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Abstract

Mamba, a State Space Model (SSM) that accelerates training by recasting recurrence as a
parallel selective scan, has recently emerged as a linearly-scaling, efficient alternative to self-
attention. Because of its unidirectional nature, each state in Mamba only has information
of its previous states and is blind to states after. Current Mamba-based computer-vision
methods typically overcome this limitation by augmenting Mamba’s global forward scan
with a global backward scan, forming a bi-directional scan that restores a full receptive
field. However, this operation doubles the computational load, eroding much of the effi-
ciency advantage that originally Mamba have. To eliminate this extra scans, we introduce
LBMamba, a locally bi-directional SSM block that embeds a lightweight locally back-
ward scan inside the forward selective scan and executes it entirely in per-thread registers.
Building on LBMamba, we present LBVim, a scalable vision backbone that alternates scan
directions every two layers to recover a global receptive field without extra backward sweeps.
We validate the versatility of our approach on both natural images and whole slide images
(WSIs). We show that our LBVim constantly offers a superior performance–throughput
trade-off. That is under the same throughput, LBVim achieves 0.8% to 1.6% higher top-
1 accuracy on the ImageNet-1K classification dataset, 0.6% to 2.7 % higher mIoU on the
ADE20K semantic segmentation dataset, 0.9% higher APb and 1.1% higher APm on the
COCO detection dataset. We also integrate LBMamba into the SOTA pathology multiple
instance learning (MIL) approach, MambaMIL, which uses single directional scan. Experi-
ments on 3 public WSI classification datasets for show that our method achieves a relative
improvement of up to 3.06% better AUC, 3.39% better F1, 1.67% better accuracy.

1 Introduction

State-space models (SSMs) have emerged as a compelling alternative to self-attention for sequence modeling
because their hidden-state recurrence yields linear time and memory complexity with respect to sequence
length (Gu et al., 2021a; Wang et al., 2022). Yet, conventional SSMs trained with naïve recurrence is
still limited by slow training and inference, as they cannot leverage efficient parallelism of modern GPUs
(Baron et al., 2023). Mamba (Gu & Dao, 2023) overcomes this by decoupling the state update from the
hidden-to-output convolution and reformulating the computation as a selective parallel scan that runs ef-
ficiently on modern GPUs. Consequently, Mamba matches Transformer-level accuracy on long-range tasks
while exhibiting far better resolution wise scaling characteristics, making it an attractive choice for both
research and production systems. It was first introduced for natural-language processing and has since been
adapted to computer vision (Zhu et al., 2024; Liu et al., 2024; Huang et al., 2024). Vision models built on
Mamba’s selective-scan kernel delivers substantial GPU speed-ups and memory savings while consistently
outperforming Transformer based baselines.

Standard computer vision mamba based models scan images multiple times from different directions to
enhance their performance (Zhu et al., 2024; Liu et al., 2024; Yang et al., 2024a). There are two causes of such
multiple scans: the first one is to overcome the 1D nature of Mamba. Mamba treats an image as a flattened
1D sequence, so a single left-to-right pass captures only row-wise context. To recover vertical dependencies,
vision pipelines typically perform an additional scan on the column-wise ordering of patches, yielding two
orthogonal sweeps that together approximate 2D spatial relationship (Liu et al., 2024; Yang et al., 2024a).
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Several dedicated 2D Mamba/SSM methods have recently been proposed to address this structural mismatch
more directly (Zhang et al., 2024; Wang et al., 2024). The second issue is the unidirectional nature of SSMs:
the latent state at position t is conditioned only on past positions 1 . . . t (Gu & Dao, 2023). Consequently,
the model is blind to information occurring after position t, which often leads to sub-optimal performance
on vision tasks. A common solution is to add a reverse (right-to-left or bottom-to-top) pass to restore access
to future tokens, producing a bi-directional scan mechanism (Zhu et al., 2024). Although this strategy re-
establishes a full receptive field, each extra sweep roughly doubles the computational load, eroding much of
the efficiency advantage that originally Mamba offered.

To eliminate this extra scans required bi-directional scan, we propose LBMamba, a locally bi-directional
SSM, together with the LBVim framework for vision tasks. Our main contributions are summarized bellow.

• We introduce a local backward scan and a locally bi-directional SSM architecture that integrates the
backward update directly into Mamba’s forward scan, thereby eliminating the costly global backward
scan and markedly improving computational efficiency.

• We propose a fast hardware-aware thread-level bi-directional scanning operator that performs the
local backward scan entirely in thread-private registers, incurring no additional high-bandwidth
memory traffic or inter-thread communication.

• We validate the speed (aka throughput)-accuracy trade-off of our architecture by implementing it
on two very different domains: natural images and Giga-pixel Whole Slide Images (WSI).

We show that instead of conducting an extra backward scan, it is more beneficial to scale up the model size
under a fixed latency budget. Experiments on natural images show that LBVim achieves better performance-
throughput trade-off than the baselines. Under the same throughput, LBVim achieves 0.8% to 1.6% higher
top-1 accuracy on the ImageNet-1K classification dataset, 0.6% to 2.7 % higher mIoU on the ADE20K
semantic segmentation dataset, 0.9% higher APb and 1.1% higher APm on the COCO detection dataset. We
also integrate our scanning approach into the SOTA pathology multiple instance learning (MIL) approach,
MambaMIL ?. Extensive experiments on 3 public datasets for WSI classification and survival analysis
datasets show that our method achieves a relative improvement of up to 3.06% better AUC, 3.39% better
F1, 1.67% better accuracy.

2 Related work

State Space Model (SSM). SSM (Kalman, 1960) is an effective sequence model that represents systems
evolving over time by defining hidden states and their transitions, which makes it particularly useful for
capturing dynamic temporal behavior in sequential data. Gu et al. (2021b) unified RNNs, temporal con-
volutions, and neural differential equations with a linear state-space layer and demonstrated the potential
of SSM-based models with the HiPPO initialization. Wang et al. (2022) proposed Bi-directional Gated
SSM which is able to match BERT (Devlin et al., 2019) pretraining accuracy without attention. S4 (Gu
et al., 2021a) normalized the parameter matrices into a diagonal structure and offered an option to use
bi-directional convolution kernel. 2D-SSM (Baron et al., 2023) adopted a 2D-SSM recursion (Kung et al.,
1977) and explored scanning image in two or four directions. Similarly, S4ND (Nguyen et al., 2022) extends
S4 to images and videos by applying axis-wise updates successively along each spatial direction. Overall,
SSM architectures developed prior to Mamba were constrained by slow training efficiency because there lacks
an efficient parallel algorithm.

Mamba. Mamba (Gu & Dao, 2023) proposed a selective mechanism that makes the model parameters
input-dependent and thus allows remembering important states and discard less relevant ones, alleviating
the forgetting in long sequences. It also introduced a hardware-aware parallel scan algorithm that drastically
accelerates state computation. Hwang et al. (2024) proposed Hydra, a bi-directional Mamba model that using
generalized matrix mixers and showed a better performance than BERT. Vim (Zhu et al., 2024) and VMamba
(Liu et al., 2024) are the first two mamba based models in computer vision. Vim (Zhu et al., 2024) introduced
a Vision Mamba block that uses two independent selective SSMs for bi-directional aggregation of information
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and achieves a global receipt field. VMamba (Liu et al., 2024) introduced a pyramid Mamba network with
a 4-directional scan pattern to achieve a global receipt field and also enhance spatial understanding. It also
proposed some solution to alleviate the instability issue in half precision training. PlainMamba (Yang et al.,
2024a) also used a 4-directional selective scan and adopted a more spatially continuous scan path. 2DMmaba
(Zhang et al., 2024) introduced a 2D SSM and extends Mamba’s parallel scan algorithm into this 2D SSM. It
also use the 4-directional scan of VMamba in their natural image applications. For all of these 4-directional
scans, they are all two groups of bi-directional scans applied on two different ordering of image patches. This
bi-directional scan is now the standard approach in most mamba based vision models.

Application of Mamba in Whole Slide Images (WSI) analysis. WSIs are usually Giga-pixel images
in the pathology domain. Most slides annotated only on slide level, requiring Multi Instance Learning (MIL)
methods for WSI classification. It aggregates embedded features from a WSI for slide-level representation.
MIL approaches are usually based on some attention mechanism (Ilse et al., 2018; Lu et al., 2021; Li et al.,
2021) and self-attention mechanism (Shao et al., 2021). Recently, S4MIL (Fillioux et al., 2023) introduced S4
model to WSI analysis, which demonstrated the effectiveness of SSM in capturing long-range dependencies,
but it does not utilize the parallel scan and thus slow. Yang et al. (Yang et al., 2024b) used Mamba and a
sequence reordering mechanism to reduce overfitting and achieved even better performance. Note that these
SSM based MIL methods does not use bi-directional scan.

3 Method

We first revisit the recursions used in Mamba and existing standard bi-directional formulations. Then we
present LBMamba designed for efficiency, and an associated vision mamba framework: LBVim. Finally, we
introduce the low-level CUDA design of LBMamba.

3.1 SSM in Mamba and existing standard bi-directional SSM

The original SSM in Mamba (Gu & Dao, 2023) is a mathematical model used to capture the behavior of
continuous dynamic systems. To be integrated into deep models, it is discretized as:

hf
t = Āf hf

t−1 + B̄f xt (1)
yf

t = Cf hf
t + Df xt (2)

where xt is the input token, hf
t is the latent state at time t, yf

t is the output token, D is a parameter, Cf is the
state dimension coefficient to aggregate N state dimensions into a single output and we use the superscript
f to denote this is a forward scan instead of a backward one. In this paper, following previous conversion
(Zhu et al., 2024), "forward" and "backward" represents the scan direction rather than the forward/backward
propagation in neural network training. The parameters Āf , B̄f and C̄f are functions of the input xt, which
allows the SSM to dynamically adapt to the input context (known as the selective mechanism (Gu & Dao,
2023)). This aggregates important input into the hidden state while unimportant input can be ignored.
Mathematically, they are:

Āf
t = exp(∆tA

f ) , B̄f
t = ∆tB

f (xt) , Cf
t = Cf (xt) , ∆t = softplus(∆(xt)) (3)

where ∆, Bd, and Cd are learnable linear functions of xt. ∆t represents the time step of the discretization.
The selective mechanism in the Mamba block is commonly referred to as a selective scan.

From equation 1, we can find that the output yf
t only contains information of its previous inputs {xi|i < t}.

It is also illustrated in figure 1 left. In order to enable a global recept field, previous approaches (Zhu et al.,
2024; Liu et al., 2024; Yang et al., 2024a) commonly apply a backward scan and add them together as the
output yt (figure 1 ceneter):

hb
t = Ābhb

t+1 + B̄bxt (4)
yb

t = Cbhb
t + Dbxt (5)

yt = yf
t + yb

t (6)
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Figure 1: (Left): The unidirectional scanning mechanism of the vanilla Mamba (Gu & Dao, 2023), where each
state only has information of its previous/left states. (Center): Standard bi-directional scanning mechanism
(Zhu et al., 2024), where a dedicated backward scan is conducted and added to the forward scan. This
operation involves an additional read/write of the data and thus doubles the running time. (Right): Our
LBMamba scan conducts a locally backward scan which is integrated into the forward scan process. This
involves only one time read/write operations and thus very fast.

Note that the additional backward scan need to read/write the entire sequence with its parameters and thus
expensive. For better distinguishing with our locally bi-direction method, we refer to this scan as global
bi-direction scan.

3.2 Locally bi-directional SSM architecture

We detail the bi-directional SSM architecture, the key component of LBMamba. In contrast to the global
bi-direction scan in figure 1 center that conducts a separate backward scan from the end to the beginning of
the sequence, LBMamba conducts a local backward scan within sub-sequences (figure 1 right). This process
can be integrated into the forward scan process and thus only requires one time read/write, which saves a
lot of time.

As shown in figure 1 right, we first conduct a global forward scan as equation 1. Then we divide the input
sequence of length L into sub-sequences which all have a length of M (M=3 in the figure). M is set to the
number of elements one thread processes and we detail it section 3.4. In each of these sub-sequences, we
conduct a backward scan as that in equation 4. Specifically, the state hb

t obtained during the local backward
scan is:

hb
t =

{
Bf xt if t % M = 0
Āf hb

t+1 + B̄f xt otherwise
(7)

Since this backward scan is integrated into the forward scan, we have to reuse the same parameters as
the forward scan. We then add this backward hidden state and forward hidden state hf

t . Because the
same Bf xt is added in both forward and backward state in equation 7 and equation 1, we deduct it in the
summation. This deduction does not count for computation as we can omit it by a simple programming
trick (see Appendix A).

ht = hf
t + (hb

t − Bf xt) , yt = Cf ht + Df xt (8)

3.3 Architecture of LBVim

Building upon LBMamba, we introduce the overall architecture of LBVim. LBVim is based on Vim (Zhu
et al., 2024). As shown in figure 2, The patch embedding and position embedding follow the same design
as Vim. The embedded patches are then processed by U LBMamba encoders. We replace Vim’s global bi-
directional selective scan with our locally bidirectional variant. As LBMamba is not a global bi-directional
scan, in one encoder each token does not have a global view of the sequence. To alleviate this problem, we
reverse the feature sequence at the end of each encoder to alternate the global scan direction (forward or
backward). It allows each token to achieve a global receptive field after every two encoders.

Notably, we does not use the class token commonly used in (Dosovitskiy et al., 2020; Zhu et al., 2024), as
it underperforms in our model. Instead, we employ an Global Average Pooling (GAP) layer followed by an
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Figure 2: (Left):The overall architecture of LBVim: The input image is split into patches and are embedded
as patch tokens. These tokens, combined with positional embeddings, are fed to U LBMamba encoders.
Finally, an global average pooling (GAP) layer or a multi-head attention layer (MHA), followed by an MLP
head, predicts the image class. (Right): The architecture of LBVim encoder. We reverse the sequence in
the end of each encoder such that the global scan direction in LBMamba is switched every two consecutive
encoders, ensuring that each token achieves a global receptive field after every two encoders.

MLP for final prediction in small sized models. When the size of the model scales up, we use an Multi-Head
Attention with latent query mechanism (MHA) to aggregate features from the last LBMamba encoder:

class = MLP (softmax(qKT (ft)√
d

V (ft))) (9)

where q is a single learnable token, similar to the class token, ft are the features from the last LBMamba en-
coder, d is the dimension of features, K(·), V (·) are learnable linear functions and class is the final prediction.
Unlike the self attention mechanism, this attention only has one query and thus has linear time complexity.
We find that on larger models, MHA achieves better performance than GAP.

3.4 Hardware-aware thread-level bi-directional scanning operator

We present our hardware-aware scanning operator that accelerates LBMamba scans. We first revisit the
GPU storage hierarchy and then present our novel operator in detail.

GPU storage hierarchy. Figure 3 right illustrates the storage hierarchy of modern GPUs. The green
region denotes off-chip GPU memory, with low speed and high capacity. It is referred to as high bandwidth
memory (HBM). The orange area denotes on-chip static RAM (SRAM), with high speed but low capacity.
The blue region highlights the per-thread registers, the fastest tier yet restricted to at most 255 registers
per thread. In typical GPU algorithms, data is transferred from HBM to registers for computation, and the
results are stored back to HBM to free SRAM and registers for succeeding computation. Because registers
are private to each thread, inter-thread communication usually traverse the SRAM, which is substantially
more costly than intra-thread computation. Large-scale HBM operations are even more expensive. As a
consequence, many GPU algorithms (Dao et al., 2022; Dao, 2024), including Mamba, are bounded not by
arithmetic computation but by memory bandwidth.

Mamba’s global forward scan. Figure 3 outlines the vanilla Mamba’s global forward scan algorithm in
the blue box. Each GPU thread first fetches a tile of P sequence elements from HBM into its registers (P = 3
in the example). The thread then performs an in-register prefix scan over these P elements. We denote the
partial result by hi→j , the hidden state obtained by scanning from time step i to j. To extend the scan across
the entire sequence, threads exchange their partial results through SRAM. Specifically, thread j acquires a
prefix that represents the scan of all elements preceding its own tile. For instance, thread T2 in the figure
receives h1→3, the scan of x1 to x3. Because this step requires inter-thread communication, it is significantly
more expensive than intra-thread computation. After obtaining the prefix, each thread combines it with its
private elements, completing the global scan, and finally writes the results back to HBM. Note that both the
local scan and the prefix application traverse the same P elements, doubling the arithmetic cost relative to
a purely sequential scan. The conventional bi-directional scan defined by Eq. (4) is very expensive because
it executes two full forward scans, thereby incurring twice the HBM traffic and inter-thread communication
overhead.
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Figure 3: Our hardware-aware LBMamba CUDA operator with thread-level locally bi-directional scan. Blue
color represents operations on registers (Reg.), Orange color represents operations on SRAM and green color
represents those on HBM. Blue box shows the scanning operations by the vanilla Mamba: two threads T1
and T2 first loads 3 elements from HBM to registers. The global forward scan is then conducted as follows:
1) Each thread performs an in-register prefix scan over 3 elements. 2) Threads exchange their partial results
through SRAM to get the prefix of each thread. 3) Each thread combines its prefix with its private elements,
completing the global scan. Finally, the scanned results are write back to HBM. Red box highlights the
extra scanning operations by the LBMamba: Each thread performs an in-register backward scan over 3
elements (the same as step 1 except the direction) and add it to the forward scan results. All the extra
operations are in registers and thus it is very fast. hi→j is the the partial result, the hidden state obtained
by scanning from time step i to j.

Thread level bi-directional scan. The proposed locally bidirectional scan operator executes the backward
scan entirely within each thread, avoiding any extra synchronization. As illustrated in figure 3, we begin
with the same global forward scan used in vanilla Mamba. Before the results are written back to HBM, each
thread performs a second scan over its private tile in the reverse (backward) direction (highlighted by the red
box). This backward pass mirrors the thread scan in the forward pass but processes elements in a reversed
order. The forward and backward partial sums are then added and streamed to HBM. This backward scan
is thread level and does not need to apply prefix, reducing half the computation compared with a global
scan. Also, because the backward scan never leaves the registers, it introduces no additional HBM traffic or
inter-thread communication and is therefore extremely fast. Although this extra pass increases the overall
arithmetic workload by 27%, the running time rises by only 2% (see section 4.2).

4 Experiments

In this section, we present a series of experiments to evaluate the performance of LBVim and compare it
mainly to DeiT (Touvron et al., 2021) and Vim (Zhu et al., 2024) across various visual tasks. We also
apply LBMamba to SOTA MIL method MambaMIL and SRMambaMIL to evaluate its performance on WSI
datasets (Yang et al., 2024b). Following Mamba(Gu & Dao, 2023), we set the number of elements each
thread thread process (M) based on the sequence length L: when L > 256 (images larger than 256 × 256),
a thread processes M = 16 elements; for 128 < L ≤ 256 (images between 256 × 256 and 256 × 128), it
processes M = 8 elements; and when L ≤ 128, the workload is reduced to M = 4. All natural image models
are trained on 2/4 Nvidia A100/H100 GPUs. All throughput, GPU memory consumption and pathology
models are run and evaluated on a Nvidia Quadro RTX 8000 GPU. Other implementation details are in
Appendix.

4.1 Natural image classification

We first evaluate LBVim on the ImageNet-1K dataset (Deng et al., 2009), which contains 1.28M training
images and 50K validation images from 1,000 categories. All models are trained on the training set, and
top-1 accuracy on the validation set is reported. For fair comparisons, we follow the training setting in (Zhu
et al., 2024). To be specific, we train our models for 300 epochs using a batch size of 1,024 for tiny model and
a batch size of 512 otherwise. We use the AdamW optimizer (Loshchilov & Hutter, 2017) with a momentum
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Table 1: Top-1 accuracy (%) and throughput (images/second, de-
noted as T.P.) of LBVim variants on ImageNet-1K with 224×224
inputs. LBVim-Ti matches Vim-Ti (with global average pooling)
while delivering an 82% higher throughput. LBVim-S is only 0.7
percentage points below Vim-S yet runs 69% faster. LBVim-300
and LBVim-528 attain substantially higher accuracy than Vim-
Ti and Vim-S, respectively, at comparable throughput.

Method #Param FLOPs T.P. Top-1 acc%

DeiT-Ti 6M 1.3G - 72.2
Vim-Ti 7M 1.6G 889 76.1
Vim-Ti (GAP) 7M 1.6G 897 73.9
LBVim-Ti 6M 1.4G 1621 73.7
LBVim-300 15M 3.1G 906 77.7

DeiT-S 22M 4.6G - 79.8
Vim-S 26M 5.3G 392 80.3
LBVim-S 24M 4.9G 663 79.6
LBVim-528 44M 9.0G 398 81.1
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Figure 4: The accuracy-throughput trade-
off curve of Vim and LBVim. The curve of
LBVim consistently lies in the upper-right
quadrant relative to Vim, highlighting a
more favorable trade-off. We include the
base version of Vim to better illustrate the
trends on larger models.

of 0.9, a cosine annealing learning with an initial value of 1 × 10−3, a 5-epoch warmup period and a weight
decay of 0.05. For data augmentation, we apply standard techniques: random cropping, horizontal flipping,
label-smoothing regularization, mixup, and random erasing.

Table 1 shows our LBVim family with similar sized Vim baselines. At the tiny scale (192 feature dimension),
with out a global backward scan, LBVim-Ti delivers a 82% higher throughput than Vim-Ti and while using 1
M fewer parameters. The top-1 accuracy trails Vim-T by 2.4%, which we attribute to the current inability of
our architecture to process the class token. Comparing with Vim-Ti with global average pooling, our method
achieves comparable performance (only 0.2% lower). Moving to the small setting (384 feature dimension),
the accuracy gap narrows to 0.7% as the model capacity increases, yet throughput remains markedly (69%)
higher.

Compared with Vim, LBVim has better speed-accuracy trade-off. We introduce two intermediate model
configurations, LBVim-300 and LBVim-528. Where 300 and 528 are the dimension of features. As shown in
table 1, their throughput closely match those of Vim-T and Vim-S, but surpassing the corresponding baselines
by 1.6% and 0.8% in accuracy, respectively. As illustrated in figure 4, the accuracy–throughput curve of our
models consistently lies in the upper-right quadrant relative to Vim, highlighting a more favorable trade-off
across a wide operating range. These findings also show that instead of conducting an additional backward
scan, it is better to spend the running time on larger model dimensions.

4.2 FLOPs and speed analysis

Although LBMamba performs significant additional computations compared to vanilla Mamba, it maintains
fast processing speeds. At the CUDA-kernel level (table 2), LBMamba kernel executes 27% more floating-
point operations than the vanilla Mamba kernel for all tested resolutions. Despite this arithmetic inflation,
throughput drops by only 1.9–2.3% across all tested resolutions and the GPU memory consumption remains
unchanged. The minimal slowdown stems from the fact that the extra computations are confined to on-
chip registers, incur no thread-thread interaction, and bypass the HBM or SRAM traffic. Zooming out to
the model, LBVim-Ti, leveraging the LBMambakernel and omits the additional scan operation required
by Vim-Ti, achieves 79%-83% higher throughput, accompanied with a 19-22% reduction in GPU memory.
LBVim-300 has nearly doubled FLOPs compared with Vim-Ti but is as fast as Vim-Ti. It achieves superior
performance (section 4.1) with only 14-17% additional GPU memory. This confirms that LBVim delivers a
superior efficiency without sacrificing scalability. We show that this superior efficiency scale to training as
well (see Appendix B)
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Table 2: Comparison of floating-point operations per image (FLOPs), throughput (T.P., images or feature
maps per second), and GPU memory consumption (Mem.) during inference with a batch size of 128. Input
images are preloaded to GPU. For a fair comparison, we use global average pooling for Vim-Ti.

Image size 256× 256 512× 512 1024× 1024
Method FLOPs T.P. Mem. FLOPs T.P. Mem. FLOPs T.P. Mem.

Mamba CUDA kernel 17M 87.4K 209M 69M 14.3K 827M 277M 3.8K 3.3G
LBMamba CUDA kernel 22M 85.4K 209M 88M 14.0K 827M 352M 3.7K 3.3G

Vim-Ti 2.1G 795 755M 8.3G 162 2.9G 33.4G 42 11.0G
LBVim-Ti 1.9G 1421 608M 7.4G 296 2.2G 29.6G 77 8.6G
LBVim-300 4.1G 799 862M 16.4G 169 3.4G 65.4G 47 12.6G

4.3 Downstream tasks on natural images

We evaluate the performance of LBVim on downstream tasks, including semantic segmentation on ADE20K
dataset (Zhou et al., 2019), and object detection and instance segmentation on the COCO 2017 dataset (Lin
et al., 2014). The training framework is based on the MMSegmenation (Contributors, 2020) and MMDe-
tection (Chen et al., 2019) libraries, following (Zhu et al., 2024) in utilizing UperNet (Xiao et al., 2018)
and Cascade Mask R-CNN (Cai & Vasconcelos, 2019) as the segmentation and detection networks, respec-
tively. For a fair comparison, we add Linear layers to LBVim-300 and LBVim-528, adjusting their output
dimension to be the same as Vim-Ti and Vim-S, respectively. We find that for these two downsteam tasks,
which operates on dense features and therefore does not rely on a dedicated class token, the performance
gap between LBVim and the Vim baseline narrows markedly.

Semantic Segmentation. Table 3 left presents the mIoU results on the ADE20K dataset. The lightweight
LBVim-Ti reaches 40.2 mIoU, only 0.8% below its Vim-Ti counterpart, while LBVim-S attains 44.2 mIoU,
trailing Vim-S by 0.7%. When we modestly increase capacity to match Vim throughput, the gains become
pronounced: LBVim-300 achieves 43.7 mIoU, 2.7 % above Vim-Ti. Similarly, LBVim-528 pushes the score
to 45.5 mIoU, surpassing Vim-S by 0.6%.

Object Detection and Instance Segmentation. Table 3 right reports the average precision results the
COCO 2017 dataset. For box AP (APb), LBVim-Ti attains 45.4%, which is on par with Vim-Ti (45.7%) and
1.1% above DeiT-Ti. Mask accuracy (APm) follows the same trend: LBVim-Ti matches Vim-Ti at 39.2%
and outperforms the DeiT baseline by 1.1%. As to LBVim-300, which has similar through put as Vim-
Ti, achieves 0.9% higher APb and 1.1% higher APm. These results on segmentation and detection further
demonstrate that LBVimdelivers a more favorable accuracy–efficiency trade-off on downstream tasks.

Table 3: Left: The performance of our LBVim on the ADE20K semantic segmentation dataset. FLOPs
and and throughput (T.P.) are measured with an input size of 512 × 2048. Right: The performance of
LBVim on the COCO detection dataset (image are of size 1024×1024). APb and APm denote the average
precision for bonding boxes and masks, respectively. T.P. denotes average throughput.

Backbone #Param. FLOPs T.P. mIoU

DeiT-Ti 11M - - 39.2
Vim-Ti 13M 145G 25 41.0
LBVim-Ti 12M 141G 35 40.2
LBVim-300 21M 178G 26 43.7

DeiT-S 43M - - 41.0
Vim-S 46M 227G 15 44.9
LBVim-S 44M 219G 21 44.2
LBVim-528 65M 306G 15 45.5

Backbone #Param. APb APb
50 APb

75 APb
50 APb

m APb
l

DeiT-Ti - 44.4 63.0 47.8 26.1 47.4 61.8
Vim-Ti 66M 45.7 63.9 49.6 26.1 49.0 63.2
LBVim-Ti 66M 45.4 63.8 49.3 25.5 49.4 62.4
LBVim-300 74M 46.6 65.2 50.5 27.0 50.6 63.6
Backbone T.P. APm APm

50 APm
75 APm

50 APm
m APm

l

DeiT-Ti - 38.1 59.9 40.5 18.1 40.5 58.4
Vim-T 7.3 39.2 60.9 41.7 18.2 41.8 60.2
LBVim-Ti 7.7 39.2 60.9 41.8 17.9 42.1 60.0
LBVim-300 7.3 40.3 62.5 43.1 19.3 43.5 60.4
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Table 4: Left:The ablation study of LBMamba and the sequence reserving operation in LBVim on the
ImageNet-1k classification dataset. Right: Ablation of global average pooling (GAP) vs. multi-head atten-
tion pooling (MAP) in LBVim on the ImageNet-1k classification dataset. T.P. denotes inference throughput
(images/second).

Method T.P. Top-1 Acc%
LBVim-T 1621 73.7
w.o. LBMamba 1628 72.7
w.o. sequence reverse 1711 69.2

Model GAP MAP
T.P. Acc% T.P Acc%

LBVim-Ti 1621 73.7 1610 73.0
LBVim-300 906 77.7 901 77.3
LBVim-S 663 79.6 658 79.4
LBVim-528 401 80.0 398 81.1

4.4 Ablation study

We ablate the two principal designs in LBVim—the LBMambakernel and the sequence reversing operation on
the ImageNet-1K classification dataset. Table 4 shows that removing the LBMamba kernel (w.o. LBMamba)
lowers accuracy by 1% with negligible impact (0.4%) on throughput. The drop confirms that the locally
backward scan embedded in LBMamba improves feature propagation. On the other hand, eliminating
sequence reversing operation (w.o. sequence reverse) results in a larger accuracy degradation of 4.5%. The
sequence reversing operation alternates the scan direction of LBVim layers, granting each token a global
receptive field every two layers, and thus strengthening long-range context modeling. Without this global
receptive field, the performance drop dramatically.

We also conduct an ablation on the output aggregation scheme: global average pooling (GAP) versus multi-
head attention pooling (MAP), across four capacity levels of LBVimin table 4 right. For the tiny, 300 and
small variants, GAP delivers a 0.7%, 0.4% and 0.2% higher top-1 accuracy, respectively. It is clear that when
the model scales up in dimension, the advantage of GAP narrows. When the model scales to LBVim-528,
the MAP gains 1.1% at a negligible 0.7 % slowdown over GAP, indicating that the expressive benefit of
learned pooling emerges only when sufficient parameters are available. This size-dependent trend aligns with
prior observations that simple pooling is preferable for some compact models (Pan et al., 2021), whereas
attention-based aggregation becomes advantageous in larger models (Dosovitskiy et al., 2020).

Table 5: The comparison of accuracy (Acc), F1 and AUC on five WSI classification datasets. We conducted
each experiment five times using five different random seeds and reported their mean. The highest metrics
are marked as bold.

Method PANDA TCGA-NSCLC TCGA-BRCA
Acc F1 AUC Acc F1 AUC Acc F1 AUC

AB-MIL 0.4883 0.4269 0.7797 0.8758 0.8756 0.9572 0.9292 0.8893 0.9747
DSMIL 0.4633 0.3847 0.7660 0.8782 0.8780 0.9567 0.9375 0.8961 0.9770
CLAM 0.4802 0.4224 0.7820 0.8804 0.8803 0.9536 0.9333 0.8960 0.9753
DTFD-MIL 0.4704 0.3853 0.7665 0.8736 0.8732 0.9559 0.9271 0.8809 0.9633
TransMIL 0.4636 0.3970 0.7728 0.8850 0.8845 0.9626 0.9375 0.9028 0.9763
MambaMIL 0.4679 0.4216 0.7781 0.8758 0.8756 0.9582 0.9333 0.8939 0.9657
LBMambaMIL 0.4985 0.4499 0.7948 0.8874 0.8870 0.9582 0.9333 0.9015 0.9673
SRMambaMIL 0.4711 0.4209 0.7776 0.8850 0.8849 0.9592 0.9313 0.8900 0.9657
SRLBMambaMIL 0.5009 0.4499 0.7924 0.9035 0.9032 0.9619 0.9375 0.9042 0.9681

4.5 WSI classification

To verify LBMamba beyond natural images, we embed it into the SOTA Multiple-Instance Learning (MIL)
framework, MambaMIL and SRMambaMIL (Yang et al., 2024b), and name them LBMambaMIL and SRLB-
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MambaMIL, respectively. We evaluate them on 3 public available Whole Slide Image datasets, PANDA
(prostate grade assessment) (Bulten et al., 2022), TCGA-NSCLC (adenocarcinoma vs. squamous lung can-
cer) and TCGA-BRCA (breast invasive carcinoma sub-typing) (tcg). Dataset and training details are listed
in Appendix D and E. As shown in table 5, with an additional locally backward scan, LBMambaMIL gener-
ally performans better than MambaMIL, achieves up to 3.06% higher accuracy, up to 3.39% higher F1 and
up to 1.67% higher AUC. Similar improvement is also observed on SRMamba, SRLBMambaMIL achieves
achieves up to 2.98% higher accuracy, up to 2.90% higher F1 and up to 1.48% higher AUC, demonstrating
that the LBMamba is able to improve the performance of unidirectional scans. It also shows that our method
generalize well on Giga-pixel pathology images.

4.6 Visualization of Effective Receptive Fields.

The Effective Receptive Field (ERF) (Luo et al., 2016) refers to the region in the input space that contributes
to the activation of a specific output unit. We conduct a comparative analysis of the central pixel’s ERF
on DeiT, Vim and LBVim at tiny and small scale, both before and after training. The results presented in
figure 5 illustrate that DeiT shows global ERFs but it suffers from the quadratic complexity of self attention.
Vim shows global ERFs and LBVim also shows global ERFs, proving that LBMamba with sequence reversing
operation does not have a side effect on ERF.

Figure 5: Comparison of Effective Receptive Fields (ERF) (Luo et al., 2016) on DeiT, Vim and LBVim at
tiny and small scale. Pixels with higher intensity indicate larger responses related to the central pixel.

5 Conclusion

We proposed LBMamba, a thread-level bi-directional state-space module that marries the linear complex-
ity of Mamba with a register-resident local backward scan. The resulting LBVim backbone dispenses with
costly global reverse passes yet still attains a full receptive field by alternating scan directions across con-
secutive layers. Extensive experiments on four diverse vision tasks confirm three key findings: Efficiency:
LBMamba adds negligible runtime overhead (2%) while eliminating one full sweep, translating to up to 83%
higher throughput. Accuracy: Under equal or lower latency budgets, LBVim surpasses Vim by up to 1.6%
ImageNet top-1 accuracy, 2.7% mIoU on ADE20K, 0.9% APb and 1.1% APm gains on COCO, 1.67% in AUC
gains on WSI benchmarks. Scalability: When the size of model scales up, the accuracy–throughput Pareto
front consistently dominates global bi-directional baselines, showing a better accuracy-throughput trade-off.
Together, these advances indicate that local bi-directionality plus sequence reversing operation is sufficient
for strong global context modeling while preserving the hallmark efficiency of SSMs.

Limitation. LBMamba is less effective when a dedicated class token is appended to the sequence. We
systematically evaluated four common variants: head class token (prepended), middle class token (inserted
at the sequence midpoint), and double class token (both prepended and appended) strategy, but none of them
achieves better performance than a simple global average pooling (see Appendix C). A plausible explanation
is that the local backward scan treats the class token as an ordinary feature vector whose receptive field
is confined to its local window; this reinforces local patterns while diluting the holistic summary that the
token is meant to capture. Unifying local bi-directionality with an effective global summarization mechanism
therefore remains an open research question, and we leave a deeper investigation of this to future work.
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