
tokens/s in gpt-fast.

5.3 OUT-OF-DISTRIBUTION PERFORMANCE

Finally, we investigate to what degree our judge-decoding strategy extends to situations for which it
has not been trained. To this end, we filter TokenCourt by removing all coding examples, train
the verification head for Llama-405B on this reduced set and then evaluate on the coding task
HumanEval. While we do observe a drop in performance from 86.6 to 80.4%, the performance
is still significantly better than the draft model at 71.3%, indicating that the notion of “correctness”
transfers between tasks at least to some degree. Nevertheless, our approach is not a silver bullet and
to maintain target quality it is required to train the judge on data of similar nature.

3of which no 405B version exists.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 6: Benchmark results. Top: Draft Llama-8B and target Llama-70B. Bottom: Draft
Llama-8B and target Llama-405B. We show top-K decoding, standard SD for M = 10 and our
judge decoding for M = 25 (striped). Notice that our judging method preserves accuracies very
well, while top-K loses most performance.

6 CONCLUSION

In this work we have investigated the verification mechanism in speculative decoding and identified
how its focus on alignment between draft and target response leads to the rejection of objectively
correct continuations. To fully leverage the improved quality of “small” language models, we thus
proposed an adapted verification scheme that makes use of the capability of LLMs to judge responses
in a versatile way. This allows for efficiently drafting more tokens, leading to significant speedups up
to 9× on a range of benchmarks, achieving unprecedented speeds of 129 tokens/s for Llama-405B.
In the regime of many draft tokens, “small” language models shine as drafters compared to the small
modules employed in approaches like Eagle or Medusa and we believe this trend will only further
accentuate in the future. Our approach however also comes with a drawback; the mathematical
guarantee to maintain target quality is lost by relying on the judge. Through extensive experiments
we show that a well-trained judge does not lose performance on standard benchmarks and we thus
view our approach as a significant first step into this direction. On the other hand, our strategy
in its current version does not present a silver bullet; novel tasks require the careful annotation of
similar data to maintain quality, otherwise performance is lost. The small amount of data required
in our setup is nevertheless a very encouraging sign. Future work can hopefully build upon our
contributions, further improving our judge decoding strategy to enable more speedups.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,
Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dong-
dong Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang
Dai, Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit
Garg, Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao,
Russell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin
Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim,
Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden,
Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong
Luo, Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro
Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-
Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo
de Rosa, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim,
Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla,
Xia Song, Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua
Wang, Lijuan Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp
Witte, Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Ji-

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

long Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan,
Chenruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan
Zhang, and Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your
phone, 2024. URL https://arxiv.org/abs/2404.14219.

Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. Hydra: Sequentially-dependent draft heads for medusa decoding,
2024. URL https://arxiv.org/abs/2402.05109.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=76zq8Wkl6Z.

Nikhil Bhendawade, Irina Belousova, Qichen Fu, Henry Mason, Mohammad Rastegari, and Mahyar
Najibi. Speculative streaming: Fast llm inference without auxiliary models, 2024. URL https:
//arxiv.org/abs/2402.11131.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in lan-
guage models without supervision. In The Eleventh International Conference on Learning Rep-
resentations, 2023. URL https://openreview.net/forum?id=ETKGuby0hcs.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv: 2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling, 2023. URL
https://arxiv.org/abs/2302.01318.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. Sequoia: Scalable, robust, and hardware-aware speculative decoding, 2024. URL
https://arxiv.org/abs/2402.12374.

Jacob K Christopher, Brian R Bartoldson, Bhavya Kailkhura, and Ferdinando Fioretto. Speculative
diffusion decoding: Accelerating language generation through diffusion, 2024. URL https:
//arxiv.org/abs/2408.05636.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. ArXiv, abs/1803.05457, 2018. URL https://api.semanticscholar.org/
CorpusID:3922816.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Cunxiao Du, Jing Jiang, Xu Yuanchen, Jiawei Wu, Sicheng Yu, Yongqi Li, Shenggui Li, Kai Xu,
Liqiang Nie, Zhaopeng Tu, and Yang You. Glide with a caPE: A low-hassle method to accelerate
speculative decoding. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=mk8oRhox2l.

11

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2402.05109
https://openreview.net/forum?id=76zq8Wkl6Z
https://openreview.net/forum?id=76zq8Wkl6Z
https://arxiv.org/abs/2402.11131
https://arxiv.org/abs/2402.11131
https://openreview.net/forum?id=ETKGuby0hcs
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2402.12374
https://arxiv.org/abs/2408.05636
https://arxiv.org/abs/2408.05636
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=mk8oRhox2l

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vı́tor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed Aly, Beidi Chen, and
Carole-Jean Wu. LayerSkip: Enabling early exit inference and self-speculative decoding. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 12622–12642,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL https:
//aclanthology.org/2024.acl-long.681.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of LLM in-
ference using lookahead decoding. In Forty-first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?id=eDjvSFOkXw.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere, David Lopez-Paz, and Gabriel Synnaeve.
Better & faster large language models via multi-token prediction. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
pEWAcejiU2.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URL https://arxiv.org/abs/2312.00752.

Wes Gurnee and Max Tegmark. Language models represent space and time. arXiv preprint
arXiv:2310.02207, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
d7KBjmI3GmQ.

13

https://arxiv.org/abs/2407.21783
https://aclanthology.org/2024.acl-long.681
https://aclanthology.org/2024.acl-long.681
https://openreview.net/forum?id=eDjvSFOkXw
https://openreview.net/forum?id=pEWAcejiU2
https://openreview.net/forum?id=pEWAcejiU2
https://arxiv.org/abs/2312.00752
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/
2203.15556.

Kaixuan Huang, Xudong Guo, and Mengdi Wang. Specdec++: Boosting speculative decoding via
adaptive candidate lengths, 2024. URL https://arxiv.org/abs/2405.19715.

Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, and Torsten Hoefler. Data movement is
all you need: A case study on optimizing transformers. Proceedings of Machine Learning and
Systems, 3:711–732, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W. Mahoney, Amir
Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=EfMyf9MC3t.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In Proceedings of the 40th International Conference on Machine Learning, ICML’23.
JMLR.org, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. In International Conference on Machine Learning, 2024a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of language
models with dynamic draft trees, 2024b. URL https://arxiv.org/abs/2406.16858.

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng Ni, Kai Han, and Yunhe Wang. Kangaroo:
Lossless self-speculative decoding via double early exiting, 2024a. URL https://arxiv.
org/abs/2404.18911.

Jiahao Liu, Qifan Wang, Jingang Wang, and Xunliang Cai. Speculative decoding via early-exiting
for faster LLM inference with Thompson sampling control mechanism. In Lun-Wei Ku, An-
dre Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational Lin-
guistics ACL 2024, pp. 3027–3043, Bangkok, Thailand and virtual meeting, August 2024b.
Association for Computational Linguistics. URL https://aclanthology.org/2024.
findings-acl.179.

Tianyu Liu, Yun Li, Qitan Lv, Kai Liu, Jianchen Zhu, and Winston Hu. Parallel speculative decoding
with adaptive draft length, 2024c. URL https://arxiv.org/abs/2408.11850.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Stoica, Zhijie Deng, Alvin Cheung, and Hao Zhang.
Online speculative decoding. arXiv preprint arXiv:2310.07177, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language
model representations of true/false datasets. In First Conference on Language Modeling, 2024.
URL https://openreview.net/forum?id=aajyHYjjsk.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunan Shi, Zhuoming Chen, Daiyaan
Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating large language model serv-
ing with tree-based speculative inference and verification. In Proceedings of the 29th ACM

14

https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2405.19715
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=EfMyf9MC3t
https://openreview.net/forum?id=EfMyf9MC3t
https://arxiv.org/abs/2406.16858
https://arxiv.org/abs/2404.18911
https://arxiv.org/abs/2404.18911
https://aclanthology.org/2024.findings-acl.179
https://aclanthology.org/2024.findings-acl.179
https://arxiv.org/abs/2408.11850
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=aajyHYjjsk

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

International Conference on Architectural Support for Programming Languages and Operat-
ing Systems, Volume 3, ASPLOS ’24, pp. 932–949, New York, NY, USA, 2024. Association
for Computing Machinery. ISBN 9798400703867. doi: 10.1145/3620666.3651335. URL
https://doi.org/10.1145/3620666.3651335.

Giovanni Monea, Armand Joulin, and Edouard Grave. Pass: Parallel speculative sampling, 2023.
URL https://arxiv.org/abs/2311.13581.

Nvidia. Llama 3.1 performance with medusa. https://shorturl.at/IkXRC, 2024. Ac-
cessed: 2024-10-01.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt
Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman,
Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wo-
jciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng,
Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024.

15

https://doi.org/10.1145/3620666.3651335
https://arxiv.org/abs/2311.13581
https://shorturl.at/IkXRC

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5:606–624, 2023.

Pytorch-Team. gpt-fast. https://github.com/pytorch-labs/gpt-fast, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Aishwarya P S, Pranav Ajit Nair, Yashas Samaga B L, Toby James Boyd, Sanjiv Kumar, Prateek
Jain, and Praneeth Netrapalli. Tandem transformers for inference efficient LLMs. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pp. 42906–42917. PMLR, 21–27 Jul
2024. URL https://proceedings.mlr.press/v235/s24a.html.

Andrea Santilli, Silvio Severino, Emilian Postolache, Valentino Maiorca, Michele Mancusi, Ric-
cardo Marin, and Emanuele Rodola. Accelerating transformer inference for translation via par-
allel decoding. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 12336–12355, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.acl-long.689. URL https://aclanthology.org/2023.
acl-long.689.

Thijs Scheepers. Improving the compositionality of word embeddings. Master’s thesis, Universiteit
van Amsterdam, Science Park 904, Amsterdam, Netherlands, 11 2017.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q. Tran, Yi Tay, and
Donald Metzler. Confident adaptive language modeling. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=uLYc4L3C81A.

Noam Shazeer. Fast transformer decoding: One write-head is all you need, 2019. URL https:
//arxiv.org/abs/1911.02150.

Mitchell Stern, Noam M. Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep
autoregressive models. In Neural Information Processing Systems, 2018. URL https://api.
semanticscholar.org/CorpusID:53208380.

Xin Sun, Tao Ge, Furu Wei, and Houfeng Wang. Instantaneous grammatical error correction with
shallow aggressive decoding. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.),
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 5937–5947, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/
v1/2021.acl-long.462. URL https://aclanthology.org/2021.acl-long.462.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Gladys Tyen, Hassan Mansoor, Victor Cărbune, Peter Chen, and Tony Mak. Llms cannot find
reasoning errors, but can correct them given the error location, 2024. URL https://arxiv.
org/abs/2311.08516.

Dimitri von Rütte, Sotiris Anagnostidis, Gregor Bachmann, and Thomas Hofmann. A language
model’s guide through latent space. arXiv preprint arXiv:2402.14433, 2024.

Junxiong Wang, Daniele Paliotta, Avner May, Alexander M. Rush, and Tri Dao. The mamba in the
llama: Distilling and accelerating hybrid models, 2024. URL https://arxiv.org/abs/
2408.15237.

Davis Wertheimer, Joshua Rosenkranz, Thomas Parnell, Sahil Suneja, Pavithra Ranganathan, Raghu
Ganti, and Mudhakar Srivatsa. Accelerating production llms with combined token/embedding
speculators, 2024. URL https://arxiv.org/abs/2404.19124.

16

https://github.com/pytorch-labs/gpt-fast
https://proceedings.mlr.press/v235/s24a.html
https://aclanthology.org/2023.acl-long.689
https://aclanthology.org/2023.acl-long.689
https://openreview.net/forum?id=uLYc4L3C81A
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://api.semanticscholar.org/CorpusID:53208380
https://api.semanticscholar.org/CorpusID:53208380
https://aclanthology.org/2021.acl-long.462
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2311.08516
https://arxiv.org/abs/2311.08516
https://arxiv.org/abs/2408.15237
https://arxiv.org/abs/2408.15237
https://arxiv.org/abs/2404.19124

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu Wei, and Zhifang Sui. Speculative decoding:
Exploiting speculative execution for accelerating seq2seq generation. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 3909–3925, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.257. URL https://aclanthology.org/2023.
findings-emnlp.257.

Aonan Zhang, Chong Wang, Yi Wang, Xuanyu Zhang, and Yunfei Cheng. Recurrent drafter for fast
speculative decoding in large language models. arXiv preprint arXiv:2403.09919, 2024a.

Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019. URL https://
arxiv.org/abs/1910.07467.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft&
verify: Lossless large language model acceleration via self-speculative decoding. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 11263–
11282, Bangkok, Thailand, August 2024b. Association for Computational Linguistics. URL
https://aclanthology.org/2024.acl-long.607.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-bench and chatbot arena. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023. URL https:
//openreview.net/forum?id=uccHPGDlao.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh,
Sanjiv Kumar, Jean-François Kagy, and Rishabh Agarwal. Distillspec: Improving speculative
decoding via knowledge distillation. In The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/forum?id=rsY6J3ZaTF.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander
Pan, Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, Shashwat Goel, Nathaniel
Li, Michael J. Byun, Zifan Wang, Alex Troy Mallen, Steven Basart, Sanmi Koyejo, Dawn
Song, Matt Fredrikson, Zico Kolter, and Dan Hendrycks. Representation engineering: A top-
down approach to ai transparency. ArXiv, abs/2310.01405, 2023a. URL https://api.
semanticscholar.org/CorpusID:263605618.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A
top-down approach to ai transparency. arXiv preprint arXiv:2310.01405, 2023b.

17

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://aclanthology.org/2023.findings-emnlp.257
https://aclanthology.org/2023.findings-emnlp.257
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1910.07467
https://aclanthology.org/2024.acl-long.607
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=rsY6J3ZaTF
https://api.semanticscholar.org/CorpusID:263605618
https://api.semanticscholar.org/CorpusID:263605618

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A LIMITATIONS

Here we list limitations of our approach to the best of our knowledge:

• An obvious limitation is the loss of the mathematical guarantee to match target quality.
While we perform extensive experiments and show that quality is maintained, there is no
certainty for novel tasks.

• The draft model needs to be of high-quality, otherwise our approach naturally does not
prove beneficial and too many tokens end up being rejected. Self-speculation and small
drafters in the spirit of Medusa or Eagle are thus not ideal since their generations quickly
deteriorate when drafting too far into the future.

• Similarly, the target model needs to be of sufficient size to be able to provide accurate judge-
ments. Speedups for smaller models such as Llama-8B are hence tougher to achieve.

• As highlighted in the main text, new tasks do require careful annotation of data to maintain
quality. The required amount on the other hand turns out to be small in our case.

• If the draft model has safety issues, the target model could potentially accept safety-critical
tokens through the judge, even if the target would otherwise never produce such outputs.
We have not observed such issues in our experiments but have also not thoroughly investi-
gated this problem as it is beyond the scope of our work.

B ARCHITECTURAL AND EXPERIMENTAL DETAILS

B.1 LINEAR HEAD

We train our linear heads using the AdamW optimizer (Loshchilov & Hutter, 2019) with learning
rate η = 0.0001, weight decay 0.1 and batch size 128. Note that for Llama-405B, our linear head
has dimension 16, 384 while for Llama-70B it has 8, 192. Our linear head can be viewed as an
additional entry in the vocabulary V , reducing its inference overhead thus to practically zero.

B.2 JUDGE MASKING

We describe the the combination of standard and judge mask in more detail in Fig. 7. In the following

is aHarry Potter series of

is aHarry Potter series of

fantasy thrillers

fantasy thrillers

Judge
mask

written

writtenStandard
mask

is aHarry Potter series of fantasy thrillers writtenFinal
mask

Figure 7: Illustration of mask creation in judge decoding. The decision mask resulting from the
judge is combined with the standard mask from SD. Once both methods disagree, subsequent tokens
get rejected automatically as usual, even if they were individually accepted.

we will describe in more detail why it is natural to combine the masks of judge decoding and standard
speculative decoding. We illustrate this in Fig. 8. There are (rare) scenarios where a candidate token
is rejected by judge decoding (such as ”that” in the example) and the ”corrected” token according to
the target model happens to be the same token (”that” in blue). This situation could repeat; the very
next token could again be rejected by JD and accepted by the target (token ”guy” in the example).
Standard SD on the other hand would accept all those tokens as the draft exactly matches the target
suggestion. We eventually end up accepting the exact same tokens (in case of rejection we have to
trust the target), so it makes sense to combine the masks and use the SD mask to not end up repeating
the steps (in the example we combine steps 1., 2., 3. into one step on the right). In our experiments
we do not observe this situation too often, but it can occasionally occur as the judge was tuned to
rather reject than accept when in doubt to avoid false positives.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Short everything that guy has touched

that

Short everything that guy has touched

guy

Short everything that guy has touched

has

1.

2.

3.

Current
context Accepted Rejected Corrected

token

Short everything that guy has touched

Short everything that guy has touched

Short everything that guy has touched

JD Mask

JD Mask

JD Mask

JD Mask

SD Mask

Combined
Mask

Figure 8: Illustration how combining the masks of judge decoding (JD) and standard speculative
decoding (SD) results in the same reply but in less steps in the (rare) case that JD rejects a token that
is actually the target token.

B.3 HARDWARE

We run all of our experiments on a single node of H100-SXM5 GPUs. For Llama-405B we use
8 GPUs and 8-bit quantization to ensure that the model fits on a single node. For Llama-70B, we
use again 8-bit quantization but only 2 GPUs.

B.4 INDIVIDUAL SPEEDUPS PER BENCHMARK

In Table 2 we provide individual speedup numbers in HuggingFace. As observed in prior works,
HumanEval enjoys the highest speedup, followed by GSM8K and then MT-Bench.

GSM8K HUMANEVAL MT-BENCH

8B/405B-STANDARD 5.2× 5.5× 5.0×

8B/405B-JUDGE 9.8× 10.1× 9.4×

8B/70B-STANDARD 1.5× 1.7× 1.3×

8B/70B-JUDGE 2× 2.1× 1.8×

Table 2: Individual speedups over standard autoregressive decoding evaluated across several bench-
marks when using standard HuggingFace implementation for batch size 1.

C MORE PROMPTS

C.1 REJECTED REPLIES FOR LLAMA-8B

Here we provide more example prompts where Llama-8B provides completely correct answers but
gets rejected early on by the target Llama-405B. We display the decision of our judge decoding
strategy right below. To also highlight that judge decoding can catch errors and does not just blindly
accept responses, we also show prompts where Llama-8B provides a wrong response.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

User Question:

To find out how far each vehicle
traveled, we need to multiply their
speed by the time they traveled.

The bus traveled 60 miles per hour
for 5 hours, so it traveled 60 * 5 =
300 miles.

The car traveled 30 miles per hour
for 8 hours, so it traveled 30 * 8 =
240 miles.

To find out how much farther the bus
went than the car, we need to
subtract the distance the car
traveled from the distance the bus
traveled.

To find out how far each vehicle

 -8b/405b Judge Verification:

 -8b/405b Standard Verification:

A bus travels 60
miles per hour for
5 hours. A car
travels 30 miles
per hour for 8
hours. How much
farther did the
bus go than the
car, in miles?

User Question:

To find out how much each roommate
will pay per year, we need to
calculate the monthly share and then
multiply it by 12.

The monthly electricity bill is $100.
Since there are 4 roommates, we
divide the bill by 4

To find out how much each roommate
will pay per year, we need to
calculate the monthly share

 -8b/405b Standard Verification:

Jenna has 4
roommates. Each
month the
electricity bill
is $100. How much
will each roommate
pay per year for
electricity, if
they divide the
share equally?

 -8b/405b Judge Verification:

Figure 9: More example prompts for SD for Llama-8B and Llama-405B. Left: Correct response
getting rejected early under standard decoding, while judge decoding accepts a long continuation
(but admittedly over-cautiously rejects later on). Right: Wrong response that gets rejected too early
by standard decoding and correctly rejected later on by judge decoding (there are 5 roommates in
total).

User Question:

**Island of Aloha: Unveiling the
Hidden Gems of Hawaii**

As I stepped off the plane in
Honolulu, the warm tropical air
enveloped me, and the sweet scent of
plumeria filled my senses. I was
finally in Hawaii, the ultimate
paradise on earth. My recent trip to
the Aloha State was a journey of
discovery, immersing myself in the
rich culture, breathtaking landscapes,
and unforgettable experiences that
make Hawaii a true gem.

Cultural Experiences

Hawaii is a melting pot [...]

**Island of Aloha

 -8b/405b Judge Verification:

 -8b/405b Standard Verification:

User Question:

Since David has three sisters, and
each of them has one brother, that
brother is David himself. \n\nSo,
David has 1 brother.

Since David has three sisters

 -8b/405b Standard Verification:

David has three
sisters. Each of
them has one
brother. How many
brothers does
David have?

 -8b/405b Judge Verification:

Compose an engaging
travel blog post
about a recent trip
to Hawaii,
highlighting
cultural experiences
and must-see
attractions.

Figure 10: More example prompts for speculative decoding for Llama-8B and Llama-405B.
Left: Correct response getting rejected early under standard decoding, while judge decoding accepts
a long continuation (but admittedly over-cautiously rejects later on). Right: Wrong response that
gets rejected too early by standard decoding and correctly rejected later on by judge decoding (there
are 5 roommates in total).

C.2 JUDGING OF WIKIPEDA ARTICLES

Here we provide more details and examples for verifying Wikipedia articles. Given a Wikipedia
article name such as “aluminium”, “Moore’s Law” or “Pet Shop Boys”, we prompt the model for
information by asking “What can you tell me about <insert topic>?”. We then
again compare greedy matching for standard speculative decoding with our judging strategy when
using the summary part of the Wikipedia article as a reply. We display some example prompts along
with the corresponding verifications in Fig. 11.

C.3 FORCING WRONG REPLIES FOR LLAMA-405B

Here we provide some more evidence of the “correcting” behaviour of Llama-405B when condi-
tioned on wrong tokens. If the model cannot fix the response anymore, then it will often point out
that the completion it just gave is actually wrong, see e.g. examples in Fig. 12 and Fig. 13. This
again strongly suggests that correctness should thus be detectable in the embeddings of such tokens.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

User Question:

Zinc is a chemical element with symbol
and atomic number 30. It is the first

Zinc is a chemical element with symbol

What can you tell me
about "zinc"?

 Wiki/ 405b Judge Verification:

 Wiki/ 405b Standard Verification:

User Question:

Donnie Darko is a 2001 American science
fiction film written and directed by
Richard Kelly. It stars Jake Gyllenhaal,
Jena Malone, Drew Barrymore, James

Donnie Darko is a 2001 American

What can you tell me
about "Donnie
Darko"?

 Wiki/ 405b Judge Verification:

 Wiki/ 405b Standard Verification:

Figure 11: Two example prompts from the subset of wikipedia-summaries, along with the
correspond verifications.

User Question:

Write me a Python function that doubles
every element in a given list.

Assistant:

def double_elements(l):
 """Doubles every element in a list"""
 for i in range(len(l)):
 l[i] = 3 * l[i] - l[i]
 return l

User Question:

What is heavier: A kilogram of
feathers or a kilogram of stones?

Assistant:

A kilogram of stones is heavier
because... just kidding. They are
actually the same weight.

Figure 12: Left: Llama-405B corrects the mistake by subtracting l[i] to double instead of
triple. Right: Similar correction behaviour by pointing out that response so far is wrong.

User Question:

Write me a Python function that doubles
every element in a given list.

Assistant:

def double_elements(l):
 """Doubles every element in a list"""
 for i in range(len(l)):
 l[i] = 2 * l[j]
 return l

However, the above function has a bug.
Here is the corrected version [...]

User Question:

Write me a Python function that sets every odd
entry in a list to zero and appends the result to
the original unmodified list.

Assistant:

def odd_to_zero(l):
 """Set every odd entry in a list to zero and
append it to the original unmodified list"""
 copy = l
 for i in range(len(copy)):
 if copy[i] % 2 == 1:
 copy[i] = 0
 return l + copy

However, the above function will modify the
original list when it is referenced by another
variable. Here is the corrected version [...]

Figure 13: Left: Llama-405B correctly points out that there is a bug as the index variable “j”” is
not defined. Right: The model can also catch more subtle mistakes. Here the original list also gets
modified as no copy was made, leading to wrong outputs.

21

	Introduction
	Related Works
	Verification in Speculative Decoding
	Background
	Limitations of Standard Verification

	Judge Decoding
	Versatile and Accurate Verification with Token Embeddings

	Evaluation of Judge Decoding
	Performance Benchmark
	Speed Benchmark
	Out-of-distribution Performance

	Conclusion
	Limitations
	Architectural and Experimental Details
	Linear head
	Judge masking
	Hardware
	Individual speedups per benchmark

	More prompts
	Rejected replies for Llama-8B
	Judging of Wikipeda articles
	Forcing wrong replies for Llama-405B

