
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SELECT AND SCHEDULE: AN EFFICIENT HIERARCHI-
CAL OPTIMIZER FOR BLOCKING JOB SHOP SCHEDUL-
ING PROBLEM WITH MASSIVE JOBS

Anonymous authors
Paper under double-blind review

ABSTRACT

The Blocking Job Shop Scheduling Problem (BJSP) is a widely studied variant
of the classic Job Shop Scheduling Problem. In BJSP, the blocking constraint re-
quires a job to remain on its current machine until the next machine is available.
This constraint substantially increases problem complexity, which in turn limits
most existing scheduling algorithms to small-scale instances. However, we ob-
serve that this blocking constraint also has merit: it naturally restricts the number
of jobs processed concurrently, thereby reducing the number of candidate jobs
that must be considered at almost any decision point. Building on this insight, we
propose a novel hierarchical optimization framework. The higher layer employs a
neural network to select a small subset of jobs from a large candidate pool, while
the lower layer uses a solver to schedule the selected jobs. Compared with tra-
ditional approaches that directly schedule large sets of jobs, our method achieves
significantly lower computational complexity and scales almost linearly with the
number of jobs. This scalability enables us to efficiently handle larger instances
that are previously intractable. Experimental results demonstrate that, on large-
scale benchmarks and under comparable runtime budgets, our approach improves
solution quality by an average of 11%, while continuing to deliver high-quality
solutions within reasonable runtimes for even larger instances.

1 INTRODUCTION

Job-Shop Scheduling Problem (JSP) is a classical and widely studied combinatorial optimization
problem with broad applications in manufacturing and automation (Kan, 2012; D’Ariano et al.,
2007). Among numerous JSP variants (Li et al., 2022; Mascis & Pacciarelli, 2002), Blocking Job
Shop Scheduling Problem (BJSP) is a realistic extension , which frequently encountered in domains
such as chemical and pharmaceutical production, food processing, and automated warehousing (Hall
& Sriskandarajah, 1996). In BJSP, a set of jobs must be processed on machines, where each job
consists of a sequence of operations, each requiring a specific machine and a fixed processing time.
Each machine can process only one job at a time. In contrast to classic JSP , BJSP models the more
realistic scenario in which no intermediate buffer is available between machines. That is, once an
operation completes, if its succeeding machine is not ready, the job remains on the current machine,
blocking it from processing other jobs. This blocking constraint makes the problem significantly
more complex. The goal is to determine the start times of all operations to minimize the completion
time or makespan.

BJSP is further divided into two categories: Blocking No Swap (BNS) and Blocking With Swap
(BWS) (Mascis & Pacciarelli, 2002). In BWS, jobs can be temporarily removed to allow others to
move, while in BNS, such circular dependencies can cause deadlocks that must be avoided during
scheduling. Figure 1 illustrates the specific differences. At time t in BWS, Job 2 on Machine 1 is
waiting to move to Machine 2, while Job 3 on Machine 2 is waiting to move to Machine 1. In BWS, it
is allowed to simultaneously remove these two jobs from their machines and transfer them to the next
machines, making the schedule feasible. However, in BNS, applying the same schedule immediately
results in deadlock. Both variants have been proven to be NP-hard (Hall & Sriskandarajah, 1996).
Our proposed method is applicable to both BWS and BNS, but the experiments primarily focus on
the more challenging BNS case.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An example schedule for JSP, BNS and BWS. In JSP, Job 1 and Job 2 completed their first
operation consecutively , but since Machine 1 is occupied, they wait in the buffer. In contrast, under
BWS, when Job 2 finishes an operation, it remains on the current machine, preventing Job 1 from
completing its first operation. In BNS, exchange in BWS at time t is not allowed, and consequently
its makespan becomes longer.

BJSP is highly challenging, as the blocking constraint drastically increases scheduling complex-
ity. Existing research has mainly followed two directions: exact algorithms and metaheuris-
tics (Dabah et al., 2017; Pranzo & Pacciarelli, 2016; Dabah et al., 2018; Rihane et al., 2022;
Lange & Werner, 2019a; 2018). Exact methods can guarantee optimality but become infeasible
beyond small instances due to their exponential time complexity (Dabah et al., 2016; 2018; Gmys
et al., 2016). Within the class of metaheuristics, tabu search has demonstrated state-of-the-art per-
formance (Lange & Werner, 2018; Mogali et al., 2021; Dabah et al., 2019; 2017). However, it
typically requires a large number of iterations to reach high-quality solutions, resulting in relatively
high computational cost and making it unsuitable for dynamic or real-time scheduling scenarios.

While the blocking constraint is commonly regarded as a source of computational difficulty, we
observe that its inherent restriction on concurrency can be exploited to reduce computational com-
plexity. Specifically, at any given time, the number of jobs that can be simultaneously in pro-
cess—defined as jobs that have started their first operation but have not yet completed their final
operation—is bounded by the number of machines. In high-quality schedules, the number of ac-
tively in-process jobs often approaches this upper bound. This implies that, until one of these jobs
completes, other jobs typically need not be considered. In other words, in most situations, the sched-
uler can focus on a small subset of jobs rather than the entire job set.

Building on this insight, we design a hierarchical optimization framework ——Select-and-Schedule
(S&S). A high-level neural network dynamically selects a promising subset of jobs from the candi-
date pool, and a lower-level solver schedules them in detail. This S&S framework fundamentally
differs from traditional approaches that attempt to schedule all jobs directly. By narrowing the effec-
tive problem size at each decision step, our method achieves computational complexity that grows
nearly linearly with the number of jobs, making it possible to tackle large-scale BJSP instances that
were previously intractable.

We validate our approach on challenging benchmarks and demonstrate that, under comparable run-
time budgets, it improves solution quality by an average of 11% over state-of-the-art methods on
large instances. Moreover, our framework continues to produce high-quality schedules within rea-
sonable runtimes even as instance sizes grow further, highlighting its scalability and robustness. Our
contributions can be summarized as follows:

• We identify a key structural property of BJSP: although the blocking constraint increases
scheduling difficulty, it naturally limits concurrency. This observation allows the effective
problem size at each decision point to be dramatically reduced, providing a new perspective
for scalable scheduling.

• We propose a hierarchical optimization framework S&S, which integrates a high-level neu-
ral network to dynamically select promising job subsets and a lower-level solver to schedule

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

them.S&S narrows the effective problem size, achieving near-linear computational com-
plexity growth with respect to the number of jobs.

• we demonstrates an average improvement of 11% over existing state-of-the-art methods
under comparable runtime budgets. Moreover, S&S maintains high-quality schedules as
problem size increases, highlighting its robustness for large-scale applications.

2 RELATED WORKS

Mascis & Pacciarelli (2002) conducted one of the earliest comprehensive studies on BJSP, intro-
ducing the widely adopted Alternative Graph model as well as a heuristic algorithm. Later work
for BJSP can be broadly divided into exact and approximate methods. Exact methods are primar-
ily based on Branch-and-Bound (B&B). AitZai et al. (2012); Dabah et al. (2018; 2016) attempted
to obtain exact solutions via B&B, further exploring parallel acceleration using physical hardware.
More recently, Rihane et al. (2022) innovatively incorporated learning-based techniques to reduce
search time, where efficient learning of branching and selection strategies significantly sped up the
process, achieving near state-of-the-art performance with substantially fewer search iterations. Al-
though exact methods guarantee optimality, their scalability is severely limited due to the intrinsic
complexity of BJSP, which makes them impractical for real-world scenarios requiring high-quality
solutions within limited computational resources.

Approximate methods for the BJSP are mainly based on metaheuristic approaches, which aim to
obtain high-quality solutions without guaranteeing exact optimality. Among these, Tabu Search
(TS) (Glover, 1990) has been the most extensively studied. TS is a local search–based optimization
method that avoids cycling by prohibiting recently visited solutions, thereby escaping local optima
and exploring broader solution spaces. However, unlike JSP, where classical neighborhoods (N1,
NA, NB, N2, N4, N5; (Błażewicz et al., 1996)) are effective, applying them to BJSP tends to yield a
high proportion of infeasible solutions (Mogali et al., 2021) . Repairing such solutions incurs signif-
icant computational cost. To mitigate this, Gröflin & Klinkert (2009) attempted to directly construct
feasible neighborhoods, while Dabah et al. (2017) proposed heuristic reconstruction strategies to
improve solution quality. Dabah et al. (2019) further introduced a parallel multistart approach to
accelerate the time-consuming repair process, leveraging 512-core hardware to speed up the search.
More recently, Luo et al. (2021) argued that not all neighbors contribute meaningfully to the search
and developed theoretical insights to reduce complexity, leading to significant efficiency improve-
ments and achieving the first solution for instances of size 100×20. Beyond TS, other metaheuristics
have also been investigated, such as Iterated Greedy, Simulated Annealing, and their variants (Lange
& Werner, 2019a; Pranzo & Pacciarelli, 2016; van Blokland, 2012; Lange & Werner, 2019b) . Meta-
heuristics generally produce high-quality solutions on small and medium size instances and benefit
from well-designed heuristics. However, they rely on manually crafted neighborhoods and often
require many iterations, which results in long computational times and limits their scalability and
responsiveness in dynamic or large-scale scheduling scenarios.

3 PRELIMINARIES

BJSP Let J = {1, . . . , n} be the set of jobs and M = {1, . . . ,m} the set of machines. Each
job j ∈ J is an ordered sequence of operations Oj = (oj,1, . . . , oj,nj

). Operation oj,k requires
machine mj,k ∈ M and has processing time pj,k > 0.A schedule (solution) is specified by starting
times S = {sj,k}1≤j≤n, 1≤k≤nj

with sj,k ∈ N. The completion time is cj,k := sj,k + pj,k.In the
classical Job Shop Scheduling Problem (JSP), once an operation finishes its processing, the machine
is immediately released. In contrast, in the Blocking Job Shop Scheduling Problem (BJSP), no
intermediate buffers are available between machines. Therefore, if the successor machine of an
operation is occupied, the job remains on its current machine after completion, thereby blocking
the machine until the next machine becomes free (Mascis & Pacciarelli, 2002).The size of a BJSP
instance is denoted as |J | × |M|. Mathematical formulation about BJSP can be found in A.2

Submodular Let N be a ground set. Any function f : 2N → R is called a set function. A set
function f is submodular if, for any A ⊆ B ⊆ N and any v /∈ B, it holds that

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B). (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

A common problem concerning submodular functions is Cardinality-Constrained submodular Max-
imization (Nemhauser et al., 1978). Formally, given a submodular function f : 2N → R and a
cardinality constraint k, the goal is to find a subset S ⊆ N with |S| ≤ k that maximizes f(S):

max
S⊆N , |S|≤k

f(S). (2)

Submodular functions exhibit structural properties that allow greedy algorithms to be equipped with
provable and often tight approximation guarantees. A submodular function f is said to be monotone
if its value never decreases when elements are added to the set,it holds that:

f(A) ≤ f(B), ∀A ⊆ B ⊆ N . (3)

For the problem of maximizing a monotone submodular function subject to a cardinality constraint,
the classical greedy algorithm that iteratively selects the element with the largest marginal gain
achieves a (1−1/e)-approximation ratio (Nemhauser et al., 1978). In contrast, for the non-monotone
case, the best-known algorithms currently guarantee a 0.377-approximation ratio (Chen et al., 2024).

4 METHOD

The iterative procedure of our method is illustrated in Figure 2 and can be divided into three main
stages: Selection, Scheduling, and Schedule Retention. In the Selection stage, a subset of jobs
is chosen from the candidate pool and added to the set of jobs currently in process. During the
Scheduling stage, these in-process jobs are scheduled in detail using the lower-level solver. In the
Schedule Retention stage, a portion of the resulting schedule is preserved, while completed jobs are
removed from the in-process set. This cycle repeats iteratively until all jobs are fully scheduled,
constructing a complete schedule while maintaining a manageable problem size at each step.

Selection Process. Our method relies on a valuation network to assess whether a group of jobs
exhibits good parallelizability. For instance, in the BNS scenario illustrated in Figure 1, job1 and
job2 can partially execute in parallel, whereas job3 must run serially with job2. To quantify
parallelism within a job group, we adopt machine utilization—defined as the total machine pro-
cessing time divided by the makespan—as the evaluation metric. This choice is motivated by two
factors: first, maximizing machine utilization directly aligns with our optimization objective, as the
total processing time is fixed and higher utilization implies a shorter makespan. More importantly,
we make the novel observation that the machine utilization of a job set often exhibits approximate
submodular behavior: adding a job to a relatively small set typically increases utilization more than
adding it to an almost full set. This near-submodularity provides a principled abstraction for guiding
our selection process and motivates the application of submodular optimization techniques. Empiri-
cal evidence in Appendix A.4 demonstrates that this property holds in a large proportion of practical
instances, highlighting its practical relevance and validating our approach.

During selection, we greedily pick jobs that maximize the total machine utilization at each step.
Selecting k elements from the full setN to form a subset S that maximizes the set function fθ(S) is
a challenging problem. However, the submodular property of fθ provides a theoretical foundation
and performance guarantee. In most cases, when S already contains a moderate number of jobs, it
suffices to greedily select a single job a that maximizes fθ:

a = argmax
a

fθ(S ∪ {a}). (4)

In other cases, we employ the Guided Maximal Combinatorial Choice (GMCC) algorithm (Chen
et al., 2024). GMCC introduces a guided randomized greedy framework that surpasses the 1/e
approximation barrier for constrained non-monotone submodular maximization. It first applies a
fast local search to construct a guidance set Z that captures suboptimal regions, and then runs a
modified randomized greedy algorithm leveraging Z to steer the selection. Detailed algorithmic
steps are provided in the Appendix A.3 and in Chen et al. (2024).

Scheduling In our framework, we employ a Constraint Programming (CP) solver as the sub-
solver to optimize the scheduling of the selected job subset. CP is a widely used paradigm for
combinatorial optimization (Li et al., 2025), which models problems in terms of variables, domains,
and constraints, and efficiently searches for feasible solutions that satisfy all constraints. Using a CP

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

...

In-Process Box Feature

Time Machine Forced-startTime Machine Forced-start

MAB

…

Seed Vectors

…

Seed Vectors

Enriched Job

Embeddings

PMAPMA MLPMLP Machine

Utilization

……

……

……

In-Process BoxIn-Process Box

Candidate

Jobs

Candidate

Jobs

Job1

Job2

Jobn

...
Selection Process

Valuation Net

Evaluates score for

{In-Process Box} +

{each Candidate Job}

Evaluates score for

{In-Process Box} +

{each Candidate Job}

Best JobBest Job

Scheduling

CP SolverCP Solver

In-Process BoxIn-Process Box

Job1 ... Jobk

Schedule Retention

Earliest-

completion

retention

Fractional

retention

Figure 2: Our hierarchical optimization framework and the detailed architecture of the Valuation
Net. The lower panel shows one iteration of our method, which has three main stages. First, in the
Selection Process, the Valuation Net evaluates each job in the Candidate Jobs pool, and the job with
the highest score is chosen as the Best Job. Second, in the Scheduling stage, this best job is added to
the In-Process Box, and the CP Solver then creates a schedule for this complete job subset. Finally,
in the Schedule Retention stage, we use a policy to decide which part of the schedule to keep. The
upper panel shows the specific structure of the Valuation Net , a Set Transformer model. Input job
features are first processed by a Multihead Attention Block (MAB) to capture dependencies between
jobs and generate enriched job embeddinsgs. Next, a Pooling by Multihead Attention (PMA) module
uses learnable Seed Vectors to aggregate these job embeddings into a fixed-size vector. Finally, this
vector is passed to an MLP to predict the overall Machine Utilization.

solver as our subsolver offers several benefits. First, it allows our framework to leverage a mature
and general-purpose solver, reducing implementation complexity. Second, CP is highly extensible,
which means our framework can be readily adapted to solve variations of the problem, such as the
Blocking Job Shop Scheduling Problem with finite waiting times or other practical extensions.

Schedule Retention. At each iteration, we apply a schedule retention strategy to decide which
portion of the solver-generated schedule σ should be kept and appended to the global solution Π.
Concretely, we choose a time τ and retain all operations scheduled before τ , including those already
started but not yet completed at τ , while discarding all decisions beyond τ . For truncated jobs, the
partially executed operations are treated as already committed: in the next iteration, such operations
are forced to start at time 0 on their assigned machines, with their processing times reduced to re-
flect the portion already executed. Completed operations are removed, and fully finished jobs are
discarded. The preserved part σretain is appended to the global schedule Π, and the remaining sub-
problem is updated for the next iteration. We proposed two retention strategy : Earliest-completion
retention. The time point τ is chosen as the earliest completion among all operations in σ. This
selection is motivated by the observation that, immediately after τ , the set of in-process jobs is guar-
anteed to change—often accompanied by the addition of new jobs—making scheduling beyond this
point less informative. Moreover, by limiting the schedule to τ , we avoid redundant computations
arising from overlapping subproblems at earlier time points, thus improving efficiency. Fractional
retention. For large-scale subproblems or limited solver budgets, τ is set to a fixed fraction of the
earliest completion time. The overlap between consecutive subproblems in our approach is analo-
gous to the rolling-horizon optimization method in Li et al. (2025), allowing repeated subproblem
solutions to improve overall quality even when individual solver calls are not optimal.

Network Architecture. To model a set of n jobs, each with m operations, we adopt the Set Trans-
former architecture (Lee et al., 2019). There are two main motivations for this choice. First, we
need a network that naturally operates on sets, as the order of jobs should not affect the prediction.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Second, the operational features of a single job— the machine IDs of its operactions —are often
not meaningful in isolation. Their impact becomes apparent only in relation to other jobs, when
multiple operations require the same machine. Set-based attention allows the model to capture these
inter-job dependencies effectively.

Let xjk = [pjk,mjk, tjk] denote the feature vector of the k-th operation of the j-th job where pjk
is the processing time, mjk is the machine ID, and tjk indicates whether the operation is forced to
start. Each operation is embedded as

ojk = [Linear(pjk); Embed(mjk); Embed(tjk)] ∈ Rdo , (5)

where do = dp + dm + dt is the dimension of the concatenated embedding. A learnable positional
encoding sk ∈ Rdo is added to oijk to encode the operation’s position within the job. The embedding
of the j-th is obtained by flattening all m operation embeddings:

jj = Flatten(oj1, . . . ,ojm) ∈ Rm·do . (6)

The n job embeddings form a set J = {j1, . . . , jn}. We pass Ji through L layers of Set Attention
Blocks(SAB). Each SAB performs multi-head self-attention followed by a feed-forward network
(FFN) with residual connections and layer normalization:

H = LayerNorm(J+MultiheadAttention(J,J,J)) (7)

J′ = LayerNorm(H+ FFN(H)). (8)

Here, MultiheadAttention(Q,K, V) denotes the multi-head attention (Vaswani et al., 2017)with
query Q, key K, and value V , and FFN is a two-layer MLP with ReLU activation. This mechanism
allows each job to attend to other jobs in the set J . After L SAB layers, we aggregate the set into a
fixed-size vector using Pooling by Multihead Attention (PMA):

z = PMA(J(L)) = Concat
(
A1J

(L), . . . ,AsJ
(L)

)
W ∈ Rs·mdo , (9)

where s is the number of learnable seed vectors S = [s1, . . . , ss] ∈ Rs×do , and each attention map
is computed as

Ai = softmax
(si(J(L))⊤√

do

)
∈ R1×n. (10)

Each seed vector attends to all jobs in the set to summarize set-level information, producing zi =
AiJ

(L), and the outputs of all seeds are concatenated and optionally projected by W .The pooled
vector z is then mapped to a scalar prediction via an MLP:

ŷ = MLP(z) ∈ R, (11)

where ŷ denotes the predicted average machine utilization. This design naturally handles variable-
sized job sets, preserves permutation invariance, and captures inter-job dependencies through atten-
tion.

Training We adopt a supervised learning approach using randomly generated BJSP instances.
To simulate realistic scheduling scenarios, we apply two types of perturbations to the job sets: (i)
randomly masking a subset of operations, which mimics partially executed jobs, and (ii) randomly
removing completed jobs. The CP solver is then used to compute supervision labels, defined as the
machine utilization ratio, which reflects the degree of parallelism among jobs. For large instances
where the CP solver cannot reach optimality within a reasonable time, we use the best solution found
within a fixed time cutoff as the target. The network is trained to minimize the mean squared error
(MSE) between the predicted and target utilization values.

5 EXPERIMENTS

Our framework is mainly designed for large-scale BJSP instances. In standard scenarios, inference
follows the three-step procedure described above. However, when the number of jobs is close to
the number of machines, almost all jobs can be in process simultaneously, making the selection step

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

redundant. In such low-dimensional cases, our method naturally reduces to directly applying the
second schedule-preserving strategy without invoking the network-based selection.

We evaluate our proposed framework(S&S) against several baselines on standard benchmarks and
large-scale synthetic instances. More detailed experiments can be found in the appendix A.5. Our
study is guided by these research questions: How well does S&S perform on large-scale BJSP
instances, including extreme sizes? How our proposed framework performs in general scenarios?
How much benefit does the learned selection network provide compared to random or oracle-based
strategies?

Datasets We conduct experiments on both public benchmarks and synthetically generated in-
stances. Specifically, we evaluate our framework on the Lawrence instances (Lawrence, 1984) and
Taillard instances (Taillard, 1993), which are standard testbeds for job shop scheduling. To further
assess scalability beyond existing benchmarks, we additionally construct larger synthetic instances
using the widely adopted Taillard generation procedure (Taillard, 1993), with sizes reaching up to
(1000, 20). In total, our study spans problem sizes of up to 20,000 operations, substantially extend-
ing the scale considered in prior BJSP research. For comparison, most previous works were limited
to fewer than 600 operations, while Mogali et al. (2021) was the first to give results on instances
approaching 2000 operations.

Baselines We compare against the following methods: Tabu Search: the current state-of-the-art
algorithm for BJSP, employing the N4/N5 neighborhood structures (Mogali et al., 2021). This
solver is widely regarded as the strongest heuristic for BJSP to date, and has established the best
known solutions for nearly all benchmark instances considered in our study. CP Solver: a widely
used exact solver. R-S&S: a variant of our method without the network, where jobs are selected
randomly but with the same selection procedure.

Implementation Details We describe the experimental setup and hyperparameters used through-
out training. The model employs 16-dimensional embeddings for machines and processing times,
and a 4-dimensional embedding for the forced-start flag. The hidden dimension is set to 64, with
four attention heads and six stacked attention layers. Training instances are generated by perturbing
1,000 randomly created BJSP instances: each job is removed with probability 0.03, and, for surviv-
ing jobs, an operation along with all its predecessors is removed with probability 0.2. The model is
trained for 1,000 epochs with a learning rate of 0.001, using 10% of the data for testing.

For synthetic evaluation, 100 instances are generated for each problem configuration, except for very
large instances (500, 20) and (1000, 20), which are limited to 10 instances due to computational cost.
In our hierarchical framework, large-scale problems (n ≥ 50) use an Earliest-completion retention,
while smaller problems or those where the number of jobs is close to the number of machines employ
a Fractional retention. For the CP solver baseline, subproblems that are too large to solve exactly
are limited to 50 seconds in the unlimited setting. When a global time constraint is imposed, the
allocated time for each subproblem is approximately the total runtime budget divided by the number
of jobs.

Table 1: Comparison of Tabu Search and S&S on TA instances

Instance Size Tabu 60
Avg Obj

S&S 60
Obj

Gap
(%)

Tabu 1800
Avg Obj

S&S 1800
Obj

Gap
(%)

TA71 100×20 17426.6 14895 -14.53% 12369.4 12285 -0.68%
TA72 100×20 16225.8 15763 -2.85% 11745.6 12534 6.71%
TA73 100×20 17370.4 15313 -11.84% 12078.6 12358 2.31%
TA74 100×20 16963.9 14788 -12.83% 12044.8 13067 8.49%
TA75 100×20 17127.6 15151 -11.54% 11911.4 12156 2.05%
TA76 100×20 16578.0 14774 -10.88% 12223.8 12321 0.80%
TA77 100×20 17674.8 16365 -7.41% 12412.2 12511 0.80%
TA78 100×20 17007.8 15014 -11.72% 11898.6 12807 7.63%
TA79 100×20 17145.8 15834 -7.65% 12118.4 12250 1.09%
TA80 100×20 16186.4 15100 -6.71% 11729.0 11825 0.82%

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Results on Benchmark. Table 1 presents a comparison between our model and the state-of-the-
art Tabu Search on large-scale benchmarks. In our experiments, we considered two scenarios that
correspond to practical settings. The first scenario represents a dynamic environment where a rea-
sonable solution must be obtained within a very short time. We set the runtime limit to 60 seconds.
The second scenario represents a static environment where sufficient but reasonable time is available
to obtain the best possible solution, for which we set the runtime limit to 1800 seconds.

Under the 60-second setting, our method achieves consistently better results than the baseline across
all datasets, with an average improvement of 11%, demonstrating the high computational efficiency
of our approach on large-scale problems. Under the 1800-second setting, while our method falls
slightly behind in some cases, in most instances the gap is within 2%, essentially reaching the same
best performance as the state of the art. These results validate both the efficiency and the solution
quality of our method.

Table 2 reports the performance of S&S on the small-scale LA benchmark, representing a secondary
scenario where the small problem size reduces the impact of the pre-selection strategy. Overall,
S&S achieves strong early-stage performance: under the 60-second budget, it matches or slightly
outperforms Tabu Search on most instances. With a longer 600-second budget, it generally attains
solution quality comparable to Tabu Search, though in some less favorable instances, a performance
gap remains. These results demonstrate that even in disadvantageous scenarios, S&S maintains
highly efficient early-stage optimization while remaining broadly competitive with state-of-the-art
solvers. Complete results for all instances in Ta and La are provided in Appendix A.5.

Table 2: Comparison between Tabu Search and S&S on LA instances

Instance Size Tabu 60
Avg Obj

S&S 60
Obj

Gap
(%)

Tabu 1800
Avg Obj

S&S 1800
Obj

Gap
(%)

LA01–LA05 10*5 836 836.4 0.05% 836 836.4 0.05%
LA06–LA10 15*5 1212.94 129.6 1.36% 1203.4 1220.8 1.43%
LA11–LA15 20*5 1554.44 1569.4 0.89% 1494.2 153.2 3.42%
LA16–LA20 10*10 1085.5 1082.6 -0.26% 1082.6 1082.6 0.00%
LA21–LA25 15*10 1481.5 1450.8 1.84% 1418.8 1494.4 5.33%
LA26–LA30 20*10 1997.0 2075.2 5.35% 1888.6 2060 9.08%
LA31–LA35 30*10 2927.32 3298 12.66% 2777 3091.8 11.34%
LA36–LA40 15*15 1809.2 1804.8 -0.25% 1727.2 1767.6 2.34%

Table 3: Comparison of S&S, Random S&S, and CP solver across different problem sizes

Mac Num Job Num S&S Random S&S CP solver
Avg Obj Time (s) Avg Obj Time (s) Avg Obj Time (s)

5

100 9056.1 25.2 9124.94 6.7 8660 3600
200 18005.7 92.3 18162.1 12.7 27148 7200
500 44752.7 555.2 45310.7 34.3 - -
1000 89398.1 1996.1 90380.45 74.7 - -

10

100 10512.2 428.7 10522.16 398.7 21473 3600
200 20850.3 1031.2 20981.1 883.4 73253 7200
500 52046.9 2846.0 52088.1 2307.7 - -
1000 103811.2 5600.0 104032.4 3676.8 - -

20

100 14358.3 4340.3 14446.8 4300.5 72135 3600
200 27152.2 9447.4 27284.4 9365.3 - -
500 66565.8 25103.4 66671.8 24600.3 - -
1000 133597.7 52293.5 134730.5 50186.5 - -

Results on Larger-Scale instances. Table 3 reports the performance of S&S on large-scale BJSP
instances generated from our production dataset, involving up to 20 machines and 1000 jobs. For
each instance, we compare S&S with the Random S&S baseline, where job subsets are selected
randomly without the valuation network. Across all tested scenarios, S&S consistently achieves
lower objective values than Random S&S. This indicates that the network-based selection effectively
identifies job subsets with higher parallelizability, allowing the solver to produce schedules with

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

better machine utilization. The performance gap between S&S and Random S&S increases with
problem size, suggesting that the network contributes more substantially as the instance grows.

On moderately large instances, the standalone CP solver yields worse objective values even with
more computation time, and for the largest instances it fails to produce solutions due to memory
limitations, illustrating the inherent difficulty of BJSP. Notably, our method also employs a CP solver
as the internal optimizer. The performance difference arises because, within the S&S framework, the
CP solver is applied to a carefully selected subset of jobs rather than the full problem. This restricted
formulation substantially reduces the search space, enabling the CP solver to operate effectively
where it would otherwise fail. These results suggest that the strength of S&S lies in the interaction
between learning-based selection and CP optimization, rather than in CP alone.

Figure 3: Scaling behavior of our method on synthetic BJSP instances. (Left) Runtime grows nearly
linearly with the number of jobs N under different machine settings (M = 5, 10, 20). (Right) The
obtained objective values also scale linearly with N .

To further evaluate the scalability of S&S, we examine the relationship between problem size, run-
time, and solution quality. Figure 3 shows that, for a fixed number of machines, the runtime of S&S
increases approximately linearly with the number of jobs. Correspondingly, the solution objective
also grows roughly linearly with the job count. This linear trend aligns with the intuition that, under
the fixed data-generation distribution, the expected total processing time increases proportionally
with the number of jobs. The observed linear scaling indicates that the computational complexity of
S&S grows moderately with problem size, and that the method remains effective when extrapolated
to very large instances. In contrast, CP solvers fail to produce solutions for the largest instances due
to memory constraints, and their solution quality deteriorates even on moderately sized problems.
These results suggest that S&S maintains both computational efficiency and high-quality schedul-
ing performance across a wide range of problem sizes, highlighting its practical applicability for
large-scale BJSP scenarios.

6 CONCLUSION

This paper introduces Select and Schedule (S&S), a hierarchical optimization framework for the
Blocking Job Shop Scheduling Problem (BJSP) that scales efficiently to large instances. By ex-
ploiting the observation that blocking constraints limit concurrent jobs to the number of machines,
S&S uses a high-level neural network to select a subset of jobs, which are then scheduled by a
lower-level CP solver. Extensive experiments on standard and large-scale benchmarks show that
S&S consistently produces high-quality solutions. Under tight time constraints (e.g., 60 seconds),
it outperforms state-of-the-art Tabu Search, while remaining competitive with longer time budgets
(1800 seconds). S&S demonstrates robustness and efficiency even for extremely large instances,
offering a practical and scalable solution for real-world dynamic scheduling.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Abdelhakim AitZai, Brahim Benmedjdoub, and Mourad Boudhar. A branch and bound and parallel
genetic algorithm for the job shop scheduling problem with blocking. International Journal of
Operational Research, 14(3):343–365, 2012.

Jacek Błażewicz, Wolfgang Domschke, and Erwin Pesch. The job shop scheduling problem: Con-
ventional and new solution techniques. European journal of operational research, 93(1):1–33,
1996.

Yixin Chen, Ankur Nath, Chunli Peng, and Alan Kuhnle. Discretely beyond 1/e: Guided combi-
natorial algortihms for submodular maximization. Advances in Neural Information Processing
Systems, 37:108929–108973, 2024.

Adel Dabah, Ahcène Bendjoudi, Didier El-Baz, and Abdelhakim Aitzai. Gpu-based two level par-
allel b&b for the blocking job shop scheduling problem. In 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 747–755. IEEE, 2016.

Adel Dabah, Ahcene Bendjoudi, and Abdelhakim AitZai. An efficient tabu search neighborhood
based on reconstruction strategy to solve the blocking job shop scheduling problem. Journal of
Industrial & Management Optimization, 13(4), 2017.

Adel Dabah, Ahcène Bendjoudi, Abdelhakim AitZai, Didier El-Baz, and Nadia Nouali Taboudje-
mat. Hybrid multi-core cpu and gpu-based b&b approaches for the blocking job shop scheduling
problem. Journal of Parallel and Distributed Computing, 117:73–86, 2018.

Adel Dabah, Ahcene Bendjoudi, Abdelhakim AitZai, and Nadia Nouali Taboudjemat. Efficient par-
allel tabu search for the blocking job shop scheduling problem. Soft Computing, 23(24):13283–
13295, 2019.

Andrea D’Ariano, Dario Pacciarelli, and Marco Pranzo. A branch and bound algorithm for
scheduling trains in a railway network. European Journal of Operational Research, 183(2):643–
657, 2007. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2006.10.034. URL https:
//www.sciencedirect.com/science/article/pii/S0377221706010678.

Fred Glover. Tabu search: A tutorial. Interfaces, 20(4):74–94, 1990.

Jan Gmys, Mohand Mezmaz, Nouredine Melab, and Daniel Tuyttens. A gpu-based branch-and-
bound algorithm using integer–vector–matrix data structure. Parallel Computing, 59:119–139,
2016.

Heinz Gröflin and Andreas Klinkert. A new neighborhood and tabu search for the blocking job shop.
Discrete Applied Mathematics, 157(17):3643–3655, 2009.

Nicholas G Hall and Chelliah Sriskandarajah. A survey of machine scheduling problems with block-
ing and no-wait in process. Operations research, 44(3):510–525, 1996.

AHG Rinnooy Kan. Machine scheduling problems: classification, complexity and computations.
Springer Science & Business Media, 2012.

Julia Lange and Frank Werner. A permutation-based neighborhood for the blocking job-shop prob-
lem with total tardiness minimization. In Operations Research Proceedings 2017: Selected Pa-
pers of the Annual International Conference of the German Operations Research Society (GOR),
Freie Universiät Berlin, Germany, September 6-8, 2017, pp. 581–586. Springer, 2018.

Julia Lange and Frank Werner. On neighborhood structures and repair techniques for blocking job
shop scheduling problems. Algorithms, 12(11):242, 2019a.

Julia Lange and Frank Werner. A permutation-based heuristic method for the blocking job shop
scheduling problem. IFAC-PapersOnLine, 52(13):1403–1408, 2019b.

Stephen Lawrence. Resouce constrained project scheduling: An experimental investigation of
heuristic scheduling techniques (supplement). Graduate School of Industrial Administration,
Carnegie-Mellon University, 1984.

10

https://www.sciencedirect.com/science/article/pii/S0377221706010678
https://www.sciencedirect.com/science/article/pii/S0377221706010678

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Interna-
tional conference on machine learning, pp. 3744–3753. PMLR, 2019.

Sirui Li, Wenbin Ouyang, Yining Ma, and Cathy Wu. Learning-guided rolling horizon optimization
for long-horizon flexible job-shop scheduling. arXiv preprint arXiv:2502.15791, 2025.

Xixing Li, Xing Guo, Hongtao Tang, Rui Wu, Lei Wang, Shibao Pang, Zhengchao Liu, Wenxiang
Xu, and Xin Li. Survey of integrated flexible job shop scheduling problems. Computers &
Industrial Engineering, 174:108786, 2022.

Shu Luo, Linxuan Zhang, and Yushun Fan. Real-time scheduling for dynamic partial-no-wait mul-
tiobjective flexible job shop by deep reinforcement learning. IEEE Transactions on Automation
Science and Engineering, 19(4):3020–3038, 2021.

Alessandro Mascis and Dario Pacciarelli. Job-shop scheduling with blocking and no-wait con-
straints. European Journal of Operational Research, 143(3):498–517, 2002.

Jayanth Krishna Mogali, Laura Barbulescu, and Stephen F Smith. Efficient primal heuristic updates
for the blocking job shop problem. European Journal of Operational Research, 295(1):82–101,
2021.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations
for maximizing submodular set functions—i. Mathematical programming, 14(1):265–294, 1978.

Marco Pranzo and Dario Pacciarelli. An iterated greedy metaheuristic for the blocking job shop
scheduling problem. Journal of Heuristics, 22(4):587–611, 2016.

Karima Rihane, Adel Dabah, and Abdelhakim AitZai. Learning-based selection process for branch
and bound algorithms. In 2022 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8.
IEEE, 2022.

Eric Taillard. Benchmarks for basic scheduling problems. european journal of operational research,
64(2):278–285, 1993.

CHM van Blokland. Solution approaches for solving stochastic job shop and blocking job shop
problems. Master’s thesis, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS

During the preparation of this work, we employed a Large Language Model (LLM) to polish En-
glish descriptions, improving clarity, grammar, and academic style, as well as to provide guidance
in generating text-based prompts for schematic figures, illustrations, and algorithmic diagrams. All
substantive technical decisions, experimental design, core algorithmic code were made by the au-
thors; the use of the LLM served solely as an auxiliary tool to enhance presentation, and visualiza-
tion. We carefully verified the outputs produced with LLM assistance and are fully responsible for
the correctness and integrity of all results and claims presented in this work.

A.2 BJSP MATHEMATICAL FORMULATION

The mathematical formulation of BWS is as follows.These constraints are directly incorporated into
our CP solver, ensuring that both the technological order and machine capacity with blocking are
strictly enforced during the scheduling process.

sj,k+1 ≥ sj,k + pj,k, ∀1 ≤ j ≤ n, 1 ≤ k ≤ nj . (12)

sj,k ≥ sj′,k′+1 or sj′,k′ ≥ sj,k+1,

∀j, j′, 1 ≤ j, j′ ≤ n, 1 ≤ k < nj , 1 ≤ k′ < nj′ , mj,k = mj′,k′ , j ̸= j′.
(13)

sj,k ≥ sj′,k′+1 or sj′,k′ ≥ sj,k + pj,k,

∀j, j′, 1 ≤ j, j′ ≤ n, k = nj , 1 ≤ k′ < nj′ , mj,k = mj′,k′ , j ̸= j′.
(14)

In the above formulation, sj,k denotes the start time of the k-th operation of job j, and pj,k represents
its processing time. The first equation enforces the technological order: each operation must start
only after its preceding operation is completed. The second constraint corresponds to the general
blocking condition: for any two operations sharing the same machine, at least one must start only
after the successor of the other has begun. The third constraint captures the special case where an
operation is the last one of its job; since it has no successor, its completion immediately releases the
machine. The above formulation corresponds to the Blocking No-Wait Shop (BNS) problem. For
the Blocking Job Shop (BWS) problem, Equations (2) and (3) are slightly modified as follows.

sj,k > sj′,k′+1 or sj′,k′ > sj,k+1,

∀j, j′, 1 ≤ j, j′ ≤ n, 1 ≤ k < nj , 1 ≤ k′ < nj′ , mj,k = mj′,k′ , j ̸= j′.
(15)

sj,k > sj′,k′+1 or sj′,k′ ≥ sj,k + pj,k,

∀j, j′, 1 ≤ j, j′ ≤ n, k = nj , 1 ≤ k′ < nj′ , mj,k = mj′,k′ , j ̸= j′.
(16)

A.3 GUIDED MULTI-STAGE GREEDY COMBINATORIAL ALGORITHM

The GMGC algorithm (Guided Multi-stage Greedy Combinatorial) is illustrated in Algorithm 1.
The main symbols used are as follows: U denotes the ground set of elements, f : 2U → R is the
submodular objective function, I represents the constraints (e.g., cardinality or matroid constraints),
k is the selection budget, Z0 is the initial approximate solution, Z is the guidance set generated in
the first stage, A is the solution obtained in the second-stage randomized greedy selection, t ∈ [0, 1]
is the switching ratio controlling the number of initial steps that exclude elements in the guidance
set, and ϵ is the precision parameter used to set the marginal gain threshold during guidance set
construction.

In the first stage, the guidance set Z is constructed via the FASTLS subroutine. Elements are it-
eratively added or replaced in Z only if the improvement in marginal gain exceeds the threshold
ϵ/k · f(Z) and the resulting set satisfies the constraints I. This process continues until no further
improvement is possible, yielding a guidance set that provides structural information and quality
guarantees for subsequent selection.

In the second stage, the GUIDEDRG subroutine performs a randomized greedy selection. During
the first t · k steps, elements from the guidance set are excluded to exploit its structure, while in the

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 1: GMGC (Guided Multi-stage Greedy Combinatorial) Algorithm

Input: Submodular function f : 2U → R, constraint I, initial solution Z0, accuracy ϵ,
budget k, switching ratio t.

Output: Final solution S.

1 Phase 1: Guided Set Construction (FASTLS)
2 Initialize Z ← Z0;
3 repeat
4 foreach a ∈ U do
5 if a ∈ Z then
6 foreach e ∈ U \ Z do
7 if Z ′ = (Z \ {a}) ∪ {e} ∈ I and

∆(e | Z \ {a})−∆(a | Z \ {a}) ≥ ϵ
k · f(Z) then

8 Z ← Z ′; break;

9 else
10 if ∆(a | Z) = f(Z ∪ {a})− f(Z) ≥ ϵ

k · f(Z) then
11 Z ← Z ∪ {a};

12 until no improvement;
13 Phase 2: Guided Randomized Greedy (GUIDEDRG)
14 Initialize A← ∅;
15 for i← 1 to t · k do
16 Compute ∆(u | A) for all u ∈ U \ Z;
17 Let Mi be the set of top-r elements by marginal gain, where

r = min(k − |A|, t · k − |A|);
18 Pick xi uniformly at random from Mi;
19 A← A ∪ {xi};
20 for i← t · k + 1 to k do
21 Compute ∆(u | A) for all u ∈ U ;
22 Let Mi be the set of top-r elements by marginal gain, where r = k − |A|;
23 Pick xi uniformly at random from Mi;
24 A← A ∪ {xi};

25 Final Selection:
26 Return S = argmax{f(Z), f(A)};

remaining k − t · k steps, all elements in the ground set are considered. At each step, a candidate
pool is formed by selecting elements with the largest marginal gains, and one element is chosen
uniformly at random to be added to the current solution A. Finally, the algorithm compares the
objective values of the guidance set Z and the greedy solution A, and returns the one with the higher
value as the final output.

This two-stage design leverages the high-quality structure of the guidance set while retaining the ex-
ploratory power of randomized greedy selection, achieving strong theoretical guarantees and practi-
cal performance.

A.4 SUBMODULAR DISCUSSION

As discussed in the main text, the utilization function F (S) is not strictly submodular in all cases.
For instance, consider sets

A = {[(1,m1), (1,m2)]}, B = {[(1,m1), (1,m2)], [(1,m1), (98,m2)]},

and a new job
c = [(98,m1), (1,m2)].

We have F (A) = 1, F (B) = 1.01, F (A ∪ {c}) = 1.01, and F (B ∪ {c}) ≈ 1.98, so the marginal
gain is larger for the superset B, violating strict submodularity.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Nevertheless, we conducted an empirical study to verify that F (S) exhibits approximate submodular
behavior in most cases(t) when the total number of jobs in a set does not exceed the number of
machines m. The experimental procedure is as follows:

1. Generate random instances of the blocking job shop problem with up to n jobs and m
machines.

2. For each instance, randomly construct a subset A of jobs with size up to m, and a superset
B ⊇ A with size up to m.

3. Sample a new random job c.
4. Solve the scheduling problem for A, B, A ∪ {c}, and B ∪ {c} to obtain their machine

utilizations F (A), F (B), F (A ∪ {c}), F (B ∪ {c}).
5. Check whether the marginal gain satisfies

F (A ∪ {c})− F (A) ≥ F (B ∪ {c})− F (B).

6. Repeat steps 2–5 for a large number of trials (e.g., 10,000) and record the proportion of
cases satisfying the inequality.

Based on over 10,000 tests with m = 5 and m = 7, we find that the utilization function satisfies the
submodularity inequality in the vast majority of cases(almost 100%). This provides strong empirical
support for treating it as approximately submodular in our framework.

A.5 DETAIL RESULTS ON BENCHMARK

This is all the test results we have on the Ta and La datasets. Table 4 6 reports the full experi-
mental results on the LA and TA benchmark sets, covering instances of varying sizes from small
to extremely large. Overall, our method consistently achieves solutions close to or surpassing those
of Tabu Search across all instances. Under short time budgets , S&S demonstrates a clear advan-
tage, especially on large-scale TA instances, where it rapidly converges to high-quality solutions,
showcasing strong early-stage optimization ability. With longer budgets, S&S remains highly com-
petitive: while Tabu Search occasionally achieves slightly better results on medium-scale cases,
the gap is negligible, and S&S frequently matches or outperforms it. These results confirm that
S&S effectively combines fast convergence with robust scalability, making it not only competitive
with state-of-the-art metaheuristics but also a practical solution for real-world dynamic scheduling
applications.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 4: Comparison between Tabu Search and S&S on LA instances

Instance Size 60s 600s

Tabu Obj S&S Obj Gap
(%)

Tabu Obj S&S Obj Gap
(%)

LA01 10*5 881 881 0.00% 881 881 0.00%
LA02 10*5 900 900 0.00% 900 900 0.00%
LA03 10*5 808 810 0.25% 808 810 0.25%
LA04 10*5 859 859 0.00% 859 859 0.00%
LA05 10*5 732 732 0.00% 732 732 0.00%
LA06 15*5 1203.2 1214 0.90% 1194 1194 0.00%
LA07 15*5 1132.1 1129 -0.27% 1127 1127 0.00%
LA08 15*5 1190.2 1189 -0.10% 1173 1173 0.00%
LA09 15*5 1312.3 1311 -0.10% 1305 1305 0.00%
LA10 15*5 1226.9 1305 6.37% 1218 1305 7.14%
LA11 20*5 1588.2 1605 1.06% 1501 1590 5.93%
LA12 20*5 1414.1 1396 -1.28% 1353 1396 3.18%
LA13 20*5 1545.6 1535 -0.69% 1508 1541 2.19%
LA14 20*5 1602.5 1637 2.15% 1544 1593 3.17%
LA15 20*5 1621.8 1674 3.22% 1565 1597 2.04%
LA16 10*10 1148.6 1148 -0.05% 1148 1148 0.00%
LA17 10*10 968 968 0.00% 968 968 0.00%
LA18 10*10 1082.4 1077 -0.50% 1077 1077 0.00%
LA19 10*10 1110.5 1102 -0.77% 1102 1102 0.00%
LA20 10*10 1118 1118 0.00% 1118 1118 0.00%
LA21 15*10 1556.6 1542 -0.94% 1483 1536 3.57%
LA22 15*10 1376.2 1427 3.69% 1328 1387 4.44%
LA23 15*10 1525.2 1578 3.46% 1475 1568 6.31%
LA24 15*10 1482.8 1533 3.39% 1402 1533 9.34%
LA25 15*10 1466.7 1464 -0.18% 1406 1448 2.99%
LA26 20*10 1980.8 2119 6.98% 1870 2005 7.22%
LA27 20*10 2064.8 2148 4.03% 1933 2170 12.26%
LA28 20*10 2016.7 2127 5.47% 1937 2168 11.93%
LA29 20*10 1898.3 1934 1.88% 1764 1909 8.22%
LA30 20*10 2024.6 2048 1.16% 1939 2048 5.62%
LA31 30*10 2842.8 3347 17.74% 2714 3013 11.02%
LA32 30*10 3106.6 3626 16.72% 2928 3373 15.20%
LA33 30*10 2843.1 3009 5.84% 2717 3009 10.75%
LA34 30*10 2905.7 3072 5.72% 2769 3072 10.94%
LA35 30*10 2938.4 3436 16.93% 2757 2992 8.52%
LA36 15*15 1804.3 1658 -8.11% 1683 1658 -1.49%
LA37 15*15 1929.4 1936 0.34% 1856 1913 3.07%
LA38 15*15 1734.5 1788 3.08% 1665 1704 2.34%
LA39 15*15 1792.2 1792 -0.01% 1720 1792 4.19%
LA40 15*15 1785.4 1849 3.56% 1712 1771 3.45%

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 5: Comparison between Tabu Search and S&S on TA1-50 instances

Instance Size 60s 600s

Tabu Obj S&S Obj Gap
(%)

Tabu Obj S&S Obj Gap
(%)

TA01 15*15 1769.4 1782 0.71% 1761.2 1745 -0.92%
TA02 15*15 1713.6 1808 5.51% 1700.0 1769 4.06%
TA03 15*15 1750.4 1786 2.03% 1715.0 1675 -2.33%
TA04 15*15 1682.6 1855 10.25% 1659.5 1696 2.20%
TA05 15*15 1729.0 1770 2.37% 1712.2 1696 -0.95%
TA06 15*15 1754.4 1829 4.25% 1727.8 1806 4.53%
TA07 15*15 1780.6 1774 -0.37% 1753.6 1797 2.47%
TA08 15*15 1756.6 1830 4.18% 1723.8 1762 2.22%
TA09 15*15 1814.2 1882 3.74% 1797.0 1882 4.73%
TA10 15*15 1762.4 1853 5.14% 1728.6 1853 7.20%
TA11 20*15 2127.6 2164 1.71% 2078.4 2164 4.12%
TA12 20*15 2276.6 2536 11.39% 2228.8 2235 0.28%
TA13 20*15 2134.8 2291 7.32% 2099.0 2165 3.14%
TA14 20*15 2140.2 2330 8.87% 2098.4 2227 6.13%
TA15 20*15 2152.8 2501 16.17% 2106.6 2199 4.39%
TA16 20*15 2236.0 2390 6.89% 2225.6 2236 0.47%
TA17 20*15 2296.0 2761 20.25% 2261.8 2296 1.51%
TA18 20*15 2215.8 2444 10.30% 2157.0 2387 10.66%
TA19 20*15 2190.6 2323 6.04% 2129.4 2316 8.76%
TA20 20*15 2238.6 2382 6.41% 2167.8 2279 5.13%
TA21 20*20 2637.0 2770 5.04% 2517.0 2770 10.05%
TA22 20*20 2536.2 2583 1.85% 2437.0 2583 5.99%
TA23 20*20 2492.6 2771 11.17% 2396.8 2748 14.65%
TA24 20*20 2545.0 2829 11.16% 2484.2 2829 13.88%
TA25 20*20 2487.8 2627 5.60% 2394.4 2575 7.54%
TA26 20*20 2637.2 2784 5.57% 2544.6 2784 9.41%
TA27 20*20 2667.2 2721 2.02% 2577.4 2721 5.57%
TA28 20*20 2545.4 2841 11.61% 2471.6 2835 14.70%
TA29 20*20 2615.2 2744 4.93% 2537.6 2744 8.13%
TA30 20*20 2540.8 2702 6.34% 2465.8 2678 8.61%
TA31 30*15 3358.8 4124 22.78% 3189.0 3453 8.28%
TA32 30*15 3395.4 4336 27.70% 3249.4 3621 11.44%
TA33 30*15 3501.6 3980 13.66% 3362.6 3595 6.91%
TA34 30*15 3474.8 3832 10.28% 3285.2 3832 16.64%
TA35 30*15 3334.2 3575 7.22% 3160.6 3575 13.11%
TA36 30*15 3387.8 3691 8.95% 3270.6 3647 11.51%
TA37 30*15 3478.2 3968 14.08% 3324.8 3652 9.84%
TA38 30*15 3263.2 4406 35.02% 3121.4 3534 13.22%
TA39 30*15 3159.0 3309 4.75% 3036.2 3309 8.98%
TA40 30*15 3270.0 3535 8.10% 3117.4 3535 13.40%
TA41 30*20 3890.4 4036 3.74% 3638.2 4036 10.93%
TA42 30*20 3745.6 3979 6.23% 3535.8 3979 12.53%
TA43 30*20 3618.8 3672 1.47% 3460.0 3672 6.13%
TA44 30*20 3805.0 3967 4.26% 3593.0 3967 10.41%
TA45 30*20 3888.2 4067 4.60% 3578.6 4067 13.65%
TA46 30*20 3867.8 4240 9.62% 3610.2 4240 17.45%
TA47 30*20 3776.0 4239 12.26% 3531.0 4239 20.05%
TA48 30*20 3773.6 3977 5.39% 3513.4 3977 13.20%
TA49 30*20 3694.2 4072 10.23% 3480.8 4072 16.98%
TA50 30*20 3834.2 4067 6.07% 3617.6 4067 12.42%

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Comparison between Tabu Search and S&S on TA51-80 instances

Instance Size 60s 600s

Tabu
Obj

S&S
Obj

Gap (%) Tabu
Obj

S&S
Obj

Gap
(%)

TA51 50*15 5689.4 5904 3.77% 5213.8 5904 13.24%
TA52 50*15 5703.8 5794 1.58% 5228.4 5794 10.82%
TA53 50*15 5515.4 5546 0.55% 5113.6 5546 8.46%
TA54 50*15 5540.4 5809 4.85% 5157.4 5809 12.63%
TA55 50*15 5577.4 5765 3.36% 5080.4 5765 13.48%
TA56 50*15 5666.0 5898 4.09% 5233.6 5898 12.69%
TA57 50*15 5731.6 5816 1.47% 5301.4 5833 10.03%
TA58 50*15 5833.0 6076 4.17% 5397.8 6076 12.56%
TA59 50*15 5488.4 5650 2.94% 5108.6 5650 10.60%
TA60 50*15 5757.0 5814 0.99% 5198.0 5757 10.75%
TA61 50*20 6542.6 6774 3.54% 5198.2 6774 30.31%
TA62 50*20 6788.8 6813 0.36% 6021.4 6813 13.15%
TA63 50*20 6441.4 6294 -2.29% 5646.0 6294 11.48%
TA64 50*20 6320.6 6548 3.60% 5576.4 6548 17.42%
TA65 50*20 6512.0 6416 -1.47% 5675.2 6416 13.05%
TA66 50*20 6519.6 6738 3.35% 5816.4 6738 15.84%
TA67 50*20 6567.6 6276 -4.44% 5745.4 6276 9.24%
TA68 50*20 6356.4 6194 -2.55% 5804.2 6194 6.72%
TA69 50*20 6699.6 6580 -1.79% 5907.0 6580 11.39%
TA70 50*20 6764.0 6422 -5.06% 5882.6 6422 9.17%
TA71 100*20 17426.6 14895 -14.53% 12369.4 12285 -0.68%
TA72 100*20 16225.8 15763 -2.85% 11745.6 12534 6.71%
TA73 100*20 17370.4 15313 -11.84% 12078.6 12358 2.31%
TA74 100*20 16963.9 14788 -12.83% 12044.8 13067 8.49%
TA75 100*20 17127.6 15151 -11.54% 11911.4 12156 2.05%
TA76 100*20 16578.0 14774 -10.88% 12223.8 12321 0.80%
TA77 100*20 17674.8 16365 -7.41% 12412.2 12511 0.80%
TA78 100*20 17007.8 15014 -11.72% 11898.6 12807 7.63%
TA79 100*20 17145.8 15834 -7.65% 12118.4 12250 1.09%
TA80 100*20 16186.4 15100 -6.71% 11729.0 11825 0.82%

17

	Introduction
	RELATED WORKS
	Preliminaries
	Method
	Experiments
	conclusion
	Appendix
	 Use of Large Language Models
	BJSP mathematical formulation
	Guided Multi-stage Greedy Combinatorial Algorithm
	Submodular Discussion
	Detail Results on Benchmark

