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Abstract
Minimizing the difference of two submodular
(DS) functions is a problem that naturally occurs
in various machine learning problems. Although
it is well known that a DS problem can be equiva-
lently formulated as the minimization of the dif-
ference of two convex (DC) functions, existing
algorithms do not fully exploit this connection.
A classical algorithm for DC problems is called
the DC algorithm (DCA). We introduce variants
of DCA and its complete form (CDCA) that we
apply to the DC program corresponding to DS
minimization. We extend existing convergence
properties of DCA, and connect them to conver-
gence properties on the DS problem. Our results
on DCA match the theoretical guarantees satis-
fied by existing DS algorithms, while providing
a more complete characterization of convergence
properties. In the case of CDCA, we obtain a
stronger local minimality guarantee. Our numeri-
cal results show that our proposed algorithms out-
perform existing baselines on two applications:
speech corpus selection and feature selection.

1. Introduction
We study the difference of submodular (DS) functions mini-
mization problem

min
X⊆V

F (X) := G(X)−H(X), (1)

where G and H are normalized submodular functions (see
Section 2 for definitions). We denote the minimum of (1)
by F ?. Submodular functions are set functions that satisfy
a diminishing returns property, which naturally occurs in
a variety of machine learning applications. Many of these
applications involve DS minimization, such as feature selec-
tion, probabilistic inference (Iyer & Bilmes, 2012), learning
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discriminatively structured graphical models (Narasimhan
& Bilmes, 2005), and learning decision rule sets (Yang
et al., 2021). In fact, this problem is ubiquitous as any set
function can be expressed as a DS function, though finding
a DS decomposition has exponential complexity in general
(Narasimhan & Bilmes, 2005; Iyer & Bilmes, 2012).

Unlike submodular functions which can be minimized in
polynomial time, minimizing DS functions up to any con-
stant factor multiplicative approximation requires exponen-
tial time, and obtaining any positive polynomial time com-
putable multiplicative approximation is NP-Hard (Iyer &
Bilmes, 2012, Theorems 5.1 and 5.2). Even finding a lo-
cal minimum (see Definition 2.1) of DS functions is PLS
complete (Iyer & Bilmes, 2012, Section 5.3).

DS minimization was first studied in (Narasimhan & Bilmes,
2005), who proposed the submodular-supermodular (Sub-
Sup) procedure; an algorithm inspired by the convex-
concave procedure (Yuille & Rangarajan, 2001), which
monotonically reduces the objective function at every step
and converges to a local minimum. Iyer & Bilmes (2012) ex-
tended the work of (Narasimhan & Bilmes, 2005) by propos-
ing two other algorithms, the supermodular-submodular
(SupSub) and the modular-modular (ModMod) procedures,
which have lower per-iteration cost than the SubSup method,
while satisfying the same theoretical guarantees.

The DS problem can be equivalently formulated as a dif-
ference of convex (DC) functions minimization problem
(see Section 2). DC programs are well studied problems
for which a classical popular algorithm is the DC algorithm
(DCA) (Pham Dinh & Le Thi, 1997; Pham Dinh & Souad,
1988). DCA has been successfully applied to a wide range of
non-convex optimization problems, and several algorithms
can be viewed as special cases of it, such as the convex-
concave procedure, the expectation-maximization (Demp-
ster et al., 1977), and the iterative shrinkage-thresholding al-
gorithm (Chambolle et al., 1998); see (Le Thi & Pham Dinh,
2018) for an extensive survey on DCA.

Existing DS algorithms, while inspired by DCA, do not
fully exploit this connection to DC programming. In this
paper, we apply DCA and its complete form (CDCA) to the
DC program equivalent to the DS problem. We establish
new connections between the two problems which allow
us to leverage convergence properties of DCA to obtain
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theoretical guarantees on the DS problem that match ones
by existing methods, and stronger ones when using CDCA.
In particular, our key contributions are:

• We show that a special instance of DCA and CDCA,
where iterates are integral, monotonically decreases
the DS function value at every iteration, and converges
with rate O(1/k) to a local minimum and strong lo-
cal minimum (see Definition 2.1) of the DS problem,
respectively. DCA reduces to SubSup in this case.

• We introduce variants of DCA and CDCA, where iter-
ates are rounded at each iteration, which allow us to
add regularization. We extend the convergence proper-
ties of DCA and CDCA to these variants.

• CDCA requires solving a concave minimization sub-
problem at each iteration. We show how to efficiently
obtain an approximate stationary point of this subprob-
lem using the Frank-Wolfe (FW) algorithm.

• We study the effect of adding regularization both theo-
retically and empirically.

• We demonstrate that our proposed methods outper-
form existing baselines empirically on two applica-
tions: speech corpus selection and feature selection.

1.1. Additional related work

An accelerated variant of DCA (ADCA) which incorporates
Nesterov’s acceleration into DCA was presented in (Nhat
et al., 2018). We investigate the effect of acceleration in
our experiments (Section 5). Kawahara & Washio (2011)
proposed an exact branch-and-bound algorithm for DS min-
imization, which has exponential time-complexity. Maehara
& Murota (2015) proposed a discrete analogue of the contin-
uous DCA for minimizing the difference of discrete convex
functions, of which DS minimization is a special case, where
the proposed algorithm reduces to SubSup. Several works
studied a special case of the DS problem where G is modu-
lar (Sviridenko et al., 2017; Feldman, 2019; Harshaw et al.,
2019), or approximately modular (Perrault et al., 2021),
providing approximation guarantees based on greedy algo-
rithms. El Halabi & Jegelka (2020) provided approximation
guarantees to the related problem of minimizing the differ-
ence between an approximately submodular function and
an approximately supermodular function. In this work we
focus on general DS minimization, we discuss some impli-
cations of our results to certain special cases in Appendix H.

2. Preliminaries
We begin by introducing our notation and relevant back-
ground on DS and DC minimization.

Notation: Given a ground set V = {1, · · · , d} and a
set function F : 2V → R, we denote the marginal gain
of adding an element i to a set X ⊆ V by F (i|X) =
F (X ∪ {i}) − F (X). The indicator vector 1X ∈ Rd
is the vector whose i-th entry is 1 if i ∈ X and 0 other-
wise. Let Sd denote the set of permutations on V . Given
σ ∈ Sd, set Sσk := {σ(1), · · · , σ(k)}, with Sσ0 = ∅.
The symmetric difference of two sets X,Y is denoted by
X∆Y = (X \ Y ) ∪ (Y \X). Denote by Γ0 the set of all
proper lower semicontinuous convex functions on Rd. We
write R for R ∪ {+∞}. Given a set C ⊆ Rd, δC denotes
the indicator function of C taking value 0 on C and +∞
outside it. Throughout, ‖ · ‖ denotes the `2-norm.

DS minimization A set function F is normalized if
F (∅) = 0 and non-decreasing if F (X) ≤ F (Y ) for all
X ⊆ Y . F is submodular if it has diminishing marginal
gains: F (i | X) ≥ F (i | Y ) for all X ⊆ Y , i ∈ V \ Y , su-
permodular if −F is submodular, and modular if it is both
submodular and supermodular. Given a vector x ∈ Rd, x de-
fines a modular set function as x(A) =

∑
i∈A xi. Note that

minimizing the difference between two submodular func-
tions is equivalent to maximizing the difference between
two submodular functions, and minimizing or maximizing
the difference of two supermodular functions.

Given the inapproximability of Problem (1), we are inter-
ested in obtaining approximate local minimizers.

Definition 2.1. Given ε ≥ 0, a set X ⊆ V is an ε-local
minimum of F if F (X) ≤ F (X ∪ i) + ε for all i ∈ V \X
and F (X) ≤ F (X \ i) + ε for all i ∈ X . Moreover, X
is an ε-strong local minimum of F if F (X) ≤ F (Y ) +
ε for all Y ⊆ X and all Y ⊇ X .

In Appendix H, we show that if F is submodular then
any ε-strong local minimum X̂ of F is also an ε-global
minimum, i.e., F (X̂) ≤ F ? + ε. It was also shown
in (Feige et al., 2011, Theorem 3.4) that if F is super-
modular then any ε-strong local minimum X̂ satisfies
min{F (X̂), F (V \ X̂)} ≤ 1

3F
? + 2

3ε. We further show
relaxed versions of these properties for approximately sub-
modular and supermodular functions in Appendix H. More-
over, the two notions of approximate local minimality are
similar if F is supermodular: any ε-local minimum of F is
also an εd-strong local minimum of F (Feige et al., 2011,
Lemma 3.3). However, in general, a local miniumum can
have an arbitrarily worse objective value than any strong
local minimum, as illustrated in Example G.2.

Minimizing a set function F is equivalent to minimizing
a continuous extension of F called the Lovász extension
(Lovász, 1983) on the hypercube [0, 1]d .

Definition 2.2 (Lovász extension). Given a normalized set
function F , its Lovász extension fL : Rd → R is defined
as follows: Given x ∈ Rd and σ ∈ Sd, with xσ(1) ≥ · · · ≥
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xσ(d), fL(x) :=
∑d
k=1 xσ(k)F (σ(k) | Sσk−1).

We make use of the following well known properties of the
Lovász extension; see e.g. (Bach, 2013) and (Jegelka &
Bilmes, 2011, Lemma 1) for item g.

Proposition 2.3. For a normalized set function F , we have:

a) For all X ⊆ V, F (X) = fL(1X).

b) If F = G−H , then fL = gL − hL.

c) minX⊆V F (X) = minx∈[0,1]d fL(x).

d) Rounding: Given x ∈ [0, 1]d, σ ∈ Sd such that
xσ(1) ≥ · · · ≥ xσ(d), let k̂ ∈ argmink=0,1,...,d F (Sσk ),
then F (Sσ

k̂
) ≤ fL(x). We denote this operation by

Sσ
k̂

= RoundF (x).

e) fL is convex if and only if F is submodular.

f) Let F be submodular and define its base polyhedron

B(F ) :=
{
s ∈ Rd | s(V ) = F (V ), s(A) ≤ F (A) ∀A ⊆ V

}
.

Greedy algorithm: Given x ∈ Rd, σ ∈ Sd such
that xσ(1) ≥ · · · ≥ xσ(d), define yσ(k) = F (σ(k) |
Sσk−1), then y is a maximizer of maxs∈B(F )〈x, s〉,
fL is the support function of B(F ), i.e., fL(x) =
maxs∈B(F )〈x, s〉, and y is a subgradient of fL at x.

g) If F is submodular, then fL is κ-Lipschitz, i.e.,
|fL(x) − fL(y)| ≤ κ‖x − y‖ for all x, y ∈ Rd, with
κ = 3 maxX⊆V |F (X)|. If F is also non-decreasing,
then κ = F (V ).

These properties imply that Problem (1) is equivalent to

min
x∈[0,1]d

fL(x) = gL(x)− hL(x), (2)

with gL, hL ∈ Γ0. In paticular, if X∗ is a minimizer of (1),
then 1X∗ is a minimizer of (2), and if x∗ is a minimizer of
(2) then RoundF (x∗) is a minimizer of (1).

DC programming For a function f : Rd → R, its do-
main is defined as dom f =

{
x ∈ Rd | f(x) < +∞

}
, and

its Fenchel conjugate as f∗(y) = supy∈Rd〈x, y〉 − f(x).
For ρ ≥ 0, f is ρ-strongly convex if f − ρ

2‖ · ‖
2 is convex.

We denote by ρ(f) the supremum over such values. We
say that f is locally polyhedral convex if every point in its
epigraph has a relative polyhedral neighbourhood (Durier,
1988). For a convex function f, ε ≥ 0 and x0 ∈ dom f ,
the ε-subdifferential of f at x0 is defined by ∂εf(x0) ={
y ∈ Rd

∣∣ f(x) ≥ f(x0) + 〈y, x− x0〉 − ε,∀x ∈ Rd
}
,

while ∂f(x0) stands for the exact subdifferential (ε = 0).
We use the same notation to denote the ε-superdifferential
of a concave function f at x0, defined by ∂εf(x0) =

{
y ∈ Rd

∣∣ f(x) ≤ f(x0) + 〈y, x− x0〉+ ε,∀x ∈ Rd
}
.

We also define dom ∂εf =
{
x ∈ Rd | ∂εf(x) 6= ∅

}
.

The ε-subdifferential of a function f ∈ Γ0 and its conjugate
f∗ have the following relation (Urruty & Lemaréchal, 1993,
Part II, Proposition 1.2.1).
Proposition 2.4. For any f ∈ Γ0, ε ≥ 0, we have

y ∈ ∂εf(x)⇔ f∗(y)+f(x)−〈y, x〉 ≤ ε⇔ x ∈ ∂εf∗(y).

A general DC program takes the form

min
x∈Rd

f(x) := g(x)− h(x) (3)

where g, h ∈ Γ0. We assume throughout the paper that the
minimum of (3) is finite and denote it by f?. The DC dual
of (3) is given by (Pham Dinh & Le Thi, 1997)

f∗ = min
y∈Rd

h∗(y)− g∗(y). (4)

The main idea of DCA is to approximate h at each iteration
k by its affine minorization h(xk)+〈yk, x−xk〉, with yk ∈
∂h(xk), and minimize the resulting convex function. DCA
can also be viewed as a primal-dual subgradient method. We
give in Algorithm 1 an approximate version of DCA with
inexact iterates. Note that ∂g∗(yk) = argminx∈Rd g(x)−
〈yk, x〉, and any ε-solution xk+1 to this problem will satisfy
xk+1 ∈ ∂εxg∗(yk), by Proposition 2.4.

Algorithm 1 Approximate DCA

1: ε, εx, εy ≥ 0, x0 ∈ dom ∂g, k ← 0.
2: while f(xk)− f(xk+1) > ε do
3: yk ∈ ∂εyh(xk)
4: xk+1 ∈ ∂εxg∗(yk)
5: k ← k + 1
6: end while

The following lemma, which follows from Proposition 2.4,
provides a sufficient condition for DCA to be well defined,
i.e, one can construct the sequences {xk} and {yk} from an
arbitrary initial point x0 ∈ dom ∂g.
Lemma 2.5. DCA is well defined if

dom ∂g ⊆ dom ∂h and dom ∂h∗ ⊆ dom ∂g∗

Since Problem (3) is non-convex, we are interested in no-
tions of approximate stationarity.
Definition 2.6. For ε, ε1, ε2 ≥ 0, a point x is an (ε1, ε2)-
critical point of g − h if ∂ε1g(x) ∩ ∂ε2h(x) 6= ∅. Moreover,
x is an ε-strong critical point if ∂h(x) ⊆ ∂εg(x).

Note that the two notions of criticality are equivalent when
h is differentiable and ε1 = ε, ε2 = 0. The following propo-
sition provides necessary and sufficient conditions for ap-
proximate local optimality based on approximate criticality.
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Proposition 2.7. Let g, h ∈ Γ0 and ε ≥ 0. Then we have:

a) Let x̂, x be two points satisfying ∂ε1g(x̂) ∩ ∂ε2h(x) 6=
∅, for some ε1, ε2 ≥ 0 such that ε1 + ε2 = ε, then
g(x̂)−h(x̂) ≤ g(x)−h(x) + ε. Moreover, if x̂ admits
a neighbourhood U such that ∂ε1g(x̂) ∩ ∂ε2h(x) 6= ∅
for all x ∈ U ∩dom g, then x̂ is an ε-local minimum of
g− h. Conversely, if x̂ is an ε-local minimum of g− h,
then it is also an ε-strong critical point of g − h.

b) If h is locally polyhedral convex, then x̂ is an ε-local
minimum of g−h if and only if it is an ε-strong critical
point of g − h.

Proof sketch. This extends the conditions for ε = 0 in
(Le Thi & Pham Dinh, 1997, Theorem 4 and Corollary
2) and (Hiriart-Urruty, 1989, Proposition 3.1) to ε ≥ 0. The
proof is given in Appendix D.1.

DCA converges in objective values, and in iterates if g or h
is strongly convex, to a critical point (Pham Dinh & Le Thi,
1997, Theorem 3). We can always make the DC components
strongly convex by adding ρ

2‖ · ‖
2 to both g and h. A spe-

cial instance of DCA, called complete DCA, converges to a
strong critical point, but requires solving concave minimiza-
tion subproblems (Pham Dinh & Souad, 1988, Theorem 3).
CDCA picks valid DCA iterates yk, xk+1 that minimize the
dual and primal DC objectives, respectively. We consider an
approximate version of CDCA with the following iterates.

yk ∈ argmin{h∗(y)− g∗(y) : y ∈ ∂h(xk)}
= argmin{〈y, xk〉 − g∗(y) : y ∈ ∂h(xk)}, (5a)

xk+1 ∈ argmin{g(x)− h(x) : x ∈ ∂εxg∗(yk)}
= argmin{〈x, yk〉 − h(x) : x ∈ ∂εxg∗(yk)}. (5b)

3. DS Minimization via DCA
In this section, we apply DCA to the DC program (2) corre-
sponding to DS minimization. We consider the DC decom-
position f = g − h, where

g = gL + δ[0,1]d + ρ
2‖ · ‖

2 and h = hL + ρ
2‖ · ‖

2, (6)

with ρ ≥ 0. Starting from x0 ∈ [0, 1]d, the approximate
DCA iterates (with εy = 0) are then given by

yk ∈ ρxk + ∂hL(xk), (7a)

xk+1 is an εx-solution of

min
x∈[0,1]d

gL(x)− 〈x, yk〉+ ρ
2‖x‖

2 (7b)

Note that the minimum f∗ = F ∗ of (2) is finite, since f is
finite. DCA is clearly well defined here; we discuss below

how to obtain the iterates efficiently. One can also verify
that the condition in Lemma 2.5 holds: dom ∂g = [0, 1]d ⊆
dom ∂h = Rd by Proposition 2.3-f, and dom ∂h∗ = B(H)
if ρ = 0, Rd otherwise, hence in both cases dom ∂h∗ ⊆
dom ∂g∗ = Rd, by Proposition 2.3-b,c.

Computational complexity A subgradient of hL can be
computed as described in Proposition 2.3-f in O(d log d+
d EOH) with EOH being the time needed to evaluate H
on any set. An εx-solution of Problem (7b), for εx > 0,
can be computed using the projected subgradient method
(PGM) in O(dκ2/ε2x) iterations when ρ = 0 and in O(2(κ+
ρ
√
d)2/ρεx) when ρ > 0 (Bubeck, 2014, Theorems 3.1 and

3.5), where κ is the Lipschitz constant of gL(x)− 〈x, yk〉;
see Proposition 2.3-g. The time per iteration of PGM is
O(d log d+ d EOG).

When ρ = 0, Problem (7b) is equivalent to a submod-
ular minimization problem, since minx∈[0,1]d gL(x) −
〈x, yk〉 = minX⊆V G(X) − yk(X) by Proposition 2.3-
b,c. Then we can take xk+1 = 1Xk+1 where Xk+1 ∈
argminX⊆V G(X)−yk(X). Several algorithms have been
developed for minimizing a submodular function in poly-
nomial time, exactly or within arbitrary accuracy εx > 0.
Inexact algorithms are more efficient, with the current best
runtime Õ(d EOG/ε2x) achieved by (Axelrod et al., 2019).
In this case, DCA reduces to the SubSup procedure of
(Narasimhan & Bilmes, 2005) and thus satisfies the same
theoretical guarantees; see Appendix A.

In what follows, we extend these guarantees to the general
case where xk is not integral and ρ ≥ 0, by leveraging
convergence properties of DCA.

Theoretical guarantees Existing convergence results of
DCA in (Pham Dinh & Le Thi, 1997; Le Thi & Pham Dinh,
1997; 2005) consider exact iterates and exact convergence,
i.e., f(xk) = f(xk+1), which may require an exponential
number of iterations, as shown in (Byrnes, 2015, Theorem
3.4) for SubSup. We extend these results to handle inexact
iterates and approximate convergence.

Theorem 3.1. Given any f = g − h, where g, h ∈ Γ0,
let {xk} and {yk} be generated by approximate DCA
(Algorithm 1). Then for all tx, ty ∈ (0, 1], k ∈ N, let
ρ̄ = ρ(g)(1− tx)+ρ(h)(1− ty) and ε̄ = εx

tx
+
εy
ty

, we have:

a) f(xk)− f(xk+1) ≥ ρ̄

2
‖xk − xk+1‖2 − ε̄.

b) For ε ≥ 0, if f(xk) − f(xk+1) ≤ ε, then
xk is an (ε′, εy)-critical point of g − h with
yk ∈ ∂ε′g(xk)∩ ∂εyh(xk), xk+1 is an (εx, ε

′)-critical
point of g − h with yk ∈ ∂εxg(xk+1) ∩ ∂ε′h(xk+1),
where ε′ = ε+ εx + εy , and ρ̄

2‖x
k − xk+1‖2 ≤ ε̄+ ε.
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c) min
k∈{0,1,...,K−1}

f(xk)− f(xk+1) ≤ f(x0)− f?

K
.

d) If ρ(g) + ρ(h) > 0, then

min
k∈{0,1,...,K−1}

‖xk−xk+1‖ ≤

√
2

ρ̄

(f(x0)− f?
K

+ ε̄
)
.

Proof sketch. Items a and b with ε=εx=εy=0 are proved
in (Pham Dinh & Le Thi, 1997, Theorem 3). We extend
them to ε, εx, εy≥0 by leveraging properties of approximate
subgradients. Item c is obtained by telescoping sum.

Theorem 3.1 shows that approximate DCA decreases the
objective f almost monotonically (up to ε̄), and converges in
objective values with rate O(1/k), and in iterates with rate
O(1/

√
k) if ρ > 0, to an approximate critical point of g−h.

We present in Appendix E.1 a more detailed version of
Theorem 3.1 and its full proof. In particular, we relate
f(xk) − f(xk+1) to a weaker measure of non-criticality,
recovering the convergence rate provided in (Abbaszadeh-
peivasti et al., 2021, Corollary 4.1) on this measure. Ap-
proximate DCA with ε = 0, εx = εy ≥ 0 was considered in
(Vo, 2015, Theorem 1.4) showing that any limit points x̂, ŷ
of {xk}, {yk} satisfy ŷ ∈ ∂3εxg(x̂) ∩ ∂εxh(x̂) in this case.
Our results are more general and tighter (at convergence
yK ∈ ∂2εxg(xK) ∩ ∂εxh(xK) in this case). For DS mini-
mization, yk can be easily computed exactly (εy = 0). We
consider εy > 0 to provide convergence results of FW on
the concave subproblem required in CDCA (see Section 4).

The following corollary relates criticality on the DC problem
(2) to local minimality on the DS problem (1).

Corollary 3.2. Given f = g− h as defined in (6), let {xk}
and {yk} be generated by a variant of approximate DCA
(7), where xk is integral, i.e., xk = 1Xk for some Xk ⊆ V ,
and yk − ρxk is computed as in Proposition 2.3-f. Then for
all k ∈ N, ε ≥ 0, we have

a) If f(xk)− f(xk+1) ≤ ε, then

F (Xk) ≤ F (Sσ` ) + ε′ for all ` ∈ V , (8)

where

ε′ =

{√
2ρd(ε+ εx) if ε+ εx ≤ ρd

2
ρd
2 + ε+ εx otherwise.

(9)

and σ ∈ Sd is the permutation used to compute yk −
ρxk in Proposition 2.3-f.

b) Given d permutations σ1, · · · , σd ∈ Sd, correspond-
ing to decreasing orders of xk with different elements
at σ(|Xk|) or σ(|Xk| + 1), and the corresponding

subgradients ykσ1
, · · · , ykσd ∈ ∂h(xk) chosen as in

Proposition 2.3-f, if we choose

xk+1 = argmin
i∈V

{f(xk+1
σi ) : xk+1

σi ∈ ∂εxg
∗(ykσi)},

then if f(xk)−f(xk+1) ≤ ε, Eq. (8) holds with σ = σi
for all i ∈ V . Hence, Xk is an ε′-local minimum of F .

Proof sketch. We observe that yk − ρxk ∈ ∂hL(1Sσ` )
for all ` ∈ V . Item a then follows from Theorem 3.1-b,
Proposition 2.3-a,f, Proposition 2.7-a, and the relation
between the ε-subdifferentials of g and g − ρ

2‖ · ‖
2. Item b

follows from Item a. See Appendix E.2.

Theorem 3.1 and Corollary 3.2 show that DCA with integral
iterates xk decreases the objective F almost monotonically
(up to ε̄), and converges to an ε′-local minimum of F af-
ter at most (f(x0)− f?)/ε iterations, if we consider O(d)
permutations for computing yk. By a similar argument, we
can further guarantee that the returned solution cannot be
improved, by more than ε′, by adding or removing any c ele-
ments, if we consider O(dc) permutations for computing yk.

Taking εx = 0, ρ = 0 in Theorem 3.1 and Corollary 3.2,
we recover all the theoretical properties of SubSup given in
(Narasimhan & Bilmes, 2005; Iyer & Bilmes, 2012).

Effect of regularization Theorem 3.1 shows that using
a non-zero regularization parameter ρ > 0 ensures conver-
gence in iterates. Regularization also affects the complexity
of solving Problem (7b); as discussed earlier ρ > 0 leads
to a faster convergence rate (except for very small ρ). On
the other hand, Corollary 3.2 shows that for fixed ε and
εx, a larger ρ may lead to a poorer solution. In practice,
we observe that a larger ρ leads to slower convergence in
objective values f(xk), but more accurate xk iterates, with
ρ > 0 always yielding the best performance with respect to
F (see Appendix C.1).

Note that when ρ > 0 we can’t restrict xk to be integral,
since the equivalence in Proposition 2.3-c does not hold
in this case. It may also be advantageous to not restrict
xk to be integral even when ρ = 0, as we observe in our
numerical results (Appendix C.3). A natural question arises
here: can we still obtain an approximate local minimum
of F in this case? Given a fractional solution xK returned
by DCA we can easily obtain a set solution with a smaller
objective F (XK) = fL(1XK ) ≤ fL(xK) by rounding;
XK = RoundF (xK) as described in Proposition 2.3-d.
However, rounding a fractional solution xK returned by
DCA will not necessarily yield an approximate local min-
imum of F , even if xK is a local minimum of fL, as we
show in Example G.1. A simple workaround would be to ex-
plicitly check if the rounded solution is an ε′-local minimum
of F . If not, we can restart the algorithm from xK = 1X̂K
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where X̂K = argmin|X∆XK |=1 F (X), similarly to what
was proposed in (Byrnes, 2015, Algorithm 1) for SubSup.
This will guarantee that DCA converges to an ε′-local min-
imum of F after at most (f(x0) − f?)/ε iterations (see
Proposition E.4). Such strategy is not feasible though if we
want to guarantee convergence to an approximate strong
local minimum of F , as we do in Section 4 with CDCA.
We thus propose an alternative approach. We introduce a
variant of DCA, which we call DCAR, where we round xk

at each iteration.

DCA with rounding Starting from x0 ∈ {0, 1}d, the ap-
proximate DCAR iterates are given by

yk, x̃k+1 as in (7a) and (7b) respectively, (10a)

xk+1 ← 1Xk+1 where Xk+1 = RoundF (x̃k+1). (10b)

Since yk, x̃k+1 are standard approximate DCA iterates, then
the properties in Theorem 3.1 apply to them, with εy = 0
and xk+1 replaced by x̃k+1. See Theorem E.5 for details.
Since xk is integral in DCAR, Corollary 3.2 also holds. In
particular, DCAR converges to an ε′-local minimum of F
after at most (f(x0)− f?)/ε iterations, if we consider O(d)
permutations for computing yk, with ε′ defined in (9).

4. DS Minimization via CDCA
As discussed in Section 2, CDCA is a special instance of
DCA which is guaranteed to converge to a strong critical
point. In this section, we apply CDCA to the DC program
(2) corresponding to DS minimization, and show that the
stronger guarantee on the DC program translates into a
stronger guarantee on the DS problem. We use the same
decomposition in (6).

Computational complexity CDCA requires solving a
concave minimization problem for each iterate update. The
constraint polytope ∂h(xk) = ρxk + ∂hL(xk) in Problem
(5a) can have a number of vertices growing exponentially
with the number of equal entries in xk. Thus, it is not
possible to efficiently obtain a global solution of Problem
(5a) in general. However, we can efficiently obtain an
approximate critical point. Denote the objective

φk(w) = 〈w, xk〉 − g∗(w). (11)

We use an approximate version of the FW algorithm, which
starting from w0 ∈ ∂h(xk), has the following iterates:

st ∈ ∂εφk(wt) ⊇ xk − ∂εg∗(wt), (12a)

vt ∈ argmin{〈st, w〉 : w ∈ ∂h(xk)}, (12b)

wt+1 = (1− γt)wt + γtv
t, (12c)

where ε ≥ 0 and we use the greedy step size
γt = argminγ∈[0,1] φk((1 − γ)wt + γvt) = 1. We

observe that with this step size, FW is a special case of
DCA (with DC components g′ = δ∂h(xk) and h′ = −φk).
Hence, Theorem 3.1 applies to it (with εx = 0, εy = ε). In
paticular, FW converges to a critical point with rate O(1/t).
Convergence results of FW for nonconvex problems
are often presented in terms of the FW gap defined as
gap(wt) := maxw∈∂h(xk)〈st, wt − w〉 (Lacoste-Julien,
2016). Our results imply the following bound on the FW
gap (see Appendix F.1 for details).

Corollary 4.1. Given any f = g−h, where g, h ∈ Γ0, and
φk as defined in (11), let {wt} be generated by approximate
FW (12) with γt = 1. Then for all T ∈ N, we have

min
t∈{0,··· ,T−1}

gap(wt) ≤
φk(w0)−minw∈∂h(xk) φk(w)

T
+ε

Corollary 4.1 extends the result of (Yurtsever & Sra, 2022,
Lemma 2.1)1 to handle approximate supergradients of φk.
A subgradient of hL and an approximate subgradient of g∗

can be computed as discussed in Section 3. The following
proposition shows that the linear minimization problem
(12b) can be exactly solved in O(d log d+ d EOH) time.

Proposition 4.2. Given s, x ∈ Rd, let a1 > · · · > am
denote the unique values of x taken at sets A1 · · · , Am, i.e.,
A1 ∪ · · · ∪ Am = V and for all i ∈ {1, · · · ,m}, j ∈ Ai,
xj = ai, and let σ ∈ Sd be a decreasing order of x, where
we break ties according to s, i.e., xσ(1) ≥ · · · ≥ xσ(d) and
sσ(|Ci−1|+1) ≥ · · · ≥ sσ(|Ci|), whereCi = A1∪· · ·∪Ai for
all i ∈ {1, · · · ,m}. Define wσ(k) = H(σ(k) | Sσk−1) for
all k ∈ V , then w is a maximizer of maxw∈∂hL(x)〈s, w〉.

Proof sketch. By Proposition 2.3-f, we have that w ∈
∂hL(x) and that any feasible solution is a maximizer of
maxw∈B(H)〈w, s〉. The claim then follows by the opti-
mality conditions of this problem given in (Bach, 2013,
Proposition 4.2). The full proof is in Appendix F.2.

Note that Problem (5b) reduces to a unique solution
xk+1 = ∇g∗(yk) when ρ > 0, since g∗ is differentiable
in this case. When ρ = 0, the constraint ∂g∗(yk) =
argminx∈[0,1]d gL(x)− 〈yk, x〉 is the convex hull of mini-
mizers of gL(x)− 〈yk, x〉 on {0, 1}d (Bach, 2013, Propo-
sition 3.7), which can be exponentially many. One such
trivial example is when the objective is zero so that the
set of minimizers is {0, 1}d, in which case Problem (5b)
is as challenging as the original DC problem. Fortunately,
in what follows we show that solving Problem (5b) is not
necessary to obtain an approximate strong local minimum
of F ; it is enough to pick any approximate subgradient of
g∗(yk) as in DCA.

1The result therein is stated for φk continuously differentiable,
but it does not actually require differentiability.
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Theoretical guarantees Since CDCA is a special case
of DCA, all the guarantees discussed in Section 3 apply. In
addition, CDCA is known to converge to a strong critical
point (Pham Dinh & Souad, 1988, Theorem 3). We extend
this to the variant with inexact iterates and approximate
convergence.

Theorem 4.3. Given any f = g − h, where g, h ∈ Γ0,
let {xk} and {yk} be generated by variant of approximate
CDCA (5), where xk+1 is any point in ∂εxg

∗(yk) (not nec-
essarily a solution of Problem (5b)). Then, for ε ≥ 0, if
f(xk)−f(xk+1) ≤ ε, xk is an (ε+εx)-strong critical point
of g − h. Moreover, if h is locally polyhedral, then xk is
also an (ε+ εx)-local minimum of f . This is the case for h
given by (6) when ρ = 0.

The proof is given in Appendix F.3. It does not require that
xk+1 is a solution of Problem (5b). However it does require
that yk is a solution of Problem (5a). Whether a similar
result holds when yk is only an approximate critical point is
an interesting question for future work.

The next corollary relates strong criticality on the DC prob-
lem (2) to strong local minimality on the DS problem (1).

Corollary 4.4. Given f = g−h as defined in (6), ε ≥ 0, let
X̂ ⊆ V and x̂ = 1X̂ . If x̂ is an ε-strong critical point of g−
h, then X̂ is an ε′-strong local minimum of F , where ε′ =√

2ρdε if ε ≤ ρd
2 and ρd

2 + ε otherwise. Conversely, if X̂ is
an ε-strong local minimum of F , then x̂ is an ε-local mini-
mum of f , and hence also an ε-strong critical point of g−h.

Proof sketch. We observe that for any x = 1X correspond-
ing to X ⊆ X̂ or X ⊇ X̂ , we have ∂hL(x̂) ∩ ∂hL(x) 6= ∅.
The proof of the forward direction then follows from Propo-
sition 2.7-a and the relation between the ε-subdifferentials
of g and g − ρ

2‖ · ‖
2. For the converse direction, we ar-

gue that there exists a neighborhood Bδ(x̂) of x̂, such that
any X = RoundF (x) for x ∈ Bδ(x̂), satisfies X ⊆ X̂ or
X ⊇ X̂ . The claim then follows from Proposition 2.3-d,a
and Proposition 2.7-a. See Appendix F.4 for details.

Theorem 4.3 and Corollary 4.4 imply that CDCA with inte-
gral iterates xk converges to an ε′-strong local minimum of
F after at most (f(x0)− f?)/ε iterations, with ε′ as in (9).

Effect of regularization The parameter ρ has the same
effect on CDCA as discussed in Section 3 for DCA (Corol-
lary 4.4 shows, like in Corollary 3.2, that for fixed ε and
εx, a larger ρ may lead to a poorer solution). Also, as in
DCA, when ρ > 0 we can’t restrict xk in CDCA to be
integral. Moreover, rounding only once at convergence is
not enough to obtain even an approximate local minimum
of F , as shown in Example G.1. Checking if a set is an
approximate strong local minimum of F is computationally
infeasible, thus it cannot be explicitly enforced. Instead, we

propose a variant of CDCA, which we call CDCAR, where
we round xk at each iteration.

CDCA with rounding Starting from x0 ∈ {0, 1}d, the
approximate CDCAR iterates are given by

yk, x̃k+1 as in (5a) and (5b) respectively, (13a)

xk+1 ← 1Xk+1 where Xk+1 = RoundF (x̃k+1). (13b)

Since CDCAR is a special case of DCAR, all the properties
of DCAR discussed in Section 3 apply. In addition,
since yk, x̃k+1, are standard approximate CDCA iterates,
Theorem 4.3 applies to them, with xk+1 replaced by x̃k+1.
Since xk is integral in CDCAR, Corollary 4.4 holds. In
particular, DCAR converges to an ε′-strong local minimum
of F after at most (f(x0)−f?)/ε iterations, with ε′ defined
in (9). See Corollary F.2 for details.

The guarantees of DCA and CDCA are equivalent when F is
submodular and similar when F is supermodular. As stated
in Section 2, if F is supermodular then any ε′-local mini-
mum of F is also an ε′d-strong local minimum. And when h
is differentiable, which is the case in DS minimization only
ifH is modular and thus F is submodular, then approximate
weak and strong criticality of f are equivalent. In this case,
both DCA and CDCA return an ε′-global minimum of F
if xk is integral; see Appendix H. However, in general the
objective value achieved by a set satisfying the guarantees in
Corollary 3.2 can be arbitrarily worse than any strong local
minimum as illustrated in Example G.2. This highlights the
importance of the stronger guarantee achieved by CDCA.

5. Experiments
In this section, we evaluate the empirical performance of our
proposed methods on two applications: speech corpus selec-
tion and feature selection. We compare our proposed meth-
ods DCA, DCAR, CDCA and CDCAR to the state-of-the-art
methods for DS minimization, SubSup, SupSub and Mod-
Mod (Narasimhan & Bilmes, 2005; Iyer & Bilmes, 2012).
We also include an accelerated variant of DCA (ADCA) and
DCAR (ADCAR), with the acceleration proposed in (Nhat
et al., 2018). We use the minimum norm point (MNP) algo-
rithm (Fujishige & Isotani, 2011) for submodular minimiza-
tion in SubSup and the optimal Greedy algorithm of (Buch-
binder et al., 2012, Algorithm 2) for submodular maximiza-
tion in SupSub. We also compare with the MNP, PGM, and
Greedy algorithms applied directly to the DS problem (1).

We do not restrict ρ to zero or the iterates to be integral in
DCA and CDCA (recall that DCA in this case reduces to
SubSup). Instead, we vary ρ between 0 and 10, and round
only once at convergence (though for evaluation purposes
we do round at each iteration, but we do not update xk+1

with the rounded iterate). We also do not consider O(d)

7



Difference of submodular minimization via DC programming

0 5 10 15 20 25 30
iterations

10-6

10-4

10-2

100

0 5 10 15 20 25 30
iterations

100

101

0 5 10 15 20 25 30
iterations

10-6

10-4

10-2

0 5 10 15 20 25 30
iterations

10-4

10-2

Figure 1: Discrete and continuous objective values (log-scale) vs iterations on speech (top) and mushroom (bottom) datasets.

permutations for choosing yk in DCA, DCAR, SubSup and
ModMod, as required in Corollary 3.2 and (Iyer & Bilmes,
2012) to guarantee convergence to an approximate local
minimum of F , as this is too computationally expensive
(unless done fully in parallel). Instead, we consider as in
(Iyer & Bilmes, 2012) three permutations to break ties in
xk: a random permutation, a permutation ordered according
to the decreasing marginal gains of G, i.e., G(i | Xk \ i),
or according to the decreasing marginal gains of F , i.e.,
F (i | Xk \ i), which we try in parallel at each iteration, then
pick the one yielding the best objective F . We also apply
this heuristic in CDCA and CDCAR to choose an initial
feasible point w0 ∈ ρxk + ∂hL(xk) for FW (12); we pick
the permutation yielding the smallest objective φk(w0).

We use f(xk) − f(xk+1) ≤ 10−6 as a stopping criterion
in our methods, and Xk+1 = Xk in SubSup, SupSub and
ModMod as in (Iyer & Bilmes, 2012), and stop after a maxi-
mum number of iterations. To ensure convergence to a local
minimum of F , we explicitly check for this as an additional
stopping criterion in all methods except MNP, PGM and
Greedy, and restart from the best neighboring set if not sat-
isfied, as discussed in Section 3. For more details on the ex-
perimental set-up, see Appendix B. The code is available at
https://github.com/SamsungSAILMontreal/
difference-submodular-min.git.

Speech corpus selection The goal of this problem is
to find a subset of a large speech data corpus to rapidly
evaluate new and expensive speech recognition algorithms.
One approach is to select a subset of utterances X
from the corpus V that simultaneously minimizes the
vocabulary size and maximizes the total value of data
(Lin & Bilmes, 2011; Jegelka et al., 2011). Also, in
some cases, some utterances’ importance decrease when
they are selected together. This can be modeled by
minimizing F (X) = λ

√
|N (X)| −

∑r
i=1

√
m(X ∩ Vi),

where N (X) is the set of distinct words that appear in
utterances X , m is a non-negative modular function, with
the weight mj representing the importance of utterance
j, and V1 ∪ · · · ∪ Vr = V . We can write F as the
difference of two non-decreasing submodular functions
G(X) = λ

√
|N (X)| and H(X) =

∑
i

√
m(X ∩ Vi).

Moreover, this problem is a special case of DS minimiza-
tion, where H is approximately modular. In particular, H
is (1, β)-weakly DR-modular (see Definition H.1) with2

β ≥ min
i∈[r]

min
j∈Vi

1
2

√
m(j)
m(Vi)

.

The parameter β characterizes how close H is to being su-
permodular. This DS problem thus fits under the setting
considered in (El Halabi & Jegelka, 2020) (with α = 1), for

2The proof follows similarly to (Iyer et al., 2013, Lemma 3.3)
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which PGM was shown to achieve the optimal approxima-
tion guarantee F (X̂) ≤ G(X∗)−βH(X∗)+ε for some ε >
0, where X∗ is a minimizer of F (see Corollary 1 and Theo-
rem 2 therein). We show in Appendix H.1 that any variant of
DCA and CDCA obtains the same approximation guarantee
as PGM (see Proposition H.6 and discussion below it).
We use the same dataset used by (Bach, 2013, Section 12.1),
with d = |V | = 800 utterances and 1105 words. We choose
λ = 1, the non-negative weights mi randomly, and partition
V into r = 10 groups of consecutive indices.

Feature selection Given a set of features UV =
{U1, U2, · · · , Ud}, the goal is to find a small subset of these
features UX = {Ui : i ∈ X} that work well when used
to classify a class C. We thus want to select the subset
which retains the most information from the original set
UV about C. This can be modeled by minimizing F (X) =
λ|X| − I(UX ;C). The mutual information I(UX ;C) can
be written as the difference of the entropy H(UX) and
conditional entropy H(UX | C), both of which are non-
decreasing submodular. HenceF can be written as the differ-
ence of two non-decreasing submodular functions G(X) =
λ|X|+H(UX | C) and H(X) = H(UX). We estimate the
mutual information from the data. We use the Mushroom
data set from (Dua & Graff, 2017), which has 8124 instances
with 22 categorical attributes, which we convert to d = 118
binary features. We randomly select 70% of the data as
training data for the feature selection, and set λ = 10−4.

Results: We plot in Fig. 1, the discrete objective val-
ues F (Xk) − min(F ) and continuous objective values
fL(xk) − min(fL), per iteration k, where min(F ) and
min(fL) are the smallest values achieved by all compared
methods. We only plot the continuous objective of the meth-
ods which minimize the continuous DC problem (2), instead
of directly minimizing the DS problem (1), i.e., our methods
and PGM. For DCAR and CDCAR, we plot the continuous
objective values before rounding, i.e., fL(x̃k), since the con-
tinuous objective after rounding is equal to the discrete one,
i.e., fL(xk) = F (Xk). Results are averaged over 3 random
runs, with standard deviations shown as error bars. For clar-
ity, we only include our methods with the ρ value achieving
the smallest discrete objective value. We show the results
for all ρ values in Appendix C.1. For a fair implementation-
independent comparison, we use the number of FW (12) iter-
ations as the x-axis for CDCA and CDCAR, since one itera-
tion of FW has a similar cost to an iteration of DCA variants.
We only show the minimum objective achieved by SupSub,
ModMod, MNP, PGM and Greedy, since their iteration time
is significantly smaller than the DCA and CDCA variants.
We show the results with respect to time in Appendix C.2.

We observe that, as expected, PGM obtains the same
discrete objective value as the best variants of our methods

on the speech dataset, where PGM and our methods achieve
the same approximation guarantee, but worse on the adult
dataset, where PGM has no guarantees. Though in terms
of continuous objective value, PGM is doing worse than
our methods on both datasets. Hence, a better fL value
does not necessarily yield a better F value after rounding.
In both experiments, our methods reach a better F value
than all other baselines, except SubSup which gets the same
value as DCAR on the speech dataset, and a similar value
to our non-accelerated methods on the mushroom dataset.

The complete variants of our methods, CDCA and CDCAR,
perform better in terms of F values, than their simple coun-
terparts, DCA and DCAR, on the speech dataset. But, on
the mushroom dataset, CDCAR perform similarly to DCAR,
while CDCA is worse that DCA. Hence, using the complete
variant is not always advantageous. In terms of fL values,
CDCA and CDCAR perform worse than DCA and DCAR,
respectively, on both datasets. Again this illustrates than a
better fL value does not always yield a better F value.

Rounding at each iteration helps for CDCA on both
datasets; CDCAR converges faster than CDCA in F , but
not for DCA; DCAR reaches worse F value than DCA.
Note that unlike fL(xk), the objective values fL(x̃k) of
DCAR and CDCAR are not necessarily approximately
non-increasing (Theorem E.5-b does not apply to them),
which we indeed observe on the mushroom dataset.

Finally, we observe that adding regularization leads to better
F values; the best ρ is non-zero for all our methods (see
Appendix C.1 for a more detailed discussion on the effect of
regularization). Acceleration helps in most cases but not all;
DCAR and ADCAR perform the same on the speech dataset.

6. Conclusion
We introduce variants of DCA and CDCA for minimizing
the DC program equivalent to DS minimization. We estab-
lish novel links between the two problems, which allow us
to match the theoretical guarantees of existing algorithms
using DCA, and to achieve stronger ones using CDCA. Em-
pirically, our proposed methods perform similarly or better
than all existing methods.
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Table 1: Stopping criteria

DCA, DCAR, CDCA, CDCAR SubSup SupSub, ModMod MNP, PGM PGM in DCA and MNP in SubSup FW in CDCA
ADCA, ADCAR CDCA variants variants

f(xk)− f(xk+1) ≤ 10−6 f(xk)− f(xk+1) ≤ 10−6 Xk+1 = Xk Xk+1 = Xk gap ≤ 10−6 gap ≤ 10−6 gap ≤ 10−6

k ≤ 30 k + # FW iterations ≤ 30 k ≤ 30 k ≤ 3× 104 k ≤ 3× 104 k ≤ 103 k ≤ 103 k ≤ 10
Xk+1 local minimum of F Xk+1 local minimum of F Xk+1 local minimum of F Xk+1 local minimum of F

A. Subsup as a Special Case of DCA
We show that the SubSup procedure proposed in (Narasimhan & Bilmes, 2005) is a special case of DCA. SubSup starts
from X0 ⊆ V , and makes the following updates at each iteration:

ykσ(i) ← H(σ(i) | Sσi−1) ∀i ∈ V, for σ ∈ Sd such that Sσ|Xk| = Xk

Xk+1 ← argmin
X⊆V

G(X)− yk(X)
(14)

Note that yk ∈ ∂hL(1Xk) by Proposition 2.3-f and 1Xk+1 ∈ argminx∈[0,1]d gL(x) − 〈x, yk〉 as discussed in Section 3,
thus they are valid updates of DCA in Eq. (7) with ρ = εx = 0.

B. Experimental Setup Additional Details
In this section, we provide additional details on our experimental setup. As in (Iyer & Bilmes, 2012), we consider in
ModMod and SupSub two modular upper bounds on G, which we try in parallel and pick the one which yields the best
objective F . We set the parameter q in ADCA and ADCAR to 5 as done in (Nhat et al., 2018). We summarize the stopping
criteria used in all methods and their subsolvers in Table 1. We pick the maximum number of iterations according to the
complexity per iteration. We use the random seeds 42, 43, and 44. We use the implementation of MNP from the Matlab
code provided in (Bach, 2013, Section 12.1) and implement the rest of the methods in Matlab.

C. Additional Empirical Results
In this section, we present some additional empirical results of the experiments presented in Section 5.

C.1. Effect of regularization

We report the discrete and continuous objective values per iteration of our proposed methods, for all ρ values, on the speech
dataset in Fig. 2 and the mushroom dataset in Fig. 3. We observe that the variants without rounding at each iteration converge
slower in fL for larger ρ values, though not always, e.g., DCA with ρ = 0.001 converges faster than with ρ = 0 on the
speech dataset, and CDCA with ρ = 0.01 converges faster than with ρ = 0.1 on the mushroom dataset. The effect of ρ on
the rounded variants is less clear; in most cases the methods with small ρ values are performing worse, but for CDCAR on
the speech dataset the opposite is true. We again observe that better performance w.r.t fL does not necessarily translate to
better performance w.r.t F . The effect of ρ on performance w.r.t F varies with the different methods and datasets. But in all
cases, the best F values is obtained with ρ > 0.

Recall that we use PGM to compute an εx-subgradient of g∗ to update xk in DCA variants (7b) and CDCA variants
(5b), as well as in each iteration of FW (12) to update yk in CDCA variants (5a). As discussed in Section 3, PGM
requires O(dκ2/ε2x) iterations when ρ = 0 and O(2(κ + ρ

√
d)2/ρεx) when ρ > 0, where κ is the Lipschitz constant of

gL(x)− 〈x, yk〉. Figure 4 shows the gap reached by PGM at each iteration of DCA variants, and the worst gap reached by
PGM over all the approximate subgradient computations done at each iteration of CDCA variants. As expected, a larger ρ
leads to a more accurate solution (smaller gap), for a fixed number of PGM iterations (we used 1000). Though, the accuracy
at ρ = 0 is better than the very small non-zero values ρ = 0.01, 0.001, for which the complexity O(2(κ + ρ

√
d)2/ρεx)

becomes larger than O(dκ2/ε2x).
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Figure 2: Discrete and continuous objective values (log-scale) of our proposed methods for all ρ values vs iterations on
speech dataset.
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Figure 5: Discrete and continuous objective values (log-scale) vs time on speech (top) and mushroom (bottom) datasets.
We include separate plots for non-DCA variants for visibility.

C.2. Running times

We report in Fig. 5 the discrete and continuous objective values with respect to time. We again only include our methods with
the ρ value achieving the smallest discrete objective. As expected, DCA variants (including SubSup) have a significantly
higher computational cost compared to other baselines.

Recall that SubSup is a special case of DCA with ρ = 0 and xk chosen to be integral (see Appendix A and the computational
complexity discussion in Section 3), so theoretically the cost of SubSup is the same as DCA with ρ = 0. In our
experiments, we are using the MNP algorithm for the submodular minimization in SubSup minX⊆V G(X) − yk(X) =
minx∈[0,1]d gL(x)− 〈x, yk〉, and PGM to solve Problem (7b) minx∈[0,1]d gL(x)− 〈x, yk〉+ ρ

2‖x‖
2 in DCA (MNP cannot

be used for this problem when ρ > 0). MNP requires O(d diam (B(G− yk))2/ε2x) iterations to obtain an εx-solution to
minX⊆V G(X)− yk(X) (Chakrabarty et al., 2014, Theorems 4 and 5). We can bound diam (B(G− yk)) ≤ 2κ, where
recall that κ is the Lipschitz constant of gL(x)−〈x, yk〉 given in Proposition 2.3-g. Hence MNP requires the same number of
iterations O(dκ2/ε2x) as PGD with ρ = 0, and the time per iteration of MNP is O(d2 +d log d+d EOG) (Chakrabarty et al.,
2014, Proof of Theorem 1), which is larger than PGD O(d log d+ d EOG) (see the computational complexity discussion
in Section 3). Nevertheless, in our experiments, we observe that SubSup actually has a lower running time per iteration
than DCA on the speech dataset; this is true even for DCA with ρ = 0 (see Fig. 6), but similar on the mushroom dataset.

C.3. SubSup vs DCA and DCAR with ρ = 0

In this section, we compare the performance of SubSup with DCA and DCAR with ρ = 0. We plot the discrete objective
values of these three algorithms with respect to both iterations and time in Fig. 6. We observe that SubSup performs
similarly to DCAR with ρ = 0 in terms of F values, while DCA with ρ = 0 obtains a bit better F values on the speech
dataset. Note that the only difference between SubSup and DCA with ρ = 0 is that SubSup is choosing an integral solution
in Problem (7b), using the MNP algorithm, while DCA chooses a possibly non-integral solution using the PGM algorithm.
Hence, it seems that there is some advantage to not restricting the xk iterates of DCA to be integral in some cases. In terms
of running time, SubSup has a lower iteration time than the other two algorithms on the speech dataset, and a similar one
on the mushroom dataset (see discussion in Appendix C.2).
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Figure 6: Discrete objective values (log-scale) of three DCA variants with ρ = 0, vs iterations (left) and time (right), on
speech (top) and mushroom (bottom) datasets.

D. Proofs of Section 2
D.1. Proof of Proposition 2.7

Proposition 2.7. Let g, h ∈ Γ0 and ε ≥ 0. Then we have:

a) Let x̂, x be two points satisfying ∂ε1g(x̂)∩∂ε2h(x) 6= ∅, for some ε1, ε2 ≥ 0 such that ε1 + ε2 = ε, then g(x̂)−h(x̂) ≤
g(x)− h(x) + ε. Moreover, if x̂ admits a neighbourhood U such that ∂ε1g(x̂) ∩ ∂ε2h(x) 6= ∅ for all x ∈ U ∩ dom g,
then x̂ is an ε-local minimum of g − h. Conversely, if x̂ is an ε-local minimum of g − h, then it is also an ε-strong
critical point of g − h.

b) If h is locally polyhedral convex, then x̂ is an ε-local minimum of g − h if and only if it is an ε-strong critical point of
g − h.

Proof. a) The first part is an extension of (Le Thi & Pham Dinh, 1997, Theorem 4). Given y ∈ ∂ε1g(x̂) ∩ ∂ε2h(x), we
have g(x̂) + 〈y, x− x̂〉− ε1 ≤ g(x) and h(x) + 〈y, x̂−x〉− ε2 ≤ h(x̂). Hence, g(x̂)−h(x̂) ≤ g(x)−h(x) + ε1 + ε2.
If x̂ admits a neighbourhood where this is true, then x̂ is an ε-local minimum of g − h. The converse direction extends
a well known property; see e.g., (Hiriart-Urruty, 1989, Proposition 3.1). Given an ε-local minimum x̂ of g − h, there
exists a neighborhood U of x̂ such that g(x̂) − h(x̂) ≤ g(x) − h(x) + ε for all x ∈ U . Then for any ŷ ∈ ∂h(x̂),
g(x) − g(x̂) ≥ h(x) − h(x̂) − ε ≥ 〈ŷ, x − x̂〉 − ε for all x ∈ U . This is enough to have ŷ ∈ ∂εg(x̂), since for
any x ∈ Rd, we can apply the inequality to x′ = x̂ + τ(x − x̂) with τ > 0 small enough to have x′ ∈ U , then by
convexity we get τg(x) + (1− τ)g(x̂)− g(x̂) ≥ g(x̂+ τ(x− x̂))− g(x̂) ≥ 〈ŷ, x̂+ τ(x− x̂)− x̂〉− ε, which implies
g(x)− g(x̂) ≥ 〈ŷ, x− x̂〉 − ε. Hence, ∂h(x̂) ⊆ ∂εg(x̂).

b) This is an extension of (Le Thi & Pham Dinh, 1997, Corollary 2). If h is locally polyhedral convex then for every
x ∈ domh there exists a neighborhood U of x such that ∂h(x′) ⊆ ∂h(x) for all x′ ∈ U (Le Thi & Pham Dinh, 1997,
Theorem 5). Given x̂ satisfying ∂h(x̂) ⊆ ∂εg(x̂), we have that ∂h(x) ⊆ ∂εg(x̂) for all x ∈ U for some neighborhood
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U of x, which implies that x̂ is an ε-local minimum of g − h by Item a. The converse direction also follows from
Item a.

Remark D.1. Let ri (S) denote the relative interior of a convex set S. Note that any x ∈ ri (dom g) ∩ ri (domh) (which is
equal to ri (dom g) since we assumed minx g(x)− h(x) is finite) is an ε-local minimum of g − h for any ε > 0. Hence,
ε-local minimality is meaningless on ri dom g ∩ ri domh for any ε > 0. However, in this work, we are interested in integral
ε-local minima of Problem (2), which are on the boundary of dom (gL + δ[0,1]d) = [0, 1]d, and hence not meaningless.

Proof. Since g, h are convex, they are continuous on ri (dom g) ∩ ri (domh) (Rockafellar, 1970, Theorem 10.1). This
implies that f is also continuous on ri (dom g) ∩ ri (domh), hence for any x ∈ ri (dom g) ∩ ri (domh), any ε > 0, there
exists δ > 0, such that for all x′ ∈ ri(dom g) ∩ ri (domh) satisfying ‖x′ − x‖ < δ, we have |f(x′) − f(x)| < ε, hence
f(x) < f(x′) + ε.

E. Proofs of Section 3
E.1. Proof of Theorem 3.1

Before proving Theorem 3.1, we need the following lemma.

Lemma E.1 (Lemma 5 in (Pham Dinh et al., 2022)). Let Φ be a ρ-strongly convex function with ρ ≥ 0, then for any ε ≥ 0,
t ∈ (0, 1], x ∈ dom Φ and y ∈ ∂εΦ(x), we have

Φ(z) ≥ Φ(x) + 〈y, z − x〉+
ρ(1− t)

2
‖z − x‖2 − ε

t
, ∀z ∈ Rd.

We now present a more detailed version of Theorem 3.1 and its proof.

Theorem E.2. Given any f = g− h, where g, h ∈ Γ0, let {xk} and {yk} be generated by approximate DCA (Algorithm 1),
and define TΦ(xk+1) = Φ(xk) − Φ(xk+1) − 〈yk, xk − xk+1〉 for any Φ ∈ Γ0, Then for all tx, ty ∈ (0, 1], k ∈ N, let
ρ̄ = ρ(g)(1− tx) + ρ(h)(1− ty) and ε̄ = εx

tx
+

εy
ty

, we have:

a) Tg(xk+1) ≥ ρ(g)(1−tx)
2 ‖xk − xk+1‖2 − εx

tx
and Th(xk+1) ≤ −ρ(h)(1−ty)

2 ‖xk − xk+1‖2 +
εy
ty
.

Moreover, for any ε ≥ 0, if Tg(xk+1) ≤ ε, then xk is an (ε+ εx, εy)-critical point of g − h, with yk ∈ ∂ε+εxg(xk) ∩
∂εyh(xk), and ρ(g)(1−tx)

2 ‖xk − xk+1‖2 ≤ εx
tx

+ ε. Conversely, if xk ∈ ∂ε+εxg∗(yk), then Tg(xk+1) ≤ εx + ε.

Similarly, if Th(xk+1) ≥ −ε, then xk+1 is an (εx, ε+εy)-critical point of g−h, with yk ∈ ∂εxg(xk+1)∩∂ε+εyh(xk+1),
and ρ(h)(1−ty)

2 ‖xk − xk+1‖2 ≤ εy
ty

+ ε. Conversely, if yk ∈ ∂ε+εyh(xk+1), then Th(xk+1) ≥ −εy − ε.

b) f(xk)− f(xk+1) = Tg(x
k+1)− Th(xk+1) ≥ ρ̄

2
‖xk − xk+1‖2 − ε̄.

c) For any ε ≥ 0, f(xk) − f(xk+1) ≤ ε if and only if Tg(xk+1) − Th(xk+1) ≤ ε. In this case, xk is an (ε1 + εx, εy)-
critical point of g − h, with yk ∈ ∂ε1+εxg(xk) ∩ ∂εyh(xk), xk+1 is an (εx, ε2 + εy)-critical point of g − h, with
yk ∈ ∂εxg(xk+1)∩∂ε2+εyh(xk+1), for some ε1+ε2 = ε, ε1 ≥ −εx, ε2 ≥ −εy , and ρ̄

2‖x
k−xk+1‖2 ≤ ε̄+ε. Conversely,

if xk ∈ ∂εx+ε1g
∗(yk) and yk ∈ ∂εy+ε2h(xk+1), then Tg(xk+1)− Th(xk+1) ≤ εx + εy + ε and f(xk)− f(xk+1) ≤

εx + εy + ε.

d) min
k∈{0,1,...,K−1}

Tg(x
k+1)− Th(xk+1) = min

k∈{0,1,...,K−1}
f(xk)− f(xk+1) ≤ f(x0)− f?

K
.

e) If ρ(g) + ρ(h) > 0, then

min
k∈{0,1,...,K−1}

‖xk − xk+1‖ ≤

√
2

ρ̄

(f(x0)− f?
K

+ ε̄
)
.
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Proof. a) Since xk+1 ∈ ∂εxg∗(yk), then yk ∈ ∂εxg(xk+1) by Proposition 2.4. By Lemma E.1 we have for all x ∈ Rd

g(x) ≥ g(xk+1) + 〈yk, x− xk+1〉+ ρ(g)(1−tx)
2 ‖x− xk+1‖2 − εx

tx
, (15)

hence Tg(xk+1) ≥ ρ(g)(1−tx)
2 ‖xk − xk+1‖2 − εx

tx
. If Tg(xk+1) ≤ ε, taking tx = 1 in (15), we have for all x ∈ Rd

g(x) ≥ g(xk)− 〈yk, xk − xk+1〉 − ε+ 〈yk, x− xk+1〉 − εx ≥ g(xk) + 〈yk, x− xk〉 − ε− εx,

so yk ∈ ∂ε+εxg(xk) ∩ ∂εyh(xk) and xk is an (ε+ εx, εy)-critical point. Similarly, since yk ∈ ∂εyh(xk), we have for
all x ∈ Rd

h(x) ≥ h(xk) + 〈yk, x− xk〉+
ρ(h)(1−ty)

2 ‖x− xk‖2 − εy
ty
, (16)

hence Th(xk+1) ≤ −ρ(g)(1−ty)
2 ‖xk − xk+1‖2 +

εy
ty

. If Th(xk+1) ≥ −ε, taking ty = 1 in (16), we have for all x ∈ Rd

h(x) ≥ h(xk+1) + 〈yk, xk − xk+1〉 − ε+ 〈yk, x− xk〉 − εy ≥ h(xk+1) + 〈yk, x− xk+1〉 − ε− εy,

so yk ∈ ∂εxg(xk+1)∩ ∂ε+εyh(xk+1) and xk+1 is an (εx, ε+ εy)-critical point. The converse directions follow directly
from the definitions of approximate subdifferentials and TΦ.

b) We have

f(xk)− f(xk+1) = g(xk)− g(xk+1) + 〈yk, xk − xk+1〉 − (h(xk)− h(xk+1) + 〈yk, xk − xk+1〉)
= Tg(x

k+1)− Th(xk+1)

≥ ρ̄
2‖x

k − xk+1‖2 − ε̄,

where the inequality follows from Item a.

c) This follows from Items a and b, by choosing ε1 ≥ Tg(xk+1) and ε2 ≥ −Th(xk+1).

d) This follows from Item b by telescoping sum:

min
k∈{0,1,...,K−1}

Tg(x
k+1)− Th(xk+1) = min

k∈{0,1,...,K−1}
f(xk)− f(xk+1)

≤ 1
K

K−1∑
k=0

Tg(x
k+1)− Th(xk+1)

= 1
K

K−1∑
k=0

f(xk)− f(xk+1)

=
f(x0)− f(xK)

K
≤ f(x0)− f?

K
.

e) This follows from Items b and d.

min
k∈{0,1,...,K−1}

‖xk − xk+1‖2 ≤ min
k∈{0,1,...,K−1}

2

ρ̄
(f(xk)− f(xk+1) + ε̄) ≤ 2

ρ̄

(f(x0)− f?

K
+ ε̄
)
.

Note that f(xk)−f(xk+1) acts as a measure of non-criticality, since f(xk) = f(xk+1) implies that xk and xk+1 are critical
points, when εx = εy = 0. Theorem E.2 also motivates min{Tg(xk+1), Th(xk)} as a weaker measure of non-criticality,
since min{Tg(xk+1), Th(xk)} = 0 implies that xk is a critical point, when εx = εy = 0. Items a and d imply the following
bound

min
k∈{0,1,...,K−1}

min{Tg(xk+1), Th(xk)} ≤ min{ f(x0)−f?
K + εy,

f(x0)−f?
K−1 + εx},

which recovers the convergence rate provided in (Abbaszadehpeivasti et al., 2021, Corollary 4.1) on Tg(xk+1), with
εx = εy = 0. The criterion Tg(xk+1) ≤ ε has also been used as a stopping criterion of FW for nonconvex problems; see
Appendix F.1 and (Ghadimi, 2019, Eq. (2.6)).
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E.2. Proof of Corollary 3.2

Before proving Corollary 3.2, we need the following lemma.

Lemma E.3. Let Φ be a convex function with bounded domain of diameter D, i.e., ‖x − z‖ ≤ D for all x, z ∈ dom Φ,
and Φ̃ = Φ + ρ

2‖ · ‖
2 for some ρ ≥ 0. Then for any x ∈ dom Φ, if y − ρx ∈ ∂εΦ(x), then y ∈ ∂εΦ̃(x). Conversely, if

y ∈ ∂εΦ̃(x), then y − ρx ∈ ∂ε′Φ(x), where ε′ =
√

2ρεD if ε ≤ ρD2

2 , and ρD2

2 + ε otherwise.

Proof. If y − ρx ∈ ∂εΦ(x), we have

Φ(z) ≥ Φ(x) + 〈y − ρx, z − x〉 − ε
⇔ Φ(z) ≥ Φ(x) + 〈y, z − x〉+ ρ‖x‖2 − 〈ρx, z〉+ ρ

2‖z‖
2 − ρ

2‖z‖
2 − ε

⇔ Φ̃(z) ≥ Φ̃(x) + 〈y, z − x〉+ ρ
2‖x− z‖

2 − ε
⇒ Φ̃(z) ≥ Φ̃(x) + 〈y, z − x〉 − ε

Hence, y ∈ ∂εΦ̃(x). Conversely, if y ∈ ∂εΦ̃(x), then by Lemma E.1, we have for all t ∈ (0, 1], z ∈ dom Φ

Φ̃(z) ≥ Φ̃(x) + 〈y, z − x〉+
ρ(1− t)

2
‖z − x‖2 − ε

t

≥ Φ̃(x) + 〈y, z − x〉+
ρ

2
‖z − x‖2 − ρt

2
D2 − ε

t

⇔ Φ(z) ≥ Φ(x) + 〈y − ρx, z − x〉 − ρt

2
D2 − ε

t

Hence, y − ρx ∈ ∂ε′Φ(x) with ε′ = mint∈(0,1)
ρt
2 D

2 + ε
t = min{

√
2ρεD, ρD

2

2 + ε}.

Corollary 3.2. Given f = g − h as defined in (6), let {xk} and {yk} be generated by a variant of approximate DCA (7),
where xk is integral, i.e., xk = 1Xk for some Xk ⊆ V , and yk − ρxk is computed as in Proposition 2.3-f. Then for all
k ∈ N, ε ≥ 0, we have

a) If f(xk)− f(xk+1) ≤ ε, then
F (Xk) ≤ F (Sσ` ) + ε′ for all ` ∈ V , (8)

where

ε′ =

{√
2ρd(ε+ εx) if ε+ εx ≤ ρd

2
ρd
2 + ε+ εx otherwise.

(9)

and σ ∈ Sd is the permutation used to compute yk − ρxk in Proposition 2.3-f.

b) Given d permutations σ1, · · · , σd ∈ Sd, corresponding to decreasing orders of xk with different elements at σ(|Xk|) or
σ(|Xk|+ 1), and the corresponding subgradients ykσ1

, · · · , ykσd ∈ ∂h(xk) chosen as in Proposition 2.3-f, if we choose

xk+1 = argmin
i∈V

{f(xk+1
σi ) : xk+1

σi ∈ ∂εxg
∗(ykσi)},

then if f(xk)− f(xk+1) ≤ ε, Eq. (8) holds with σ = σi for all i ∈ V . Hence, Xk is an ε′-local minimum of F .

Proof. a) If f(xk)− f(xk+1) ≤ ε, we have by Theorem 3.1-b (with εy = 0) that yk ∈ ∂εx+εg(xk), which by Lemma E.3
implies that yk − ρxk ∈ ∂ε′(gL + δ[0,1]d)(xk), by taking D = maxx,z∈dom (gL+δ

[0,1]d
) ‖x − z‖ =

√
d. We observe

that for any ` ∈ V , we have yk − ρxk ∈ ∂hL(1Sσ` ) by Proposition 2.3-f. Hence, ∂ε′(gL + δ[0,1]d)(xk) ∩ ∂hL(x) 6= 0,
and by Proposition 2.7-a f(xk) ≤ f(1Sσ` ) + ε′. The statement then follows by Proposition 2.3-a.
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b) Note that ykσi , x
k+1
σi for any i ∈ V are valid iterates for approximate DCA, so Item a apply to them. If f(xk)−f(xk+1) ≤

ε, then f(xk)−f(xk+1
σi ) ≤ ε since f(xk+1) ≤ f(xk+1

σi ) for all i ∈ V . Hence, by Item a we have F (Xk) ≤ F (Sσi` )+ε′

for all i, ` ∈ V . We now observe that for any j ∈ Xk there exists σi for some i ∈ V , such that σi(|Xk|) = j, and
Sσi|Xk|−1

= Xk \ j. Similarly for any j ∈ V \Xk, there exists σi for some i ∈ V , such that σi(|Xk|+ 1) = j, and
Sσi|Xk|+1

= Xk ∪ j. Then Xk is an ε′-local minimum of F .

E.3. Convergence properties of DCA variants

In this section, we present convergence properties of the DCA variants discussed in Section 3. We start by the DCA
variant presented in Algorithm 2, where at convergence we explicitly check if rounding the current iterate yields an ε′-local
minimum of F , and if not we restart from the best neighboring set.

Algorithm 2 Approximate DCA with local minimality stopping criterion

1: ε, ε′, εx ≥ 0, x0 ∈ dom ∂h, k ← 0.
2: for k = 1, 2, · · · ,K do
3: yk ∈ ∂h(xk)
4: xk+1 ∈ ∂εxg∗(yk)
5: if f(xk)− f(xk+1) ≤ ε then
6: Xk+1 = RoundF (xk+1)
7: if Xk+1 is an ε′-local minimum of F then
8: Stop
9: else

10: xk+1 = 1X̂k+1 where X̂k+1 = argmin|X∆Xk+1|=1 F (X)
11: end if
12: end if
13: end for

Proposition E.4. Given f = g − h as defined in (6) and ε′ ≥ ε+ εx, Algorithm 2 converges to an ε′-local minimum of F
after at most (f(x0)− f?)/ε iterations.

Proof. Note that between each restart (line 10), Algorithm 2 is simply running approximate DCA, so Theorem 3.1 applies.
For any iteration k ∈ N, if the algorithm did not terminate, then either f(xk) − f(xk+1) > ε or Xk+1 is not an ε′-local
minimum of F and thus F (Xk+1) > F (X̂k+1) + ε′. In the second case, we have

f(1X̂k+1) = F (X̂k+1) < F (Xk+1)− ε′ (by Proposition 2.3-a)

≤ f(xk+1)− ε′ (by Proposition 2.3-d)

≤ f(xk) + εx − ε′ (by Theorem 3.1-a with tx = 1, εy = 0)

≤ f(xk)− ε (since ε′ ≥ ε+ εx)

Hence, the new xk+1 = 1X̂k+1 will satisfy f(xk) − f(xk+1) > ε. Thus f? < f(xk) < f(x0) − kε and k < (f(x0) −
f?)/ε.

Next we present convergence properties of approximate DCAR (10).

Theorem E.5. Given f = g−h as defined in (6), let {xk}, {Xk}, {x̃k} and {yk} be generated by approximate DCAR (10),
and define TΦ(xk+1) = Φ(xk)− Φ(xk+1)− 〈yk, xk − xk+1〉 for any Φ ∈ Γ0, Then for all tx ∈ (0, 1], k ∈ N, we have:

a) Tg(x̃k+1) ≥ ρ(1−tx)
2 ‖xk − x̃k+1‖2 − εx

tx
, and Th(x̃k+1) ≤ −ρ2‖x

k − x̃k+1‖2.

Moreover, for any ε ≥ 0, if Tg(x̃k+1) ≤ ε, then xk is an (ε+ εx, 0)-critical point of g − h, with yk ∈ ∂ε+εxg(xk) ∩
∂h(xk), and ρ(1−tx)

2 ‖xk − x̃k+1‖2 ≤ εx
tx

+ ε. Conversely, if xk ∈ ∂ε+εxg∗(yk), then Tg(x̃k+1) ≤ εx + ε.
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Similarly, if Th(x̃k+1) ≥ −ε, then x̃k+1 is an (εx, ε)-critical point of g − h, with yk ∈ ∂εxg(x̃k+1) ∩ ∂εh(x̃k+1), and
ρ
2‖x

k − x̃k+1‖2 ≤ ε. Conversely, if yk ∈ ∂εh(x̃k+1), then Th(x̃k+1) ≥ −ε.

b) F (Xk)− F (Xk+1) ≥ f(xk)− f(x̃k+1) = Tg(x̃
k+1)− Th(x̃k+1) ≥ ρ(2−tx)

2 ‖xk − x̃k+1‖2 − εx
tx

.

c) For any ε ≥ 0, F (Xk)− F (Xk+1) ≤ ε then f(xk)− f(x̃k+1) = Tg(x̃
k+1)− Th(x̃k+1) ≤ ε. In this case, xk is an

(εx + ε1, 0)-critical point of g − h, with yk ∈ ∂εx+ε1g(xk) ∩ ∂h(xk), x̃k+1 is an (εx, ε2)-critical point of g − h with
yk ∈ ∂εxg(x̃k+1)∩∂ε2h(x̃k+1) for some ε1+ε2 = ε, ε1 ≥ −εx, ε2 ≥ 0, and ρ(2−tx)

2 ‖xk−x̃k+1‖2 ≤ ε+ εx
tx

. Conversely,
if xk ∈ ∂εx+ε1g

∗(yk), and yk ∈ ∂ε2h(x̃k+1), then Tg(x̃k+1)− Th(x̃k+1) ≤ εx + ε and f(xk)− f(x̃k+1) ≤ εx + ε.

d) mink∈{0,1,...,K−1} Tg(x̃
k+1) − Th(x̃k+1) = mink∈{0,1,...,K−1} f(xk) − f(x̃k+1) ≤ mink∈{0,1,...,K−1} F (Xk) −

F (Xk+1) ≤ F (X0)−F?
K .

e) If ρ > 0, then

min
k∈{0,1,...,K−1}

‖xk − x̃k+1‖ ≤
√

2
ρ(2−tx)

(F (X0)− F ?
K

+ εx
tx

)
.

Proof. Note that the iterates x̃k+1, yk are generated by an approximate DCA step from xk, so Theorem E.2 apply to them.

a) The claim follows from Theorem E.2-a.

b) By Theorem E.2-b, we have

f(xk)− f(x̃k+1) = Tg(x̃
k+1)− Th(x̃k+1) ≥ ρ(2−tx)

2 ‖xk − x̃k+1‖2 − εx
tx
.

By Proposition 2.3-a, we also have F (Xk) − F (Xk+1) = f(xk) − f(xk+1). The claim then follows since
f(xk+1) ≤ f(x̃k+1) by Proposition 2.3-d.

c) This follows from Item b and Theorem E.2-c.

d) This follows from Item b by telescoping sum.

e) This follows from Items b and d.

F. Proofs of Section 4
F.1. Proof of Corollary 4.1

Corollary 4.1. Given any f = g − h, where g, h ∈ Γ0, and φk as defined in (11), let {wt} be generated by approximate
FW (12) with γt = 1. Then for all T ∈ N, we have

min
t∈{0,··· ,T−1}

gap(wt) ≤
φk(w0)−minw∈∂h(xk) φk(w)

T
+ ε

Proof. We observe that approximate FW with γt = 1 is a special case of approximate DCA (1), with DC components

g′ = δ∂h(xk) and h′ = −φk,

and εx = 0, εy = ε. Indeed, we can write the approximate FW iterates w0 ∈ ∂h(xk) = dom ∂g′, −st ∈ ∂εh′(wt) and
wt+1 = vt ∈ argminw g

′(w)− 〈−st, w〉 = ∂(g′)∗(−st), which are valid iterates of approximate DCA (1).

We show also that g′, h′ ∈ Γ0: We can assume w.l.o.g that ∂h(xk) 6= ∅, otherwise the bound holds trivially. Hence, g′ is
proper. And since h ∈ Γ0, ∂h(xk) is a closed and convex set, hence g′ is a closed and convex function. We also have that
h′ is proper, since otherwise Problem (5a) would not have a finite minimum, which also implies that the minimum of the
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DC dual (4) is not finite, contradicing our assumption that the minimum of the DC problem (3) is finite. Finally, since the
fenchel conjugate g∗ is closed and convex, then h′ is also closed and convex.

We can thus apply Theorem E.2. We get

min
k∈{0,1,...,K−1}

Tg′(w
k+1)− Th′(wk+1) ≤

φ(w0)−minw∈∂h(xk) φk(w)

K
(by Theorem E.2-d)

⇒ min
k∈{0,1,...,K−1}

Tg′(w
k+1) ≤

φ(w0)−minw∈∂h(xk) φk(w)

K
+ ε (by Theorem E.2-a with ty = 1)

The claim now follows by noting that Tg′(wt+1) = 〈st, wt − wt+1〉 = gap(wt).

F.2. Proof of Proposition 4.2

Proposition 4.2. Given s, x ∈ Rd, let a1 > · · · > am denote the unique values of x taken at sets A1 · · · , Am, i.e.,
A1 ∪ · · · ∪ Am = V and for all i ∈ {1, · · · ,m}, j ∈ Ai, xj = ai, and let σ ∈ Sd be a decreasing order of x, where we
break ties according to s, i.e., xσ(1) ≥ · · · ≥ xσ(d) and sσ(|Ci−1|+1) ≥ · · · ≥ sσ(|Ci|), where Ci = A1 ∪ · · · ∪ Ai for all
i ∈ {1, · · · ,m}. Define wσ(k) = H(σ(k) | Sσk−1) for all k ∈ V , then w is a maximizer of maxw∈∂hL(x)〈s, w〉.

Proof. By Proposition 2.3-f, w ∈ ∂hL(x), so it is a feasible solution. Given any w′ ∈ ∂hL(x), w′ is a maximizer of
maxw∈B(H)〈w, s〉, hence it must satisfy w′(Ci) = H(Ci) for all i ∈ {1, · · · ,m} (Bach, 2013, Proposition 4.2). We have

〈s, w − w′〉 =

m∑
i=1

|Ai|∑
k=1

sσ(|Ci−1|+k)

(
H(σ(|Ci−1|+ k) | Sσ|Ci−1|+k−1)− w′σ(|Ci−1|+k)

)

=

m∑
i=1


|Ai|−1∑
k=1

(sσ(|Ci−1|+k) − sσ(|Ci−1|+k+1))(H(Sσ|Ci−1|+k)− w′(Sσ|Ci−1|+k))

− sσ(|Ci−1|+1)(H(Sσ|Ci−1|)− w
′(Sσ|Ci−1|)) + sσ(|Ci|)(H(Sσ|Ci|)− w

′(Sσ|Ci|))


≥ 0.

The last inequality holds since w′ ∈ B(H) and Sσ|Ci| = Ci for all i ∈ {1, · · · ,m}.

F.3. Proof of Theorem 4.3

To prove Theorem 4.3 we need the following lemma, which extends the result in (Pham Dinh & Souad, 1988, Theorem 2.3).
Lemma F.1. For any ε ≥ 0, x̂ is an ε-strong critical point of g − h if and only if there exists ŷ ∈ argmin{〈y, x̂〉 − g∗(y) :
y ∈ ∂h(x̂)} such that x̂ ∈ ∂εg∗(ŷ).

Proof. If x̂ is an ε-strong critical point of g − h, i.e., ∂h(x̂) ⊆ ∂εg(x̂), then for every y ∈ ∂h(x̂), we have y ∈ ∂εg(x̂). In
particular, this holds for ŷ ∈ argmin{〈y, x̂〉 − g∗(y) : y ∈ ∂h(x̂)}, hence x̂ ∈ ∂εg∗(ŷ) by Proposition 2.4. Conversely,
given ŷ ∈ argmin{〈y, x̂〉 − g∗(y) : y ∈ ∂h(x̂)} such that x̂ ∈ ∂εg∗(ŷ), we have

〈ŷ, x̂〉 − g∗(ŷ) ≤ 〈y, x̂〉 − g∗(y),∀y ∈ ∂h(x̂). (17)

Since x̂ ∈ ∂εg∗(ŷ), we have by Proposition 2.4, g∗(ŷ) + g(x̂)− 〈ŷ, x̂〉 ≤ ε. Combining this with (17) yields

g(x̂)− ε ≤ 〈y, x̂〉 − g∗(y),∀y ∈ h(x̂).

By definition of g∗, we obtain

g(x̂)− ε ≤ 〈y, x̂− x〉+ g(x),∀x ∈ Rd,∀y ∈ h(x̂).

Hence y ∈ ∂εg(x̂) for all y ∈ h(x̂).

Theorem 4.3. Given any f = g−h, where g, h ∈ Γ0, let {xk} and {yk} be generated by variant of approximate CDCA (5),
where xk+1 is any point in ∂εxg

∗(yk) (not necessarily a solution of Problem (5b)). Then, for ε ≥ 0, if f(xk)− f(xk+1) ≤ ε,
xk is an (ε + εx)-strong critical point of g − h. Moreover, if h is locally polyhedral, then xk is also an (ε + εx)-local
minimum of f . This is the case for h given by (6) when ρ = 0.
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Proof. Since approximate CDCA is a special case of approximate DCA, with εy = 0, Theorem 3.1 applies. If f(xk) −
f(xk+1) ≤ ε, we have by Theorem 3.1-b that xk ∈ ∂εx+εg

∗(yk). Hence, by Lemma F.1 xk satisfies ∂h(xk) ⊆ ∂εx+εg(xk).
If h is locally polyhedral, this implies that xk is an (ε+ εx)-local minimum of f by Proposition 2.7-b.

F.4. Proof of Corollary 4.4

Corollary 4.4. Given f = g − h as defined in (6), ε ≥ 0, let X̂ ⊆ V and x̂ = 1X̂ . If x̂ is an ε-strong critical point of
g − h, then X̂ is an ε′-strong local minimum of F , where ε′ =

√
2ρdε if ε ≤ ρd

2 and ρd
2 + ε otherwise. Conversely, if X̂

is an ε-strong local minimum of F , then x̂ is an ε-local minimum of f , and hence also an ε-strong critical point of g − h.

Proof. Assume that x̂ is an ε-strong critical point of g−h. We first observe that any vector x = 1X corresponding toX ⊆ X̂
or X ⊇ X̂ has a common decreasing order with x̂, hence choosing ŷ as in Proposition 2.3-f according to this common order
yields ŷ ∈ ∂hL(x̂) ∩ ∂hL(x), and ŷ + ρx̂ ∈ ∂h(x̂) ⊆ ∂εg(x̂). By Lemma E.3, we thus have ŷ ∈ ∂ε′(gL + δ[0,1]d)(x̂) and
∂ε′(gL + δ[0,1]d)(x̂) ∩ ∂hL(x) 6= ∅. Proposition 2.7-a then implies that f(x̂) ≤ f(x) + ε′. Hence, X̂ is an ε′-strong local
minimum of F by Proposition 2.3-a.

Conversely, assume X̂ is an ε′-strong local minimum of F . We argue that there exists a neighborhood Bδ(x̂) = {x :
‖x− x̂‖∞ < δ} of x̂, where δ = 1/4, such that any X = RoundF (x) for x ∈ Bδ(x̂), satisfies X ⊆ X̂ or X ⊇ X̂ . To see
this note that for x ∈ Bδ(x̂), any σ ∈ Sd such that xσ(1) ≥ · · · ≥ xσ(d) would have Sσ|X̂| = X̂ , since x̂i − δ > x̂j + δ for

all i ∈ X̂, j 6∈ X̂ . Since X = Sσ
k̂

where k̂ ∈ argmink=0,1,...,d F (Sσk ), it must satisfy X ⊆ X̂ or X ⊇ X̂ . As a result, we
have by Proposition 2.3-d,a,

fL(x̂) = F (X̂) ≤ F (X) + ε′ ≤ fL(x) + ε′.

Hence, x̂ is an ε-local minimum of f , and thus also ε-strong critical point of g − h by Proposition 2.7-a.

F.5. Convergence properties of CDCAR

Corollary F.2. Let {xk}, {x̃k+1} and {yk} be generated by an approximate version of CDCAR (13) where x̃k+1 ∈
∂εxg

∗(yk) and for some εx ≥ 0. Then all of the properties in Theorem E.5 hold. In addition, if F (Xk)− F (Xk+1) ≤ ε
for some ε ≥ 0 then xk is an (ε+ εx)-strong critical point of f , with ∂h(xk) ⊆ ∂εx+εg(xk), and Xk is an ε′-strong local
minimum of F , where ε′ =

√
2ρd(ε+ εx) if ε+ εx ≤ ρd

2 , and ρd
2 + ε+ εx otherwise. If ρ = 0, xk is also an ε+ εx-local

minimum of f .

Proof. Since CDCAR is a special case of DCAR, then all properties of the latter apply to the former. In addition,
if F (Xk) − F (Xk+1) ≤ ε, we have by Theorem E.5-c that xk ∈ ∂εx+εg

∗(yk). Hence, by Lemma F.1 xk satisfies
∂h(xk) ⊆ ∂εx+εg(xk). Hence, Xk is a ε′-strong local minimum of F by Corollary 4.4. If ρ = 0, h is polyhedral, hence xk

is an ε+ εx-local minimum of f by Proposition 2.7-b.

G. Remarks on Local Optimality Conditions
The following example shows that rounding a fractional solution xK returned by DCA or CDCA will not necessarily yield
an ε-local minimum of F , for any ε ≥ 0, even if xK is a local minimum of fL. It also shows that the objective achieved by a
local minimum of fL can be arbitrarily worse than the minimum objective.

Example G.1. For any ε ≥ 0, α > ε, let V = {1, 2, 3}, G(X) = α|X|, and H : 2V → R be a set cover function defined
as H(X) = α|

⋃
i∈X Ui|, where U1 = {1}, U2 = {1, 2}, U3 = {1, 2, 3}. Then G is modular, H is submodular, and their

corresponding Lovász extensions are gL(x) = α(x1 +x2 +x3) and hL(x) = α(max{x1, x2, x3}+max{x2, x3}+x3); see
e.g., (Bach, 2013, Section 6.3). The minimum value minX⊆V G(X)−H(X) = −2α is achieved at X∗ = {3}. Consider
a solution x̂ = (1, 0.5, 0), x̂ is a local minimum of fL. To see this note that for any vector x such that x1 > x2 > x3 we
have hL(x) = gL(x), hence fL(x) = 0 = fL(x̂). Accordingly, for any x in the neighborhood {x : ‖x− x̂‖∞ < 0.25 of x̂,
we have fL(x) = 0 = fL(x̂), thus x̂ is a local minimum of fL. On the other hand none of the sets ∅, {1}, {1, 2}, {1, 2, 3}
obtained by rounding x̂ via Proposition 2.3-d are ε-local minima of F , since they all have objective value F (X̂) = 0
and adding or removing a single element yields an objective F (X) = −α (we can choose X to be {2}, {13}, {2}, {23}
respectively).
Note that if xk = x̂ at any iteration k of DCA (e.g., if we initialize at x0 = x̂) and ρ > 0, then xk+1 = xk and DCA will
terminate. To see this note that h has a unique subgradient at xk which is yk = ρxk +1, and xk = argminx∈[0,1]d gL(x)−
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〈x, yk〉 + ρ
2‖x‖

2. This also applies to CDCA, since DCA and CDCA coincide in this case (since ∂h(xk) has a unique
element). Note also that the objective at this local minimum fL(x̂) = 0 is arbitrarily worse than the minimum objective
minx∈[0,1]3 fL(x) = −2α.

Note that in the above example, the variant of DCA in Algorithm 2 would yield the optimal solution X∗ (e.g., if we pick ∅
as the rounded solution).

The following example shows that the objective achieved by a set satisfying the guarantees in Corollary 3.2 can be arbitrarily
worse than any strong local minimum. This highlights the importance of the stronger guarantee of CDCA.
Example G.2. Let V = {1, · · · , d}, α > 0, and G,H : 2V → R be set cover functions defined as G(X) = α|

⋃
i∈X U

G
i |,

where UG1 = {1}, UG2 = UG3 = {2}, UG4 = · · · = UGd = {3} and H(X) = α|
⋃
i∈X U

H
i |, where UH1 = UH4 = · · · =

UHd = {1}, UH2 = {2}, UH3 = {3}. Then G and H are submodular; see e.g., (Bach, 2013, Section 6.3). Consider
X = {1}, X is a local minimum since adding or removing any element results in the same objective F (X) = 0 or larger.
We argue that X also satisfies the rest of the guarantees in Corollary 3.2, i.e., F (X) ≤ F (Sσi` ) for all ` ∈ V , where
σ2, · · · , σd ∈ Sd correspond to decreasing orders of 1X with σi(2) = i. Each σi admits (d− 2)! valid choices. Note that
the only possible values of F (Sσi` ) are 0, α and −α, with −α achieved only at Sσ2

3 = Sσ3
3 = {1, 2, 3} with the choices of

σ2 starting with (1, 2, 3) and the choices of σ3 starting with (1, 3, 2). So, for any other choices of σ2 and σ3, X satisfies
the guarantees in Corollary 3.2. If σi’s are chosen uniformly at random, X would satisfy the guarantees in Corollary 3.2
with probability 1 − 2

d−2 . On the other hand, any strong local minimum X̂ must contain {2, 3} since otherwise the set
X ′ = X̂ ∪ ({2, 3} \ X̂) ⊃ X̂ has a smaller objective F (X ′) = F (X̂)− α leading to a contradiction. It follows then that
any strong local minimum will satisfy F (X̂) ≤ F ({2, 3}) = −α, which is also the optimal solution, and arbitratily better
than the objective achieved by X .

H. Special Cases of DS Minimization
In this section, we discuss some implications of our results to some special cases of the DS problem (1). To that end, we
define two types of approximate submodularity and supermodularity, and show how they are related.

First, we recall the notions of weak DR-submodularity/supermodularity, which were introduced in (Lehmann et al., 2006)
and (Bian et al., 2017), respectively.
Definition H.1. A set function F is α-weakly DR-submodular, with α > 0, if

F (i | A) ≥ αF (i | B), for all A ⊆ B, i ∈ V \B.

Similarly, F is β-weakly DR-supermodular, with β > 0, if

F (i | B) ≥ βF (i | A), for all A ⊆ B, i ∈ V \B.

We say that F is (α, β)-weakly DR-modular if it satisfies both properties.

In the above definition, if F is non-decreasing, then α, β ∈ (0, 1], if it is non-increasing, then α, β ≥ 1, and if it is neither
(non-monotone) then α = β = 1. F is submodular (supermodular) iff α = 1 (β = 1) and modular iff both α = β = 1.

Next, we recall the following characterizations of submodularity and supermodularity: A set function F is submodular if
F (A) +F (B) ≥ F (A∪B) +F (A∩B) for all A,B ⊆ V , and supermodular if F (A) +F (B) ≤ F (A∪B) +F (A∩B).
We introduce other notions of approximate submodularity and supermodularity based on these properties.
Definition H.2. A set function F is α-submodular, with α > 0, if

F (A) + F (B) ≥ α(F (A ∪B) + F (A ∩B)), for all A,B ⊆ V .

Similarly, F is β-supermodular, with β > 0, if

β(F (A) + F (B)) ≤ F (A ∪B) + F (A ∩B), for all A,B ⊆ V .

We say that F is (α, β)-modular if it satisfies both properties.

In the above definition, if F is non-negative, then α, β ∈ (0, 1], if it is non-positive, then α, β ≥ 1, and if it is neither then
α = β = 1. F is submodular (supermodular) iff α = 1 (β = 1) and modular iff both α = β = 1.

The two types of approximate submodularity and supermodularity are related as follows.
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Proposition H.3. F is α-weakly DR submodular iff

F (A) + αF (B) ≥ F (A ∩B) + αF (A ∪B),∀A,B ⊆ V. (18)

If F is also normalized, then F is α-submodular. Similarly, F is β-weakly DR supermodular iff

F (A) +
1

β
F (B) ≤ F (A ∩B) +

1

β
F (A ∪B),∀A,B ⊆ V. (19)

If F is also normalized, then F is β-supermodular.

Proof. Given an α-weakly DR submodular function F , let A \B = {i1, i2, · · · , ir}. Then

F (A ∩B ∪ {i1, · · · , ik})− F (A ∩B ∪ {i1, · · · , ik−1}) ≥ α(F (B ∪ {i1, · · · , ik})− F (B ∪ {i1, · · · , ik−1)),∀k = 1, · · · , r
⇒ F (A)− F (A ∩B) ≥ α(F (A ∪B)− F (B)) (by telescoping sum)

Rearranging the terms yields (18). If F is also normalized, then F is α-submodular. To see this, note that if α < 1, F is
non-decreasing and hence F (X) ≥ F (∅) = 0, and if α > 1, F is non-increasing and hence F (X) ≤ F (∅) = 0. Thus for
any α > 0, we have F (X) ≥ αF (X) for any X ⊆ V . In particular, applying this to X = B and X = A ∩B, we obtain

F (A) + F (B) ≥ F (A) + αF (B) ≥ F (A ∩B) + αF (A ∪B) ≥ α(F (A ∩B) + F (A ∪B)).

Conversely, if F satisfies (18), then for all A′ ⊆ B′ ⊆ V , let A = A′ ∪ {i}, B = B′, then

F (A) + αF (B) ≥ F (A ∩B) + αF (A ∪B)

⇒ F (A′ ∪ {i}) + αF (B′) ≥ F (A′) + αF (B′ ∪ {i})
⇒ F (i | A′) ≥ αF (i | B′).

Hence F is α-weakly DR submodular. The remaining claims follow similarly.

H.1. Approximately submodular functions

We consider special cases of the DS problem (1) where F is approximately submodular. In Section 4, we showed that CDCA
with integral iterates xk and CDCAR converge to an ε′-strong local minimum of F when F (Xk)− F (Xk+1) ≤ ε, where

ε′ =

{√
2ρd(ε+ εx) if ε+ εx ≤ ρd

2
ρd
2 + ε+ εx otherwise.

(20)

The following two propositions relate the approximate strong local minima of an approximately submodular function to
its global minima, for two different notions of approximate submodularity.

Proposition H.4. If F is an α-submodular function, then for any ε ≥ 0, any ε-strong local minimum X̂ of F satisfies
F (X̂) ≤ 1

2α−1 (minX⊆V F (X) + 2εα).

Proof. Let X∗ be an optimal solution. Since X̂ is an ε-strong local minimum of F , we have F (X̂) ≤ F (X̂ ∪X∗) + ε and
F (X̂) ≤ F (X̂ ∩X∗) + ε. Hence,

2F (X̂) ≤ F (X̂ ∪X∗) + F (X̂ ∩X∗) + 2ε

2F (X̂) ≤ 1

α
(F (X̂) + F (X∗)) + 2ε

F (X̂) ≤ 1

2α− 1
(F (X∗) + 2εα).
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Proposition H.4 applies to the solutions returned by CDCA with integral iterates xk and CDCAR on the DS problem (1),
with ε = ε′. Moreover, when F is submodular, we have α = 1, then any ε-strong local minimum is a 2ε-global minimum
of F in this case. In particular, if H is modular, DCA and CDCA with integral iterates xk, DCAR, and CDCAR, all
converge to a 2ε′-global minimum of F . This holds for the DCA variants since by Theorem 3.1-b, DCA converges to an
(ε+ εx, 0)-critical point of g− h, and when H is modular, h is differentiable, hence any (ε+ εx, 0)-critical point of g− h is
also an (ε+ εx)-strong critical point, and by Corollary 4.4 it is also an ε′-strong local minimum of F if it is integral.

Proposition H.5. Given F = G−H , if G is submodular and H is β-weakly DR-supermodular, then for any ε ≥ 0, any
ε-strong local minimum X̂ of F satisfies F (X̂) ≤ G(X∗)− βH(X∗) + 2ε, where X∗ is a minimizer of F .

Proof. Since X̂ is an ε-strong local minimum of F , we have F (X̂) ≤ F (X̂ ∪X∗) + ε and F (X̂) ≤ F (X̂ ∩X∗) + ε. By
Proposition H.3, H satisfies 1

βH(X̂) +H(X∗) ≤ 1
βH(X̂ ∪X∗) +H(X̂ ∩X∗) ≤ 1

β (H(X̂ ∪X∗) +H(X̂ ∩X∗)). Hence,

2F (X̂) ≤ F (X̂ ∪X∗) + F (X̂ ∩X∗) + 2ε

2F (X̂) ≤ (G(X̂) +G(X∗))− (H(X̂) + βH(X∗)) + 2ε

F (X̂) ≤ G(X∗)− βH(X∗) + 2ε.

Proposition H.5 again applies to the solutions returned by CDCA with integral iterates xk and CDCAR on the DS problem
(1), with ε = ε′. This guarantee matches the one provided in (El Halabi & Jegelka, 2020, Corollary 1) in this case (though the
result therein does not require H to be submodular), which is shown to be optimal (El Halabi & Jegelka, 2020, Theorem 2).

The following proposition shows that a similar result to Proposition H.5 holds under a weaker assumption (recall from
Corollary 4.4 that if X̂ is an ε-strong local minimum of F then 1X̂ is an (ε, 0)-critical point of g − h).

Proposition H.6. Given F = G − H where G is submodular and H is β-weakly DR-supermodular, f = g − h as
defined in (6), ε ≥ 0, let x̂ be an (ε, 0)-critical point of g − h, with ŷ ∈ ∂εg(x̂) ∩ ∂h(x̂), where ŷ − ρx̂ is computed as in
Proposition 2.3-f. Then X̂ = RoundF (x̂) satisfies F (X̂) ≤ G(X∗)− βH(X∗) + ε′, where X∗ is a minimizer of F , and
ε′ =

√
2ρdε if ε ≤ ρd

2 and ρd
2 + ε otherwise.

Proof. Since ŷ ∈ ∂εg(x̂), we have by Lemma E.3 that ŷ − ρx̂ ∈ ∂ε′(gL + δ[0,1]d)(x̂). Hence, for all x ∈ [0, 1]d

gL(x) ≥ gL(x̂) + 〈ŷ − ρx̂, x− x̂〉 − ε′. (21)

Since H is β-weakly DR-supermodular and ŷ − ρx̂ is computed as in Proposition 2.3-f, we have by (El Halabi & Jegelka,
2020, Lemma 1), for all x ∈ Rd,

−βhL(x) ≥ −hL(x̂)− 〈ŷ − ρx̂, x− x̂〉. (22)

Combining (21) and (22), we obtain

gL(x)− βhL(x) ≥ gL(x̂)− hL(x̂)− ε′.

In particular, taking x∗ = 1X∗ , we have by Proposition 2.3-a,d,

G(X∗)− βH(X∗) = gL(x∗)− βhL(x∗) ≥ fL(x̂)− ε′ ≥ F (X̂)− ε′.

Proposition H.6 applies to the solution returned by any variant of DCA and CDCA (including ones with non-integral iterates
xk) on the DS problem (1), with ε = ε + εx, ε

′ = ε′. In particular, if H is modular (β = 1), they all obtain an ε′-global
minimum of F .
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H.2. Approximately supermodular functions

We consider special cases of the DS problem (1) where F is approximately supermodular. In Section 3, we showed that
DCA with integral iterates xk and DCAR converge to an ε′-local minimum of F when F (Xk) − F (Xk+1) ≤ ε, with
ε′ defined in (20). The following proposition shows that approximate local minima of a supermodular function are also
approximate strong local minima.

Proposition H.7 (Lemma 3.3 in (Feige et al., 2011)). If F is a supermodular function, then for any ε ≥ 0, any ε-local
minimum of F is also an εd-strong local minimum of F .

Proof. The proof follows in a similar way to (Feige et al., 2011, Lemma 3.3), we include it for completeness. Given an
ε-local minimum X of F , for any X ′ ⊆ X , let X \X ′ = {i1, · · · , ik}, then

F (X)− F (X ′) =

k∑
`=1

F (i` | X ′ ∪ {i1, · · · , i`−1})

≤
k∑
`=1

F (i` | X \ i`)

≤ dε

We can show in a similar way that F (X) ≤ F (X ′) + dε for any X ′ ⊇ X .

The following proposition relates the approximate strong local minima of an approximately supermodular function to its
global minima.

Proposition H.8. If F is a non-positive β-supermodular function, then for any ε ≥ 0, any ε-strong local minimum X̂
of F satisfies min{F (X̂), F (V \ X̂)} ≤ 1

3β2 minX⊆V F (X) + 2
3ε. In addition, if F is also symmetric, then X̂ satisfies

F (X̂) ≤ 1
2β minX⊆V F (X) + ε.

Proof. This proposition generalizes (Feige et al., 2011, Theorem 3.4). The proof follows in a similar way. Let X∗ be an
optimal solution. Since X̂ is an ε-strong local minimum of F , we have F (X̂) ≤ F (X̂∪X∗)+ε and F (X̂) ≤ F (X̂∩X∗)+ε.
Hence,

2F (X̂) + F (V \ X̂) ≤ F (X̂ ∩X∗) + F (X̂ ∪X∗) + F (V \ X̂) + 2ε

≤ 1
β (F (X̂ ∩X∗) + F (X∗ \ X̂) + F (V )) + 2ε

≤ 1
β2 (F (X∗) + F (∅) + F (V )) + 2ε.

If F is also symmetric then

2F (X̂) ≤ F (X̂ ∩X∗) + F (X̂ ∪ (V \X∗)) + 2ε

= F (X̂ ∩X∗) + F ((V \ X̂) ∩X∗) + 2ε

= 1
β (F (X∗) + F (∅)) + 2ε.

Proposition H.4 applies to the solutions returned by CDCA with integral iterates xk and CDCAR on the DS problem
(1), with ε = ε′. Moreover, when F is non-positive supermodular, we have β = 1, then the solutions returned by
CDCA with integral iterates xk and CDCAR satisfy min{F (X̂), F (V \ X̂)} ≤ 1

3F
? + 2

3ε
′ and F (X̂) ≤ 1

2F
? + ε′

if F is symmetric; and by Proposition H.7 the solutions returned by DCA with integral iterates xk and DCAR satisfy
min{F (X̂), F (V \ X̂)} ≤ 1

3F
? + 2

3ε
′d and F (X̂) ≤ 1

2F
? + ε′d if F is symmetric. These guarantees match the ones for

the deterministic local search provided in (Feige et al., 2011, Theorem 3.4) , which are optimal for symmetric functions
(Feige et al., 2011, Theorem 4.5), but not for general non-positive supermodular functions, where a 1/2-approximation
guarantee can be achieved (Buchbinder et al., 2012, Theorem 4.1).

The non-positivity assumption in Proposition H.8 is necessary as demonstrated by the following example.
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Example H.9. Let V = {1, · · · , 4}, α > 0, G(X) = 2α|X|, and H : 2V → R be a set cover function defined as
H(X) = α|

⋃
i∈X Ui|, where Ui = {1, · · · , i}. Then G,H are submodular functions, and F is supermodular but not

non-positive, since F (V ) = 4α > 0. Consider a solution X̂ = {2},F (X̂) = −α(d − 4) = 0, F (V \ X̂) = 2α and X̂
is a strong local minimum of F since adding or removing any number of elements yields the same objective or worse.
On the other hand, the minimum is minX⊆V F (X) = −2α, achieved at X∗ = {4}, which is arbitrarily better than
min{F (X̂), F (V \ X̂)}.
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