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ABSTRACT

The Blocking Job Shop Scheduling Problem (BJSP) is a widely studied variant
of the classic Job Shop Scheduling Problem. In BJSP, the blocking constraint re-
quires a job to remain on its current machine until the next machine is available.
This constraint substantially increases problem complexity, which in turn limits
most existing scheduling algorithms to small-scale instances. However, we ob-
serve that this blocking constraint also has merit: it naturally restricts the number
of jobs processed concurrently, thereby reducing the number of candidate jobs
that must be considered at almost any decision point. Building on this insight, we
propose a novel hierarchical optimization framework. The higher layer employs a
neural network to select a small subset of jobs from a large candidate pool, while
the lower layer uses a solver to schedule the selected jobs. Compared with tra-
ditional approaches that directly schedule large sets of jobs, our method achieves
significantly lower computational complexity and scales almost linearly with the
number of jobs. This scalability enables us to efficiently handle larger instances
that are previously intractable. Experimental results demonstrate that, on large-
scale benchmarks and under comparable runtime budgets, our approach improves
solution quality by an average of 11%, while continuing to deliver high-quality
solutions within reasonable runtimes for even larger instances.

1 INTRODUCTION

Job-Shop Scheduling Problem (JSP) is a classical and widely studied combinatorial optimization
problem with broad applications in manufacturing and automation (Kan, 2012; D’Ariano et al.,
2007). Among numerous JSP variants (Li et al., 2022; Mascis & Pacciarelli, 2002), Blocking Job
Shop Scheduling Problem (BJSP) is a realistic extension , which frequently encountered in domains
such as chemical and pharmaceutical production, food processing, and automated warehousing (Hall
& Sriskandarajah, 1996). In BJSP, a set of jobs must be processed on machines, where each job
consists of a sequence of operations, each requiring a specific machine and a fixed processing time.
Each machine can process only one job at a time. In contrast to classic JSP , BJSP models the more
realistic scenario in which no intermediate buffer is available between machines. That is, once an
operation completes, if its succeeding machine is not ready, the job remains on the current machine,
blocking it from processing other jobs. This blocking constraint makes the problem significantly
more complex. The goal is to determine the start times of all operations to minimize the completion
time or makespan.

BJSP is further divided into two categories: Blocking No Swap (BNS) and Blocking With Swap
(BWS) (Mascis & Pacciarelli, 2002). In BWS, jobs can be temporarily removed to allow others to
move, while in BNS, such circular dependencies can cause deadlocks that must be avoided during
scheduling. Figure 1 illustrates the specific differences. At time t in BWS, Job 2 on Machine 1 is
waiting to move to Machine 2, while Job 3 on Machine 2 is waiting to move to Machine 1. In BWS, it
is allowed to simultaneously remove these two jobs from their machines and transfer them to the next
machines, making the schedule feasible. However, in BNS, applying the same schedule immediately
results in deadlock. Both variants have been proven to be NP-hard (Hall & Sriskandarajah, 1996).
Our proposed method is applicable to both BWS and BNS, but the experiments primarily focus on
the more challenging BNS case.
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Figure 1: An example schedule for JSP, BNS and BWS. In JSP, Job 1 and Job 2 completed their first
operation consecutively , but since Machine 1 is occupied, they wait in the buffer. In contrast, under
BWS, when Job 2 finishes an operation, it remains on the current machine, preventing Job 1 from
completing its first operation. In BNS, exchange in BWS at time t is not allowed, and consequently
its makespan becomes longer.

BJSP is highly challenging, as the blocking constraint drastically increases scheduling complex-
ity. Existing research has mainly followed two directions: exact algorithms and metaheuris-
tics (Dabah et al., 2017; Pranzo & Pacciarelli, 2016; Dabah et al., 2018; Rihane et al., 2022;
Lange & Werner, 2019a; 2018). Exact methods can guarantee optimality but become infeasible
beyond small instances due to their exponential time complexity (Dabah et al., 2016; 2018; Gmys
et al., 2016). Within the class of metaheuristics, tabu search has demonstrated state-of-the-art per-
formance (Lange & Werner, 2018; Mogali et al., 2021; Dabah et al., 2019; 2017). However, it
typically requires a large number of iterations to reach high-quality solutions, resulting in relatively
high computational cost and making it unsuitable for dynamic or real-time scheduling scenarios.

While the blocking constraint is commonly regarded as a source of computational difficulty, we
observe that its inherent restriction on concurrency can be exploited to reduce computational com-
plexity. Specifically, at any given time, the number of jobs that can be simultaneously in pro-
cess—defined as jobs that have started their first operation but have not yet completed their final
operation—is bounded by the number of machines. In high-quality schedules, the number of ac-
tively in-process jobs often approaches this upper bound. This implies that, until one of these jobs
completes, other jobs typically need not be considered. In other words, in most situations, the sched-
uler can focus on a small subset of jobs rather than the entire job set.

Building on this insight, we design a hierarchical optimization framework ——Select-and-Schedule
(S&S). A high-level neural network dynamically selects a promising subset of jobs from the candi-
date pool, and a lower-level solver schedules them in detail. This S&S framework fundamentally
differs from traditional approaches that attempt to schedule all jobs directly. By narrowing the effec-
tive problem size at each decision step, our method achieves computational complexity that grows
nearly linearly with the number of jobs, making it possible to tackle large-scale BJSP instances that
were previously intractable.

We validate our approach on challenging benchmarks and demonstrate that, under comparable run-
time budgets, it improves solution quality by an average of 11% over state-of-the-art methods on
large instances. Moreover, our framework continues to produce high-quality schedules within rea-
sonable runtimes even as instance sizes grow further, highlighting its scalability and robustness. Our
contributions can be summarized as follows:

• We identify a key structural property of BJSP: although the blocking constraint increases
scheduling difficulty, it naturally limits concurrency. This observation allows the effective
problem size at each decision point to be dramatically reduced, providing a new perspective
for scalable scheduling.

• We propose a hierarchical optimization framework S&S, which integrates a high-level neu-
ral network to dynamically select promising job subsets and a lower-level solver to schedule
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them.S&S narrows the effective problem size, achieving near-linear computational com-
plexity growth with respect to the number of jobs.

• we demonstrates an average improvement of 11% over existing state-of-the-art methods
under comparable runtime budgets. Moreover, S&S maintains high-quality schedules as
problem size increases, highlighting its robustness for large-scale applications.

2 RELATED WORKS

Mascis & Pacciarelli (2002) conducted one of the earliest comprehensive studies on BJSP, intro-
ducing the widely adopted Alternative Graph model as well as a heuristic algorithm. Later work
for BJSP can be broadly divided into exact and approximate methods. Exact methods are primar-
ily based on Branch-and-Bound (B&B). AitZai et al. (2012); Dabah et al. (2018; 2016) attempted
to obtain exact solutions via B&B, further exploring parallel acceleration using physical hardware.
More recently, Rihane et al. (2022) innovatively incorporated learning-based techniques to reduce
search time, where efficient learning of branching and selection strategies significantly sped up the
process, achieving near state-of-the-art performance with substantially fewer search iterations. Al-
though exact methods guarantee optimality, their scalability is severely limited due to the intrinsic
complexity of BJSP, which makes them impractical for real-world scenarios requiring high-quality
solutions within limited computational resources.

Approximate methods for the BJSP are mainly based on metaheuristic approaches, which aim to
obtain high-quality solutions without guaranteeing exact optimality. Among these, Tabu Search
(TS) (Glover, 1990) has been the most extensively studied. TS is a local search–based optimization
method that avoids cycling by prohibiting recently visited solutions, thereby escaping local optima
and exploring broader solution spaces. However, unlike JSP, where classical neighborhoods (N1,
NA, NB, N2, N4, N5; (Błażewicz et al., 1996)) are effective, applying them to BJSP tends to yield a
high proportion of infeasible solutions (Mogali et al., 2021) . Repairing such solutions incurs signif-
icant computational cost. To mitigate this, Gröflin & Klinkert (2009) attempted to directly construct
feasible neighborhoods, while Dabah et al. (2017) proposed heuristic reconstruction strategies to
improve solution quality. Dabah et al. (2019) further introduced a parallel multistart approach to
accelerate the time-consuming repair process, leveraging 512-core hardware to speed up the search.
More recently, Luo et al. (2021) argued that not all neighbors contribute meaningfully to the search
and developed theoretical insights to reduce complexity, leading to significant efficiency improve-
ments and achieving the first solution for instances of size 100×20. Beyond TS, other metaheuristics
have also been investigated, such as Iterated Greedy, Simulated Annealing, and their variants (Lange
& Werner, 2019a; Pranzo & Pacciarelli, 2016; van Blokland, 2012; Lange & Werner, 2019b) . Meta-
heuristics generally produce high-quality solutions on small and medium size instances and benefit
from well-designed heuristics. However, they rely on manually crafted neighborhoods and often
require many iterations, which results in long computational times and limits their scalability and
responsiveness in dynamic or large-scale scheduling scenarios.

3 PRELIMINARIES

BJSP Let J = {1, . . . , n} be the set of jobs and M = {1, . . . ,m} the set of machines. Each
job j ∈ J is an ordered sequence of operations Oj = (oj,1, . . . , oj,nj

). Operation oj,k requires
machine mj,k ∈ M and has processing time pj,k > 0.A schedule (solution) is specified by starting
times S = {sj,k}1≤j≤n, 1≤k≤nj

with sj,k ∈ N. The completion time is cj,k := sj,k + pj,k.In the
classical Job Shop Scheduling Problem (JSP), once an operation finishes its processing, the machine
is immediately released. In contrast, in the Blocking Job Shop Scheduling Problem (BJSP), no
intermediate buffers are available between machines. Therefore, if the successor machine of an
operation is occupied, the job remains on its current machine after completion, thereby blocking
the machine until the next machine becomes free (Mascis & Pacciarelli, 2002).The size of a BJSP
instance is denoted as |J | × |M|. Mathematical formulation about BJSP can be found in A.2

Submodular Let N be a ground set. Any function f : 2N → R is called a set function. A set
function f is submodular if, for any A ⊆ B ⊆ N and any v /∈ B, it holds that

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B). (1)
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A common problem concerning submodular functions is Cardinality-Constrained submodular Max-
imization (Nemhauser et al., 1978). Formally, given a submodular function f : 2N → R and a
cardinality constraint k, the goal is to find a subset S ⊆ N with |S| ≤ k that maximizes f(S):

max
S⊆N , |S|≤k

f(S). (2)

Submodular functions exhibit structural properties that allow greedy algorithms to be equipped with
provable and often tight approximation guarantees. A submodular function f is said to be monotone
if its value never decreases when elements are added to the set,it holds that:

f(A) ≤ f(B), ∀A ⊆ B ⊆ N . (3)

For the problem of maximizing a monotone submodular function subject to a cardinality constraint,
the classical greedy algorithm that iteratively selects the element with the largest marginal gain
achieves a (1−1/e)-approximation ratio (Nemhauser et al., 1978). In contrast, for the non-monotone
case, the best-known algorithms currently guarantee a 0.377-approximation ratio (Chen et al., 2024).

4 METHOD

The iterative procedure of our method is illustrated in Figure 2 and can be divided into three main
stages: Selection, Scheduling, and Schedule Retention. In the Selection stage, a subset of jobs
is chosen from the candidate pool and added to the set of jobs currently in process. During the
Scheduling stage, these in-process jobs are scheduled in detail using the lower-level solver. In the
Schedule Retention stage, a portion of the resulting schedule is preserved, while completed jobs are
removed from the in-process set. This cycle repeats iteratively until all jobs are fully scheduled,
constructing a complete schedule while maintaining a manageable problem size at each step.

Selection Process. Our method relies on a valuation network to assess whether a group of jobs
exhibits good parallelizability. For instance, in the BNS scenario illustrated in Figure 1, job1 and
job2 can partially execute in parallel, whereas job3 must run serially with job2. To quantify
parallelism within a job group, we adopt machine utilization—defined as the total machine pro-
cessing time divided by the makespan—as the evaluation metric. This choice is motivated by two
factors: first, maximizing machine utilization directly aligns with our optimization objective, as the
total processing time is fixed and higher utilization implies a shorter makespan. More importantly,
we make the novel observation that the machine utilization of a job set often exhibits approximate
submodular behavior: adding a job to a relatively small set typically increases utilization more than
adding it to an almost full set. This near-submodularity provides a principled abstraction for guiding
our selection process and motivates the application of submodular optimization techniques. Empiri-
cal evidence in Appendix A.4 demonstrates that this property holds in a large proportion of practical
instances, highlighting its practical relevance and validating our approach.

During selection, we greedily pick jobs that maximize the total machine utilization at each step.
Selecting k elements from the full setN to form a subset S that maximizes the set function fθ(S) is
a challenging problem. However, the submodular property of fθ provides a theoretical foundation
and performance guarantee. In most cases, when S already contains a moderate number of jobs, it
suffices to greedily select a single job a that maximizes fθ:

a = argmax
a

fθ(S ∪ {a}). (4)

In other cases, we employ the Guided Maximal Combinatorial Choice (GMCC) algorithm (Chen
et al., 2024). GMCC introduces a guided randomized greedy framework that surpasses the 1/e
approximation barrier for constrained non-monotone submodular maximization. It first applies a
fast local search to construct a guidance set Z that captures suboptimal regions, and then runs a
modified randomized greedy algorithm leveraging Z to steer the selection. Detailed algorithmic
steps are provided in the Appendix A.3 and in Chen et al. (2024).

Scheduling In our framework, we employ a Constraint Programming (CP) solver as the sub-
solver to optimize the scheduling of the selected job subset. CP is a widely used paradigm for
combinatorial optimization (Li et al., 2025), which models problems in terms of variables, domains,
and constraints, and efficiently searches for feasible solutions that satisfy all constraints. Using a CP
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Figure 2: Our hierarchical optimization framework and the detailed architecture of the Valuation
Net. The lower panel shows one iteration of our method, which has three main stages. First, in the
Selection Process, the Valuation Net evaluates each job in the Candidate Jobs pool, and the job with
the highest score is chosen as the Best Job. Second, in the Scheduling stage, this best job is added to
the In-Process Box, and the CP Solver then creates a schedule for this complete job subset. Finally,
in the Schedule Retention stage, we use a policy to decide which part of the schedule to keep. The
upper panel shows the specific structure of the Valuation Net , a Set Transformer model. Input job
features are first processed by a Multihead Attention Block (MAB) to capture dependencies between
jobs and generate enriched job embeddinsgs. Next, a Pooling by Multihead Attention (PMA) module
uses learnable Seed Vectors to aggregate these job embeddings into a fixed-size vector. Finally, this
vector is passed to an MLP to predict the overall Machine Utilization.

solver as our subsolver offers several benefits. First, it allows our framework to leverage a mature
and general-purpose solver, reducing implementation complexity. Second, CP is highly extensible,
which means our framework can be readily adapted to solve variations of the problem, such as the
Blocking Job Shop Scheduling Problem with finite waiting times or other practical extensions.

Schedule Retention. At each iteration, we apply a schedule retention strategy to decide which
portion of the solver-generated schedule σ should be kept and appended to the global solution Π.
Concretely, we choose a time τ and retain all operations scheduled before τ , including those already
started but not yet completed at τ , while discarding all decisions beyond τ . For truncated jobs, the
partially executed operations are treated as already committed: in the next iteration, such operations
are forced to start at time 0 on their assigned machines, with their processing times reduced to re-
flect the portion already executed. Completed operations are removed, and fully finished jobs are
discarded. The preserved part σretain is appended to the global schedule Π, and the remaining sub-
problem is updated for the next iteration. We proposed two retention strategy : Earliest-completion
retention. The time point τ is chosen as the earliest completion among all operations in σ. This
selection is motivated by the observation that, immediately after τ , the set of in-process jobs is guar-
anteed to change—often accompanied by the addition of new jobs—making scheduling beyond this
point less informative. Moreover, by limiting the schedule to τ , we avoid redundant computations
arising from overlapping subproblems at earlier time points, thus improving efficiency. Fractional
retention. For large-scale subproblems or limited solver budgets, τ is set to a fixed fraction of the
earliest completion time. The overlap between consecutive subproblems in our approach is analo-
gous to the rolling-horizon optimization method in Li et al. (2025), allowing repeated subproblem
solutions to improve overall quality even when individual solver calls are not optimal.

Network Architecture. To model a set of n jobs, each with m operations, we adopt the Set Trans-
former architecture (Lee et al., 2019). There are two main motivations for this choice. First, we
need a network that naturally operates on sets, as the order of jobs should not affect the prediction.
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Second, the operational features of a single job— the machine IDs of its operactions —are often
not meaningful in isolation. Their impact becomes apparent only in relation to other jobs, when
multiple operations require the same machine. Set-based attention allows the model to capture these
inter-job dependencies effectively.

Let xjk = [pjk,mjk, tjk] denote the feature vector of the k-th operation of the j-th job where pjk
is the processing time, mjk is the machine ID, and tjk indicates whether the operation is forced to
start. Each operation is embedded as

ojk = [Linear(pjk); Embed(mjk); Embed(tjk)] ∈ Rdo , (5)

where do = dp + dm + dt is the dimension of the concatenated embedding. A learnable positional
encoding sk ∈ Rdo is added to oijk to encode the operation’s position within the job. The embedding
of the j-th is obtained by flattening all m operation embeddings:

jj = Flatten(oj1, . . . ,ojm) ∈ Rm·do . (6)

The n job embeddings form a set J = {j1, . . . , jn}. We pass Ji through L layers of Set Attention
Blocks(SAB). Each SAB performs multi-head self-attention followed by a feed-forward network
(FFN) with residual connections and layer normalization:

H = LayerNorm(J+MultiheadAttention(J,J,J)) (7)

J′ = LayerNorm(H+ FFN(H)). (8)

Here, MultiheadAttention(Q,K, V ) denotes the multi-head attention (Vaswani et al., 2017)with
query Q, key K, and value V , and FFN is a two-layer MLP with ReLU activation. This mechanism
allows each job to attend to other jobs in the set J . After L SAB layers, we aggregate the set into a
fixed-size vector using Pooling by Multihead Attention (PMA):

z = PMA(J(L)) = Concat
(
A1J

(L), . . . ,AsJ
(L)

)
W ∈ Rs·mdo , (9)

where s is the number of learnable seed vectors S = [s1, . . . , ss] ∈ Rs×do , and each attention map
is computed as

Ai = softmax
(si(J(L))⊤√

do

)
∈ R1×n. (10)

Each seed vector attends to all jobs in the set to summarize set-level information, producing zi =
AiJ

(L), and the outputs of all seeds are concatenated and optionally projected by W .The pooled
vector z is then mapped to a scalar prediction via an MLP:

ŷ = MLP(z) ∈ R, (11)

where ŷ denotes the predicted average machine utilization. This design naturally handles variable-
sized job sets, preserves permutation invariance, and captures inter-job dependencies through atten-
tion.

Training We adopt a supervised learning approach using randomly generated BJSP instances.
To simulate realistic scheduling scenarios, we apply two types of perturbations to the job sets: (i)
randomly masking a subset of operations, which mimics partially executed jobs, and (ii) randomly
removing completed jobs. The CP solver is then used to compute supervision labels, defined as the
machine utilization ratio, which reflects the degree of parallelism among jobs. For large instances
where the CP solver cannot reach optimality within a reasonable time, we use the best solution found
within a fixed time cutoff as the target. The network is trained to minimize the mean squared error
(MSE) between the predicted and target utilization values.

5 EXPERIMENTS

Our framework is mainly designed for large-scale BJSP instances. In standard scenarios, inference
follows the three-step procedure described above. However, when the number of jobs is close to
the number of machines, almost all jobs can be in process simultaneously, making the selection step

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

redundant. In such low-dimensional cases, our method naturally reduces to directly applying the
second schedule-preserving strategy without invoking the network-based selection.

We evaluate our proposed framework(S&S) against several baselines on standard benchmarks and
large-scale synthetic instances. More detailed experiments can be found in the appendix A.5. Our
study is guided by these research questions: How well does S&S perform on large-scale BJSP
instances, including extreme sizes? How our proposed framework performs in general scenarios?
How much benefit does the learned selection network provide compared to random or oracle-based
strategies?

Datasets We conduct experiments on both public benchmarks and synthetically generated in-
stances. Specifically, we evaluate our framework on the Lawrence instances (Lawrence, 1984) and
Taillard instances (Taillard, 1993), which are standard testbeds for job shop scheduling. To further
assess scalability beyond existing benchmarks, we additionally construct larger synthetic instances
using the widely adopted Taillard generation procedure (Taillard, 1993), with sizes reaching up to
(1000, 20). In total, our study spans problem sizes of up to 20,000 operations, substantially extend-
ing the scale considered in prior BJSP research. For comparison, most previous works were limited
to fewer than 600 operations, while Mogali et al. (2021) was the first to give results on instances
approaching 2000 operations.

Baselines We compare against the following methods: Tabu Search: the current state-of-the-art
algorithm for BJSP, employing the N4/N5 neighborhood structures (Mogali et al., 2021). This
solver is widely regarded as the strongest heuristic for BJSP to date, and has established the best
known solutions for nearly all benchmark instances considered in our study. CP Solver: a widely
used exact solver. R-S&S: a variant of our method without the network, where jobs are selected
randomly but with the same selection procedure.

Implementation Details We describe the experimental setup and hyperparameters used through-
out training. The model employs 16-dimensional embeddings for machines and processing times,
and a 4-dimensional embedding for the forced-start flag. The hidden dimension is set to 64, with
four attention heads and six stacked attention layers. Training instances are generated by perturbing
1,000 randomly created BJSP instances: each job is removed with probability 0.03, and, for surviv-
ing jobs, an operation along with all its predecessors is removed with probability 0.2. The model is
trained for 1,000 epochs with a learning rate of 0.001, using 10% of the data for testing.

For synthetic evaluation, 100 instances are generated for each problem configuration, except for very
large instances (500, 20) and (1000, 20), which are limited to 10 instances due to computational cost.
In our hierarchical framework, large-scale problems (n ≥ 50) use an Earliest-completion retention,
while smaller problems or those where the number of jobs is close to the number of machines employ
a Fractional retention. For the CP solver baseline, subproblems that are too large to solve exactly
are limited to 50 seconds in the unlimited setting. When a global time constraint is imposed, the
allocated time for each subproblem is approximately the total runtime budget divided by the number
of jobs.

Table 1: Comparison of Tabu Search and S&S on TA instances

Instance Size Tabu 60
Avg Obj

S&S 60
Obj

Gap
(%)

Tabu 1800
Avg Obj

S&S 1800
Obj

Gap
(%)

TA71 100×20 17426.6 14895 -14.53% 12369.4 12285 -0.68%
TA72 100×20 16225.8 15763 -2.85% 11745.6 12534 6.71%
TA73 100×20 17370.4 15313 -11.84% 12078.6 12358 2.31%
TA74 100×20 16963.9 14788 -12.83% 12044.8 13067 8.49%
TA75 100×20 17127.6 15151 -11.54% 11911.4 12156 2.05%
TA76 100×20 16578.0 14774 -10.88% 12223.8 12321 0.80%
TA77 100×20 17674.8 16365 -7.41% 12412.2 12511 0.80%
TA78 100×20 17007.8 15014 -11.72% 11898.6 12807 7.63%
TA79 100×20 17145.8 15834 -7.65% 12118.4 12250 1.09%
TA80 100×20 16186.4 15100 -6.71% 11729.0 11825 0.82%
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Results on Benchmark. Table 1 presents a comparison between our model and the state-of-the-
art Tabu Search on large-scale benchmarks. In our experiments, we considered two scenarios that
correspond to practical settings. The first scenario represents a dynamic environment where a rea-
sonable solution must be obtained within a very short time. We set the runtime limit to 60 seconds.
The second scenario represents a static environment where sufficient but reasonable time is available
to obtain the best possible solution, for which we set the runtime limit to 1800 seconds.

Under the 60-second setting, our method achieves consistently better results than the baseline across
all datasets, with an average improvement of 11%, demonstrating the high computational efficiency
of our approach on large-scale problems. Under the 1800-second setting, while our method falls
slightly behind in some cases, in most instances the gap is within 2%, essentially reaching the same
best performance as the state of the art. These results validate both the efficiency and the solution
quality of our method.

Table 2 reports the performance of S&S on the small-scale LA benchmark, representing a secondary
scenario where the small problem size reduces the impact of the pre-selection strategy. Overall,
S&S achieves strong early-stage performance: under the 60-second budget, it matches or slightly
outperforms Tabu Search on most instances. With a longer 600-second budget, it generally attains
solution quality comparable to Tabu Search, though in some less favorable instances, a performance
gap remains. These results demonstrate that even in disadvantageous scenarios, S&S maintains
highly efficient early-stage optimization while remaining broadly competitive with state-of-the-art
solvers. Complete results for all instances in Ta and La are provided in Appendix A.5.

Table 2: Comparison between Tabu Search and S&S on LA instances

Instance Size Tabu 60
Avg Obj

S&S 60
Obj

Gap
(%)

Tabu 1800
Avg Obj

S&S 1800
Obj

Gap
(%)

LA01–LA05 10*5 836 836.4 0.05% 836 836.4 0.05%
LA06–LA10 15*5 1212.94 129.6 1.36% 1203.4 1220.8 1.43%
LA11–LA15 20*5 1554.44 1569.4 0.89% 1494.2 153.2 3.42%
LA16–LA20 10*10 1085.5 1082.6 -0.26% 1082.6 1082.6 0.00%
LA21–LA25 15*10 1481.5 1450.8 1.84% 1418.8 1494.4 5.33%
LA26–LA30 20*10 1997.0 2075.2 5.35% 1888.6 2060 9.08%
LA31–LA35 30*10 2927.32 3298 12.66% 2777 3091.8 11.34%
LA36–LA40 15*15 1809.2 1804.8 -0.25% 1727.2 1767.6 2.34%

Table 3: Comparison of S&S, Random S&S, and CP solver across different problem sizes

Mac Num Job Num S&S Random S&S CP solver
Avg Obj Time (s) Avg Obj Time (s) Avg Obj Time (s)

5

100 9056.1 25.2 9124.94 6.7 8660 3600
200 18005.7 92.3 18162.1 12.7 27148 7200
500 44752.7 555.2 45310.7 34.3 - -
1000 89398.1 1996.1 90380.45 74.7 - -

10

100 10512.2 428.7 10522.16 398.7 21473 3600
200 20850.3 1031.2 20981.1 883.4 73253 7200
500 52046.9 2846.0 52088.1 2307.7 - -
1000 103811.2 5600.0 104032.4 3676.8 - -

20

100 14358.3 4340.3 14446.8 4300.5 72135 3600
200 27152.2 9447.4 27284.4 9365.3 - -
500 66565.8 25103.4 66671.8 24600.3 - -
1000 133597.7 52293.5 134730.5 50186.5 - -

Results on Larger-Scale instances. Table 3 reports the performance of S&S on large-scale BJSP
instances generated from our production dataset, involving up to 20 machines and 1000 jobs. For
each instance, we compare S&S with the Random S&S baseline, where job subsets are selected
randomly without the valuation network. Across all tested scenarios, S&S consistently achieves
lower objective values than Random S&S. This indicates that the network-based selection effectively
identifies job subsets with higher parallelizability, allowing the solver to produce schedules with
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better machine utilization. The performance gap between S&S and Random S&S increases with
problem size, suggesting that the network contributes more substantially as the instance grows.

On moderately large instances, the standalone CP solver yields worse objective values even with
more computation time, and for the largest instances it fails to produce solutions due to memory
limitations, illustrating the inherent difficulty of BJSP. Notably, our method also employs a CP solver
as the internal optimizer. The performance difference arises because, within the S&S framework, the
CP solver is applied to a carefully selected subset of jobs rather than the full problem. This restricted
formulation substantially reduces the search space, enabling the CP solver to operate effectively
where it would otherwise fail. These results suggest that the strength of S&S lies in the interaction
between learning-based selection and CP optimization, rather than in CP alone.

Figure 3: Scaling behavior of our method on synthetic BJSP instances. (Left) Runtime grows nearly
linearly with the number of jobs N under different machine settings (M = 5, 10, 20). (Right) The
obtained objective values also scale linearly with N .

To further evaluate the scalability of S&S, we examine the relationship between problem size, run-
time, and solution quality. Figure 3 shows that, for a fixed number of machines, the runtime of S&S
increases approximately linearly with the number of jobs. Correspondingly, the solution objective
also grows roughly linearly with the job count. This linear trend aligns with the intuition that, under
the fixed data-generation distribution, the expected total processing time increases proportionally
with the number of jobs. The observed linear scaling indicates that the computational complexity of
S&S grows moderately with problem size, and that the method remains effective when extrapolated
to very large instances. In contrast, CP solvers fail to produce solutions for the largest instances due
to memory constraints, and their solution quality deteriorates even on moderately sized problems.
These results suggest that S&S maintains both computational efficiency and high-quality schedul-
ing performance across a wide range of problem sizes, highlighting its practical applicability for
large-scale BJSP scenarios.

6 CONCLUSION

This paper introduces Select and Schedule (S&S), a hierarchical optimization framework for the
Blocking Job Shop Scheduling Problem (BJSP) that scales efficiently to large instances. By ex-
ploiting the observation that blocking constraints limit concurrent jobs to the number of machines,
S&S uses a high-level neural network to select a subset of jobs, which are then scheduled by a
lower-level CP solver. Extensive experiments on standard and large-scale benchmarks show that
S&S consistently produces high-quality solutions. Under tight time constraints (e.g., 60 seconds),
it outperforms state-of-the-art Tabu Search, while remaining competitive with longer time budgets
(1800 seconds). S&S demonstrates robustness and efficiency even for extremely large instances,
offering a practical and scalable solution for real-world dynamic scheduling.

9
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS

During the preparation of this work, we employed a Large Language Model (LLM) to polish En-
glish descriptions, improving clarity, grammar, and academic style, as well as to provide guidance
in generating text-based prompts for schematic figures, illustrations, and algorithmic diagrams. All
substantive technical decisions, experimental design, core algorithmic code were made by the au-
thors; the use of the LLM served solely as an auxiliary tool to enhance presentation, and visualiza-
tion. We carefully verified the outputs produced with LLM assistance and are fully responsible for
the correctness and integrity of all results and claims presented in this work.

A.2 BJSP MATHEMATICAL FORMULATION

The mathematical formulation of BWS is as follows.These constraints are directly incorporated into
our CP solver, ensuring that both the technological order and machine capacity with blocking are
strictly enforced during the scheduling process.

sj,k+1 ≥ sj,k + pj,k, ∀1 ≤ j ≤ n, 1 ≤ k ≤ nj . (12)

sj,k ≥ sj′,k′+1 or sj′,k′ ≥ sj,k+1,

∀j, j′, 1 ≤ j, j′ ≤ n, 1 ≤ k < nj , 1 ≤ k′ < nj′ , mj,k = mj′,k′ , j ̸= j′.
(13)

sj,k ≥ sj′,k′+1 or sj′,k′ ≥ sj,k + pj,k,

∀j, j′, 1 ≤ j, j′ ≤ n, k = nj , 1 ≤ k′ < nj′ , mj,k = mj′,k′ , j ̸= j′.
(14)

In the above formulation, sj,k denotes the start time of the k-th operation of job j, and pj,k represents
its processing time. The first equation enforces the technological order: each operation must start
only after its preceding operation is completed. The second constraint corresponds to the general
blocking condition: for any two operations sharing the same machine, at least one must start only
after the successor of the other has begun. The third constraint captures the special case where an
operation is the last one of its job; since it has no successor, its completion immediately releases the
machine. The above formulation corresponds to the Blocking No-Wait Shop (BNS) problem. For
the Blocking Job Shop (BWS) problem, Equations (2) and (3) are slightly modified as follows.

sj,k > sj′,k′+1 or sj′,k′ > sj,k+1,

∀j, j′, 1 ≤ j, j′ ≤ n, 1 ≤ k < nj , 1 ≤ k′ < nj′ , mj,k = mj′,k′ , j ̸= j′.
(15)

sj,k > sj′,k′+1 or sj′,k′ ≥ sj,k + pj,k,

∀j, j′, 1 ≤ j, j′ ≤ n, k = nj , 1 ≤ k′ < nj′ , mj,k = mj′,k′ , j ̸= j′.
(16)

A.3 GUIDED MULTI-STAGE GREEDY COMBINATORIAL ALGORITHM

The GMGC algorithm (Guided Multi-stage Greedy Combinatorial) is illustrated in Algorithm 1.
The main symbols used are as follows: U denotes the ground set of elements, f : 2U → R is the
submodular objective function, I represents the constraints (e.g., cardinality or matroid constraints),
k is the selection budget, Z0 is the initial approximate solution, Z is the guidance set generated in
the first stage, A is the solution obtained in the second-stage randomized greedy selection, t ∈ [0, 1]
is the switching ratio controlling the number of initial steps that exclude elements in the guidance
set, and ϵ is the precision parameter used to set the marginal gain threshold during guidance set
construction.

In the first stage, the guidance set Z is constructed via the FASTLS subroutine. Elements are it-
eratively added or replaced in Z only if the improvement in marginal gain exceeds the threshold
ϵ/k · f(Z) and the resulting set satisfies the constraints I. This process continues until no further
improvement is possible, yielding a guidance set that provides structural information and quality
guarantees for subsequent selection.

In the second stage, the GUIDEDRG subroutine performs a randomized greedy selection. During
the first t · k steps, elements from the guidance set are excluded to exploit its structure, while in the
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Algorithm 1: GMGC (Guided Multi-stage Greedy Combinatorial) Algorithm

Input: Submodular function f : 2U → R, constraint I, initial solution Z0, accuracy ϵ,
budget k, switching ratio t.

Output: Final solution S.

1 Phase 1: Guided Set Construction (FASTLS)
2 Initialize Z ← Z0;
3 repeat
4 foreach a ∈ U do
5 if a ∈ Z then
6 foreach e ∈ U \ Z do
7 if Z ′ = (Z \ {a}) ∪ {e} ∈ I and

∆(e | Z \ {a})−∆(a | Z \ {a}) ≥ ϵ
k · f(Z) then

8 Z ← Z ′; break;

9 else
10 if ∆(a | Z) = f(Z ∪ {a})− f(Z) ≥ ϵ

k · f(Z) then
11 Z ← Z ∪ {a};

12 until no improvement;
13 Phase 2: Guided Randomized Greedy (GUIDEDRG)
14 Initialize A← ∅;
15 for i← 1 to t · k do
16 Compute ∆(u | A) for all u ∈ U \ Z;
17 Let Mi be the set of top-r elements by marginal gain, where

r = min(k − |A|, t · k − |A|);
18 Pick xi uniformly at random from Mi;
19 A← A ∪ {xi};
20 for i← t · k + 1 to k do
21 Compute ∆(u | A) for all u ∈ U ;
22 Let Mi be the set of top-r elements by marginal gain, where r = k − |A|;
23 Pick xi uniformly at random from Mi;
24 A← A ∪ {xi};

25 Final Selection:
26 Return S = argmax{f(Z), f(A)};

remaining k − t · k steps, all elements in the ground set are considered. At each step, a candidate
pool is formed by selecting elements with the largest marginal gains, and one element is chosen
uniformly at random to be added to the current solution A. Finally, the algorithm compares the
objective values of the guidance set Z and the greedy solution A, and returns the one with the higher
value as the final output.

This two-stage design leverages the high-quality structure of the guidance set while retaining the ex-
ploratory power of randomized greedy selection, achieving strong theoretical guarantees and practi-
cal performance.

A.4 SUBMODULAR DISCUSSION

As discussed in the main text, the utilization function F (S) is not strictly submodular in all cases.
For instance, consider sets

A = {[(1,m1), (1,m2)]}, B = {[(1,m1), (1,m2)], [(1,m1), (98,m2)]},

and a new job
c = [(98,m1), (1,m2)].

We have F (A) = 1, F (B) = 1.01, F (A ∪ {c}) = 1.01, and F (B ∪ {c}) ≈ 1.98, so the marginal
gain is larger for the superset B, violating strict submodularity.

13
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Nevertheless, we conducted an empirical study to verify that F (S) exhibits approximate submodular
behavior in most cases(t) when the total number of jobs in a set does not exceed the number of
machines m. The experimental procedure is as follows:

1. Generate random instances of the blocking job shop problem with up to n jobs and m
machines.

2. For each instance, randomly construct a subset A of jobs with size up to m, and a superset
B ⊇ A with size up to m.

3. Sample a new random job c.
4. Solve the scheduling problem for A, B, A ∪ {c}, and B ∪ {c} to obtain their machine

utilizations F (A), F (B), F (A ∪ {c}), F (B ∪ {c}).
5. Check whether the marginal gain satisfies

F (A ∪ {c})− F (A) ≥ F (B ∪ {c})− F (B).

6. Repeat steps 2–5 for a large number of trials (e.g., 10,000) and record the proportion of
cases satisfying the inequality.

Based on over 10,000 tests with m = 5 and m = 7, we find that the utilization function satisfies the
submodularity inequality in the vast majority of cases(almost 100%). This provides strong empirical
support for treating it as approximately submodular in our framework.

A.5 DETAIL RESULTS ON BENCHMARK

This is all the test results we have on the Ta and La datasets. Table 4 6 reports the full experi-
mental results on the LA and TA benchmark sets, covering instances of varying sizes from small
to extremely large. Overall, our method consistently achieves solutions close to or surpassing those
of Tabu Search across all instances. Under short time budgets , S&S demonstrates a clear advan-
tage, especially on large-scale TA instances, where it rapidly converges to high-quality solutions,
showcasing strong early-stage optimization ability. With longer budgets, S&S remains highly com-
petitive: while Tabu Search occasionally achieves slightly better results on medium-scale cases,
the gap is negligible, and S&S frequently matches or outperforms it. These results confirm that
S&S effectively combines fast convergence with robust scalability, making it not only competitive
with state-of-the-art metaheuristics but also a practical solution for real-world dynamic scheduling
applications.

14
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Table 4: Comparison between Tabu Search and S&S on LA instances

Instance Size 60s 600s

Tabu Obj S&S Obj Gap
(%)

Tabu Obj S&S Obj Gap
(%)

LA01 10*5 881 881 0.00% 881 881 0.00%
LA02 10*5 900 900 0.00% 900 900 0.00%
LA03 10*5 808 810 0.25% 808 810 0.25%
LA04 10*5 859 859 0.00% 859 859 0.00%
LA05 10*5 732 732 0.00% 732 732 0.00%
LA06 15*5 1203.2 1214 0.90% 1194 1194 0.00%
LA07 15*5 1132.1 1129 -0.27% 1127 1127 0.00%
LA08 15*5 1190.2 1189 -0.10% 1173 1173 0.00%
LA09 15*5 1312.3 1311 -0.10% 1305 1305 0.00%
LA10 15*5 1226.9 1305 6.37% 1218 1305 7.14%
LA11 20*5 1588.2 1605 1.06% 1501 1590 5.93%
LA12 20*5 1414.1 1396 -1.28% 1353 1396 3.18%
LA13 20*5 1545.6 1535 -0.69% 1508 1541 2.19%
LA14 20*5 1602.5 1637 2.15% 1544 1593 3.17%
LA15 20*5 1621.8 1674 3.22% 1565 1597 2.04%
LA16 10*10 1148.6 1148 -0.05% 1148 1148 0.00%
LA17 10*10 968 968 0.00% 968 968 0.00%
LA18 10*10 1082.4 1077 -0.50% 1077 1077 0.00%
LA19 10*10 1110.5 1102 -0.77% 1102 1102 0.00%
LA20 10*10 1118 1118 0.00% 1118 1118 0.00%
LA21 15*10 1556.6 1542 -0.94% 1483 1536 3.57%
LA22 15*10 1376.2 1427 3.69% 1328 1387 4.44%
LA23 15*10 1525.2 1578 3.46% 1475 1568 6.31%
LA24 15*10 1482.8 1533 3.39% 1402 1533 9.34%
LA25 15*10 1466.7 1464 -0.18% 1406 1448 2.99%
LA26 20*10 1980.8 2119 6.98% 1870 2005 7.22%
LA27 20*10 2064.8 2148 4.03% 1933 2170 12.26%
LA28 20*10 2016.7 2127 5.47% 1937 2168 11.93%
LA29 20*10 1898.3 1934 1.88% 1764 1909 8.22%
LA30 20*10 2024.6 2048 1.16% 1939 2048 5.62%
LA31 30*10 2842.8 3347 17.74% 2714 3013 11.02%
LA32 30*10 3106.6 3626 16.72% 2928 3373 15.20%
LA33 30*10 2843.1 3009 5.84% 2717 3009 10.75%
LA34 30*10 2905.7 3072 5.72% 2769 3072 10.94%
LA35 30*10 2938.4 3436 16.93% 2757 2992 8.52%
LA36 15*15 1804.3 1658 -8.11% 1683 1658 -1.49%
LA37 15*15 1929.4 1936 0.34% 1856 1913 3.07%
LA38 15*15 1734.5 1788 3.08% 1665 1704 2.34%
LA39 15*15 1792.2 1792 -0.01% 1720 1792 4.19%
LA40 15*15 1785.4 1849 3.56% 1712 1771 3.45%
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Table 5: Comparison between Tabu Search and S&S on TA1-50 instances

Instance Size 60s 600s

Tabu Obj S&S Obj Gap
(%)

Tabu Obj S&S Obj Gap
(%)

TA01 15*15 1769.4 1782 0.71% 1761.2 1745 -0.92%
TA02 15*15 1713.6 1808 5.51% 1700.0 1769 4.06%
TA03 15*15 1750.4 1786 2.03% 1715.0 1675 -2.33%
TA04 15*15 1682.6 1855 10.25% 1659.5 1696 2.20%
TA05 15*15 1729.0 1770 2.37% 1712.2 1696 -0.95%
TA06 15*15 1754.4 1829 4.25% 1727.8 1806 4.53%
TA07 15*15 1780.6 1774 -0.37% 1753.6 1797 2.47%
TA08 15*15 1756.6 1830 4.18% 1723.8 1762 2.22%
TA09 15*15 1814.2 1882 3.74% 1797.0 1882 4.73%
TA10 15*15 1762.4 1853 5.14% 1728.6 1853 7.20%
TA11 20*15 2127.6 2164 1.71% 2078.4 2164 4.12%
TA12 20*15 2276.6 2536 11.39% 2228.8 2235 0.28%
TA13 20*15 2134.8 2291 7.32% 2099.0 2165 3.14%
TA14 20*15 2140.2 2330 8.87% 2098.4 2227 6.13%
TA15 20*15 2152.8 2501 16.17% 2106.6 2199 4.39%
TA16 20*15 2236.0 2390 6.89% 2225.6 2236 0.47%
TA17 20*15 2296.0 2761 20.25% 2261.8 2296 1.51%
TA18 20*15 2215.8 2444 10.30% 2157.0 2387 10.66%
TA19 20*15 2190.6 2323 6.04% 2129.4 2316 8.76%
TA20 20*15 2238.6 2382 6.41% 2167.8 2279 5.13%
TA21 20*20 2637.0 2770 5.04% 2517.0 2770 10.05%
TA22 20*20 2536.2 2583 1.85% 2437.0 2583 5.99%
TA23 20*20 2492.6 2771 11.17% 2396.8 2748 14.65%
TA24 20*20 2545.0 2829 11.16% 2484.2 2829 13.88%
TA25 20*20 2487.8 2627 5.60% 2394.4 2575 7.54%
TA26 20*20 2637.2 2784 5.57% 2544.6 2784 9.41%
TA27 20*20 2667.2 2721 2.02% 2577.4 2721 5.57%
TA28 20*20 2545.4 2841 11.61% 2471.6 2835 14.70%
TA29 20*20 2615.2 2744 4.93% 2537.6 2744 8.13%
TA30 20*20 2540.8 2702 6.34% 2465.8 2678 8.61%
TA31 30*15 3358.8 4124 22.78% 3189.0 3453 8.28%
TA32 30*15 3395.4 4336 27.70% 3249.4 3621 11.44%
TA33 30*15 3501.6 3980 13.66% 3362.6 3595 6.91%
TA34 30*15 3474.8 3832 10.28% 3285.2 3832 16.64%
TA35 30*15 3334.2 3575 7.22% 3160.6 3575 13.11%
TA36 30*15 3387.8 3691 8.95% 3270.6 3647 11.51%
TA37 30*15 3478.2 3968 14.08% 3324.8 3652 9.84%
TA38 30*15 3263.2 4406 35.02% 3121.4 3534 13.22%
TA39 30*15 3159.0 3309 4.75% 3036.2 3309 8.98%
TA40 30*15 3270.0 3535 8.10% 3117.4 3535 13.40%
TA41 30*20 3890.4 4036 3.74% 3638.2 4036 10.93%
TA42 30*20 3745.6 3979 6.23% 3535.8 3979 12.53%
TA43 30*20 3618.8 3672 1.47% 3460.0 3672 6.13%
TA44 30*20 3805.0 3967 4.26% 3593.0 3967 10.41%
TA45 30*20 3888.2 4067 4.60% 3578.6 4067 13.65%
TA46 30*20 3867.8 4240 9.62% 3610.2 4240 17.45%
TA47 30*20 3776.0 4239 12.26% 3531.0 4239 20.05%
TA48 30*20 3773.6 3977 5.39% 3513.4 3977 13.20%
TA49 30*20 3694.2 4072 10.23% 3480.8 4072 16.98%
TA50 30*20 3834.2 4067 6.07% 3617.6 4067 12.42%
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Table 6: Comparison between Tabu Search and S&S on TA51-80 instances

Instance Size 60s 600s

Tabu
Obj

S&S
Obj

Gap (%) Tabu
Obj

S&S
Obj

Gap
(%)

TA51 50*15 5689.4 5904 3.77% 5213.8 5904 13.24%
TA52 50*15 5703.8 5794 1.58% 5228.4 5794 10.82%
TA53 50*15 5515.4 5546 0.55% 5113.6 5546 8.46%
TA54 50*15 5540.4 5809 4.85% 5157.4 5809 12.63%
TA55 50*15 5577.4 5765 3.36% 5080.4 5765 13.48%
TA56 50*15 5666.0 5898 4.09% 5233.6 5898 12.69%
TA57 50*15 5731.6 5816 1.47% 5301.4 5833 10.03%
TA58 50*15 5833.0 6076 4.17% 5397.8 6076 12.56%
TA59 50*15 5488.4 5650 2.94% 5108.6 5650 10.60%
TA60 50*15 5757.0 5814 0.99% 5198.0 5757 10.75%
TA61 50*20 6542.6 6774 3.54% 5198.2 6774 30.31%
TA62 50*20 6788.8 6813 0.36% 6021.4 6813 13.15%
TA63 50*20 6441.4 6294 -2.29% 5646.0 6294 11.48%
TA64 50*20 6320.6 6548 3.60% 5576.4 6548 17.42%
TA65 50*20 6512.0 6416 -1.47% 5675.2 6416 13.05%
TA66 50*20 6519.6 6738 3.35% 5816.4 6738 15.84%
TA67 50*20 6567.6 6276 -4.44% 5745.4 6276 9.24%
TA68 50*20 6356.4 6194 -2.55% 5804.2 6194 6.72%
TA69 50*20 6699.6 6580 -1.79% 5907.0 6580 11.39%
TA70 50*20 6764.0 6422 -5.06% 5882.6 6422 9.17%
TA71 100*20 17426.6 14895 -14.53% 12369.4 12285 -0.68%
TA72 100*20 16225.8 15763 -2.85% 11745.6 12534 6.71%
TA73 100*20 17370.4 15313 -11.84% 12078.6 12358 2.31%
TA74 100*20 16963.9 14788 -12.83% 12044.8 13067 8.49%
TA75 100*20 17127.6 15151 -11.54% 11911.4 12156 2.05%
TA76 100*20 16578.0 14774 -10.88% 12223.8 12321 0.80%
TA77 100*20 17674.8 16365 -7.41% 12412.2 12511 0.80%
TA78 100*20 17007.8 15014 -11.72% 11898.6 12807 7.63%
TA79 100*20 17145.8 15834 -7.65% 12118.4 12250 1.09%
TA80 100*20 16186.4 15100 -6.71% 11729.0 11825 0.82%
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