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ABSTRACT

Neural network binarization is one of the most promising compression approaches
with extraordinary computation and memory savings by minimizing the bit-width
of weight and activation. However, despite being a general technique, recent
works reveal that applying binarization in various practical scenarios, including
multiple tasks, architectures, and hardware, is not trivial. Moreover, common
challenges, such as severe degradation in accuracy and limited efficiency gains,
suggest that specific attributes of binarization are not thoroughly studied and ad-
equately understood. To comprehensively understand binarization methods, we
present BiBench, a carefully engineered benchmark with in-depth analysis for
network binarization. We first inspect the requirements of binarization in the ac-
tual production setting. Then for the sake of fairness and systematic, we define
the evaluation tracks and metrics. We also perform a comprehensive evaluation
with a rich collection of milestone binarization algorithms. Our benchmark results
show that binarization still faces severe accuracy challenges, and newer state-of-
the-art binarization algorithms bring diminishing improvements, even at the ex-
pense of efficiency. Moreover, the actual deployment of certain binarization op-
erations reveals a surprisingly large deviation from their theoretical consumption.
Finally, based on our benchmark results and analysis, we suggest establishing a
paradigm for accurate and efficient binarization among existing techniques. We
hope BiBench paves the way toward more extensive adoption of network bina-
rization and serves as a fundamental work for future research.

1 INTRODUCTION

Since the rising of modern deep learning, the contradiction between ever-increasing model size and
limited deployment resources has persisted. For this reason, compression technologies are crucial
for practical deep learning and have been widely studied, including model quantization (Gong et al.,
2014; Wu et al., 2016; Vanhoucke et al., 2011; Gupta et al., 2015), network pruning (Han et al.,
2015; 2016; He et al., 2017), knowledge distillation (Hinton et al., 2015; Xu et al., 2018; Chen et al.,
2018; Yim et al., 2017; Zagoruyko & Komodakis, 2017), lightweight architecture design (Howard
et al., 2017; Sandler et al., 2018; Zhang et al., 2018b; Ma et al., 2018), and low-rank decomposi-
tion (Denton et al., 2014; Lebedev et al., 2015; Jaderberg et al., 2014; Lebedev & Lempitsky, 2016).

As a compression approach that extremely reduces the bit-width to 1-bit, network binarization is
regarded as the most aggressive quantization technology (Rusci et al., 2020; Choukroun et al., 2019;
Qin et al., 2022; Shang et al., 2022b; Zhang et al., 2022b; Bethge et al., 2020; 2019; Martinez et al.,
2019; Helwegen et al., 2019). The binarized models leverage the most compact 1-bit parameters,
which take little storage and memory and accelerate the inference by efficient bitwise operations.
Compared to other compression technologies like network pruning and architecture design, network
binarization enjoys stronger topological generics since it only applies to parameters. Therefore, in
academic research, network binarization is widely studied as an independent compression technique
instead of the 1-bit specialization of quantization (Gong et al., 2019; Gholami et al., 2021). It
is impressive that State-of-The-Art (SoTA) binarization algorithms push binarized models to full-
precision performance on large-scale tasks (Deng et al., 2009; Liu et al., 2020).

However, existing network binarization is still far from practical. We point out that two worrisome
trends are emerging from accuracy and efficiency perspectives in current binarization research:
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Figure 1: Evaluation tracks of BiBench. Our benchmark evaluates binarization algorithms on the
most comprehensive evaluation tracks, including “Learning Task”, “Neural Architecture”, “Corrup-
tion Robustness”, “Training Consumption”, “Theoretical Complexity”, and “Hardware Inference”.

Trend-1. Accuracy comparison converging to limited scope. In recent binarization research, sev-
eral image classification tasks, e.g., CIFAR-10 and ImageNet, are becoming standard options for
comparing accuracy. The typical selection of evaluation tasks helps the clear and fair comparison of
accuracy performance among different binarization algorithms. However, since most binarization al-
gorithm studies are engineered for learning tasks with image modality inputs, the presented insights
and conclusions are rarely verified in a broader range of other modalities and tasks. The mono-
tonic tasks also hinder the comprehensive evaluation from an architectural perspective. Besides,
data noise like corruption is a common problem on low-cost edge devices and is widely studied in
compression (Lin et al., 2018; Rakin et al., 2021), whereas few advanced binarization algorithms
consider the robustness of binarized models.

Trend-2. Efficiency analysis remaining at the theoretical level. Network binarization is widely
recognized for its significant storage and computation savings. For example, theoretical savings
are up to 32× and 64× for convolutions, respectively (Rastegari et al., 2016; Bai et al., 2021).
However, since lacking support from hardware libraries, the models compressed by binarization
algorithms can hardly be evaluated on real-world edge hardware, leaving their efficiency claims
lacking experimental evidence. In addition, the training efficiency of the binarization algorithm is
usually neglected in current research, which causes several negative phenomena in training a binary
network, such as the increasing demand for computation resources and time consumption, being
sensitive to hyperparameters, and requiring detailed tuning in optimization, etc.

In this paper, we present BiBench, a network Binarization Benchmark to evaluate binarization algo-
rithms comprehensively from accuracy and efficiency perspectives (Table 1). Based on BiBench, we
benchmark 8 representative binarization algorithms on 9 deep learning datasets, 13 different neu-
ral architectures, 2 deployment libraries, 14 hardware chips, and various hyperparameter settings.
It costs us about 4 GPU years of computation time to build our BiBench, devoted to promoting
comprehensive evaluation for network binarization from the perspectives of accuracy and efficiency.
Furthermore, we analyze the benchmark results in depth and reveal insights along evaluation tracks,
and give suggestions for designing practical binarization algorithms.

2 BACKGROUND

2.1 NETWORK BINARIZATION

Binarization compresses weights w ∈ Rcin×cout×k×k and activations a ∈ Rcin×w×h to 1-bit in
computationally dense convolution, where cin, k, cout, w, and h denote the input channel, kernel
size, output channel, input width, and input height. The computation can be expressed as

o = α popcount (xnor (sign(a), sign(w))) , (1)
where o denotes the outputs and α ∈ Rcout denotes the optional scaling factor calculated as α =
∥w∥
n (Courbariaux et al., 2016b; Rastegari et al., 2016), xnor and popcount are bitwise instructions

defined as (Arm, 2020; AMD, 2022). Though enjoying extreme compression and acceleration,
severely limited representation causes the degradation of binarized networks. Therefore, various
algorithms emerge constantly to improve accuracy (Yuan & Agaian, 2021).

The vast majority of existing binarization algorithms focus on improving the binarized operators.
As shown in Eq. (1), the fundamental difference between binarized and full-precision networks is
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Table 1: Comparison between BiBench and existing binarization works along evaluation tracks.

Algorithm
Technique Accurate Binarization Efficient Binarization

s τ g #Task #Arch. Corruption
Robustness

Training
Consumption

Theoretical
Complexity

Hardware
Inference

BNN (Courbariaux et al., 2016b) × ×
√

3 3 *
√ √ √

XNOR (Rastegari et al., 2016)
√

× × 2 3 *
√ √ √

DoReFa (Zhou et al., 2016b)
√

× × 2 2 * ×
√

×
Bi-Real (Liu et al., 2018b) × ×

√
1 2 × ×

√
×

XNOR++ (Bulat et al., 2019)
√

× × 1 2 × × × ×
ReActNet (Liu et al., 2020) ×

√
× 1 2 × ×

√
×

ReCU (Xu et al., 2021b) ×
√ √

2 4 × × × ×
FDA (Xu et al., 2021a) × ×

√
1 6 × × × ×

Our Benchmark (BiBench)
√ √ √

9 13
√ √ √ √

1 “
√

” and “×” indicates the track is considered in the original paper of the binarization algorithm, while “*” indicates only
being studied in other related studies. “s”, “τ”, or “g” indicates “scaling factor”, “parameter redistribution”, or “gradient
approximation” techniques proposed in this work, respectively.

the former applies binarized operators, which also affect binarized models’ optimization properties
directly and determine their hardware efficiency (Alizadeh et al., 2019; Geiger & Team, 2020). In
addition, the improvements of binarized operators are widely flexible across neural architectures and
learning tasks (Wang et al., 2020b; Qin et al., 2022; Zhao et al., 2022), which fully exerts the gen-
eralizability of the bit-width compression. We thereby consider 8 generic binarization algorithms in
our BiBench (Courbariaux et al., 2016b; Rastegari et al., 2016; Zhou et al., 2016b; Liu et al., 2018b;
Bulat et al., 2019; Liu et al., 2020; Xu et al., 2021b;a). And techniques of these binarization algo-
rithms focus on binarized operator improvement and can be categorized into several types broadly,
i.e., scaling factors, parameter redistribution, and gradient approximation. Note that the techniques
requiring specified local structures or training pipelines are excluded for a fair comparison, such as
the bi-real shortcut (Liu et al., 2018a) and duplicate activation (Liu et al., 2020). For more details of
binarization algorithms for our BiBench, please see Appendix. A.

2.2 CHALLENGES FOR BINARIZATION

Since about 2015, network binarization has attracted great interest in different research fields, in-
cluding but not limited to vision, language understanding, etc. However, there are still various
challenges in the production and deployment process of network binarization in actual practice. The
goal in production is to train accurate binarized networks with controllable resources. Recent works
have revealed the capability of binarization algorithms evaluated on image classification is not al-
ways appliable to new learning tasks and neural architectures (Qin et al., 2020a; Wang et al., 2020b;
Qin et al., 2021; Liu et al., 2022). And to achieve higher accuracy, some binarization algorithms
require several times of training resources compared with the training of full-precision networks.
Ideal binarized networks should be hardware-friendly and robust when deployed to edge devices.
Unlike well-supported multi-bit (2-8 bit) quantization, most mainstream inference libraries have not
yet supported the deployment of binarization on hardware (NVIDIA, 2022; HUAWEI, 2022; Qual-
comm, 2022), which also causes the theoretical efficiency of existing binarization algorithms cannot
align their performance on actual hardware. Moreover, the data collected by low-cost devices in nat-
ural edge scenarios is not always clean and high-quality, which affects the robustness of binarized
models severely (Lin et al., 2018; Ye et al., 2019; Cygert & Czyżewski, 2021). However, recent
binarization algorithms rarely consider corruption robustness when designed.

3 BIBENCH: TRACKS AND METRICS FOR BINARIZATION

In this section, we present BiBench towards accurate and efficient network binarization. As Figure 1
shows, we build 6 evaluation tracks and corresponding metrics upon the practical challenges in
production and deployment of binarization. For all tracks, higher metrics mean better performance.

3.1 TOWARDS ACCURATE BINARIZATION

The evaluation tracks for accurate network binarization in our BiBench are “Learning Task”, “Neural
Architecture” (for production), and “Corruption Robustness” (for deployment).
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① Learning Task. We selected 9 learning tasks for 4 different data modalities to comprehensively
evaluate network binarization algorithms. For the widely-evaluated 2D visual modality, in addition
to image classification tasks on CIFAR-10 (Krizhevsky et al., 2014) and ImageNet (Krizhevsky et al.,
2012), we also include object detection tasks on PASCAL VOC (Hoiem et al., 2009) and COCO (Lin
et al., 2014) across all algorithms. For 3D visual modality, we evaluate the algorithm on ModelNet40
classification (Wu et al., 2015) and ShapeNet segmentation (Chang et al., 2015) tasks of 3D point
clouds. For textual modality, the natural language understanding tasks in GLUE benchmark (Wang
et al., 2018) are applied for evaluation. For speech modality, we evaluate algorithms on Speech
Commands KWS task (Warden, 2018). The details of tasks and datasets are in Appendix. B.

Then we build the evaluation metric for this track. For a particular binarization algorithm, we take
the accuracy of full-precision models as baselines and calculate the mean relative accuracy for all
architectures on each task. Then we calculate the Overall Metric (OM) of the task track as the
quadratic mean of all tasks (Curtis & Marshall, 2000). The equation of evaluation metric is

OMtask =

√√√√ 1

N

N∑
i=1

E2

(
Abi

taski

Ataski

)
, (2)

where Abi
taski and Ataski denote the accuracy results of the binarized and full-precision models on i-th

task, N is the number of tasks, and E(·) denote taking the mean value. The quadratic mean form
is uniformly applied in BiBench to unify all metrics, which prevents metrics from being unduly
influenced by certain bad items and thus can measure the overall performance on each track.

② Neural Architecture. We choose diverse neural architectures with mainstream CNN-based,
transformer-based, and MLP-based architectures to evaluate the generalizability of binarization al-
gorithms from the neural architecture perspective. We adopt standard ResNet-18/20/34 (He et al.,
2016) and VGG (Simonyan & Zisserman, 2015) to evaluate CNN architectures, and the Faster-
RCNN (Ren et al., 2015) and SSD300 (Liu et al., 2016) frameworks are applied as detectors. We
binarize BERT-Tiny4/Tiny6/Base (Kenton & Toutanova, 2019) with the bi-attention mechanism
for convergence (Qin et al., 2021) to evaluate transformer-based architectures. And we evaluate
PointNetvanilla and PointNet (Qi et al., 2017) with EMA aggregator (Qin et al., 2020a), FSMN (Zhang
et al., 2015), and Deep-FSMN (Zhang et al., 2018a) as typical MLP-based architectures for their lin-
ear unit composition. The details of these architectures are presented in Appendix. C.

Similar to the overall metric for learning task track, we build the metric for neural architecture:

OMarch =

√
1

3

(
E2

(
Abi

CNN

ACNN

)
+ E2

(
Abi

Transformer

ATransformer

)
+ E2

(
Abi

MLP

AMLP

))
. (3)

③ Corruption Robustness. The corruption robustness of binarization on deployment is critical to
deal with bad cases like perceptual device damage, a common problem with low-cost equipment in
real-world implementations. We consider the robustness of binarized models to corruption of 2D
visual data and evaluate algorithms on the CIFAR10-C (Hendrycks & Dietterich, 2018) benchmark.

Therefore, we evaluate binarization algorithms’ performance on the corrupted data compared with
the normal data using the corruption generalization gap (Zhang et al., 2022a):

Gtaski = Anorm
taski −Acorr

taski , (4)

where Acorr
taski and Anorm

taski denote the accuracy results under all architectures on i-th corruption task
and corresponding normal task, respectively. And the overall metric on this track is calculated by

OMrobust =

√√√√ 1

C

C∑
i=1

E2

(
Gtaski

Gbi
taski

)
. (5)

3.2 TOWARDS EFFICIENT BINARIZATION

As for the efficiency of network binarization, we evaluate “Training Consumption” for production,
“Theoretical Complexity” and “Hardware Inference” for deployment.
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④ Training Consumption. We consider the occupied training resource and the hyperparameter
sensitivity of binarization algorithms, which affect the consumption of one training and the whole
tuning process, respectively. For each algorithm, we train its binarized networks with various hyper-
parameter settings, including different learning rates, learning rate schedulers, optimizers, and even
random seeds, to evaluate whether the binarization algorithm is easy to tune to an optimal state. We
align the epochs for binarized and full-precision networks and compare their consumption and time.

The evaluation metric for the training consumption track is related to the training time and hyperpa-
rameter sensitivity. For a specific binarization algorithm, we have

OMtrain =

√√√√1

2

(
E2

(
Ttrain

T bi
train

)
+ E2

(
std(Ahyper)

std(Abi
hyper)

))
, (6)

where Ttrain denotes the set of time in once training, Ahyper is the set of results with different hyper-
parameter settings, and std(·) is taking standard deviation values.

⑤ Theoretical Complexity. When evaluating theoretical complexity, we calculate the compression
and speedup ratio before and after binarization on architectures such as ResNet18.

The evaluation metric relates to model size saving (MB) and computational floating-point operations
(FLOPs) at inference. For binarized parameters, the storage occupation of binarized parameters is
1/32 as their 32-bit floating-point counterparts (Rastegari et al., 2016). For binarized operations, the
multiplication between a 1-bit number (weight) and a 1-bit number (activation) approximately takes
1*1/64 FLOPs for a CPU with the instruction size of 64 bits (Zhou et al., 2016b; Liu et al., 2018b;
Li et al., 2019). The compression ratio rc and speedup ratio rs are

rc =
|M |ℓ0

1
32

(
|M |ℓ0 − |M̂ |ℓ0

)
+ |M̂ |ℓ0

, rs =
FLOPsM

1
64

(
FLOPsM −FLOPsM̂

)
+ FLOPsM̂

, (7)

where M and M̂ are the amount of full-precision parameters in the original and binarized mod-
els, respectively, and FLOPsM and FLOPsM̂ denote the computation related to these parameters,
respectively. And the overall metric for theoretical complexity is

OMcomp =

√
1

2
(E2(rc) + E2(rs)). (8)

⑥ Hardware Inference. Since the limited support of binarization in hardware deployment, just two
inference libraries, Larq’s Compute Engine (Geiger & Team, 2020) and JD’s daBNN (Zhang et al.,
2019) can deploy and evaluate the binarized models on ARM hardware in practice. Regarding target
hardware devices, we mainly focus on ARM CPU inference as this is the mainstream hardware
type for edge scenarios, including HUAWEI Kirin, Qualcomm Snapdragon, Apple M1, MediaTek
Dimensity, and Raspberry Pi. We put the hardware details in Appendix. D.

And for a certain binarization algorithm, we take the saving of storage and inference time under
different inference libraries and hardware as evaluation metrics:

OMinfer =

√
1

2

(
E2

(
Tinfer

T bi
infer

)
+ E2

(
Sinfer

Sbi
infer

))
, (9)

where Tinfer and Sinfer denote the inference time and storage on different devices, respectively.

4 BIBENCH IMPLEMENTATION

This section shows the implementation details and training and inference pipelines of our BiBench.

Implementation details. We implement BiBench with PyTorch (Paszke et al., 2019) packages. The
definitions of the binarized operators are entirely independent of corresponding single files. And
the corresponding operator in the original model can be flexibly replaced by the binarized one while
evaluating different tasks and architectures. When deployed, we export well-trained binarized mod-
els of a binarization algorithm to the Open Neural Network Exchange (ONNX) format (developers,
2021) and then feed them to the inference libraries in BiBench (if it applies to this algorithm).
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Table 2: Accuracy benchmark for network binarization. Blue: best in a row. Red: worst in a row.

Track Metric
Binarization Algorithm

BNN XNOR DoReFa Bi-Real XNOR++ ReActNet ReCU FDA

Learning
Task (%)

CIFAR10 94.54 94.73 95.03 95.61 94.52 95.92 96.72 94.66
ImageNet 75.81 77.24 76.61 78.38 75.01 78.64 77.98 78.15
VOC07 76.97 74.61 76.35 80.07 74.41 81.38 81.65 79.02
COCO17 77.94 75.37 78.31 81.62 79.41 83.82 85.66 82.35
ModelNet40 54.19 93.86 93.74 93.23 85.20 92.41 95.07 94.38
ShapeNet 48.96 73.62 70.79 68.13 41.16 68.51 40.65 71.16
GLUE 49.75 59.63 66.60 69.42 49.33 67.64 50.66 70.61
SpeechCom. 75.03 76.93 76.64 82.42 68.65 81.86 76.98 77.90
OMtask 70.82 78.97 79.82 81.63 72.89 81.81 77.96 81.49

Neural
Architecture (%)

CNNs 72.90 83.74 83.86 85.02 78.95 86.20 83.50 86.34
Transformers 49.75 59.63 66.60 69.42 49.33 67.64 50.66 70.61
MLPs 64.61 85.40 85.19 87.83 76.92 87.13 86.02 86.14
OMarch 63.15 77.16 79.01 81.16 69.72 80.82 75.14 81.36

Robustness
Corruption (%)

CIFAR10-C 95.26 100.97 81.43 96.56 92.69 94.01 103.29 98.35
OMcorr 95.26 100.97 81.43 96.56 92.69 94.01 103.29 98.35

Training and inference pipelines. Hype-parameters: We train the binarized networks with the
same number of epochs as their full-precision counterparts. Inspired by results in Section 5.2.1,
we use the Adam optimizer for all binarized models for better convergence, the initial learning
rates are 1e − 3 as default (or 0.1× of the default learning rate), and the learning rate scheduler
is CosineAnnealingLR (Loshchilov & Hutter, 2017). Architecture: In BiBench, we thoroughly
follow the original architectures of full-precision models and binarize their convolution, linear, and
multiplication units with the binarization algorithms. Hardtanh is uniformly used as the activation
function to avoid the all-one feature. Pretrains: We adopt finetuning for all binarization algorithms,
and for each of them, we initialize all binarized models by the same pre-trained model for specific
neural architectures and learning tasks to eliminate the inconsistency at initialization.

5 BIBENCH EVALUATION

This section shows our evaluation results and analysis in BiBench. The main accuracy results are in
Table 2 and the efficiency results are in Table 3. More detailed results are in Appendix. E.

5.1 ACCURACY ANALYSIS FOR BINARIZATION

For the accuracy results of network binarization, we present the evaluation results in Table 2 for each
accuracy-related track using the metrics defined in Section 3.1.

5.1.1 LEARNING TASK TRACK

We present the evaluation results of binarization on various tasks. Besides the overall metrics OMtask,
we also present the relative accuracy of binarized networks compared to full-precision ones.

Accuracy retention is still the most rigorous challenge for network binarization. With fully
unified training pipelines and neural architectures, there is a large gap between the performance of
binarized and full-precision networks on most learning tasks. For example, the results on large-scale
ImageNet and COCO tasks are usually less than 80% of their full-precision counterparts. Moreover,
the marginal effect of advanced binarization algorithms is starting to appear, e.g., on the ImageNet,
the SoTA algorithm ReCU is less 3% higher than vanilla BNN.

The binarization algorithms’ performances under different data modes are significantly dif-
ferent. When comparing various tasks, an interesting phenomenon is that the binarized networks
suffer a huge accuracy drop in language understanding GLUE benchmark, but it can almost approach
full-precision performance on the ModelNet40 point cloud classification task. Similar phenomena
suggest that the direct transfer of binarization studies’ insights across different tasks is non-trivial.

As for the overall performance, both ReCU and ReActeNet show high accuracy across different
learning tasks. Surprisingly, although ReCU wins the championship on most four individual tasks,
ReActNet stands out in the overall metric comparison finally. They both apply reparameterization
in the forward propagation and gradient approximation in the backward propagation.
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Table 3: Efficiency benchmark for network binarization. Blue: best in a row. Red: worst in a row.

Track Metric
Binarization Algorithm

BNN XNOR DoReFa Bi-Real XNOR++ ReActNet ReCU FDA

Training
Consumption
(%)

Sensitivity 27.28 175.53 113.40 144.59 28.66 146.06 53.33 36.62
Time Cost 82.19 71.43 76.92 45.80 68.18 45.45 58.25 20.62
OMtrain 61.23 134.00 96.89 107.25 52.30 108.16 55.84 29.72

Theoretical
Complexity
(×)

Speedup 12.60 12.26 12.37 12.37 12.26 12.26 12.37 12.37
Compression 13.27 13.20 13.20 13.20 13.16 13.20 13.20 13.20
OMcomp 12.94 12.74 12.79 12.79 12.71 12.74 12.79 12.79

Hardware
Deployment
(×)

Speedup 5.45 False 5.45 5.45 False 4.89 5.45 5.45
Compression 15.62 False 15.62 15.62 False 15.52 15.62 15.62
OMinfer 11.70 False 11.70 11.70 False 11.51 11.70 11.70

5.1.2 NEURAL ARCHITECTURE TRACK

Binarization exhibits a clear advantage on CNN-based and MLP-based architectures over
transformer-based ones. Since being widely studied, the advanced binarization algorithms can
achieve about 78%-86% of the full-precision accuracy in CNNs, and the binarized networks with
MLP architectures even approach the full-precision performance (e.g., Bi-Real Net 87.83%). In con-
trast, the transformer-based one suffers from extremely significant performance degradation when
binarized, and none of the algorithms achieves an overall accuracy metric higher than 70%. Com-
pared to CNNs and MLPs, the results show that transformer-based architectures constructed by
unique attention mechanisms require specific binarization designs instead of direct binarizing.

The overall winner on the architecture track is the FDA algorithm. In this track, FDA has achieved
the best results in both CNN and Transformer. The evaluation of these two tracks proves that these
binarization algorithms, which apply statistical channel-wise scaling factor and custom gradient
approximation like FDA and ReActNet, have the advantage of stability to a certain degree.

5.1.3 CORRUPTION ROBUSTNESS TRACK

The binarized network can approach full-precision level robustness for corruption. Surpris-
ingly, binarized networks show robustness close to full-precision counterparts in corruption evalua-
tion. Evaluation results on the CIFAR10-C dataset show that the binarized network performs close
to the full-precision network in the typical 2D image corruption. ReCU and XNOR-Net even out-
perform their full-precision counterparts. If corruption robustness requirements are the same, the
binarized version network requires little additional designs or supervision for robustness. Thus, bi-
narized networks usually show comparable robustness for corruption against full-precision counter-
parts, which can be seen as a general property of binarized networks rather than specific algorithms.

5.2 EFFICIENCY ANALYSIS FOR BINARIZATION

As for efficiency, we discuss and analysis the metrics of training consumption, theoretical complex-
ity, and hardware inference tracks below.

5.2.1 TRAINING CONSUMPTION TRACK

We comprehensively investigate the training cost of binarization algorithms on ResNet18 of CI-
FAR10 and present the sensitivity and training time results for different binarization algorithms in
Table 3 and Figure 3, respectively.

“Binarization̸=Sensitivity”: existing techniques can stabilize binarization-aware training. An
existing common intuition is that the training of binarized networks is usually more sensitive to
the training settings than full-precision networks, caused by the representation limits and gradi-
ent approximation errors brought by the high degree of discretization. However, we find that the
hyperparameter sensitivities of existing binarization algorithms are polarized. Some of them are
even more hyperparameter-stable than the training of full-precision networks, while others fluctuate
hugely. The reason for this problem is the difference in the techniques applied by the binarized
operators of these algorithms. The training-stable binarization algorithms often have the follow-
ing commonalities: (1) Channel-wise floating-point scaling factors based on learning or statistics;
(2) Soft gradient approximation to reduce gradient error. These hyperparameter-stable binarization
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(c) Compare learning scheduler(a) Compare optimizer (b) Compare learning rate

Figure 2: Comparisons of accuracy under different training settings.

algorithms may not certainly outperform other algorithms but can simplify the tuning process in
production and obtain reliable accuracy in one training.

The preference for hyperparameter settings is evident for the training of binarization. From the
statistical results in Figure 2, training with Adam optimizer, 1× (identical to full-precision network)
learning rate and CosineAnnealingLR scheduler is more stable than that with other settings. Inspired
by this, we adopt this setting in evaluating binarization as part of the standard training pipelines.

The soft gradient approximation in binarization brings a significant training time increase.
Comparing the time consumed by each binarization algorithm, we found that the training time of
algorithms using the custom gradient approximation techniques such as Bi-Real and ReActNet in-
creased significantly, and the metric of FDA is even as worse as 20.62%, which means that the
training time he spent is close to 5× the full-precision network training.

5.2.2 THEORETICAL COMPLEXITY TRACK

There is no obvious difference in the theoretical complexity among binarization algorithms.
The leading cause of the difference in compression rate is the definition of the static scaling factor
of each model, e.g., BNN does not apply any factors and enjoys the most compression. For the-
oretical acceleration, the main difference comes from two aspects. First, the static scaling factor
reduction also improves the theoretical speedup. Second, real-time re-scaling and mean-shifting for
activation bring additional computation, such as ReActNet, which harms 0.11× speedup. In gen-
eral, the theoretical complexity of each method is similar, and the overall metrics are in the range of
[12.71, 12.94]. These results show binarization algorithms should have similar inference efficiency.

5.2.3 HARDWARE INFERENCE TRACK
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Figure 3: The lower the chip’s computing power,
the higher the inference speedup of deployed bi-
narized models.

Compared to other tracks, the hardware infer-
ence track brings us some insights for binariza-
tion in a real-world deployment.

Limited inference libraries lead to an al-
most fixed paradigm of binarization deploy-
ment. After investigating existing open-source
inference libraries, we find that few infer-
ence libraries support the deployment of bina-
rization algorithms on hardware. And there
are only Larq (Geiger & Team, 2020) and
daBNN (Zhang et al., 2019) with complete de-
ployment pipelines and mainly support deploy-
ment on ARM devices. We first evaluate the
deployment capability of the two inference libraries in Table 4. Both inference libraries support a
channel-wise scaling factor in floating-point form and force it to fuse into the BN layer (BN must
follow every convolution of the binarized model). Neither supports dynamic activation of activations
statistics nor re-scaling in inference. The only difference is that Larq further supports mean-shifting
activation with a fixed bias. Constrained by the inference libraries, the practical deployment of bina-
rization algorithms is limited. The scale factor shape of XNOR++ led to its failed deployment, and
XNOR also failed because of the activation re-scaling technique. The vast majority of binarization
methods have almost identical inference performance, and the mean-shifting operation of ReAct-
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Table 4: Deployment capability of different inference libraries on real hardware.
Infer. Lib. Provider s Granularity s Form Flod BN Act. Re-scaling Act. Mean-shifting

Larq Larq Channel-wise FP32
√

×
√

daBNN JD Channel-wise FP32
√

× ×

Algorithm Deployable s Granularity s Form Flod BN Act. Re-scaling Act. Mean-shifting

BNN
√

N/A N/A N/A × ×
XNOR × Channel-wise FP32

√ √
×

DoReFa
√

Channel-wise FP32
√

× ×
Bi-Real

√
Channel-wise FP32

√
× ×

XNOR++ × Spatial-wise FP32 × × ×
ReActNet

√
Channel-wise FP32

√
×

√

ReCU
√

Channel-wise FP32
√

× ×
FDA

√
Channel-wise FP32

√
× ×

Net on activation slightly affects the efficiency, i.e., binarized models must satisfy fixed deployment
paradigms and have almost identical efficiency performance.

Born for the edge: the lower the chip’s computing power, the higher the binarization speedup.
After deploying and evaluating binarized models across dozen chips, we compare the average
speedup of the binarization algorithm on each chip. A counterintuitive finding is that the higher
the chip capability, the worse the speedup of binarization on the chip (Figure 3). Further observation
showed that the contradiction is mainly because higher-performance chips have more acceleration
brought by multi-threading when running floating-point models. Thus the speedup of binarized mod-
els is relatively slow in these chips. The scenarios where network binarization technology comes
into play better are edge chips with low performance and cost, and the extreme compression and
acceleration of binarization are making deployment of advanced neural networks on edge possible.

5.3 SUGGESTIONS FOR BINARIZATION ALGORITHM

Based on the above evaluation and analysis, we attempt to summarize a paradigm for accurate and
efficient network binarization among existing techniques: (1) Soft quantization approximation is
an undisputed must-have technique. This binarization technique does not affect hardware inference
efficiency and is adopted by all winning binarization algorithms on accuracy tracks, including Bi-
Real, ReActNet, and ReCU. (2) Channel-wise scaling factors are the only option available for
practical binarization. The results of the learning task and neural architecture tracks demonstrate
the advantage of floating-point scaling factors, and analysis of efficiency tracks further limits it
to the channel-wise form. (3) Mean-shifting the input with a fixed bias is an optional helpful
operation. Our results show that this technique in ReActNet effectively improves accuracy and
consumes almost no extra computation, but not all inference libraries support it.

We have to stress that although the benchmarking on evaluation tracks leads us to several ground
rules towards accurate and efficient binarization, none of the binarization techniques or algo-
rithms work well across all scenarios so far. In the future, binarization research should focus
on breaking the mutual restrictions between production and deployment, and the binarization al-
gorithms should consider deployability and efficiency. The inference libraries are also expected to
support more advanced binarized operators.

6 DISCUSSION

In this paper, we present BiBench, a versatile and comprehensive benchmark that delves into the
most fundamental questions of model binarization. BiBench covers 8 network binarization algo-
rithms, 9 deep learning datasets (including one corruption benchmark), 13 different neural architec-
tures, 2 deployment libraries, 14 real-world hardware, and various hyperparameter settings. More-
over, BiBench proposes evaluation tracks specifically designed to measure critical aspects such as
accuracy under multiple conditions and efficiency when deployed on actual hardware. More im-
portantly, by collating experiment results and analysis, BiBench hopes to establish an empirically
optimized paradigm with several critical considerations for designing accurate and efficient binariza-
tion methods. We hope BiBench can facilitate a fair comparison of algorithms through a systematic
investigation with metrics that reflect the fundamental requirements and serve as a foundation for
applying model binarization in broader and more practical scenarios.
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APPENDIX FOR BIBENCH

A DETAILS OF BINARIZATION ALGORITHM

General Binarization:

In previous studies, quantization schemes with lower bit-widths were regarded as more aggressive
schemes (Rusci et al., 2020; Choukroun et al., 2019; Qin et al., 2022), because lower bit-widths
usually lead to higher compression and speed-up but result in more Severe accuracy loss. With the
lowest bit-width among all quantization approaches, 1-bit quantization (binarization) is regarded as
the most aggressive quantization technique (Qin et al., 2022), facing severe challenges in terms of
accuracy but enjoying the highest compression and speedup ratios.

Training. During the training of a general binarized model, the sign function is usually applied in
forward propagation, and STE or other gradient approximations is applied in backward propaga-
tion to make the binarized model trainable. Since the parameters are quantized to binary, network
binarization approaches usually use a simple sign function as the quantizer instead of directly shar-
ing the quantizer with multi-bit (2-8 bit) quantization (Gong et al., 2019; Gholami et al., 2021).
Specifically, as Gong et al. (2019) describes, for multi-bit uniform quantization, given the bit width
b and the floating-point activation/weight x following in the range (l, u), the complete quantization-
dequantization process of uniform quantization can be defined as

QU (x) = round
( x
∆

)
∆, (10)

where the original range (l, u) is divided into 2b − 1 intervals Pi, i ∈ (0, 1, · · · , 2b − 1), and
∆ = u−l

2b−1
is the interval length. When b = 1, the QU (x) equals the sign function, and the binary

function is expressed as
QB(x) = sign(x). (11)

Therefore, binarization can be regarded as the 1-bit specialization of quantization.

Deployment. For real-world hardware deployment, every 32 binarized parameters are packed to-
gether using 32-bit instructions and computed simultaneously, which is the main principle for accel-
eration. For compression of binary algorithms. Instructions including XNOR (or combine EOR and
NOT) and popcount enable binarized networks to deploy on real-world hardware. XNOR (exclusive-
XOR) gate, a combination of an XOR gate followed by an inverter. XOR (also known as EOR) is
a pervasive instruction that has long existed in assembly instructions for all target platforms. The
popcount instruction means Population Count per byte. This instruction counts the number of bits
with one value in each vector element in the source register, places the result into a vector, and writes
the vector to the destination register (Arm, 2020). This instruction is applied to accelerate the infer-
ence of binarized networks (Hubara et al., 2016; Rastegari et al., 2016) and is widely supported by
various hardware, e.g., the definitions of popcount in ARM and x86 are in (Arm, 2020) and (AMD,
2022), respectively.

Comparison with other compression techniques. Most existing network compression technologies
aim to reduce the size and computation of full-precision models. Specifically, knowledge distilla-
tion supervises compact small (student) models by intermediate features and/or soft outputs of the
large (teacher) model (Hinton et al., 2015; Xu et al., 2018; Chen et al., 2018; Yim et al., 2017;
Zagoruyko & Komodakis, 2017); model pruning (Han et al., 2015; 2016; He et al., 2017) and low-
rank decomposition (Denton et al., 2014; Lebedev et al., 2015; Jaderberg et al., 2014; Lebedev &
Lempitsky, 2016) reduce network parameters and computation by pruning and low-rank approx-
imation; compact model design directly designs a compact model (Howard et al., 2017; Sandler
et al., 2018; Zhang et al., 2018b; Ma et al., 2018). Although these compression technologies can
effectively reduce the number of parameters, the compressed model still uses 32-bit floating-point
numbers, which leaves room for further compression using model quantization/binarization tech-
nologies. Compared with multi-bit (2-8 bit) model quantization compressing parameters to inte-
gers (Gong et al., 2014; Wu et al., 2016; Vanhoucke et al., 2011; Gupta et al., 2015), binarization
usually directly applies the sign function to compress the model to a more compact 1-bit (Rusci
et al., 2020; Choukroun et al., 2019; Qin et al., 2022; Shang et al., 2022b; Qin et al., 2020b). More-
over, due to the application of binary parameters, bitwise operations (XNOR and popcount) can be
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Table 5: The considered binarization algorithms and our final selections in BiBench. Bold means
that the algorithm has an advantage in that column.

Algorithm Year Conference Citation
(to 2022/11/08)

Operator
Techniques

Open
Source

Specified Structure /
Training-pipeline

BNN (Courbariaux et al., 2016a) 2016 NeurIPS 1846 Yes Yes No
XNOR-Net (Rastegari et al., 2016) 2016 ECCV 4313 Yes Yes No
DoReFa (Zhou et al., 2016a) 2016 ArXiv 174 Yes Yes No
Bi-Real Net (Liu et al., 2018a) 2018 ECCV 371 Yes Yes Optional
CI-BCNN (Wang et al., 2019) 2019 CVPR 77 Yes Yes Yes
XNOR-Net++ (Bulat et al., 2019) 2019 BMVC 118 Yes Yes No
RBNN (Lin et al., 2020) 2020 NeurIPS 62 Yes Yes No
ReActNet (Liu et al., 2020) 2020 ECCV 151 Yes Yes Optional
Si-BNN (Wang et al., 2020a) 2020 AAAI 24 Yes No No
ProxyBNN (He et al., 2020) 2020 ECCV 24 Yes No Yes
FDA (Xu et al., 2021a) 2021 NeurIPS 11 Yes Yes No
ReCU (Xu et al., 2021b) 2021 ICCV 15 Yes Yes No
LCR-BNN (Shang et al., 2022a) 2022 ECCV 0 Yes Yes Yes

applied to inference during actual deployment instead of integer multiply-add operations in 2-8 bit
model quantization. Therefore, binarization is considered to take advantage of the hardware and can
achieve more speedup than multi-bit quantization.

Selection Rules:

First of all, we state that we obey some general rules for selecting binarization algorithms, i.e., the
selected binarization algorithms should improve the binarized operator since it is the fundamental
difference between binarized and full-precision models (as discussed in Section 2.1). And we thus
also exclude the algorithms and techniques requiring specified local structures or training pipelines
for a fair comparison.

Then, we explain in detail the choice of binarization algorithms and why they are representative.
When we built the BiBench, we considered various binarization algorithms with improved operator
techniques in binarization research, and now we list them in detail in Table 5. We consider from the
following perspectives, the purposes are making the selected binarization algorithms representative
and should complete all evaluations in BiBench fairly: Operator Techniques (Yes/No), Year, Con-
ference, Citation (to 2022/11/08), Open source (Yes/No), and Specified Structure / Training-pipeline
(Yes/No/Optional).

(1) We analyze the techniques proposed in these works. Following the general rules we mentioned,
all considered binarization algorithms should have significant contributions to the improvement of
the binarization operator (Operator Techniques: Yes) and should not include techniques that are
bound to specific architectures and training pipelines to complete well all the evaluations of the
learning task, neural architecture, and training consumption tracks in BiBench (Specified Structure
/ Training-pipeline: No/Optional, Optional means the techniques are included but can be decoupled
with binarized operator totally).

(2) We also consider the impact and reproducibility of these works. We prioritized the selection
of works with more than 100 citations, which means they are more discussed and compared in
binarization research and thus have higher impacts. Works in 2021 and later are regarded as the
SoTA binarization algorithms and also prioritized. Furthermore, we hope the selected works have
official open-source implementations for reproducibility.

Based on the above selections, eight binarization algorithms, i.e., BNN, XNOR-Net, DoReFa-Net,
Bi-Real Net, XNOR-Net++, ReActNet, FDA, and ReCU, stand out and are fully evaluated by our
BiBench.

BNN (Courbariaux et al., 2016b): During the training process, BNN uses the straight-through esti-
mator (STE) to calculate gradient gx which takes into account the saturation effect:

sign(x) =

{
+1, if x ≥ 0

−1, otherwise
gx =

{
gb, if x ∈ (−1, 1)

0, otherwise.
(12)

16



Under review as a conference paper at ICLR 2023

And during inference, the computation process is expressed as

o = sign(a)⊛ sign(w), (13)

where ⊛ indicates a convolutional operation using XNOR and bitcount operations.

XNOR-Net (Rastegari et al., 2016): XNOR-Net obtains the channel-wise scaling factors α = ∥w∥
|w|

for the weight and K contains scaling factors β for all sub-tensors in activation a. We can approxi-
mate the convolution between activation a and weight w mainly using binary operations:

o = (sign(a)⊛ sign(w))⊙Kα, (14)

where w ∈ Rc×w×h and a ∈ Rc×win ×hin denote the weight and input tensor, respectively. And the
STE is also applied in the backward propagation of the training process.

DoReFa-Net (Zhou et al., 2016b): DoReFa-Net applies the following function for 1-bit weight and
activation:

o = (sign(a)⊛ sign(w))⊙α. (15)
And the STE is also applied in the backward propagation with the full-precision gradient.

Bi-Real Net (Liu et al., 2018b): Bi-Real Net proposes a piece-wise polynomial function as the
gradient approximation function:

bireal (a) =


−1 if a < −1
2a+ a2 if − 1 ⩽ a < 0
2a− a2 if 0 ⩽ a < 1
1 otherwise

,
∂ bireal (a)

∂a
=


2 + 2a if − 1 ⩽ a < 0

2− 2a if 0 ⩽ a < 1

0 otherwise
.

(16)
And the forward propagation of Bi-Real Net is the same as Eq. (15).

XNOR-Net++ (Bulat et al., 2019): XNOR-Net++ proposes to re-formulate Eq. (14) as:

o = (sign(a)⊛ sign(w))⊙ Γ, (17)

and we adopt the Γ as the following form in experiments (achieve the best performance in the
original paper):

Γ = α⊗ β ⊗ γ, α ∈ Ro,β ∈ Rhout ,γ ∈ Rwout , (18)
where α, β, and γ are learnable during training.

ReActNet (Liu et al., 2020): ReActNet defines an RSign as a binarization function with channel-
wise learnable thresholds:

x = rsign (x) =

{
+1, if x > α
−1, if x ≤ α

. (19)

where α is a learnable coefficient controlling the threshold. And the forward propagation is

o = (rsign(a)⊛ sign(w))⊙α. (20)

ReCU (Xu et al., 2021b): As described in their paper, ReCU is formulated as

recu(w) = max
(
min

(
w, Q(τ)

)
, Q(1−τ)

)
, (21)

where Q(τ) and Q(1−τ) denote the τ quantile and 1 − τ quantile of w, respectively. And other
implementations also strictly follow the original paper and official code.

FDA (Xu et al., 2021a): FDA computes the gradients of o in the backward propagation as:

∂ℓ

∂t
=

∂ℓ

∂o
w⊤

2 ⊙ ((tw1) ≥ 0)w⊤
1 +

∂ℓ

∂o
η′(t) +

∂ℓ

∂o
⊙ 4ω

π

n∑
i=0

cos((2i+ 1)ωt), (22)

where ∂ℓ
∂o is the gradient from the upper layers, ⊙ represents element-wise multiplication, and ∂ℓ

∂t is
the partial gradient on t that backward propagates to the former layer. And w1 and w2 are weights
in the original models and the noise adaptation modules respectively. FDA updates them as

∂ℓ

∂w1
= t⊤

∂ℓ

∂o
w⊤

2 ⊙ ((tw1) ≥ 0) ,
∂ℓ

∂w2
= σ (tw1)

⊤ ∂ℓ

∂o
. (23)
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B DETAILS OF LEARNING TASKS

Selection Rules:

To comprehensively evaluate the performance of the binarization algorithm in various learning tasks,
we should select various representative tasks. First, representative perception modalities are selected
in our deep learning, including (2D/3D) vision, text, and speech. Research on these modalities has
progressed rapidly and has a broad impact, so we choose specific tasks and datasets in these modal-
ities. Specifically, (1) on the 2D vision modality, we choose the basic image classification task and
object detection task (one of the most popular downstream tasks), the former including CIFAR10
and ImageNet datasets, the latter including Pascal VOC and COCO datasets. These datasets Ima-
geNet and COCO are both more challenging large datasets, while CIFAR10 and Pascal VOC are
more basic. For other modalities, binarization is still challenging even with the underlying tasks and
datasets in the field, since there are few related binarization studies: (2) In the 3D vision modal-
ity, the basic point cloud classification ModelNet40 dataset is selected to evaluate the binarization
performance, which is regarded as one of the most fundamental tasks in 3D point cloud research
and is widely studied. (3) In the text modality, the General Language Understanding Evaluation
(GLUE) benchmark is usually recognized as the most popular dataset, including nine sentence- or
sentence-pair language understanding tasks. (4) In the speech modality, the keyword spotting task
was chosen as the base task, specifically the Google Speech Commands classification dataset.

Based on the above reasons and rules, we have selected a series of challenging and representative
tasks for BiBench to evaluate binarization comprehensively and have obtained a series of reliable
and informative conclusions and experiences.

CIFAR10 (Krizhevsky et al., 2014): The CIFAR-10 dataset (Canadian Institute For Advanced Re-
search) is a collection of images commonly used to train machine learning and computer vision
algorithms. This dataset is widely used for image classification tasks. There are 60,000 color im-
ages, each of which measures 32x32 pixels. All images are categorized into 10 different classes:
airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. Each class has 6000 images,
where 5000 are for training and 1000 are for testing. The evaluation metric of the CIFAR-10 dataset
is accuracy, defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
, (24)

where TP (True Positive) means cases correctly identified as positive, TN (True Negative) means
cases correctly identified as negative, FP (False Positive) means cases incorrectly identified as pos-
itive and FN (False Negative) means cases incorrectly identified as negative. To estimate the accu-
racy, we should calculate the proportion of TP and TN in all evaluated cases.

ImageNet (Krizhevsky et al., 2012): ImageNet is a dataset of over 15 million labeled high-resolution
images belonging to roughly 22,000 categories. The images are collected from the web and labeled
by human labelers using a crowd-sourced image labeling service called Amazon Mechanical Turk.
As part of the Pascal Visual Object Challenge, ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) was established in 2010. There are approximately 1.2 million training images, 50,000
validation images, and 150,000 testing images in total in ILSVRC. ILSVRC uses a subset of Ima-
geNet, with about 1000 images in each of the 1000 categories.

ImageNet also uses accuracy to evaluate the predicted results, which is defined above.

Pascal VOC07 (Hoiem et al., 2009): The PASCAL Visual Object Classes 2007 (VOC07) dataset
contains 20 object categories including vehicles, households, animals, and other: airplane, bicycle,
boat, bus, car, motorbike, train, bottle, chair, dining table, potted plant, sofa, TV/monitor, bird, cat,
cow, dog, horse, sheep, and person. As a benchmark for object detection, semantic segmentation,
and object classification, this dataset contains pixel-level segmentation annotations, bounding box
annotations, and object class annotations. The VOC07 dataset uses mean average precision(mAP )
to evaluate results, which is defined as:

mAP =
1

n

k=n∑
k=1

APk (25)
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where APk denotes the average precision of the k-th category, which calculates the area under the
precision-recall curve:

APk =

∫ 1

0

pk(r)dr. (26)

Especially for VOC07, we apply 11-point interpolated AP , which divides the recall value to
{0.0, 0.1, . . . , 1.0} and then computes the average of maximum precision value for these 11 recall
values as:

AP =
1

11

∑
r∈{0.0,...,1.0}

APr (27)

=
1

11

∑
r∈{0.0,...,1.0}

pinterpr. (28)

The maximum precision value equals to the right of its recall level:

pinterpr = max
r̃≥r

p(r̃). (29)

COCO17 (Lin et al., 2014): The MS COCO (Microsoft Common Objects in Context) dataset
is a large-scale object detection, segmentation, key-point detection, and captioning dataset. The
dataset consists of 328K images. According to community feedback, in the 2017 release, the train-
ing/validation split was changed from 83K/41K to 118K/5K. And the images and annotations are the
same. The 2017 test set is a subset of 41K images from the 2015 test set. Additionally, 123K images
are included in the unannotated dataset. The COCO17 dataset also uses mean average precision
(mAP ) as defined above PASCAL VOC07 uses, which is defined as above.

ModelNet40 (Wu et al., 2015): The ModelNet40 dataset contains point clouds of synthetic objects.
As the most widely used benchmark for point cloud analysis, ModelNet40 is popular due to the
diversity of categories, clean shapes, and well-constructed dataset. In the original ModelNet40,
12,311 CAD-generated meshes are divided into 40 categories, where 9,843 are for training, and
2,468 are for testing. The point cloud data points are sampled by a uniform sampling method from
mesh surfaces and then scaled into a unit sphere by moving to the origin. The ModelNet40 dataset
also uses accuracy as the metric, which has been defined above in CIFAR10.

ShapeNet (Chang et al., 2015): ShapeNet is a large-scale repository for 3D CAD models devel-
oped by researchers from Stanford University, Princeton University, and the Toyota Technological
Institute in Chicago, USA.

Using WordNet hypernym-hyponym relationships, the repository contains over 300M models, with
220,000 classified into 3,135 classes. There are 31,693 meshes in the ShapeNet Parts subset, divided
into 16 categories of objects (i.e., tables, chairs, planes, etc.). Each shape contains 2-5 parts (with
50 part classes in total).

GLUE (Wang et al., 2018): General Language Understanding Evaluation (GLUE) benchmark is a
collection of nine natural language understanding tasks, including single-sentence tasks CoLA and
SST-2, similarity and paraphrasing tasks MRPC, STS-B and QQP, and natural language inference
tasks MNLI, QNLI, RTE, and WNLI. Among them, SST-2, MRPC, QQP, MNLI, QNLI, RTE, and
WNLI use accuracy as the metric, which is defined in CIFAR10. CoLA is measured by Matthews
Correlation Coefficient (MCC), which is better in binary classification since the number of positive
and negative samples are extremely unbalanced:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
. (30)

And STS-B is measured by Pearson/Spearman Correlation Coefficient:

rPearson =
1

n− 1

n∑
i=1

(
Xi − X̄

sX

)(
Yi − Ȳ

sY

)
, rSpearman = 1− 6

∑
d2i

n(n2 − 1)
, (31)

where n is the number of observations, sX and sY indicate the sum of squares of X and Y respec-
tively, and di is the difference between the ranks of corresponding variables.
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SpeechCom. (Warden, 2018): As part of its training and evaluation process, SpeechCom provides
a collection of audio recordings containing spoken words. Its primary goal is to provide a way
to build and test small models that detect a single word that belongs to a set of ten target words.
Models should detect as few false positives as possible from background noise or unrelated speech
while providing as few false positives as possible. The accuracy metric for SpeechCom is also the
same as CIFAR10.

CIFAR10-C (Hendrycks & Dietterich, 2018): CIFAR10-C is a dataset generated by adding 15
common corruptions and 4 extra corruptions to the test images in the Cifar10 dataset. It benchmarks
the frailty of classifiers under corruption, including noise, blur, weather, and digital influence. And
each type of corruption has five levels of severity, resulting in 75 distinct corruptions. We report the
accuracy of the classifiers under each level of severity and each corruption. Meanwhile, we use the
mean and relative corruption error as metrics. Denote the error rate of Network under Settings as
ENetwork

Settings . The classifier’s aggregate performance across the five severities of the corruption types.
The Corruption Errors of a certain type of Corruption is computed with the formula:

CENetwork
Corruption =

5∑
s=1

ENetwork
s,Corruption/

5∑
s=1

EAlexNet
s,Corruption. (32)

To make Corruption Errors comparable across corruption types, the difficulty is usually adjusted by
dividing by AlexNet’s errors.

C DETAILS OF NEURAL ARCHITECTURES

ResNet (He et al., 2016): Residual Networks, or ResNets, learn residual functions concerning the
layer inputs instead of learning unreferenced functions. Instead of making stacked layers directly
fit a desired underlying mapping, residual nets let these layers fit a residual mapping. There is
empirical evidence that these networks are easier to optimize and can achieve higher accuracy with
considerably increased depth.

VGG (Simonyan & Zisserman, 2015): VGG is a classical convolutional neural network architecture.
It is proposed by an analysis of how to increase the depth of such networks. It is characterized by its
simplicity: the network utilizes small 3×3 filters, and the only other components are pooling layers
and a fully connected layer.

MobileNetV2 (Sandler et al., 2018): MobileNetV2 is a convolutional neural network architecture
that performs well on mobile devices. This model has an inverted residual structure with residual
connections between the bottleneck layers. The intermediate expansion layer employs lightweight
depthwise convolutions to filter features as a source of nonlinearity. In MobileNetV2, the architec-
ture begins with an initial layer of 32 convolution filters, followed by 19 residual bottleneck layers.

Faster-RCNN (Ren et al., 2015): Faster R-CNN is an object detection model that improves Fast
R-CNN by utilizing a region proposal network (RPN) with the CNN model. The RPN shares full-
image convolutional features with the detection network, enabling nearly cost-free region proposals.
A fully convolutional network is used to predict the bounds and objectness scores of objects at each
position simultaneously. RPNs use end-to-end training to produce region proposals of high quality
and instruct the unified network where to search. Sharing their convolutional features allows RPN
and Fast R-CNN to be combined into a single network. Faster R-CNN consists of two modules.
The first module is a deep, fully convolutional network that proposes regions, and the second is the
detector that uses the proposals for giving the final prediction boxes.

SSD (Liu et al., 2016): SSD is a single-stage object detection method that discretizes the output
space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature
map location. During prediction, each default box is adjusted to match better the shape of the object
based on its scores for each object category. In addition, the network automatically handles objects
of different sizes by combining predictions from multiple feature maps with different resolutions.

BERT (Kenton & Toutanova, 2019): BERT, or Bidirectional Encoder Representations from Trans-
formers, improves upon standard Transformers by removing the unidirectionality constraint using a
masked language model (MLM) pre-training objective. By masking some tokens from the input, the
masked language model attempts to estimate the original vocabulary id of the masked word based
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solely on its context. An MLM objective differs from a left-to-right language model in that it en-
ables the representation to integrate the left and right contexts, which facilitates pre-training a deep
bidirectional Transformer. Additionally, BERT uses a next-sentence prediction task that pre-trains
text-pair representations along with the masked language model. Note that we replace the direct bi-
narized attention with a bi-attention mechanism to prevent the model from completely crashing (Qin
et al., 2021).

PointNet (Qi et al., 2017): PointNet is a unified architecture for applications ranging from object
classification and part segmentation to scene semantic parsing. The architecture directly receives
point clouds as input and outputs either class labels for the entire input or point segment/part labels.
PointNet-Vanilla is a variant of PointNet, which drops off the T-Net module. And for all PointNet
models, we apply the EMA-Max (Qin et al., 2020a) as the aggregator, because directly following
the max pooling aggregator will cause the binarized PointNets to fail to converge.

FSMN (Zhang et al., 2015): Feedforward sequential memory networks or FSMN is a novel neural
network structure to model long-term dependency in time series without using recurrent feedback. It
is a standard fully connected feedforward neural network containing some learnable memory blocks.
As a short-term memory mechanism, the memory blocks encode long context information using a
tapped-delay line structure.

Deep-FSMN (Zhang et al., 2018a): The Deep-FSMN architecture is an improved feedforward se-
quential memory network (FSMN) with skip connections between memory blocks in adjacent lay-
ers. By utilizing skip connections, information can be transferred across layers, and thus the gradient
vanishing problem can be avoided when building very deep structures.

D DETAILS OF HARDWARE

Hisilicon Kirin (Hisilicon, 2022): Kirin is a series of ARM-based systems-on-a-chip (SoCs) pro-
duced by HiSilicon. Their products include Kirin 970, Kirin 980, Kirin 985, etc.

MediaTek Dimensity (MediaTek, 2022): Dimensity is a series of ARM-based systems-on-a-chip
(SoCs) produced by MediaTek. Their products include Dimensity 820, Dimensity 8100, Dimensity
9000, etc.

Qualcomm Snapdragon (Singh & Jain, 2014): Snapdragon is a family of mobile systems-on-
a-chip (SoC) processor architecture provided by Qualcomm. The original Snapdragon chip, the
Scorpio, was similar to the ARM Cortex-A8 core based upon the ARMv7 instruction set, but it
was enhanced by the use of SIMD operations, which provided higher performance. Qualcomm
Snapdragon processors are based on the Krait architecture. They are equipped with an integrated
LTE modem, providing seamless connectivity across 2G and 3G LTE networks.

Raspberrypi (Wikipedia, 2022b): Raspberry Pi is a series of small single-board computers (SBCs)
developed in the United Kingdom by the Raspberry Pi Foundation in association with Broadcom.
Raspberry Pi was originally designed to promote the teaching of basic computer science in schools
and in developing countries. As a result of its low cost, modularity, and open design, it is used
in many applications, including weather monitoring, and is sold outside the intended market. It is
typically used by computer hobbyists and electronic enthusiasts due to the adoption of HDMI and
USB standards.

Apple M1 (Wikipedia, 2022a): Apple M1 is a series of ARM-based systems-on-a-chip (SoCs)
designed by Apple Inc. As a central processing unit (CPU) and graphics processing unit (GPU) for
Macintosh desktops and notebooks, as well as iPad Pro and iPad Air tablets. In November 2020,
Apple introduced the M1 chip, followed by the professional-oriented M1 Pro and M1 Max chips
in 2021. Apple launched the M1 Ultra in 2022, which combines two M1 Max chips in a single
package. The M1 Max is a higher-performance version of the M1 Pro, with larger GPU cores and
memory bandwidth.

E FULL RESULTS

Table 6-7 shows the accuracy of different binarization algorithms on 2D and 3D vision tasks, in-
cluding CIFAR10, ImageNet, PASCAL VOC07, COCO14 for 2D vision tasks and ModelNet40 for
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Table 6: Accuracy on 2D and 3D Vision Tasks.

Task Arch. FP32
Binarization Algorithm

BNN XNOR DoReFa Bi-Real XNOR++ ReActNet ReCU FDA

CIFAR10

ResNet20 91.99 85.31 85.53 85.18 85.56 85.41 86.18 86.42 86.38

ResNet18 94.82 89.69 91.4 91.55 91.20 90.04 91.55 92.79 90.42

ResNet34 95.34 90.82 89.58 90.95 92.50 90.59 92.69 93.64 89.59

VGG-Small 93.80 89.66 89.65 89.66 90.25 89.34 90.27 90.84 89.48

ImageNet ResNet18 69.90 52.99 53.99 53.55 54.79 52.43 54.97 54.51 54.63

VOC07
Faster-RCNN 76.06 58.54 56.75 58.07 60.90 56.60 61.90 62.10 60.10

SSD300 77.34 9.09 33.72 30.70 31.90 9.41 38.41 9.80 43.68

COCO14 Faster-RCNN 27.20 21.20 20.50 21.30 22.20 21.60 22.80 23.30 22.40

ModelNet40
PointNetvanilla 86.80 85.13 83.47 85.21 85.37 85.66 85.13 85.21 85.49

PointNet 88.20 9.08 80.75 78.77 77.71 63.25 76.50 81.12 79.62

3D vision task. And for each task, we cover several representative model architectures and binarize
them with the binarization algorithms mentioned above.

We also evaluate binarization algorithms on language and speech tasks, for which we test TinyBERT
(4 layers and 6 layers) on GLUE Benchmark and FSMN and D-FSMN on the SpeechCommand
dataset. Results are listed in Table 8.

To demonstrate the robustness corruption of binarized algorithms, we show the results on the
CIFAR10-C benchmark, which is used to benchmark the robustness to common perturbations in
Table 9 and Table 10. It includes 15 kinds of noise, blur, weather, and digital corruption, each with
five levels of severity.

The sensitivity of hyperparameters while training is shown in Table 11-12. For each binarization
algorithm, we use SGD or Adam optimizer, 1× or 0.1× of the original learning rate, cosine or step
learning scheduler, and 200 training epochs. Each case is tested five times to show the training
stability. We also calculate the mean and standard deviation (std) of accuracy. The best accuracy
and the lowest std for each binarization algorithm are bolded.

We conduct comprehensive deployment and inference on various kinds of hardware, including the
Kirin series (970, 980, 985, 990, and 9000E), Dimensity series (820 and 9000), Snapdragon series
(855+, 870 and 888), Raspberrypi (3B+ and 4B) and Apple M1 series (M1 and M1 Max). Limited
to the support of frameworks, we can only test BNN and ReAct with Larq compute engine and only
BNN with daBNN. We convert models to enable the actual inference on real hardware, including
ResNet18/34 and VGG-Small on Larq, and only ResNet18/34 on daBNN. And we test 1, 2, 4, and 8
threads for each hardware and additionally test 16 threads for Apple Silicons on Larq. And daBNN
only supports single-thread inference. Results are showcased in Table 13-16.
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Table 7: Accuracy on ShapeNet dataset.

Task Arch. Category FP32
Binarization Algorithm

BNN XNOR DoReFa Bi-Real XNOR++ ReActNet ReCU FDA

ShapeNet PointNet

Airplane 83.7 37.5 74.14 67.2 67.61 30.36 66.12 31.61 65.34

Bag 79.6 44.2 49 55.34 47.11 37.44 50.28 38.58 48.62

Cap 92.3 44.3 73.32 51.21 61.41 40.37 56.73 40.13 56

Car 76.8 24.3 55.27 52.24 49.39 24.07 49.11 23.92 58.5

Chair 90.9 61.6 85.62 83.96 83.6 41.89 83.83 41.5 83.27

Earphone 70.2 38.5 30.97 34.94 35.24 26.3 36.72 23.01 34.46

Guitar 91.1 32.9 69.17 67.9 65.99 23.45 64.18 28.38 78.69

Knife 85.7 43 78.16 76.16 75.53 37.62 75.01 38.81 77.07

Lamp 82 51.2 69 68.75 60 49.45 66.13 48.41 67.45

Laptop 95.5 49.4 93.29 92.93 92.79 41.89 92.93 42.28 93.66

Motorbike 64.4 16.3 19.04 18.88 18.69 13.18 18.59 11.26 20.38

Mug 93.6 49.1 64.32 53.56 52.01 47.58 52.51 46.83 53.48

Pistol 80.8 25.5 62.29 59.15 51.43 26.96 53.79 27.81 62.61

Rocket 54.4 26.9 30.95 27.92 26.61 22.38 26.01 19.32 23.08

Skateboard 70.7 41.2 45.7 50.15 43.78 28.63 43.74 26.71 45.81

Table 81.4 51.3 73.68 72.69 69.72 45.74 69.56 45.21 73.45

Overall 80.81875 39.82 60.87 58.31 56.31 33.58 56.58 33.36 58.68
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Table 8: Accuracy on Language and Speech Tasks.

Task Arch. FP32
Binarization Algorithm

BNN XNOR DoReFa Bi-Real XNOR++ ReActNet ReCU FDA

GLUE

MNLI-m

BERT-Tiny4L 82.81 36.90 41.20 52.31 55.09 37.27 55.52 38.55 59.41

BERT-Tiny6L 84.76 37.01 51.17 63.09 66.81 37.98 66.47 37.95 68.46

BERT-Base 84.88 35.45 41.40 60.67 62.47 35.45 60.22 35.45 63.49

MNLI-mm

BERT-Tiny4L 83.08 36.54 41.55 53.01 55.57 36.07 55.89 37.62 59.76

BERT-Tiny6L 84.42 36.47 50.92 63.87 66.82 38.11 67.64 36.91 68.98

BERT-Base 85.45 35.22 41.18 60.96 63.17 35.22 61.19 35.22 63.72

QQP

BERT-Tiny4L 90.47 66.19 73.69 75.79 77.38 64.97 76.92 67.32 78.92

BERT-Tiny6L 85.98 63.18 78.90 80.93 82.42 63.19 82.95 63.3 83.19

BERT-Base 91.51 63.18 71.93 77.07 80.01 63.18 81.16 63.18 83.26

QNLI

BERT-Tiny4L 87.46 51.71 60.59 61.15 61.92 52.79 62.67 53.99 62.29

BERT-Tiny6L 90.79 52.22 62.75 66.88 69.72 51.84 70.27 51.32 72.72

BERT-Base 92.14 51.8 60.29 70.78 70.14 54.07 69.44 51.87 72.43

SST-2

BERT-Tiny4L 92.43 52.98 79.93 82.45 84.06 54.01 84.17 54.24 86.12

BERT-Tiny6L 90.25 58.14 84.74 86.23 87.73 69.38 87.95 52.40 87.72

BERT-Base 93.23 52.29 78.78 86.01 86.35 53.32 84.4 52.40 87.93

CoLA

BERT-Tiny4L 49.61 6.55 7.22 12.69 16.86 0 14.71 6.25 17.80

BERT-Tiny6L 54.17 2.57 12.57 15.97 17.94 0 15.24 2.24 22.21

BERT-Base 59.71 4.63 0 4.74 15.95 0 4.63 0.40 4.63

STS-B

BERT-Tiny4L 86.35 4.31 18.05 18.74 22.65 7.45 22.73 8.20 27.56

BERT-Tiny6L 89.79 1.04 14.72 22.31 24.59 5.70 23.40 8.22 37.15

BERT-Base 90.06 6.94 12.19 18.26 20.76 4.99 8.73 6.59 10.14

MRPC

BERT-Tiny4L 85.50 68.30 71.74 71.99 71.74 68.30 71.74 71.25 71.49

BERT-Tiny6L 87.71 68.30 70.76 71.74 71.49 68.30 71.74 69.04 71.74

BERT-Base 86.24 68.30 68.3 70.02 70.27 68.30 71.25 68.30 69.04

RTE

BERT-Tiny4L 65.34 56.31 53.43 56.31 55.59 54.15 57.76 61.01 59.20

BERT-Tiny6L 68.95 56.31 54.51 54.51 58.12 49.09 53.43 58.84 54.87

BERT-Base 72.20 53.43 57.04 55.23 54.51 54.87 54.51 55.23 55.23

Speech Commands
FSMN 94.89 56.45 56.45 68.65 73.60 75.04 73.80 56.45 56.45

D-FSMN 97.51 88.32 92.03 78.92 85.11 56.77 83.80 92.11 93.91
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Table 9: Results for Robustness Corruption on CIFAR10-C Dataset with Different Binarization
Algorithms (1/2).

Noise FP32
Binarization Algorithm

BNN XNOR DoReFa Bi-Real XNOR++ ReActNet ReCU FDA

Origin 94.82 89.69 91.40 91.55 91.20 90.04 91.55 92.79 90.42
gaussian noise-1 78.23 74.22 76.00 74.97 74.95 75.07 75.15 78.25 77.36
gaussian noise-2 56.72 56.73 62.44 55.94 58.33 57.52 55.97 61.32 60.48
gaussian noise-3 36.93 42.69 47.58 39.56 43.47 40.79 37.99 43.32 44.26
gaussian noise-4 31.03 38.35 41.43 33.24 36.65 34.68 31.47 35.91 37.30
gaussian noise-5 25.54 34.05 36.22 28.66 31.78 30.13 25.49 30.19 32.09
ipulse nosie-1 82.54 84.57 86.94 84.68 87.30 85.72 86.89 88.73 85.8
ipulse nosie-2 70.12 77.13 80.74 77.35 81.14 79.62 80.25 82.80 80.3
ipulse nosie-3 59.88 70.58 75.01 69.20 74.59 71.82 72.16 76.05 72.6
ipulse nosie-4 40.59 54.42 59.39 49.48 56.66 52.61 49.79 58.44 56.45
ipulse nosie-5 26.03 39.86 41.54 32.72 37.28 35.12 28.42 38.26 39.98
shot noise-1 85.75 81.51 81.31 81.84 81.58 80.66 81.88 83.98 82.42
shot noise-2 76.61 72.04 74.02 72.21 72.81 73.03 72.32 76.70 75.1
shot noise-3 52.21 53.90 57.08 50.66 54.59 53.76 51.31 57.22 56.56
shot noise-4 44.13 47.58 51.29 43.59 48.36 46.64 44.21 48.78 48.91
shot noise-5 32.73 39.93 40.79 33.80 38.50 36.47 31.79 36.46 37.8
speckle noise-1 86.30 81.29 81.94 80.93 80.77 81.14 82.17 84.17 82.62
speckle noise-2 71.94 68.07 70.14 67.5 69.22 69.35 68.26 72.94 71.70
speckle noise-3 64.47 62.12 64.13 60.24 63.44 62.50 61.14 66.89 64.27
speckle noise-4 49.81 51.93 53.77 47.93 52.75 50.59 48.39 54.13 52.40
speckle noise-5 38.70 44.25 43.60 38.65 43.16 42.09 37.78 42.13 42.57
gaussian blur-1 94.17 89.03 90.5 89.33 90.56 89.00 91.05 92.16 89.33
gaussian blur-2 87.04 78.3 81.98 78.81 80.42 77.75 81.20 84.80 78.93
gaussian blur-3 75.15 67.74 68.27 67.67 68.16 64.54 67.42 73.62 66.29
gaussian blur-4 59.5 55.17 53.63 55.74 54.08 52.44 52.72 60.32 53.37
gaussian blur-5 36.03 37.31 33.96 37.50 37.54 36.77 34.08 39.22 34.93
defocus blur-1 94.2 88.73 91.06 89.1 90.32 88.91 90.92 91.98 89.58
defocus blur-2 92.75 85.97 88.99 86.59 88.31 85.58 87.91 90.47 87.01
defocus blur-3 87.38 79.02 82.43 78.88 80.71 77.58 80.88 84.85 79.52
defocus blur-4 76.99 69.13 71.02 68.29 68.33 65.96 68.42 74.40 68.22
defocus blur-5 52.09 48.85 51.99 48.82 49.17 48.45 46.92 55.70 48.27
glass blur-1 54.93 56.57 51.72 57.94 56.78 57.29 56.27 58.82 58.92
glass blur-2 56.37 57.93 53.46 60.42 59.21 59.32 58.03 60.25 60.56
glass blur-3 59.21 61.43 56.98 64.11 61.72 62.41 60.39 62.84 63.32
glass blur-4 45.65 46.50 42.72 48.48 47.19 47.83 46.88 49.09 49.23
glass blur-5 49.19 49.52 46.40 52.06 49.83 50.02 49.08 51.14 51.82
otion blur-1 89.40 81.57 83.27 82.00 83.11 81.48 84.19 86.21 82.83
otion blur-2 81.95 71.52 74.71 73.38 72.48 70.99 74.35 77.75 74.09
otion blur-3 72.48 61.87 66.21 63.86 63.39 61.57 63.85 68.31 64.36
otion blur-4 72.79 62.40 66.18 63.94 62.84 62.03 64.54 67.88 64.13
otion blur-5 63.91 54.14 57.98 56.07 55.90 54.35 55.60 59.71 56.65
zoo blur-1 87.36 78.25 81.31 78.56 79.45 77.20 80.22 83.69 78.55
zoo blur-2 83.89 74.84 77.73 75.39 75.88 72.83 75.74 80.46 74.72
zoo blur-3 77.73 69.00 70.98 68.81 69.03 66.56 68.34 74.33 68.21
zoo blur-4 71.39 64.12 65.21 63.79 62.81 61.01 62.47 68.67 62.58
zoo blur-5 60.60 55.15 55.83 55.4 54.38 52.66 52.24 59.51 53.94
brighness-1 94.31 89.29 90.84 89.53 90.8 89.30 90.97 92.06 89.74
brighness-2 94.03 88.25 90.42 88.71 89.66 88.50 90.64 91.64 88.77
brighness-3 93.53 87.40 89.38 87.38 89.17 87.31 89.63 90.72 87.84
brighness-4 92.74 85.45 88.27 86.12 87.78 85.44 88.16 89.58 86.39
brighness-5 90.36 80.95 85.22 81.65 83.79 80.99 84.45 86.53 82.04
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Table 10: Results for Robustness Corruption on CIFAR10-C Dataset with Different Binarization
Algorithms (2/2).

Noise FP32
Binarization Algorithm

BNN XNOR DoReFa Bi-Real XNOR++ ReActNet ReCU FDA

fog-1 94.04 88.17 90.89 88.84 89.91 88.51 90.84 92.08 89.43

fog-2 93.03 84.58 88.85 85.48 87.26 84.77 88 89.87 86.76

fog-3 90.69 78.07 85.2 80.07 83.32 78.94 83.77 86.82 82.78

fog-4 86.72 69.56 78.92 72.27 75.89 71.01 77.96 81.56 75.62

fog-5 68.6 49.04 53.9 52.33 52.88 49.68 57.67 62.29 55.18

frost-1 89.97 83.66 84.7 84.07 85.76 83.64 85.51 87.75 84.85

frost-2 84.42 77.88 78.97 77.47 78.96 77.26 79.14 81.4 79.16

frost-3 74.85 67.67 69.3 67.14 68.76 66.03 69.58 72.54 70.14

frost-4 73.32 65.93 67.14 65.97 68.52 65.37 67.93 71.44 69.41

frost-5 62.13 55.02 56.67 55.62 56.77 54.26 57.69 61.11 59.88

snow-1 89.26 84.58 85.44 84.59 86.43 85.07 85.95 87.82 85.67

snow-2 78.96 72.01 73.37 73.14 73.42 72.43 73.65 78.05 73.84

snow-3 82.85 75.6 76.84 75.74 76.95 75.74 77.76 79.98 75.95

snow-4 80.29 70.84 72.56 71.93 72.39 71.25 72.97 76.12 72.16

snow-5 74.94 63.85 66.94 65.9 65.71 64.24 66.29 70.33 66.53

contrast-1 93.82 87.23 89.96 87.93 89.68 87.88 90.16 91.53 88.84

contrast-2 90.53 76.02 84 77.27 82.1 76.3 82.8 86.02 81.37

contrast-3 85.84 63.97 77.1 65.77 72.77 64.18 74.62 79.30 71.89

contrast-4 75.08 44.07 62.37 47.35 55.57 44.94 59.87 65.72 55.14

contrast-5 29.36 20 25.67 20.18 22.18 21.04 25.28 25.66 24.04

elastic transfor-1 89.97 82.97 84.5 83.38 84.74 82.48 84.42 86.54 83.25

elastic transfor-2 89.43 82.12 84.79 82.44 84.07 81.97 84.61 86.20 83.15

elastic transfor-3 85.52 77.56 80.71 77.92 79.11 77 79.53 82.27 78.35

elastic transfor-4 79.48 73.75 74.83 73.92 73.41 72.77 73.98 77.53 74.17

elastic transfor-5 75.02 70.97 70.22 71.36 71.03 71.63 71.65 75.31 71.49

jpeg copression-1 87.36 83.28 83.93 84.07 83.83 83.77 84.3 85.65 83.63

jpeg copression-2 81.68 80.09 79.66 79.77 80.03 80.29 80.59 81.66 79.8

jpeg copression-3 79.98 78.55 78.21 78.32 78.27 78.99 78.51 79.94 78.44

jpeg copression-4 77.17 77.12 75.78 77.44 77.04 77.46 77.08 77.67 76.71

jpeg copression-5 73.85 74.51 73.04 74.65 74.13 75.26 74.16 74.85 74.19

pixelate-1 92.57 86.97 88.19 87.39 88.73 87.47 88.17 89.42 87.26

pixelate-2 88.23 81.91 80.95 82.37 82.82 81.93 81.99 83.80 80.95

pixelate-3 84 78.4 75.25 78.63 78.03 77.15 77.28 78.89 75.30

pixelate-4 68.51 64.11 58.11 62.49 60.89 61.43 60.06 61.71 59.95

pixelate-5 50.57 50.68 44.77 48.18 45.44 46.74 43.27 47.29 45.62

saturate-1 92.41 84.98 88.38 85.38 87.26 85.39 88.23 89.34 86.82

saturate-2 90.12 80.74 85.26 81.57 82.68 80.74 84.22 86.06 83.09

saturate-3 93.83 87.89 90.45 88.12 89.53 88.03 90.15 90.97 88.73

saturate-4 91.61 82.5 86.88 82.6 84.66 82.44 86.04 87.56 83.70

saturate-5 87.48 76.03 82.76 75.53 78.3 75.85 80.62 82.64 77.00

spatter-1 91.17 87.5 89.75 87.83 89.34 87.9 89.42 91.00 88.98

spatter-2 85.2 83.85 85.98 83.52 85.64 84.72 85.88 87.59 85.00

spatter-3 80.63 77.94 80.33 77.95 80.19 79.41 80.07 82.65 79.50

spatter-4 94.68 84.57 86.71 84.77 86.51 85.14 86.72 88.22 85.32

spatter-5 74.07 78.85 80.77 78.71 80.94 79.71 80.51 83.14 79.48

Overall 74.11 69.43 71.51 69.36 70.76 69.09 70.31 73.56 70.70
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Table 11: Sensitivity to Hyper Parameters in Training (1/2).

Algorithm Epoch Optimizer Learning Rate Scheduler Acc. Acc.1 Acc.2 Acc.3 Acc.4 mean std

FP32

200 SGD 0.1 cosine 94.58 94.6 95.05 94.64 94.84 94.74 0.20

200 SGD 0.1 step 92.63 92.42 92.15 92.62 92.38 92.44 0.20

200 SGD 0.01 cosine 92.23 91.76 91.76 91.99 92.17 91.98 0.22

200 SGD 0.01 step 83.94 83.50 82.80 84.13 83.89 83.65 0.53

200 Adam 0.001 cosine 93.51 92.94 93.12 93.35 92.86 93.16 0.27

200 Adam 0.001 step 93.37 93.15 93.32 93.41 93.35 93.32 0.10

200 Adam 0.0001 cosine 89.97 89.92 89.96 89.9 89.92 89.93 0.03

200 Adam 0.0001 step 90.57 89.91 90.43 90.25 90.31 90.29 0.25

BNN

200 SGD 0.1 cosine 87.62 87.53 87.99 88.86 87.84 87.97 0.53

200 SGD 0.1 step 70.87 73.86 71.83 73.1 72.87 72.51 1.17

200 SGD 0.01 cosine 73.52 72.62 72.82 71.14 72.59 72.54 0.87

200 SGD 0.01 step 52.85 51.77 52.00 52.34 53.14 52.42 0.57

200 Adam 0.001 cosine 88.76 88.99 88.67 88.84 88.81 88.81 0.12

200 Adam 0.001 step 88.85 89.34 88.77 89.02 89.00 89.00 0.22

200 Adam 0.0001 cosine 83.46 83.09 83.20 83.70 83.20 83.33 0.25

200 Adam 0.0001 step 84.08 84.11 84.20 84.31 83.56 84.05 0.29

XNOR

200 SGD 0.1 cosine 91.83 91.99 91.87 92.01 91.56 91.85 0.18

200 SGD 0.1 step 90.02 90.01 90.12 89.82 89.7 89.93 0.17

200 SGD 0.01 cosine 90.09 89.68 90.01 89.97 90.00 89.95 0.16

200 SGD 0.01 step 86.86 86.66 87.21 86.98 86.61 86.86 0.24

200 Adam 0.001 cosine 89.39 89.81 89.73 89.91 89.75 89.72 0.20

200 Adam 0.001 step 89.92 89.79 89.73 90.01 89.61 89.81 0.16

200 Adam 0.0001 cosine 86.18 86.29 87.03 86.36 86.62 86.50 0.34

200 Adam 0.0001 step 86.32 87.04 86.68 86.99 87.18 86.84 0.34

DoReFa

200 SGD 0.1 cosine 85.64 85.67 85.89 86.00 85.79 85.80 0.15

200 SGD 0.1 step 86.95 86.98 86.69 86.62 86.65 86.78 0.17

200 SGD 0.01 cosine 86.56 86.59 86.52 86.69 86.88 86.65 0.14

200 SGD 0.01 step 78.76 79.97 80.73 79.94 80.47 79.97 0.76

200 Adam 0.001 cosine 88.85 89.06 88.92 88.87 88.75 88.89 0.11

200 Adam 0.001 step 89.08 89.16 88.93 89.23 88.84 89.05 0.16

200 Adam 0.0001 cosine 83.56 83.17 83.65 83.60 83.66 83.53 0.20

200 Adam 0.0001 step 83.70 83.74 84.27 84.19 84.01 83.98 0.26

Bi-Real

200 SGD 0.1 cosine 87.55 87.81 88.06 87.30 87.88 87.72 0.30

200 SGD 0.1 step 87.95 88.35 88.13 87.73 88.25 88.08 0.25

200 SGD 0.01 cosine 87.76 87.93 87.73 87.72 87.64 87.76 0.11

200 SGD 0.01 step 83.75 82.91 82.82 82.91 83.39 83.16 0.40

200 Adam 0.001 cosine 88.78 89.15 89.06 89.00 89.2 89.04 0.16

200 Adam 0.001 step 88.89 88.98 88.78 89.11 89.05 88.96 0.13

200 Adam 0.0001 cosine 83.96 84.17 84.37 83.54 84.07 84.02 0.31

200 Adam 0.0001 step 84.63 84.48 84.32 84.75 84.29 84.49 0.20
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Table 12: Sensitivity to Hyper Parameters in Training (2/2).

Algorithm Epoch Optimizer Learning Rate Scheduler Acc. Acc.1 Acc.2 Acc.3 Acc.4 mean std

XNOR++

200 SGD 0.1 cosine 87.82 88.42 88.12 88.55 88.19 88.22 0.28

200 SGD 0.1 step 73.55 73.11 75.06 74.05 73.78 73.91 0.73

200 SGD 0.01 cosine 74.03 75.06 73.64 74.53 74.71 74.39 0.56

200 SGD 0.01 step 53.55 54.16 54.01 52.91 54.36 53.80 0.58

200 Adam 0.001 cosine 88.77 88.65 89.10 88.61 88.81 88.79 0.19

200 Adam 0.001 step 89.18 89.05 89.27 88.93 89.00 89.09 0.14

200 Adam 0.0001 cosine 83.86 83.49 83.56 83.16 83.62 83.54 0.25

200 Adam 0.0001 step 83.46 83.77 84.40 84.06 83.82 83.90 0.35

ReActNet

200 SGD 0.1 cosine 88.60 88.53 88.38 88.48 88.89 88.58 0.19

200 SGD 0.1 step 88.42 88.01 88.10 88.02 88.43 88.20 0.21

200 SGD 0.01 cosine 87.75 87.86 88.00 87.80 88.02 87.89 0.12

200 SGD 0.01 step 83.29 82.89 83.65 83.76 83.27 83.37 0.35

200 Adam 0.001 cosine 89.47 89.29 89.01 89.05 89.14 89.19 0.19

200 Adam 0.001 step 89.27 89.74 89.48 89.40 89.39 89.46 0.18

200 Adam 0.0001 cosine 84.65 84.93 84.48 84.65 84.67 84.68 0.16

200 Adam 0.0001 step 84.69 84.55 84.93 84.94 85.38 84.90 0.32

ReCU

200 SGD 0.1 cosine 91.72 91.94 91.68 91.69 91.81 91.77 0.11

200 SGD 0.1 step 87.73 88.14 87.81 88.02 87.91 87.92 0.16

200 SGD 0.01 cosine 87.32 87.28 87.53 87.48 87.32 87.39 0.11

200 SGD 0.01 step 71.86 71.72 71.78 72.26 71.59 71.84 0.25

200 Adam 0.001 cosine 88.24 89.98 88.26 88.48 88.13 88.62 0.77

200 Adam 0.001 step 88.36 88.48 88.55 88.42 88.63 88.49 0.11

200 Adam 0.0001 cosine 80.07 81.10 80.62 81.09 79.95 80.57 0.55

200 Adam 0.0001 step 81.26 81.42 81.08 81.58 81.69 81.41 0.24

FDA

200 SGD 0.1 cosine 89.69 89.59 89.56 89.53 89.65 89.60 0.07

200 SGD 0.1 step 80.38 80.34 80.83 80.52 80.52 80.52 0.19

200 SGD 0.01 cosine 80.72 80.93 80.89 80.70 80.79 80.81 0.10

200 SGD 0.01 step 63.41 62.85 63.04 63.04 63.14 63.10 0.20

200 Adam 0.001 cosine 89.70 89.57 89.57 89.80 89.76 89.68 0.11

200 Adam 0.001 step 89.84 89.85 90.10 89.79 90.01 89.92 0.13

200 Adam 0.0001 cosine 89.59 89.10 89.34 89.31 89.51 89.37 0.19

200 Adam 0.0001 step 89.52 89.59 89.52 89.64 89.58 89.57 0.05
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Table 13: Inference Efficiency on Hardware (1/4).

Hardware Threads Arch.
Larq daBNN

FP32 BNN ReAct FP32 BNN

Kirin 970

1
ResNet18 716.427 123.263 126.457 427.585 72.585
ResNet34 1449.67 159.615 171.227 836.321 124.091
VGG-Small 242.443 14.833 16.401 – –

2
ResNet18 372.642 72.697 78.605 – –
ResNet34 732.355 96.711 108.41 – –
VGG-Small 121.91 10.304 11.935 – –

4
ResNet18 191.517 42.986 47.182 – –
ResNet34 367.891 61.413 73.101 – –
VGG-Small 57.721 8.72 8.387 – –

8
ResNet18 96.937 37.457 56.017 – –
ResNet34 212.982 53.809 67.667 – –
VGG-Small 33.647 18.649 19.818 – –

Kirin 980

1
ResNet18 307.624 49.009 50.018 158.363 31.803
ResNet34 507.734 71.909 74.920 308.537 53.031
VGG-Small 83.163 7.772 8.215 – –

2
ResNet18 187.494 52.057 54.285 – –
ResNet34 367.853 57.336 60.483 – –
VGG-Small 49.264 6.116 5.604 – –

4
ResNet18 104.076 29.556 35.539 – –
ResNet34 202.173 31.324 35.911 – –
VGG-Small 22.690 3.147 3.291 – –

8
ResNet18 60.307 45.683 56.416 – –
ResNet34 120.738 60.758 86.887 – –
VGG-Small 18.147 21.688 23.350 – –

Kirin 985

1
ResNet18 173.238 27.429 30.626 164.556 34.528
ResNet34 438.971 58.165 60.885 323.439 57.808
VGG-Small 70.797 6.147 6.796 – –

2
ResNet18 103.621 25.672 35.477 – –
ResNet34 327.416 53.949 62.865 – –
VGG-Small 55.328 5.955 6.243 – –

4
ResNet18 92.387 26.728 34.778 – –
ResNet34 184.050 39.881 52.153 – –
VGG-Small 28.076 8.919 14.795 – –

8
ResNet18 130.972 82.772 89.766 – –
ResNet34 227.504 119.586 143.958 – –
VGG-Small 44.339 34.034 43.816 – –

Kirin 990

1
ResNet18 114.238 21.235 22.066 144.205 29.239
ResNet34 227.043 31.545 32.821 275.502 49.476
VGG-Small 38.118 3.338 3.482 – –

2
ResNet18 59.329 13.911 14.179 – –
ResNet34 116.822 23.452 22.770 – –
VGG-Small 20.055 2.080 2.194 – –

4
ResNet18 38.403 10.280 12.208 – –
ResNet34 81.273 15.570 17.727 – –
VGG-Small 13.508 1.542 1.760 – –

8
ResNet18 37.703 25.360 31.365 – –
ResNet34 78.753 34.884 39.363 – –
VGG-Small 12.707 14.414 21.749 – –
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Table 14: Inference Efficiency on Hardware (2/4).

Hardware Threads Arch.
Larq daBNN

FP32 BNN ReAct FP32 BNN

Kirin 9000E

1
ResNet18 118.059 19.865 20.547 129.270 24.781
ResNet34 236.047 31.822 32.575 250.680 42.134
VGG-Small 39.114 3.595 3.832 – –

2
ResNet18 68.351 16.821 16.115 – –
ResNet34 133.671 25.061 24.660 – –
VGG-Small 23.018 2.684 2.598 – –

4
ResNet18 45.592 17.452 18.847 – –
ResNet34 91.648 23.395 28.022 – –
VGG-Small 14.360 2.762 2.782 – –

8
ResNet18 43.363 61.263 42.328 – –
ResNet34 89.405 70.232 93.558 – –
VGG-Small 19.070 17.351 23.825 – –

Dimensity 820

1
ResNet18 158.835 32.636 34.912 323.035 63.471
ResNet34 328.020 57.133 60.807 629.493 102.443
VGG-Small 82.417 5.958 6.420 – –

2
ResNet18 122.167 29.306 34.384 – –
ResNet34 250.088 43.306 50.143 – –
VGG-Small 51.320 4.670 5.053 – –

4
ResNet18 94.636 21.850 30.027 – –
ResNet34 177.757 33.809 40.816 – –
VGG-Small 45.056 4.223 4.546 – –

8
ResNet18 90.210 45.357 61.981 – –
ResNet34 166.989 68.444 74.286 – –
VGG-Small 32.971 21.344 23.706 – –

Dimensity 9000

1
ResNet18 106.388 21.023 24.770 148.690 29.030
ResNet34 210.665 32.841 34.590 284.438 49.854
VGG-Small 42.057 4.410 5.530 – –

2
ResNet18 81.606 22.661 27.050 – –
ResNet34 143.349 27.666 37.910 – –
VGG-Small 26.512 2.273 2.410 – –

4
ResNet18 51.421 13.079 15.200 – –
ResNet34 100.249 23.314 25.920 – –
VGG-Small 17.735 3.015 3.770 – –

8
ResNet18 43.355 24.939 30.740 – –
ResNet34 84.182 30.212 39.990 – –
VGG-Small 14.857 14.258 17.540 – –

Snapdragon 855+

1
ResNet18 90.430 19.769 20.530 163.293 31.174
ResNet34 186.694 29.126 30.512 298.882 49.948
VGG-Small 29.735 3.153 3.259 – –

2
ResNet18 58.510 25.780 26.331 – –
ResNet34 124.580 31.023 32.646 – –
VGG-Small 19.408 2.258 2.471 – –

4
ResNet18 39.269 19.865 23.297 – –
ResNet34 82.180 30.248 31.387 – –
VGG-Small 13.566 2.032 2.359 – –

8
ResNet18 36.630 49.060 85.861 – –
ResNet34 73.513 41.131 88.101 – –
VGG-Small 12.860 17.828 23.489 – –
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Table 15: Inference Efficiency on Hardware (3/4).

Hardware Threads Arch.
Larq daBNN

FP32 BNN ReAct FP32 BNN

Snapdragon 870

1
ResNet18 88.145 16.527 17.020 126.762 25.240
ResNet34 185.468 25.488 26.195 237.361 41.440
VGG-Small 30.318 2.851 2.964 – –

2
ResNet18 63.829 18.351 19.575 – –
ResNet34 159.174 25.352 26.340 – –
VGG-Small 27.669 2.094 2.308 – –

4
ResNet18 42.796 17.578 21.083 – –
ResNet34 89.960 25.816 27.201 – –
VGG-Small 14.829 2.614 2.215 – –

8
ResNet18 46.798 19.192 28.579 – –
ResNet34 97.834 25.060 32.863 – –
VGG-Small 16.799 9.717 17.293 – –

Snapdragon 888

1
ResNet18 77.205 15.547 16.111 123.618 25.240
ResNet34 152.887 22.906 23.893 234.972 41.648
VGG-Small 25.133 2.410 2.543 – –

2
ResNet18 46.297 19.309 19.321 – –
ResNet34 93.615 20.473 22.489 – –
VGG-Small 16.001 1.920 2.213 – –

4
ResNet18 33.524 13.699 14.332 – –
ResNet34 67.495 19.020 21.157 – –
VGG-Small 11.743 2.882 2.768 – –

8
ResNet18 33.761 26.108 58.989 – –
ResNet34 67.876 37.018 61.315 – –
VGG-Small 11.752 27.615 16.774 – –

Raspberrypi 3B+

1
ResNet18 740.509 158.732 175.256 1460.723 241.713
ResNet34 1536.915 240.606 254.810 2774.888 435.170
VGG-Small 257.079 24.479 25.790 – –

2
ResNet18 667.012 143.716 106.894 – –
ResNet34 933.149 144.287 158.868 – –
VGG-Small 145.427 14.503 15.628 – –

4
ResNet18 562.567 108.585 116.640 – –
ResNet34 976.223 159.258 183.698 – –
VGG-Small 191.470 10.839 10.196 – –

8
ResNet18 877.026 279.660 356.239 – –
ResNet34 1638.035 389.924 485.260 – –
VGG-Small 399.338 110.448 142.978 – –

Raspberrypi 4B

1
ResNet18 448.744 80.822 82.380 688.838 120.348
ResNet34 897.735 112.837 119.536 1362.893 209.276
VGG-Small 150.814 11.177 12.024 – –

2
ResNet18 261.861 49.079 55.279 – –
ResNet34 525.735 67.480 79.468 – –
VGG-Small 89.284 6.647 7.882 – –

4
ResNet18 270.191 36.331 45.903 – –
ResNet34 572.423 53.866 70.841 – –
VGG-Small 90.650 5.056 6.167 – –

8
ResNet18 466.585 168.844 226.771 – –
ResNet34 879.375 264.638 319.789 – –
VGG-Small 216.439 114.064 162.118 – –
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Table 16: Inference Efficiency on Hardware (4/4).

Hardware Threads Arch.
Larq daBNN

FP32 BNN ReAct FP32 BNN

Apple M1

1

ResNet18 44.334 8.219 8.355 – –

ResNet34 88.334 12.505 12.771 – –

VGG-Small 14.093 1.446 1.465 – –

2

ResNet18 24.775 5.037 5.194 – –

ResNet34 47.179 7.425 7.690 – –

VGG-Small 7.398 0.829 0.854 – –

4

ResNet18 18.612 3.448 3.671 – –

ResNet34 27.515 4.965 5.254 – –

VGG-Small 4.294 0.526 0.551 – –

8

ResNet18 16.653 5.035 6.003 – –

ResNet34 27.680 6.445 6.953 – –

VGG-Small 3.996 0.735 0.712 – –

16

ResNet18 90.323 70.697 73.729 – –

ResNet34 162.057 130.907 125.362 – –

VGG-Small 25.366 23.050 23.194 – –

Apple M1 Max

1

ResNet18 46.053 8.653 8.486 – –

ResNet34 91.861 12.593 13.039 – –

VGG-Small 14.285 1.454 1.488 – –

2

ResNet18 25.039 5.450 5.361 – –

ResNet34 51.860 7.579 8.925 – –

VGG-Small 7.657 0.855 0.896 – –

4

ResNet18 14.708 3.625 3.888 – –

ResNet34 27.933 5.266 6.021 – –

VGG-Small 4.292 0.576 0.620 – –

8

ResNet18 10.660 3.718 4.510 – –

ResNet34 18.988 4.745 5.457 – –

VGG-Small 3.432 0.560 0.629 – –

16

ResNet18 60.500 47.727 53.900 – –

ResNet34 120.449 91.464 96.356 – –

VGG-Small 21.354 13.868 15.311 – –
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