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Abstract

There is an unmet need to evaluate the lan-001
guage difficulty of short, conversational pas-002
sages of text, particularly for training and fil-003
tering Large Language Models (LLMs). We004
introduce Ace-CEFR, a novel dataset compris-005
ing 890 English conversational text passages,006
each annotated with its corresponding level of007
text difficulty. We experiment with a variety008
of models on Ace-CEFR, including finetun-009
ing Transformer-based models and prompting010
LLMs. Our best model achieves accuracy sur-011
passing human experts and has latency appro-012
priate to production environments. Finally, we013
release the Ace-CEFR dataset to the public for014
further research and development.015

1 Introduction016

In the domain of language acquisition tools, a key017

capability is the measurement of the linguistic dif-018

ficulty of text. Traditionally, this has been used019

to assess a language learner’s ability by evaluat-020

ing their writing (Arnold et al., 2018; Ballier et al.,021

2019; Kerz et al., 2021). However, with the advent022

of use of Large Language Models (LLMs) for lan-023

guage learning and practice (Bonner et al., 2023;024

Kwon, 2023; Mahajan, 2022; Young and Shishido,025

2023), a novel application has arisen: adjusting026

the language output of an LLM to the ability of a027

specific learner. The goal is to maximize the user’s028

learning by keeping them in the Zone of Proximal029

Development (ZPD) (Kinginger, 2002), reducing030

the difficulty for beginners and increasing it for031

more advanced users .032

While LLMs have a degree of understanding of033

text complexity, this typically takes the form of034

text simplification, especially on long text passages035

(Cardon and Bibal, 2023; Espinosa-Zaragoza et al.,036

2023). In contrast, language learning requires expo-037

sure to short, authentic text segments (Leow, 1997),038

such as conversation. While LLMs are uniquely039

positioned to provide this, they are not typically040

trained to adjust short text output to the level of a 041

learner. 042

In order to make that adjustment, it is preferable 043

to create an automated way to measure the linguis- 044

tic difficulty of short, conversational passages of 045

text. This can be used in an LLM-driven system 046

to generate responses at a specific difficulty level. 047

In this kind of system, a difficulty model can be 048

applied at several points. The first is labeling train- 049

ing or fine-tuning data. The second is annotating 050

the LLM prompt with difficulty labels for few-shot 051

prompt engineering. The third is applying the diffi- 052

culty model to the LLM output candidates to select 053

the ones closest to the desired difficulty. An exam- 054

ple system of this kind is shown in Figure 1. It is 055

notable that these applications are a mix of offline 056

and online processing, with the latter being highly 057

sensitive to latency. 058

Figure 1: Example system diagram of LLM trained to
produce text at different levels of difficulty, with a Dif-
ficulty Annotation Model required to label text at three
points in the processing pipeline.

To be effective in this kind of system, the dif- 059

ficulty annotation model must be trained on text 060

analogous to those the LLM is generating, which 061

means short, conversational passages. 062

1.1 Summary of Contributions 063

The goal of this work is to author a new dataset, 064

identify baselines for model performance on it, and 065
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establish that it’s possible to train models applica-066

ble to practical, real-time applications. Our contri-067

butions are listed below.068

• We release a new dataset, Ace-CEFR, for069

evaluating English language difficulty. The070

dataset can be used to train models to under-071

stand the difficulty of text, as well as to train072

LLMs to generate text at specified levels, or073

for related tasks such as complex word identi-074

fication.075

• We establish baselines for performance on076

the difficulty evaluation task, for both human077

experts and machine models of different levels078

of complexity.079

• We demonstrate that it is feasible for relatively080

small models (a few million parameters) to081

achieve good accuracy on this task, with low082

latency, suitable for real-time applications.083

1.2 Related Work084

1.2.1 Datasets085

There are a number of difficulty-annotated datasets086

at the document level, on the order of hundreds of087

words in length. These include the English First088

Cambridge open language Database (EFCAMDAT)089

(Geertzen et al., 2014), the Cambridge Learner Cor-090

pus for the First Certificate in English (CLC-FCE)091

(by Lexical Computing Limited on behalf of Cam-092

bridge University Press and Assessment., 2017),093

Weebit (Rama and Vajjala, 2021), OneStopEnglish094

(Vajjala and Lučić, 2018), Newsela (Nushi and095

Fadaei, 2020), who annotated passages with var-096

ious readability measures, a dataset provided by097

Adam Montgomerie (Montgomerie, 2021) labeled098

on the CEFR scale, Wiki-Auto (Jiang et al., 2020),099

and the Sentence Corpus of Remedial English100

(SCoRE) (Chujo et al., 2015). In many cases, these101

texts are deliberately long to establish a representa-102

tive sample of a learner’s abilities (Shatz, 2020).103

However, these are too long to train LLMs to104

produce conversational responses, being hundreds105

or more words long, compared to the average turn106

length in a conversation which is approximately 10107

words (Yuan et al., 2006). We further cannot simply108

split the passages up and train models on subsec-109

tions, because while some studies presumed the110

same readability for sentences within a document111

(Collins-Thompson and Callan, 2004; Dell’Orletta112

et al., 2011; Vajjala and Meurers, 2014; Ambati113

et al., 2016), this assumption has been shown to 114

not hold (Arase et al., 2022). 115

There are a smaller number of datasets annotated 116

at the sentence level. These include Štajner et al. 117

(2017), which employed a 5-level scale to evalu- 118

ate the complexity of human-written and machine- 119

generated sentences, Brunato et al. (2018), who 120

used a 7-level scale for sentences from news arti- 121

cles in linguistic databases (McDonald et al., 2013), 122

and the CEFR-SP dataset (Arase et al., 2022) which 123

contains English sentences annotated on the Com- 124

mon European Framework of Reference (CEFR) 125

scale. 126

These shorter datasets are more closely aligned 127

to our needs, but are still challenging to use directly 128

for LLM training. The biggest obstacle is that 129

they are not representative of conversations. The 130

closest to our needs is the CEFR-SP dataset, but its 131

passages are composed of uniform, single-sentence, 132

complete-thought sentences, and do not include the 133

variations typically seen in conversations such as 134

phrases, single word responses, references to other 135

parts of the conversation, or multiple sentences. 136

Further difficulties in training models on these 137

datasets arise from unbalanced distributions of diffi- 138

culties. The datasets are typically taken either from 139

examples authored by language learners (e.g. EF- 140

CAMDAT and CLC-FCE), or sampled from natural 141

text (e.g. CEFR-SP). This results in distributions 142

that are highly skewed either toward the beginner 143

levels or toward the middle of the difficulty curve, 144

with almost no examples at high levels. This makes 145

it difficult to train models capable of a wide range 146

of evaluation. It is worth noting that, while exam- 147

ples authored by language learners are ideal for 148

evaluating learners, they are inappropriate for train- 149

ing LLMs to generate native-sounding speech. 150

For these reasons, we decided to author and an- 151

notate a novel dataset, composed deliberately of 152

short, conversational texts at a variety of levels, in- 153

cluding single words, phrases, sentences, and short 154

passages. 155

1.2.2 Modeling 156

A variety of automated models have been used for 157

the evaluation of text difficulty, typically focusing 158

on either readability, or alignment with the Com- 159

mon European Framework of Reference ((CEFR)) 160

scale, a standardized measure of language difficulty 161

for L2 learners. 162

Readability is a metric that tries to approximate 163

how easy text is to read. There are multiple de- 164
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fined metrics (Matricciani, 2023) generally focused165

on the length and complexity of sentences and166

words. Readability of text has traditionally been167

estimated by combining word length or word fre-168

quency statistics with scaled sentence length (Sten-169

ner et al., 1988; Fry, 1990; Chall and Dale, 1995),170

Petersen and Ostendorf (2009). More recent works171

show that neural network-based approaches out-172

perform statistical feature-based methods (Azpi-173

azu and Pera, 2019; Meng et al., 2020; Imperial,174

2021), (Martinc et al., 2021). Related efforts have175

focused on the word complexity aspect of readabil-176

ity specifically (Aleksandrova and Pouliot, 2023)177

(North et al., 2023).178

However, readability is only representative of179

one aspect of difficulty, and many research efforts180

focus on the CEFR scale, which evaluates multiple181

dimensions of difficulty, especially for L2 learn-182

ers. Salamoura and Saville (2010); Ishii and Tono183

(2018) explored aligning English vocabulary and184

grammar with CEFR levels. Uchida and Negishi185

(2018) experimented with automated CEFR level186

assessment at the passage level, using data from187

Cambridge English exams. Notably, Rama and Vaj-188

jala (2021) showcased the high accuracy of Bidirec-189

tional Encoder Representations from Transformers190

(BERT) (Devlin et al., 2018) in multilingual CEFR-191

level classification tasks, and Arase et al. (2022)192

developed a text CEFR level assessment model193

with BERT embeddings that performs significantly194

better than models based on superficial text fea-195

tures.196

In alignment with these efforts, we have focused197

our modeling on the CEFR scale, but applied specif-198

ically our Ace-CEFR dataset. To establish a clear199

baseline for further work, we evaluated a represen-200

tative range of models, including statistical feature201

engineering, neural networks, and LLM prompting,202

analyzing their respective characteristics.203

2 Ace-CEFR Dataset204

To address the lack of short, conversation datasets205

described in Section 1.2, we created a new dataset206

that draws from a diverse mix of sources, target-207

ing conversational texts, and labeled them in close208

collaboration with human language experts.209

The Ace-CEFR (Annotated ConvErsational210

CEFR-aligned) dataset is comprised of 890 short211

text passages in English, created specifically for212

this task, split into training (445) and test (445).213

The average length of a passage is 12 words, with214

a median of 10, aligned with typical conversation 215

turn length (Yuan et al., 2006). There are 62 pas- 216

sages composed of a single word each, and the 217

longest passage is 114 words. 218

The provenance of the dataset is a mix of sources: 219

generated by our research organization for other 220

language practice efforts (272), authored for the 221

task of difficulty labeling by English language 222

learning experts (255), generated by LLMs (198), 223

anonymized segments from conversations with 224

trusted tester language learners (101), and public 225

data from the web (64). Anonymized conversa- 226

tion segments were processed via automated tools 227

to remove potentially identifying information, and 228

then further manually inspected and rewritten to en- 229

sure privacy. Much of the dataset is selected to be 230

conversational in nature, since that is the primary 231

expected application. 232

The texts were labeled aligned with the Common 233

European Framework of Reference (CEFR) scale, 234

a standard that organizes proficiency into six lev- 235

els: A1-A2 (beginner), B1-B2 (intermediate), and 236

C1-C2. In order to include examples of all levels, 237

the dataset was labeled in batches of around 100, 238

with a sampling method adjusted with the goal of 239

a uniform distribution of levels. Although texts at 240

the C1, C2, and A1 levels are somewhat underrep- 241

resented, subsampling techniques can be utilized 242

to achieve a more balanced distribution if needed 243

(Figure 2). 244

Figure 2: Distribution of CEFR levels in the Ace-CEFR
dataset, as labeled by human expert raters. The distribu-
tion of floor(label) is A1: 131, A2/A2+: 180, B1/B1+:
169, B2/B2+: 186, C1: 107, C2: 116.

For the C1 and C2 levels, language experts cre- 245

ated examples using both advanced vocabulary 246

(e.g., “He feigned indifference.”) and colloquial 247

and idiomatic usage (e.g., “Get off your high horse 248

and lend me a hand. This house isn’t going to paint 249
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itself.”)250

2.1 Human Expert Labels251

Passages in the dataset were rated by English lan-252

guage learning experts (each with at least a Mas-253

ter’s degree in Applied Linguistics or similar, plus254

a minimum of 10 years of experience in language255

teaching, language teaching curricula and assess-256

ment development, teacher education, or research257

in the field). Labels were applied on the CEFR258

scale (CEFR): A1 through C2. By convention, the259

labels A2 through B2 include “+” variations, indi-260

cating a level higher than the baseline.261

Each text was labeled by at least two raters,262

working independently, but collaborating on a rat-263

ing guideline document to align themselves. The264

CEFR labels were applied based on the productive265

difficulty, i.e., the level at which an L2 learner can266

be expected to produce the text. When labeling267

texts composed of a single homograph, the mean-268

ing with the lowest level was chosen, as that is most269

likely to be used by a language learner.270

Ratings were then converted to numbers (A1=1,271

A2=2, A2+=2.5, B1=3, B1+=3.5, B2=4, B2+=4.5,272

C1=5, C2=6), and averaged to arrive at a consensus273

per text. In some cases, more raters were available274

and we included those in the average (112 cases).275

Figure 3: Label agreement between the two primary
expert raters. Circle sizes represent the number of texts
with each pair of labels. Significantly more disagree-
ment occurs toward the middle of the CEFR scale than
at each end.

While most human expert labels were within 1276

point of one another, 8% of the labels were fur-277

ther apart than this. Disagreements were particu- 278

lar common for intermediate CEFR levels. Rater 279

agreement is shown in Figure 3. The quadratic 280

weighted kappa (QWK) between the two primary 281

raters is 0.89, which indicates close agreement. 282

In about 5% of cases, due to differences greater 283

than 1 between individual raters, labels were ad- 284

judicated by expert raters as a group to arrive at 285

a consensus label. At the end of model training 286

for each of the Linear, BERT-based and PaLM 2-L 287

models, the worst 20 predictions from each were 288

re-adjudicated to identify potential mislabels. Re- 289

sults presented in the Experiment section (section 290

4) are on the final dataset, after all adjudication was 291

completed (123 cases of adjudication in total). 292

3 Evaluation Framework 293

We evaluated our models on predicting the labels in 294

the human-rated test set. Because of averaging be- 295

tween raters, the labels are not constrained to CEFR 296

boundaries, e.g., “I have lived here since I was 4.” 297

is labeled 2.75, meaning that it falls between the 298

A2+ and B1 CEFR labels. Our primary metric was 299

therefore chosen to be Mean Squared Error (MSE) 300

between a model’s predictions and the consensus 301

human expert label, on the 1-6 scale, meaning the 302

maximum error possible is 5, and accordingly the 303

maximum MSE is 25. 304

For a reference point, we evaluated the original 305

primary raters who collaborated on the dataset la- 306

bels. They were measured against the average of 307

all ratings other than their own (including the in- 308

dependent rater), or the adjudicated label if there 309

was one. They had MSEs of 0.47 ([0.41, 0.53]) and 310

0.54 ([0.48, 0.61]). However, since they worked 311

closely together and collaborated on adjudication, 312

this is a biased comparison point. 313

We took the independent expert labeler MSE of 314

0.75 (section 4.2) as the main target for machine 315

learning models, although ultimately we were able 316

to surpass the biased metrics of the primary raters 317

as well. 318

4 Experiment 319

4.1 Models Overview 320

We evaluated three types of models, in order from 321

simplest to most complex: a linear regression 322

model on surface language features, a custom 323

model fine-tuned off Bidirectional Encoder Rep- 324

resentations from Transformers (BERT) (Devlin 325

et al., 2018), and a Large Language Model (PaLM 326
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2-L) (Anil et al., 2023) in a few-shot setting. Fine-327

tuning an LLM was not a focus of this research due328

to its limited accessibility to many developers, but329

is a topic of interest for future investigation. As a330

comparison baseline, the test set was also rated by331

a human expert. Summary of results is in Figure 4.332

In addition to accuracy, latency is critical for333

practical consideration. Some use cases, like gen-334

erating offline training data, are relatively latency335

insensitive, but others are in the critical path, like336

integrating with an LLM for generation (Figure 1)337

or evaluating user proficiency in real time. This338

means for key applications, a model with latency339

in the 10ms to 100ms is necessary. Latency results340

summary is in Table 1.341

Table 1: Latency summary of single lookup latency av-
eraged over 100 requests. Latency is estimated within
an order of magnitude, and no effort has been made to
optimize code for speed. CPU latency was measured
on a Linux desktop Intel(R) Xeon(R) CPU E5-2690
v4 @ 2.60GHz with 128 Gb RAM. TPU latency was
measured via the Vertex API on a low-latency network
connection, querying TPU v5e accelerators. Note that
TPU execution is highly parallelizable, so amortized
batch lookup speed is substantially faster than individ-
ual lookup.

Model Type Method Latency

(One lookup)

Linear Model on Surface
Features

On-device (CPU) ∼50µs

BERT-based Model On-device (CPU) ∼100ms

BERT-based Model Via API ∼10ms

PaLM 2-L Via API ∼1s

4.2 Human Expert342

As a basis for comparison, a set of ratings was343

performed on the test set by a human expert with344

the same qualifications as the original raters. This345

expert did not previously work with the labelers of346

the dataset, but used the rating guideline as well as347

the training set labels for calibration. Their labels348

had a MSE of 0.75 (90% confidence [0.67, 0.84])349

(Figure 4 (a)).350

4.3 Linear Regression Model351

The benefit of such models is their simplicity and352

speed. The model we built can execute locally in-353

process, with latency measured in microseconds.354

The downside is that their accuracy is extremely355

limited because of a lack of understanding the text356

in any way.357

4.3.1 Features 358

There is considerable prior research on measuring 359

text difficulty, using surface features such as sen- 360

tence and word length (Khushik and Huhta, 2022) 361

or word diversity (Treffers-Daller et al., 2018). 362

While these are not encompassing metrics of text 363

complexity (Tanprasert and Kauchak, 2021), they 364

correlate strongly with difficulty. After experimen- 365

tation, we settled on the signals “average word 366

length in characters,” “average sentence length in 367

characters,” and “average sentence length in words” 368

(Figure 5). 369

The key weakness of these features is that they 370

are content agnostic. For example, “The cat is here.” 371

(A1 difficulty) and “His ire is epic.” (C1/C2 dif- 372

ficulty) have indistinguishable word and sentence 373

features. For these reasons, such approaches are 374

most effective when averaged over long texts, and 375

suffer greatly from the brevity of examples in the 376

conversational use case. 377

4.3.2 Results 378

Of the models tested, the linear model performed 379

the worst, with an MSE of 0.81 (90% confidence 380

[0.71-0.91]) (Figure 4 (b)). Typical errors relate 381

to mistaking the difficulty of a short word and sen- 382

tences comprised of short words (Table 3). It also 383

tends to overestimate the difficulty of sentences that 384

are simple in structure, but have many words, e.g., 385

“For herbal tea, we have blueberry chamomile, chai, 386

rooibos, fennel tarragon, and nettle.” is labeled at 387

3 (B1) but predicted by the model to be 5 (C1). 388

4.4 Large Language Model 389

An LLM is a natural choice for evaluating the dif- 390

ficulty of text. Such models have intrinsic under- 391

standing of language, and their training data often 392

organically include the CEFR scale (Yancey et al., 393

2023). It is possible to ask an LLM to evaluate text 394

and get a reasonable response. The downside is 395

that these models are comparatively slow (Table 1) 396

and are therefore primarily suitable for offline text 397

labeling. 398

We used the PaLM 2-L model (Anil et al., 2023), 399

a model optimized for language understanding, 400

generation, and translation tasks. We limited our- 401

selves to few-shot prompt engineering. It is likely 402

that prompt tuning or fine tuning would yield better 403

results, and this is a direction for future research. 404
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Figure 4: Summary of mean squared error for different model types and training iterations, with 90% confidence
intervals. See Section 4 for detailed results and analysis.

Figure 5: Correlation between linear model signals and label on train set. Correlations are 0.67, 0.70, and 0.35 for
average sentence length in words, average sentence length in chars, and average word length in chars, respectively.
The sentence length signals have a logarithmic relationship to the label, and correcting for that by taking ln(signal)
improves the correlations to 0.71 for length in words and 0.75 for length in chars.

4.4.1 Results405

For the initial results, we used a single prompt (A),406

populated by instructions and examples from the407

training data. Notably, because of the constraints408

of context length, we randomly sampled 64 out of409

445 training examples. This resulted in an MSE of410

0.98 (Figure 4 (c)).411

Since the limitation of the context length pre-412

vented us from using all of the training data as few-413

shot examples, we experimented with running the414

model multiple times, re-sampling the training data415

for few-shot examples, and averaging the results.416

By rerunning the model 3 times, we improved ac-417

curacy, from an MSE of 0.98 to 0.78 (Figure 4 (d)).418

Naturally, this results in proportionately increased419

latency. Further improvement is likely possible if420

more samples are taken.421

We noted that the model had significant diffi-422

culty predicting the label of single words compared423

to phrases. We hypothesized that this is because424

from the LLM’s perspective, these are very differ-425

ent tasks, and because many more of the training 426

examples are phrases (N=418) compared to single 427

words (N=27). Since the training examples are fur- 428

ther subsampled in sets of 64 to fit in the context, 429

only 3-4 single words would actually be seen by 430

the model. 431

To address this, we separated the prompts into 432

two types: one responsible for predicting the diffi- 433

culty of phrases, and another one for predicting the 434

difficulty of individual words (Appendix A). This 435

significantly improved the MSE, from 0.78 to 0.48 436

(Figure 4 (e)). 437

The final results are an MSE of 0.48 (90% confi- 438

dence [0.43, 0.54]) (Figure 4 (e)). This 0.33 better 439

than the linear model and 0.27 better than human 440

expert ratings, albeit at a significant latency cost 441

(Table 1). Unlike the linear model, there is no ob- 442

vious pattern of errors (Table 4). The opacity of 443

mistakes is a risk factor, since this can make it 444

challenging to improve the model further. 445
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4.5 BERT-based Model446

The BERT-based model builds on an existing,447

lightweight BERT encoder, which provides a448

combination of a high degree of accuracy and449

production-level latency. We fine-tuned a custom450

model by taking the first few layers of the pre-451

trained BERT-base-uncased checkpoint and adding452

a classification head. The BERT encoder is multi-453

ple orders of magnitude smaller than a typical LLM454

(millions rather than billions of parameters), but455

still comes pretrained with a degree of language un-456

derstanding and is easily fine-tuned to very specific457

tasks. It is also well-suited to learn from a larger458

teacher model, which was used during a quality459

iteration.460

4.5.1 Results461

We finetuned the BERT encoder on the 445 train-462

ing samples. We ran light hyperparameter tuning463

(on a validation set split from the training sam-464

ples) for the number of layers of the pretrained465

encoder to keep learning rate and batch size. The466

best setup retained the first 3 layers, training them467

with a learning rate of 6e− 5 at batch size 32 for468

6 epochs. The final model has 45.7M parameters469

and achieved an MSE of about 0.44 (Figure 4 (f)),470

which is substantially better than any of the other471

models.472

Unlike the linear model, which peaks in accuracy473

after a few dozen examples, and the LLM, which474

is context-constrained to accept only a few dozen475

examples, the BERT model continues to improve476

with additional training data. We therefore added477

an extra finetuning stage to the training. In the478

first stage, we labeled 10,000 examples from vari-479

ous sources with our best LLM version. We used480

those LLM-labeled examples to finetune the BERT481

model using a smaller learning rate of 2e−5. In the482

second stage, we further finetuned the model on the483

human expert rated dataset. The results improved484

significantly, from MSE 0.44 to 0.37 (Figure 4 (g)).485

The final results are an MSE of 0.37 (90% confi-486

dence [0.32, 0.41)] (Figure 4 (g)), which is a 0.38487

better than the human expert. The latency, par-488

ticularly when running on TPU (Table 1), is also489

practical enough for latency-sensitive production490

applications, making this the ideal model for most491

use cases.492

The only recurring issue we saw was that this493

model struggled with misspellings, compared to494

the LLM (with its larger vocabulary) and the Lin-495

ear Model (which has no concept of spelling). We496

did not deliberately introduce misspellings into the 497

Ace-CEFR dataset, but they arose naturally from 498

several of our sources. Ultimately, we decided 499

to correct the misspellings, because we want the 500

dataset to be usable for generative tuning, and mis- 501

takes in the input could cause an LLM to learn to 502

produce misspellings. However, this is a weakness 503

that needs to be taken into account when integrat- 504

ing into production use cases, and a spell-checker 505

may be helpful. 506

Aside from misspellings, the BERT-based 507

model’s errors were similarly opaque to the LLM 508

errors. The only significant pattern was having 509

difficulty with idiomatic sayings, like “It’s been a 510

rough spell but I’m game to try anything that might 511

help us weather this storm.” (Table 5) 512

4.6 Ensemble Models 513

It is noteworthy that while each model makes mis- 514

takes, the categories of mistakes made by different 515

models differ. This makes sense, since, for exam- 516

ple, the Linear Model has no concept of semantics, 517

whereas the BERT model has no concept of word 518

length. We therefore evaluated whether it’s possi- 519

ble to offset the errors of the different models by 520

combining them together. 521

To do so, we randomly split out 100 examples 522

from the test set to use for tuning, and used the re- 523

maining 355 examples for evaluation. We weighted 524

the models to optimize performance on the tun- 525

ing set, essentially putting a linear model over 526

them. With this approach, we were able to reduce 527

MSE from 0.36 for BERT to 0.33 when combining 528

BERT+LLM. Adding the linear model to the mix 529

did not improve results further beyond noise levels. 530

While this improvement is incremental, and 531

likely incurs too much complexity to be used in 532

production, it is helpful for establishing that fur- 533

ther improvements in accuracy are possible, and 534

this approach may be useful for creating better pre- 535

training datasets for improvements to BERT in the 536

future. 537

5 Conclusion 538

Ultimately, we were able to achieve accuracy better 539

than expert human ratings on short conversational 540

pieces of text. We are releasing the Ace-CEFR 541

dataset to the public for further iteration, and have 542

been successfully integrating the models into LLM 543

systems designed to help learners practice in an 544

authentic conversational setting. 545
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6 Limitations546

The Ace-CEFR dataset provides the ability to train547

models on conversational text, but it still has sev-548

eral limitations. It was generated from a limited549

set of sources and rated by a small cohort of ex-550

pert raters. Diversifying both the sources and the551

raters may provide significantly less biased and552

more generalized results. Additionally, the dataset553

and all the models trained on it here are limited to554

English, which does not serve populations trying555

to learn other languages. Expanding the dataset to556

other languages is possible, but would require in-557

cremental work per language unless an automated558

methodology is identified.559

Another significant limitation of these ap-560

proaches is that they rely on a single scale for dif-561

ficulty, which is not representative of the diverse562

experiences and backgrounds of learners. Partic-563

ularly impactful is the L1 of the learner, which564

greatly affects both overall learning difficulty and565

specific skill acquisition (Ellis, 1985). For exam-566

ple, because French and English have many more567

cognates than Arabic and English, an L1 speaker568

of French will likely find different areas of chal-569

lenge when learning English than an L1 speaker of570

Arabic. This makes a single scale of difficulty for571

the two learners to be imperfect for either learner.572

A more fine-grained and personalized approach to573

user challenge is going to be made possible by the574

advent of LLMs, and is a fertile ground for future575

research.576

A broader inequity inherent to automated tools577

is the unequal availability of technology to learners578

of different demographics. Access to computers579

or mobile phones is not available to everyone, and580

the demographics that have the most difficulty get-581

ting traditional second language education are also582

likely the ones who will have the least access to583

computers and mobile phones capable of access-584

ing LLM-based applications for learning. It is im-585

portant to consider how to maximize accessibility586

when building applications on top of these tech-587

nologies, for example, by making them compatible588

with entry-level consumer devices.589

7 Future Work590

The next natural step is integrating this work into591

LLM generation, using both the manually-labeled592

difficulty dataset and the automated difficulty mea-593

suring models.594

Additionally, there is considerable work to be595

done to improve the dataset, as mentioned in the 596

Limitations section, including size, diversity, and 597

scaling to non-English languages. 598

Beyond that, there’s still headroom to further im- 599

prove accuracy, as demonstrated by the ensemble 600

model experimentation. We believe that adding a 601

dictionary of average word frequency or difficulty 602

to the Linear model, such as the Global Scale of 603

English dictionary (GSE), would significantly im- 604

prove its results without sacrificing latency, though 605

it’s not expected it would surpass the language mod- 606

els. Such a dictionary could also be automatically 607

generated using the larger models. Finetuning the 608

PaLM 2-L can also be insightful to compare the 609

results against few-shot prompting. Other improve- 610

ments could be using an LLM with a longer context 611

to include more examples, and cross-training with 612

other datasets such as CEFR-SP. Further work in 613

distillation is also of great practical interest, partic- 614

ularly distilling LLM and BERT-based models into 615

smaller versions with lower latency and operational 616

costs. 617
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A LLM Prompts884

Listing 1: Prompt to Evaluate Text Difficulty for
Phrases (also initially used for words)
CEFR is a six -level scale , with each level

↪→ corresponding to a specific level of English
↪→ language proficiency. The levels are:

- A1 (1): Beginner
- A2 (2): Elementary
- B1 (3): Intermediate
- B2 (4): Upper Intermediate
- C1 (5): Advanced
- C2 (6): Proficiency

According to the CEFR scale , the proficiency level
↪→ required to use the following phrases are:

Phrase: You are welcome! -> CEFR: 1
Phrase: I wonder if there 's any treasure. -> CEFR:

↪→ 3.25
[more examples ...]
Phrase: {test_phrase} -> CEFR:

Listing 2: Prompt to Evaluate Text Difficulty for Single
Words
GSE is a six -level scale , with each level

↪→ corresponding to a specific level of English
↪→ language proficiency. The levels are:

- A1 (1): Beginner
- A2 (2): Elementary
- B1 (3): Intermediate
- B2 (4): Upper Intermediate
- C1 (5): Advanced
- C2 (6): Proficiency

According to the GSE scale , the proficiency level
↪→ required to use the following words are:

age ,1
almost ,2
[more examples ...]
{test_word},
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B Example Errors885

Tables with the worst error examples from each886

model type.887

Table 2: Human Expert Rater: worst 5 errors, labels
are 1-6 with 1 corresponding to A1 on the CEFR scale
and 6 corresponding to C2

Text Label Prediction Error

The Sumida River is one of
Japan’s biggest, and you can take
a tour on a boat and see the sights
along the river’s edges like sum-
ida aquarium, temples, and more.
The Sumida Observatory lets you
take in a birdseye view of the river
and Tokyo. Are you ready to
book your tickets?

5 2.5 -2.5

I have a nice garden with flowers,
trees, and a small pond.

3.25 1 -2.25

I like the classics over remakes. 4.75 2.5 -2.25

I see. Dulce de leche is a popu-
lar dessert in Argentina, and it is
often used as a filling for pastries
and other desserts. Empanadas
are also a popular dish in Ar-
gentina, and they can be filled
with a variety of ingredients, such
as meat, cheese, or vegetables.

5.25 3 -2.25

I’m looking to the future with
hope.

4.25 2 -2.25

Table 3: Linear Model: worst 5 errors, labels are 1-6
with 1 corresponding to A1 on the CEFR scale and 6
corresponding to C2

Text Label Prediction Error

to ascertain 6 2.4 -3.6

naive 4 1.1 -2.9

endeavor 5 2.4 -2.6

Get off your high horse and lend
me a hand. This house isn’t going
to paint itself.

6 3.6 -2.4

effervescent 6 3.6 -2.4

Table 4: PaLM 2-L: worst 5 errors, labels are 1-6 with
1 corresponding to A1 on the CEFR scale and 6 corre-
sponding to C2

Text Label Prediction Error

By perseverance. 4 1 -3

Just a couple of weeks. 1 3 2

By perseverance, just not giving
up even when things seem impos-
sible.

5.5 3.87 -1.63

The rate at which kids absorb
new information is simply aston-
ishing.

6 4.4 -1.6

Yeah, it’s quite a controversy! 4.75 3.2 -1.55

Table 5: BERT-based model: worst 5 errors, labels are
1-6 with 1 corresponding to A1 on the CEFR scale and
6 corresponding to C2

Text Label Prediction Error

hobby 1 3.23 2.23

Celery is a low calorie vegetable. 4 2.13 -1.87

I didn’t understand the noise last
night.

2.25 3.82 1.57

I am definitely leaning towards ac-
cepting it.

3.5 5.02 1.52

Get off your high horse and lend
me a hand. This house isn’t going
to paint itself.

6.0 4.55 -1.45
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