
Simulating Robotics Planning Domains with PDSim and ROS

Emanuele De Pellegrin,1,2 Ronald P. A. Petrick1

Edinburgh Centre for Robotics
1Heriot-Watt University

2University of Edinburgh
Edinburgh, Scotland, United Kingdom
ed50@hw.ac.uk, R.Petrick@hw.ac.uk

Abstract

This paper describes work on the Planning Domain Simula-
tion System (PDSim) and its application to robotics. PDSim
is a plugin for the Unity game engine for visualising planning
domains and plans. PDSim’s original system design trans-
lates the output of a planner to 2D or 3D animations and ef-
fects. PDSim aims to assist users in evaluating the quality of
a plan and improve domain and problem modelling. This sys-
tem demonstration outlines the basic structure of PDSim and
how to integrate it with the Robotics Operating System (ROS)
to simulate plans in robotics domains. An example with a
robotic arm is used to showcase how to interface with ROS-
bags to be able to visualise sensors from an Internet of Things
(IoT) environment used for daily assistive living. Further-
more, the demo also shows how to interact with the robotics
PDSim API for plan repair and replanning.

Introduction
Modelling planning domains and ensuring plan accuracy can
be difficult, particularly when tackling real-world problems.
While plans may be considered valid, relying exclusively on
the output of planners may not always enable the identifi-
cation of mistakes in domain modelling that would become
apparent when represented visually, such as through a 2D
or 3D visualization (Chen et al. 2020). This is an active re-
search topic, with many approaches and tools available for
visualising plans and assisting users in understanding how
a plan is generated, in order to detect potential errors in the
modelling process (Vaquero et al. 2007; Chen et al. 2020;
Tapia, San Segundo, and Artieda 2015; Muise 2016; Le Bras
et al. 2020; Roberts et al. 2021; Shah et al. 2021).

The Planning Domain Simulation (PDSim) system
(De Pellegrin and Petrick 2022, 2023), introduced a novel
method for visualising and simulating planning problems
defined in PDDL by harnessing the framework and compo-
nents of the Unity game engine (Unity Technologies 2022)
to deliver a 3D or 2D visualisation of the planning problem.
Moreover, PDSim can make use of the inherent modularity
of the game engine to interface with the Robotics Operating
System (ROS) (Quigley et al. 2009; Maruyama, Kato, and
Azumi 2016), enabling it to simulate robotics domains and

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Unity Editor
PDSim

Frontend Backend

Protobuf
Unified

Planning
Library

Planners

Domain
&

Problem
User

ROS

Topics
& 

Services
ROS

Robotics
Packages

(Moveit, Map,
ROSbag,..)

Semantic Sensors

Figure 1: General PDSim system architecture with its three
main components: the Unity frontend, the Unified Planning
Library backend that connects to external planners, and the
ROS connection for integrating robotics packages.

Figure 2: Blocks world domain using a Niryo robot.1

use the state-of-the-art robotics libraries for motion plan-
ning, navigation, and teleoperation, among others.

Simulators are widely used in robotics applications and
can reduce the effort for the development process, letting the
user focus on functionality and evaluation of the simulation
(Echeverria et al. 2011; Koenig and Howard 2004). In par-
ticular, simulators that use game engines such as MORSE
(Echeverria et al. 2011) or Drone Sim Lab (Ganoni and
Mukundan 2017) are also prevalent in robotics applications.
A game engine offers benefits like multiple cameras to fol-
low the simulation, a physics engine, and realistic post-
processing effects with no need to implement them from
scratch (Ganoni and Mukundan 2017).



PDSim provides users with the ability to create real-world
scenes that reflect the execution environment of the plan-
ning problem, exploiting the functionality of the Unity game
engine as an enhancement to existing automated planning
tools. The key difference between PDSim and other simula-
tion tools lies in its primary focus on automated planning. In
PDSim, both the physics and animations represent changes
in the semantic state of the simulated 3D world. This unique
feature enables PDSim to serve as a tool for visualising and
inspecting plans and act as a digital twin for robotics ap-
plications that rely on planning for goal-directed decision
making. Furthermore, PDSim can be used as a simulator for
learning action models in robotics. This is achieved through
its customizable interface, which allows users to define the
simulated outcome of action effects within the virtual envi-
ronment. Additionally, by attaching virtual sensors, PDSim
enables modification of the semantic meaning of physical
interactions with the environment.

PDSim Overview
PDSim extends the Unity game engine editor (Unity Tech-
nologies 2022) and is able to use components offered by the
engine such as a path planner, lighting system, and scene
management, among others. The general PDSim architec-
ture diagram in Figure 1 shows the structure of PDSim and
its main three components: the Unity front end, the Unified
Planning Library (UPL) back end, and the ROS middleware.
The front end is responsible for handling the rendering and
for mapping planning actions and fluents to animations. The
back end runs the Unified Planning Library (UPL), a Python
library provided by the AIPlan4EU project.2 Finally, ROS
communicates with Unity to provide robot-related informa-
tion, such as joint angles, transform data, and camera feed-
back, depending on the sensors available to the robot being
simulated. Through Unity, the user can use and customise
PDSim’s ‘semantic sensors’ which can be attached to plan-
ning objects. For instance, Figure 4 shows a ray sensor that
checks if a cube is colliding with the table during planning
time by modifying the ‘on-table’ predicate if a collision oc-
curs. This is particularly useful for the simulation to provide
feedback if something goes wrong during action execution:
a user could use this information together with PDSim’s API
as input to a replanning or plan repair process.

PDSim Demo
In this system demonstration, we will present a set of simula-
tions and visualisation projects to illustrate the main features
of PDSim. In particular, the presented projects will include:
how to set up a visualisation environment starting from the
domain and problem definition and its pipeline with Unity,
how to set up a robotics simulation in PDSim for solving a
robotics planning problem, and how to use PDSim as a dig-
ital twin in an IoT assistive environment.

For example, Figure 2 shows how PDSim can use the
high-level blocks world planning domain with the low-level

1https://niryo.com/
2https://www.aiplan4eu-project.eu/

Figure 3: PDSim for real-world robotics: HSR robot (Ya-
mamoto et al. 2019) representing semantic sensor data in a
ROSbag recording can be replayed as a 3D animation.

Figure 4: A semantic sensor component attached to a plan-
ning object in Unity using a configurable ray sensor.

actions of a robotic arm to perform a pick and place task.
Figure 3 shows how PDSim’s predicate animation system
is used in a digital twin environment, where predicates are
defined as sensors in an IoT assistive daily living lab. This
example explores how to use PDSim’s semantic mapping
between a recorded ROSbag file and its Unity 3D visualisa-
tion in a real-world IoT environment.

Video example
Two video examples are available online: (1) a video show-
ing how to use PDSim to set up a visualization from the
ground up,3 and (2) a video showing the blocks world ex-
ample simulation using ROS.4

Conclusion
This paper presents an overview of the PDSim system, an
extension to the Unity game engine to simulate planning
domains and plans. This system demonstration will show-
case the main PDSim Unity interface and its integration with
ROS for robotics and automated planning simulation. The
demo will walk through all the requirements and steps re-
quired to create a simulation from scratch, and how to extend
PDSim’s capabilities by using its API to access semantic in-
formation from the simulation.

3https://drive.google.com/file/d/
1AHlcYkadRa1ndJp7sxpC2VE0OTEZh0ii/view?usp=sharing

4https://drive.google.com/file/d/
1SFz1UKWtNG1Mszs0ZDUe5CwjBapfwbm4/view?usp=sharing



References
Chen, G.; Ding, Y.; Edwards, H.; Chau, C. H.; Hou, S.; John-
son, G.; Sharukh Syed, M.; Tang, H.; Wu, Y.; Yan, Y.; Gil, T.;
and Nir, L. 2020. Planimation. ICAPS 2019 System Demon-
stration, arXiv:2008.04600.
De Pellegrin, E.; and Petrick, R. 2022. What Plan? Vir-
tual Plan Visualization with PDSim. In Proceedings of the
ICAPS 2022 Workshop on Knowledge Engineering for Plan-
ning and Scheduling (KEPS).
De Pellegrin, E.; and Petrick, R. 2023. PDSim: Planning
Domain Simulation and Animation with the Unity Game
Engine. In Proceedings of the ICAPS 2023 Workshop
on Knowledge Engineering for Planning and Scheduling
(KEPS).
Echeverria, G.; Lassabe, N.; Degroote, A.; and Lemaignan,
S. 2011. Modular open robots simulation engine: MORSE.
In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 46–51.
Ganoni, O.; and Mukundan, R. 2017. A framework for visu-
ally realistic multi-robot simulation in natural environment.
arXiv:1708.01938.
Koenig, N.; and Howard, A. 2004. Design and use
paradigms for gazebo, an open-source multi-robot simula-
tor. In Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2149–2154.
Le Bras, P.; Carreno, Y.; Lindsay, A.; Petrick, R.; and
Chantler, M. J. 2020. PlanCurves: An Interface for End-
Users to Visualise Multi-Agent Temporal Plans. In Proceed-
ings of the ICAPS 2020 Workshop on Knowledge Engineer-
ing for Planning and Scheduling (KEPS).
Maruyama, Y.; Kato, S.; and Azumi, T. 2016. Exploring
the performance of ROS2. In Proceedings of the ACM
SIGBED International Conference on Embedded Software
(EMSOFT), 1–10.
Muise, C. 2016. Planning.domains. ICAPS 2016 System
Demonstration.
Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.;
Leibs, J.; Berger, E.; Wheeler, R.; and Ng, A. 2009. ROS: an
open-source Robot Operating System. In Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA), Workshop on Open Source Robotics.
Roberts, J. O.; Mastorakis, G.; Lazaruk, B.; Franco, S.;
Stokes, A. A.; and Bernardini, S. 2021. vPlanSim: An Open
Source Graphical Interface for the Visualisation and Simula-
tion of AI Systems. In Proceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS),
486–490.
Shah, N.; Verma, P.; Angle, T.; and Srivastava, S.
2021. JEDAI: A System for Skill-Aligned Explainable
Robot Planning. AAMAS 2022 Demonstration Track,
arXiv:2111.00585.
Tapia, C.; San Segundo, P.; and Artieda, J. 2015. A PDDL-
based simulation system. In Proceedings of the IADIS Inter-
national Conference Intelligent Systems and Agents.
Unity Technologies. 2022. Unity.

Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE2.0: An Integrated Tool for Designing Plan-
ning Domains. In Proceedings of the International Confer-
ence on Automated Planning and Scheduling (ICAPS), 336–
343.
Yamamoto, T.; Terada, K.; Ochiai, A.; Saito, F.; Asahara, Y.;
and Murase, K. 2019. Development of human support robot
as the research platform of a domestic mobile manipulator.
ROBOMECH journal, 6(1): 1–15.


