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Abstract

Understanding how neural networks align with hu-
man cognitive processes is a crucial step toward
developing more interpretable and reliable Al sys-
tems. Motivated by theories of human cognition, this
study examines the relationship between convexity in
neural network representations and human-machine
alignment based on behavioral data. We identify
a correlation between these two dimensions in pre-
trained and fine-tuned vision transformer models.
Our findings suggest that the convex regions formed
in latent spaces of neural networks to some extent
align with human-defined categories and reflect the
similarity relations humans use in cognitive tasks.
While optimizing for alignment generally enhances
convexity, increasing convexity through fine-tuning
yields inconsistent effects on alignment, which sug-
gests a complex relationship between the two. This
study presents a first step toward understanding the
relationship between the convexity of latent repre-
sentations and human-machine alignment.

1 Introduction

As machine learning models are increasingly inte-
grated into various aspects of daily life, understand-
ing and improving human-machine alignment holds
the promise of a safe, reliable and fair deployment
of these technologies, ensuring that they operate
in ways that are ethical, transparent, and benefi-
cial to society [1]. Subsequently, we see a rising
academic interest in the alignment of humans and
machine learning models [2-7], as well as the agree-
ment between different alignment measures [8, 9].
This paper explores the connection between two
quantities characterizing the structure of neural net-
work representations inspired by cognitive science:
a theory-based measure of convex regions in neu-
ral networks [10], inspired by Gérdenfors’ theory
of conceptual spaces [11], and an empirical mea-
sure of human-machine alignment based on a triplet
odd-one-out task [7].

Gardenfors’ theory posits that human cognition
can be understood in terms of geometric struc-
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Figure 1. Toy example with four potential cases of
alignment vs. convexity in representation space. Apples
and (or cars and airplanes) should have high
cosine similarity to achieve high alignment with humans.
All objects should be neighboring objects (gray connec-
tion) of the same type for high convexity. In principle,
high convexity does not necessarily imply high alignment
and vice versa. We investigate which of the scenarios
best reflects the representation structure of trained neu-
ral networks.

tures, where concepts are represented as convex
regions. Convexity is argued to assist generaliza-
tion and communication of representations between
humans [11]. Tétkova et al. [10] introduced a frame-
work to measure the convexity of conceptual regions
in neural networks and discovered pervasive convex-
ity across many data domains and models. They
find that greater convexity leads to better general-
ization, which aligns with human cognition theories.
In this work, we ask the fundamental question of
whether these convex regions align with concepts
used in human decision-making.

Human-machine alignment can be measured in
several ways [8], one of which is by comparison with
humans’ relative similarity judgments (e.g. [4, 7]).
This may involve an odd-one-out image triplet task
(" Which of three images is the most different?”)
using model representations and comparing the out-
comes with the response of humans on the same
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task [7]. We chose this alignment metric as it can be
easily evaluated for any neural network and addition-
ally, methods for increasing this form of alignment
exist [12].

We experimentally investigate the relationship be-
tween convex conceptual regions in neural network
representations and alignment with human similar-
ity judgments. We address two primary research
questions:

(1) Correlation between Convexity and
Human-Machine Alignment: To what extent are
convexity and human-machine alignment correlated
in real-world models? Figure 1 illustrates potential
scenarios of high and low levels of convexity and
alignment. In particular, high convexity does not
necessarily imply high alignment or vice versa. Yet,
in non-pathological real-world scenarios, there may
be a relationship between alignment and convexity.
We perform extensive experiments suggesting that
these two quantities are indeed correlated.

(2) Impact of Improving Human-Machine
Alignment on Convexity: Does increasing
human-machine alignment lead to increased con-
vexity? To understand whether the connection be-
tween alignment and convexity is causal, we increase
human-machine alignment by applying the latent
space transformations developed by Muttenthaler et
al. [7, 12] and examine the effect on the convexity of
conceptual regions. Additionally, we look at the ef-
fect of fine-tuning on convexity and alignment. Our
findings indicate a complex relationship, showing
an increase in convexity when optimizing pretrained
models for alignment, but inconsistent effects on
alignment during fine-tuning.

The motivation of this work is two-fold. First,
both convexity and the investigated measure of
human-machine alignment are proposed as indica-
tors of human-likeness in neural network represen-
tations. If these measures were to exhibit a strong
positive correlation, it could suggest a shared un-
derlying phenomenon that needs to be better under-
stood. This, in turn, could provide valuable insights
into how neural networks represent inputs, which
has practical implications for fields such as mech-
anistic interpretability, with the goal of enhancing
neural network robustness and safety. Conversely,
if convexity and the alignment measure show no or
a negative correlation, it might indicate that one
of these measures is a flawed indicator of human-
likeness.

Second, both convexity and the alignment mea-
sure have been shown to improve task performance in
certain contexts[10, 12]. Examining the interaction
between these two measures could reveal whether
their performance improvements can be expected to
be cumulative - suggesting that networks should be
optimized for both - or whether they stem from the
same underlying mechanism.

2 Background

In this work, we investigate the connection of two
already developed measures, namely the graph con-
vexity score [10] and the odd-one-out accuracy [7).

2.1 Graph Convexity

The graph convexity score measures the convexity
of concepts in latent spaces of neural networks [10].
It extends the common definition of convexity for
Euclidean spaces to curved manifolds and utilizes
sampled data. Graph convexity is defined as follows
[10, 13]:

Definition 1 (Graph Convexity). Let (V,E) be
a graph and A C V. A is convex if for all pairs
x,y € A, there exists a shortest path P = (z =
V0, V1, V2, « o, Up—1,Y = Uy) and Vi € {0,...,n} :
v; € A.

The graph convexity score measures the ratio of
points within the same class that constitute the
shortest path connecting any two points of the same
class. It is constructed in the following way: first,
we extract the latent representations of all data
points in a given layer (V). Then, we construct
a nearest neighbor graph (with N=10) with the
Euclidean distance measure. Next, for each pair of
data points that belong to the same class (z,y € A),
we find the shortest path (P) in the neighbor graph
and calculate the proportion of points along these
paths that belong to the same class. The average of
these proportions across all pairs is called the graph
convexity score. See Appendix A.2 for a pseudo-
code procedure for calculating the graph convexity
score.

2.2 Human-Machine Alignment

As a measure of human-machine alignment, we use
the triplet odd-one-out accuracy (OOOA) [7]. The
underlying triplet task is based on the THINGS
dataset [14], which contains images of natural ob-
jects. From this dataset, image triplets have been
sampled, and human judgments of which of each
triplet’s images is the odd one out have been col-
lected [15]. The alignment between humans and a
neural network on the THINGS triplet task is mea-
sured by how well the human-designated odd one
out can be directly identified using cosine-similarity
of the images in latent space. For this, we first
construct a similarity matrix § € R3*3 where
Si; =] ;] (|l [|z;l,), the cosine similarity
between a pair of representations, for the representa-
tions @1, 2 and x3 of images of a given triplet. We
center all representations by subtracting the mean
representation over the THINGS dataset and divide
them by the standard deviation. We identify the clos-
est pair of images in the triplet as argmax; ;<; S; ;.



The remaining image is the odd one out. The odd-
one-out accuracy is defined as the proportion of
matching responses between humans and the model.
Important to note is that the observed agreement
between humans is 67.22% and this value thus upper
bounds the expected OOOA values [15].

To improve human-machine alignment (i.e.
OOOA), we use the naive transform defined by Mut-
tenthaler et al. [12]. It affinely transforms the latent
space to maximize the alignment between human
similarity judgments and the network’s represen-
tations. This transformation consists of a square
matrix W and bias b obtained as the solution to

argmin Lgiobal (Z) + A|W||%, (1)
Wb

where Z;; = (W, + b)" (W +b) where {i,j}
index any pair of representations in the dataset.
The log-likelihood is defined as [16]:

1 & o
Latovar (2) = —— > logp ({as,ba} | {ia:fis bs}, 2).
s=1

odd-one-out prediction

(2)

Here, n is the number of triplets, and the probability
of a pair, {a,b} of the triplet {i,7,k}, being most
similar, is given by the softmax over the representa-
tion similarities in Z.

3 Methods

3.1 Data

For all experiments, we used the THINGS
dataset [14] and its attached human triplet re-
sponses [15]. The THINGS dataset consists of over
26.000 images of 1854 classes of natural objects,
which can be grouped into 27 high-level categories
(determined by human crowd-sourcing), which we
will refer to as superclasses. The dataset features
over 4.7 million human triplet odd-one-out responses,
based on one image per class.

We used the same images chosen for the triplet ex-
periment to determine the OOOA and 100 randomly
chosen images per superclass from the THINGS
dataset to determine the graph convexity score.

3.2 Models

Although convexity and human-machine alignment
are domain-independent concepts, we restricted our-
selves to vision models, as the THINGS dataset
used to measure alignment in prior work [7, 12,
17] consists of images. We compared three differ-
ent transformer-based vision models: Vision Trans-
formers (ViT) [18], Bidirectional Encoder represen-
tation from Image Transformers (BEiT) [19], and

data2vec [20]. For each model, we compared a base
and a large architecture and both in their pretrained
and fine-tuned (for ImageNet-1k [21] classification)
version.! The models consist of a feature extractor
followed by 12 or 24 transformer layers [22] with an
embedding size of 768 or 1024 respectively. While
ViTs were pretrained for classification, BEiT and
data2vec were pretrained using a self-supervised ob-
jective, where the goal was to predict masked-out
input (data2vec) or representation tokens (BEiT).
All models were pretrained on ImageNet-21k [21].

3.3 Experiments

Correlation between Convexity and Human-
Machine Alignment. To answer whether convex-
ity and human-machine alignment are related, we
perform a correlation analysis between the graph
convexity and the odd-one-out-accuracy (OOOA).
For this, we extracted the latent representations of
the images used for the triplet after each transformer
layer and measured the OOOA of the centered rep-
resentations (as described in subsection 2.2). For
the convexity analysis, we extracted the latent rep-
resentations of 100 images for each superclass of the
THINGS dataset after each transformer layer. We
averaged the convexity scores of all classes to get
one score per layer. We performed a correlation
analysis between the two scores using Pearson’s R
on a layer-wise basis across all models.

Impact of Improving Human-Machine
Alignment on Convexity. After addressing the
correlation between the human-machine alignment
and the convexity score, we ask how the optimiza-
tion of one score will influence the other. To answer
this question, we trained the naive transform de-
scribed in subsection 2.2 to increase the OOOA of
the latent representations after the first, middle, and
last transformer layers. We then applied the trans-
form to the latent representations of the remaining
images and evaluated the graph convexity of these
transformed latent representations. Furthermore,
we examined the impact of fine-tuning on both the
convexity and OOOA.

4 Results & Discussion

4.1 Correlation between Convexity
and Human-Machine Alignment

First, we examine the progression of the convexity
score and the OOOA across layers of different models
and investigate the correlation between the two.
The graph convexity increases consistently for the
first half of all evaluated models and then continues
to increase for fine-tuned models but plateaus or

LAll models were obtained from huggingface. co, for exact
models see Table A.1).
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Figure 2. Correlation between convexity and human-machine alignment for ViT [18], BEIT [19] and data2vec [20]
(all in base and large architecture, pretrained and fine-tuned (ft)) across all layers: a) Graph convexity of the
THINGS superclasses across all models. Convexity increases steadily for fine-tuned models and peaks in the
middle layers for pretrained models. Dotted line indicates the lower bound (random labeling). b) Human-machine
alignment measured by OOOA across all models. OOOA peaks in the middle layers. Dotted lines indicate the
lower bound (chance level) and upper bound (inter-human consistency level). c¢) Correlation between convexity
and OOOA for pretrained and fine-tuned models respectively. The correlation is calculated across all models per
layer (for large models we take every second layer, corresponding to the same relative position in the network as in
the small networks). There is a strong positive correlation in the first half of the model. Fine-tuned models show a

strong negative correlation in late layers.

decreases for pretrained models (Figure 2a). The
convexity is generally higher in fine-tuned models,
consistent with prior work [10]. The bell curve
pattern observed in pretrained unsupervised models
(BEiT and data2vec) may be attributed to their
training objective, which employs a reconstruction
loss. As the models learn to rebuild the masked
input data, the later layers increasingly build latent
representations akin to those in the earlier layers.
Thus, intermediate layers may be the ones with the
highest level of conceptual abstraction. A similar
phenomenon has been observed previously in speech
representation models [23-25].

The OOOA also follows a bell-shaped curve, peak-
ing around the middle layers of the model and de-
creasing again toward the end (Figure 2b). Current
human-machine alignment analyses focus mainly
on the last or penultimate layer, as this bell curve
was not observed in the supervised and contrastive
models examined in previous work [7]. Our results
suggest that the intermediate layers of the studied

vision transformer models are better aligned with
the human similarity space than the last layers. This
is in line with observations on denoising diffusion
models [17] and should motivate a careful approach
for layer selection in future research on the alignment
of neural networks. In contrast to our results on con-
vexity, the bell curve can be observed for alignment
in pretrained and fine-tuned models alike, albeit the
latter generally achieve a higher maximum OOOA.
This indicates that fine-tuning affects OOOA and
convexity differently.

The correlation between the OOOA and convexity
follows two main trends (see Figure 2c¢). In the
first half of the models, both the convexity and the
OOOA increase and are highly correlated, whereas
the correlation decreases in the second half of the
models. There is a considerable difference between
pretrained and fine-tuned models in the later layers:
for pretrained models, there is a mostly positive
correlation that increases again in the last layers,
while there is a strong negative correlation in late



layers for fine-tuned models.

In general, we observe a high correlation between
human-machine alignment (OOOA) and the convex-
ity of the 27 high-level concepts in many scenarios.
This suggests that the networks form convex regions
in their latent spaces that align with human-defined
categories, which is also consistent with the similar-
ity relations humans use to solve the triplet task.
Especially in the first half of the models, which we
interpret as the concept built-up phase, the corre-
lation is strong. For the later layers, which can
be viewed as processing the built-up concepts, e.g.
for the purpose of classification, the correlation de-
creases and even becomes negative. This potentially
indicates that the models initially learn to distin-
guish concepts, where human-like categorization and
similarity judgments are beneficial, especially in un-
supervised settings. In the subsequent phase and
during fine-tuning, the similarity between classes
seems to become less critical. For reconstruction-
based models, the reason may be that high-level
information captured during the first phase may be
decomposed into low-level features in later layers
to solve the task (i.e. pretraining objective). For
classification models, the separation of classes for
classification might not necessitate retaining the
similarity structure across concepts.

4.2 Impact of Improving Human-
Machine Alignment on Convexity

We investigate how increasing human-machine align-
ment influences convexity. Using the naive trans-
form [12], the OOOA of all models improves signifi-
cantly — on average by 13.7% for pretrained models
and by 13.0% for fine-tuned models. We find that
improving the OOOA also leads to higher convexity
of representations of the THINGS superclasses in
pretrained models; the convexity of the transformed
latent representations increases for all but one model
by on average 3.1% (see Table 1). This relation is
strongest in the last layers, but also holds in other
layers of the models (see Table A.2 and A.3 in the
appendix).

For fine-tuned models, this relation does not hold
consistently (see Table A.4-A.5 in the appendix).
For most models, convexity decreases marginally,
which is in line with the negative correlation scores
in the late layers. We hypothesize that the training
strategy (supervised vs. self-supervised) also has an
impact on the effect of alignment optimization on
convexity (preliminary results in Appendix A.4).

Increasing convexity does not necessarily lead to
higher alignment, as observed in the fine-tuned mod-
els. Although classification performance and convex-
ity increase during fine-tuning, this does not have
a consistent effect on human-machine alignment.
While fine-tuning increases OOOA for ViT, it de-

Table 1. Change in OOOA and convexity after naive
transform (transf.) in the last layer. Standard error
of the mean (SEM) for convexity £0.1. Overall, the
convexity increases when optimizing for human-machine
alignment (OOOA).

Model QOOA (%] C(.)nvexity (%]
orig. transf. | orig. transf.
ViT base 34.7 +154 | 56.5  +1.7
ViT large 34.5 +13.8 | 58.7 -1.3
BEIT base 370 +13.1 | 205  +5.0
BEiT large 37.0 +124 | 202 +4.0
data2vec base 412  +13.6 | 40.2 +3.6
data2vec large 41.8 +13.6 | 57.7 +5.7
avg. change (+std) | +13.7£1.0 | +31£25

Table 2. Change in convexity and OOOA after fine-
tuning (ft.) in the last layer. SEM for convexity +0.1.
Convexity increases significantly for all models. Changes
in OOOA are not consistent across models.

Model C(?nvexity (%] QOOA (%]
orig. ft. orig. ft.
ViT base 56.5 +16 34.7 +6.6
ViT large 58.7  4+9.6 | 345 +10.0
BEiT base 20.5 4443 | 37.0 +1.3
BEiT large 20.2 4515 | 37.0 -0.7
data2vec base 40.2  4+26.1 | 41.2 -74
data2vec large 57.7 +14.1 | 418 64

avg. change (£std) | +26.9+£17.3 | +0.58£6.9

creases OOOA for data2vec and has only a marginal
impact on OOOA for BEIT (see Table 2). This in-
dicates a complex interplay between alignment and
convexity, which potentially depends on factors such
as training objectives as we also observed above.

Another promising direction for future research is
to develop methods to increase convexity (and per-
formance) that also consider human-machine align-
ment. Positive relations between human-machine
alignment and performance/robustness have been
previously found [12, 26], although alignment is not
a sufficient condition for high performance and opti-
mizing solely for alignment can worsen performance
by unlearning properties of representations that are
not necessary to achieve high OOOA.

5 Conclusion

We presented first evidence of a relationship be-
tween convexity in neural network representations
and empirical human-machine alignment. Our find-
ings indicate a significant correlation between these
two measures in some scenarios and that the in-
tervention to promote alignment can also increase
convexity. The correlation suggests that neural net-
works form convex regions in their latent spaces that



to some extent align with human-defined categories
and reflect the similarity relations humans use in
tasks such as the odd-one-out triplet task. In the
studied models, we find the highest human-machine
alignment in the middle layers, which could help
inform future research.

We observed that optimizing for human-machine
alignment through latent space transformations not
only increases the odd-one-out accuracy (OOOA)
but can also increase the convexity of the represen-
tations. This intervention effect underscores the
potential for optimizing models to be both more
aligned with human cognition and more effective in
their performance.

Our results highlight that in the higher layers, con-
vexity and alignment can exhibit a strong positive
or a strong negative correlation. This indicates a
complex interplay between alignment and convexity
that may hinge on factors such as training objective,
architecture, or training data. Further research is
warranted to explore under which conditions con-
vexity and human-machine alignment align.

Overall, our study offers first insights into the
relationship between the convexity of latent repre-
sentations and their alignment with human similarity
judgments, further connecting cognitive science and
deep learning research. Future work should investi-
gate the causal relationships between alignment and
convexity and explore new techniques to enhance
both simultaneously, potentially leading to more
aligned and generalizing models.
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A Appendix

A.1 Implementation details
Code for the convexity analysis is avail-
able at https://github.com/LenkaTetkova/

Convexity-of-representations.

Code for the human-machine alignment analy-
sis is available at https://github.com/LukasMut/
glocal and https://vicco-group.github.io/
thingsvision/Alignment.html.

All investigated models were obtained from
huggingface.co, the exact models are in Table A.1.

We extract the representations after each trans-
former block, which have the dimensions of 768 x 197
for base models and 1024x197 for large models. For
ViT we use the first embedding patch (the cls token,
corresponding to the first row of length 768/1024),
which represents the class token of the embedding,
which is later used by the classifier head. For the
other models, we average across the rest of the patch
embeddings (resulting in a vector of length 768), as
this is used by the classifier head.

A.2 Graph convexity score procedure

Algorithm A.1 Graph Convexity Score

1: G = (V,E), N-nearest neighbor graph for V
latent space points with edges F

2: convexity_scores + ||

3: for each class A C V do

4: for each pair x,y € A,x # y do

5: if 7 shortest path between z and y then

6: path_convezity <+ 0

7 else

8: P = (v = z,v1,...,v, = y), the
shortest path in between z and y in G

9: if n =1 then

10: path_convexity < 1

11: else

12: path_convexity < w

13: end if

14: end if

15: convexity_scores.append(path_convexity)

16: end for

17: end for

18: O « > convexity_scores

|[convexity_scores
: return C

In A.1 we provide the procedure with which the
graph convexity score can be calculated.

A.3 Additional results

Figure A.1 shows the correlation between convexity
and human-machine alignment split by pretrained

and fine-tuned models, as well as by model halves.
We observe a high correlation for the first half of all
models (R=0.91), while the correlation is lower for
the second half of pretrained models (R=0.4) and
even negative for fine-tuned models (R=-0.54).

Table A.2 and Table A.3 show the change in
OOOA and convexity after optimizing the latent
space for alignment (OOOA) using the naive trans-
form [12]. The improvement in convexity after the
first and middle transformer block is not as high as
after the last transformer block (see Table 1), but
still significant, indicating a causal relation between
alignment and convexity.

Table A.4-A.6 show the change in convexity after
optimizing for OOOA. The positive relation we ob-
served for pretrained models does not hold in this
case. For most models, convexity slightly decreases
in the middle and last layer while convexity increases
in the first layer, which aligns with the negative cor-
relation scores observed in Figure A.1 for late layers
in fine-tuned models and positive correlation in early
layers.

Since the two scores explored in this paper use
different distance metrics to assess the similarity be-
tween representations (Euclidean distance in graph
convexity and cosine distance in OOOA), we explore
whether this discrepancy could influence the results.
The correlation coefficient between graph convex-
ity using Euclidean distance and cosine distance is
0.9931 (across all models and layers used in this pa-
per) and 0.9989 for OOOA. Therefore, the influence
is negligible.

A.4 Preliminary results on confound-
ing factors

When comparing the correlations between convexity
and alignment on a model basis, there is a notable
difference between self-supervised models (BEiT,
data2vec) and supervised models (ViT, all fine-tuned
models). Self-supervised models show a very high
correlation, which decreases drastically with fine-
tuning (see Table A.7), while the correlation is lower
but stable for the supervised model (ViT). While
this hints at a complex relationship, a large-scale
study is needed to provide clear conclusions on the
role of the objective function.

Generally, we hypothesize that there are multiple
factors that could potentially mediate the relation-
ship of human-machine alignment convexity. While
we can currently only offer speculations, we hope
to provide directions for future work. Pretrain-
ing objective: It has been suggested in prior work
that training objective plays a significant role in de-
termining the human-machine alignment of neural
network [7]. A larger-scale study would be necessary
to systematically gauge how the training objective
influences the relationship between convexity and
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alignment. We hypothesize that at least the layer
where each metric peaks could be affected. Mod-
els trained with multi-modal objectives would be
another interesting model type to explore, since tex-
tual supervision may encourage the formation of
conceptual regions. Fine-tuning: Fine-tuning is of
high practical relevance, given the proliferation of
publicly available foundation models. The effect of
fine-tuning specifically on human alignment and con-
vexity metrics is as of yet underexplored. Potentially,
fine-tuning a model pretrained on a self-supervised
task using a supervised objective could exhibit prop-
erties on the interpolation between the two. Weight
initialization: While prior work on alignment and
convexity analyzes trends across larger model sets
(e.g. [7, 10]), the extent to which parameter initial-
ization affects the learned representations’ alignment
or convexity has not been determined and could be
an interesting direction of future research. Training
dataset size: All models evaluated in this work
have been trained on ImageNet-1k or ImageNet-21k.
It may be that the size or diversity of these datasets
is not large enough to enable the accurate learning
of human-like concepts. Future work could provide
an analysis of the effect of training dataset size on
the relationship of convexity and alignment to elu-
cidate whether ImageNet variants are sufficient to
properly learn the evaluated concepts. Overall, we
believe that our work provides a promising starting
point for future lines of investigation that may lead
to a more integrated view on the human-likeness of
neural network representations.
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Figure A.1. Correlation of OOOA and convexity across
models. High correlation in the first half of models
(0.91). Lower and even negative correlation in the second
half for pretrained (0.4) and fine-tuned models (-0.54)
respectively.

Table A.1. hugginface.co version of all analyzed
models.

Model | huggingface model

data2vec base facebook /data2vec-vision-base

data2vec ft facebook/data2vec-vision-base-ft 1k

data2vec large facebook/data2vec-vision-base

data2vec large ft | facebook/data2vec-vision-base-ft1k

ViT base google/vit-base-patch16-224-in21k

ViT base ft google/vit-base-patch16-224

ViT large google/vit-large-patch16-224-in21k

ViT large ft google/vit-large-patch16-224

BEiT base microsoft/beit-base-patch16-224-pt22k

BEiT base ft microsoft/beit-base-patch16-224-pt22k-{t22k

BEIT large microsoft/beit-large-patch16-224-pt22k

BEIT large ft microsoft/beit-large-patch16-224-pt22k-ft22k

Table A.2. Change in OOOA and convexity after naive
transform (first layer). SEM for convexity +0.1.

Model QOOA [%] anvexity (%]
orig. transf. | orig. transf.
ViT base 381 +39 | 136 +1.7
ViT large 38.0 +43 | 12.3 427
BEiT base 369 +6.0 | 143 432
BEiT large 36.6 +29 | 106 +2.1
data2vec base 379 +6.3 19.3 -0.7
data2vec large 376  +6.2 17.6 +1.0
avg. change (+std) | +4.9+14 | +1.7+£14

Table A.3. Change in OOOA and convexity after naive
transform (middle layer). SEM for convexity +0.1.

Model QOOA [%] Canemty (%]
orig. transf. | orig. transf.
ViT base 444 439 | 409 -1.9
ViT large 433  +8.1 | 414 +0
BEiT base 41.8 +10.8 | 39.6  +1.5
BEIiT large 44.5 +10.2 | 48.8 +1.5
data2vec base 414  +124 | 37.2 +4.2
data2vec large 425  +12.3 | 52.2 -3
avg. change (+std) | +9.7£3.2 | +04+26

Table A.4. Change in OOOA and convexity after naive
transform for fine-tuned models (last layer). SEM for
convexity £0.1.

Model QOOA (%] anvex1ty (%]
orig. trans. | orig. trans.
ViT base 41.3 +11.0 | 72.5 -4.4
ViT large 44.6  +7.0 | 68.3 -2.3
BEiT base 38.4  +14.7 | 64.8 0.8
BEiT large 36.3 +15.8 | 71.7 -8.1
data2vec base 33.7 +19.2 | 66.3 0.4
data2vec large 353 +17.2 | 71.8 -1.7
avg. change (£std) | +14.1+44 | -25+£33
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Table A.5. Change in OOOA and convexity after naive
transform for fine-tuned models (first layer). SEM for

convexity +0.1.

Model QOOA (%] Canemty (%]
orig. trans. | orlig. trans.
ViT base 38.0 +4.0 | 134 +2
ViT large 377 +43 | 120 428
BEiT base 373 +46.1 | 154  +26
BEIT large 36.8 +3.0 | 104 +2.0
data2vec base 384 +46.6 | 20.7 -1.0
data2vec large 376 +46.0 | 174 +0.9
avg. change (+std) | +5.0+14 | +1.5+14

Table A.6. Change in OOOA and convexity after naive
transform for fine-tuned models (middle layer). SEM for

convexity £0.1.

Model QOOA (%] C(.)nvexity (%]
orig. trans. | orig. trans.
ViT base 446  +8.5 | 415 -1.8
ViT large 434 +78 | 419 -1.3
BEiT base 44.0 +9.9 47.8 -1.2
BEIT large 474 +75 | 564 -5
data2vec base 45.5 +9.3 51 -0.8
data2vec large 42.7 4+ 11.5 | 52.3 -3.4
avg. change (+std) | +9.1+14 | -22+1.6

Table A.7. Correlation scores between OOOA and
convexity on a model basis.

Model pretrained finetuned
base large | base large
ViT 0.68 0.62 | 0.67 0.63
BEiT 0.99 0.98 | 0.70 0.46
data2vec | 0.98 0.95 | 044 0.27
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