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Fig. 1:
capabilities:
Each row illustrates the rollout trajectory of trained WB-VIMA policies, an imitation learning algorithm we developed, using
data collected with JoyLo, our novel whole-body teleoperation interface. While every activity involves multiple capabilities,

Everyday household activities enabled by BEHAVIOR ROBOT SUITE (BRS), showcasing its three core
coordination (%), stable and accurate (), and extensive end-effector ().

the most crucial capability for accomplishing each task is highlighted using 3, ", and 2. Activities from top to bottom are as
follows. 1) Clean house after a wild party (''): The robot navigates to a dishwasher and opens it, then moves to a gaming
table to collect bowls. It returns to the dishwasher, places the bowls inside, and closes it. 2) Clean the toilet (12): The robot
picks up a sponge, opens the toilet cover, cleans the seat, then closes the cover and wipes it. Finally, it moves to press the
flush button. 3) Take trash outside (''): The robot navigates to a trash bag in the living room, picks it up, and carries it to a
closed door. It opens the door, moves outside, and deposits the trash bag into a trash bin. 4) Put items onto shelves (12): The
robot lifts a box from the ground, moves to a shelf, and places the box on the appropriate level based on available space. 5)
Lay clothes out (1*): The robot moves to a wardrobe, opens it, picks up a jacket on a hanger, lays the jacket on a sofa bed,
then returns to the wardrobe and closes it.

Abstract—Real-world household tasks present significant chal-
lenges for mobile manipulation robots. An analysis of existing
robotics benchmarks reveals that successful task performance
hinges on three key whole-body control capabilities: biman-
ual coordination, stable and precise navigation, and extensive
end-effector reachability. Achieving these capabilities requires
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careful hardware design, but the resulting system complexity
further complicates visuomotor policy learning. To address these
challenges, we introduce the BEHAVIOR ROBOT SUITE (BRS),
a comprehensive framework for whole-body manipulation in
diverse household tasks. Built on a bimanual, wheeled robot
with a 4-DoF torso, BRS integrates a cost-effective whole-
body teleoperation interface for data collection and a novel
algorithm for learning whole-body visuomotor policies. We
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evaluate BRS on five challenging household tasks that not
only emphasize the three core capabilities but also introduce
additional complexities, such as long-range navigation, interac-
tion with articulated and deformable objects, and manipulation
in confined spaces. We believe that BRS’s integrated robotic
embodiment, data collection interface, and learning framework
mark a significant step toward enabling real-world whole-body
manipulation for everyday household tasks. BRS is open-sourced
at behavior—-robot—-suite.github.io,

I. INTRODUCTION

Developing versatile and capable robots that can assist in
everyday life remains a major challenge in human-centered
robotics research [1H4)], with increasing attention on daily
household tasks [SH12]. What key capabilities must a robot
develop to achieve all these? To investigate this question, we
analyze activities from BEHAVIOR-1K [8], a human-centered
robotics benchmark encompassing 1,000 everyday household
tasks, selected and defined by the general public, and in-
stantiated in ecological and virtual environments. Through
this analysis, we identify three essential whole-body control
capabilities for successfully performing these tasks:
coordination, stable and accurate , and extensive
end-effector .

Tasks such as lifting large, heavy objects require

[L3} [14], whereas retrieving objects throughout
a house depends on stable and precise [L5H17].
Opening a door while carrying groceries demands the coor-
dination of both capabilities [18H20]. In addition, everyday
objects are distributed across diverse locations and heights,
requiring robots to adapt their accordingly. To illustrate
this, we analyze the spatial distribution of task-relevant house-
hold objects in everyday household tasks and scenes (Fig. [2).
Notably, the multi-modal distribution of vertical distances
highlights the necessity of extensive end-effector reachability,
enabling a robot to interact with objects across a wide range
of spatial configurations.

How, then, can a robot effectively achieve these capabili-
ties? Carefully designed robotic hardware incorporating dual
arms, a mobile base, and a flexible torso is essential to
enable whole-body manipulation [21]. However, such designs
introduce significant challenges for policy learning methods,
particularly in scaling data collection [22H24] and accurately
modeling coordinated whole-body actions. Current systems
struggle to address these challenges comprehensively [21) [25-
31, highlighting the need for more suitable hardware for
household tasks, more efficient data collection tools, and
improved models for whole-body control.

We introduce the BEHAVIOR RoBOT SUITE (BRS), a
comprehensive framework for learning whole-body manipu-
lation to tackle diverse real-world household tasks (Table [I).
BRS addresses both hardware and learning challenges through
two key innovations. The first is JoyLo, a low-cost, whole-
body teleoperation interface designed for general applicabil-
ity, with a concrete implementation on a wheeled dual-arm
manipulator with a flexible torso. The second is the Whole-
Body VIsuoMotor Attention (WB-VIMA) policy, a novel
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Fig. 2: Ecological distributions of task-relevant objects in
daily household activities. Multiple distinct modes appear in
the vertical distance distribution, located at 0.09m, 0.49m,
0.94m, and 1.43 m, representing heights at which objects are
typically found.

learning algorithm that effectively models coordinated whole-
body actions.

We evaluate BRS on five challenging real-world house-
hold tasks in unmodified human living environments. The
learned WB-VIMA policies demonstrate strong performance,
achieving an average success rate of 88% in short-horizon
sub-tasks, and a peak success rate of 93% in long-horizon
full tasks. We believe that BRS’s integrated robotic embodi-
ment, data collection interface, and learning framework mark
a significant step toward real-world whole-body manipula-
tion for everyday household tasks. BRS is open-sourced at
behavior-robot-suite.github.iol

II. JoyLo: JOoYy-CoN ON LOW-COST KINEMATIC-TWIN
ARMS

To enable seamless teleoperation of mobile manipulators
with a high degree of freedoms (DoFs) and facilitate data
collection for policy learning, we introduce JoyLo, a cost-
effective whole-body teleoperation interface. As illustrated
in Fig. ] we implement JoyLo on the Galaxea RI robot,
a wheeled dual-arm manipulator with a 4-DoF torso (Ap-
pendix [A), following design objectives detailed as follow.
While we provide one specific instantiation of JoyLo, its
design principles are general and can be adapted to similar
mobile manipulators.

a) Efficient Whole-Body Control: Whole-body robot tele-
operation methods vary widely in accuracy, efficiency, applica-
bility, and user experience. At one extreme, kinesthetic teach-
ing enables precise physical guidance [44-47], but is slow and
not easily scalable. At the other extreme, motion retargeting
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TABLE I: Comparison of recent real-robot frameworks. BRS is comprehensive, integrating a unique whole-body control
interface JoyLo and a novel algorithm WB-VIMA for learning whole-body visuomotor policies, demonstrating several

unprecedented robotic capabilities.
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Fig. 3: BRS hardware system. Left: The R1 robot with two 6-DoF arms and a 4-DoF torso mounted on an omnidirectional
mobile base. Right: The JoyLo system, consisting of compact, off-the-shelf Nintendo Joy-Con controllers mounted at the ends
of two kinematic-twin arms. Joy-Con serves as the interface for controlling the grippers, torso, and mobile base.

techniques [25], 48H57] remove physical interaction but face
embodiment mismatches and limited platform applicability. To
balance intuitiveness, ease of use, and precision for manipu-
lation tasks, we propose a puppeteering-based approach using
kinematic-twin arms equipped with thumbsticks for torso and
mobile base control. Specifically, we utilize off-the-shelf Nin-
tendo Joy-Con controllers due to their compact size, integrated
thumbsticks, and multiple functional buttons, which enable
rich, customizable functionality. As illustrated in Fig. [3] the
left thumbstick controls mobile base velocity; the right thumb-
stick adjusts waist and hips; arrow keys change torso height;

triggers operate the grippers. With JoyLo, users can simultane-
ously control arm movements, gripper operations, upper-body
motions, and mobile base navigation, enabling efficient whole-
body control that is accurate, user-friendly, and scalable.
Additionally, the kinematic constraints imposed by the leader
arms prevent the operator from generating infeasible or unde-
ployable actions, ensuring smooth and reliable demonstrations.

b) Rich User Feedback: JoyLo enhances teleoperation
by providing haptic feedback  through  bilateral
teleoperation without extra force sensors [61]).
The JoyLo arms, kinematically coupled with the robot arms,



act as leaders issuing commands while being regularized
by the robot’s joint positions. Let qyoyro and Qrobor be their
respective joint positions; the torques 7 applied to the JoyLo
arms are 7 = Kp (qrobot - quyLo) +Kg (Qrobot - ('IJoyLo) -K,
where ¢ denotes joint velocities, and K, Kq, and K are
proportional, derivative, and damping gains. This feedback
discourages abrupt user motions and provides proportional
resistance when the robot experiences contact.

c¢) Low Cost and Easy Accessibility: JoyLo is built
from 3D-printed links, low-cost Dynamixel motors, and
Joy-Con controllers, totaling under $500. Additionally, its
modular design ensures that all components are replaceable,
minimizing downtime and eliminating unnecessary repair
costs. BRS provides an intuitive, real-time controller with
Python interfaces for efficient operation.

III. WB-VIMA: WHOLE-BoDY VISUOMOTOR
ATTENTION POLICY

This section introduces WB-VIMA, a transformer-based
model [62] 63] designed to learn coordinated whole-body ac-
tions for mobile manipulation tasks. Trained on data collected
through JoyLo, it autoregressively decodes whole-body actions
across the embodiment space and dynamically aggregates
multi-modal observations using self-attention (Fig. ).

a) Autoregressive Whole-Body Action Decoding: In
mobile manipulators with multiple articulated components,
small mobile base or torso errors can cause large end-effector
deviations. For example, a 0.17rad (10°) knee movement in
the R1 robot’s neutral pose (Fig.[3) can shift the end-effector
by up to 0.14 m due to error amplification along the kinematic
chain, highlighting the need for precise coordination in whole-
body mobile manipulation. To address this issue, we leverage
the inherent hierarchy in the robot’s embodiment. Specifically,
conditioning upper-body action predictions on the predicted
lower-body actions enables the policy to better model
coordinated whole-body movements. This approach ensures
that downstream joints account for upstream motion, reducing
error propagation. The whole-body action decoding follows
an autoregressive structure: At timestep ¢, the mobile base
trajectory ap,e € RTa*3 is first predicted using the action
readout token E* (encoded from observations, detailed later).
apse and E® are then used to predict the torso trajectory
Ao € RTe*4, Finally, apge, Atorso, and B together predict
the arms and grippers’ trajectory a,ms € R7«*14, WB-VIMA
jointly learns three independent denoising diffusion
networks [[64-66] for the mobile base, torso, and arms, denoted
€bases €torso» AN €arms. Whole-body actions Awhole-body € RTax21
are autoregressively decoded through iterative denoising:

a]tfazel ~ N (:uk (alljasm €base (all‘fase|Ea’ k)) ) 0—12«[) )

aﬁ)r_sé ~N (:Uk (aﬁ)rsov €torso (agcorso|agasev Ea7 k)) ; O'I%I) ’
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To achieve efficient inference for high-frequency control,
only action readout tokens are used for whole-body decoding

Autoregressive Whole-Body Action Decoding
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Fig. 4: WB-VIMA architecture. It autoregressively decodes
whole-body actions by leveraging the hierarchical interde-
pendencies within the embodiment space, and dynamically
aggregates multi-modal observations using self-attention.

via diffusion, allowing lightweight UNet-based [67] action
heads with a heavier transformer backbone for observation
encoding. This balances expressivity and latency.

b) Multi-Modal Observation Attention: QObservations
from multiple modalities are crucial for autonomous robots
in complex environments. In WB-VIMA, egocentric colored
point clouds and robot proprioception (joint positions
and mobile base velocities) are fused via a visuomotor
attention network, avoiding overfitting to any single source
of information. Concretely, a PointNet [68] encodes
the point cloud into a point-cloud token EP®, and an
MLP encodes proprioception into a proprioceptive token
EP©P Tokens from current and past 7, steps, along with
action readout tokens E?, form a visuomotor sequence:
S = [EgﬁjTo—o—l’ Ef?g“o+17 E%7T0+17 o Eng’ Egrop’ Eﬂ €
R3ToXE S is then processed through causal self-attention,
ensuring action tokens attend only to earlier observations.
The final action readout token Ef is used for autoregressive
whole-body decoding.

c) Training and Deployment: Following Ho et al. [69],
WB-VIMA is trained to predict added noise, minimizing
L = MSE(e*, ey(-|k)) for each action decoder, with the
total loss aggregated across all three action decoders. Here,
€ and e represent the ground-truth and predicted noise.
Deployment uses NVIDIA RTX 4090 GPUs with 0.02s
effective latency. Data is collected at 10 Hz with the robot
controller running at 100 Hz. A new policy action is issued
every 0.1s and repeated 10 times.

IV. EXPERIMENTS

We conduct experiments to answer the following questions.

Q1: What household tasks are enabled by BRS, and how
does WB-VIMA compare to baselines?

Q2: How different components contribute to WB-VIMA’s
effectiveness?

03: How does JoyLo compare to other interfaces in effi-
ciency and policy learning suitability?

Q4: What other insights can be drawn about the system’s

capabilities?
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Fig. 5: Evaluatlon results for five household tasks. Left Initial randomization. Middle: Success rates over 15 runs (“ET”
= entire task, “ST” = sub-task). Right: Number of safety violations.

a) Experiment Settings: We evaluate BRS on five
real-world household tasks (see Fig. [T] and Appendix [D-A]
for details), inspired by the everyday activities defined in
BEHAVIOR-1K [8]. We collect 100, 103, 98, 138, and
122 trajectories using JoyLo for these long-horizon tasks,
each ranging from 60s to 210s. Each task is segmented
into multiple sub-tasks (“ST”’). During evaluation, if a
sub-task fails, we reset to the start of the next sub-task and
continue evaluation. We also report the end-to-end success
rates for entire tasks (“ET”). Baselines include DP3 [70],
RGB-DP [63], and ACT [39]. We additionally report human
teleoperation success and policy safety violations, defined
as robot collisions or motor power losses due to excessive
force. Each policy is evaluated 15 times with randomized
robot starting position, target object placement, target
object instance, and distractors. Each task covers at least
two types of randomization. Task videos are available at
behavior—-robot-suite.github.io.

b) BRS enables various household activities, on which
WB-VIMA consistently outperforms baseline methods (Q1):
As shown in Fig. [5| WB-VIMA achieves an average sub-task
success rate of 88%, and average and peak entire-task success
rates of 58% and 93%. On contact-rich sub-tasks involving
articulated objects, where human operators often struggle
with uncoordinated whole-body motions—such as opening
the toilet cover (ST-2) in ‘“clean the toilet” and opening
the wardrobe (ST-1) in “lay clothes out”’—WB-VIMA even
outperforms human teleoperation, suggesting that training
on successful demonstrations enables it to learn precise,
coordinated maneuvers for reliably completing such tasks.
Moreover, WB-VIMA shows an emergent capability for
completing long-horizon, multi-stage tasks, enabled by the
synergy between its multi-modal observation attention—
extracting salient, task-relevant features—and autoregressive
whole-body action decoding—generating coherent actions that
rarely lead to out-of-distribution states. Finally, WB-VIMA
maintains a near-zero safety violation rate, which we attribute
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Fig. 6: Real-world ablation results for “put items onto
shelves” and ‘“lay clothes out.”

to its use of colored point-cloud observations that provide
explicit 3D perception and semantic understanding, ensuring
coordinated actions that inherently respect safety constraints.

For end-to-end task success, WB-VIMA achieves 13x and
21 x higher success rates than DP3 and RGB-DP, respectively.
For average sub-task performance, it outperforms them by
1.6x and 3.4x. ACT fails to complete any full tasks and rarely
succeeds in sub-tasks. These baselines struggle because they
directly predict flattened 21-DoF actions, ignoring hierarchical
dependencies within the action space. As a result, modeling
errors [71] in mobile base or torso predictions cannot be
corrected by arm actions, leading to amplified end-effector
drift, pushing the robot into out-of-distribution states, and
eventually resulting in task failures. Uncoordinated whole-
body actions also increase safety violations (Fig. [3), such
as DP3 colliding with tables, RGB-DP losing arm power
from excessive force, and ACT hitting doorframes during
trash disposal. We also observe that WB-VIMA and DP3
outperform RGB-DP and ACT, underscoring the importance
of explicit 3D perception in complex environments. Egocentric
point clouds provide unified spatial understanding critical
for accurate mobile base navigation. While both WB-VIMA
and DP3 leverage point clouds, only WB-VIMA incorporates
task semantic information through color, whereas DP3 often
overfits to proprioception, stitching actions based purely on
joint positions without regard to the environment.

c) Synergistic whole-body action prediction and multi-
modal feature extraction are key to WB-VIMA’s strong
performance (Q2): Can models based solely on explicit 3D
perception match WB-VIMA ’s performance? Ablation studies
show they cannot. We evaluate two WB-VIMA variants: one
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Fig. 7: Simulation ablation results for “wiping table.” The

robot must wipe toward the goal using whole-body motions

while maintaining continuous hand contact. Results are aver-

aged over five runs with 100 rollouts each; error bars indicate

standard deviation.

without autoregressive whole-body action decoding and
one without multi-modal observation attention. As shown
in Fig. [6, removing either significantly degrades performance.
Tasks like “put items onto shelves” and “open wardrobe”
(ST-1) in “lay clothes out” critically depend on coordinated
whole-body actions; removing autoregressive action decoding
leads to up to a 53% performance drop. Removing multi-
modal attention reduces performance across all tasks, causing
the model to ignore visual inputs and overfit to proprioception.
Four collisions are also observed due to poor visual awareness.
The same conclusions hold in a simulated table wiping task
(Fig. [7). Furthermore, starting from a vanilla diffusion policy,
we provide a roadmap improving the model success by
progressively adding components: multi-modal observation
attention improves by 27% and surpasses ACT; adding autore-
gressive whole-body action decoding further boosts success by
45%, culminating in WB-VIMA s strong final performance.

d) JoyLo is an efficient, user-friendly interface that
provides high-quality data for policy learning (Q3): We
conducted a user study with 10 participants to evaluate JoyLo
against two IK-based interfaces: VR controllers and
Apple Vision Pro [36] [72]. The study was performed in the
OmniGibson simulator on the “clean house after a wild
party” task, with randomized interface exposure to eliminate
bias. We measured success rate, completion time, replay
success rate, and singularity ratio across entire tasks and
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sub-tasks. Replay success measures the open-loop execution
of collected robot trajectories, where higher values indicate
higher-quality, verified data that allows imitation learning
policies to better model trajectories [33l 134} [73H75]]. Further
setup details are provided in Appendix

As shown in Fig. [§] JoyLo achieves the highest success rate
and fastest completion time across all interfaces. It delivers a
5x higher task success rate and 23% shorter median comple-
tion time than VR controllers, while no participants completed
the entire task with Apple Vision Pro. JoyLo particularly
excels at articulated object manipulation (e.g., 67% higher
success in “open dishwasher” (ST-2) than VR controllers),
enabling users to generate smooth and accurate actions, which
is consistent with findings that leader-follower arm control
improves fine-grained manipulation [39]. It also significantly
reduces sub-task times (e.g., 71% faster navigation and 67%
faster bowl picking) compared to Apple Vision Pro, whose
reliance on head movement for mobile base control leads to
poor coordination and tracking [34]]. Moreover, JoyLo pro-
vides the highest data quality, achieving the lowest singularity
ratio (78% and 85% lower than VR controllers and Apple
Vision Pro, respectively) and consistently replaying successful
trajectories. Unlike IK-based methods that suffer from subop-
timal IK solutions and jerky motions, JoyLo ’s direct joint
mapping and kinematic-twin arm constraints ensure smooth,
stable whole-body teleoperation. In user surveys (Fig.[A.4)), all
participants rated JoyLo the most user-friendly. Although 70%
of participants initially believed IK-based interfaces would
be more intuitive, after the study they unanimously pre-
ferred JoyLo. This shift underscores a key distinction between
tabletop data collection and mobile whole-body manipulation:
while IK-based methods may suffice for static setups, they
struggle to effectively control the mobile base and torso,
making high-quality data collection much harder in mobile
manipulation settings.

e) Coordinated torso and mobile base movements
enhance maneuverability beyond stationary arms (Q4):

As shown in Fig. Pl coordinated whole-body movements
are critical for tasks involving heavy articulated object
interactions, such as “open the door” (ST-3) in “take trash
outside” and “open the dishwasher” (ST-2) in “clean house
after a wild party.” To open a door, the robot bends its hip
forward while advancing the base to generate enough inertia;
to open a dishwasher, it moves the base backward, using
its whole body to pull the door open smoothly. Without hip
or base movement, both objects remain closed and the arm
joint effort would surge, generating excessive force that is
potentially harmful to the hardware. Additional emergent
behaviors such as failure recovery are showcased in videos on
behavior-robot—-suite.github.io, demonstrating
WB-VIMA ’s robustness.

V. RELATED WORK

Robots for Everyday Household Activities Daily household
activities have become a major focus for human-centered
robotics [[1H4, [14], with efforts mainly in: 1) defining bench-
marks [5H12| [76H83]], and 2) building robotic systems, usually
with learning-based methods, to automate tasks [21, 30~
32, 134, 184H97]. Unlike field [98]], rescue [99], or surgical
robots [100], household robots must generalize across diverse,
complex home environments. Prior works typically address
either data collection or policy learning separately (Table[l). In
contrast, BRS offers a synergistic framework combining a low-
cost, whole-body interface for data collection and a general,
competent algorithm for whole-body visuomotor policy learn-
ing. Moreover, many household tasks require coor-
dination and extensive end-effector . Prior systems
often rely on a single arm and lifting bodies [26] |80, 92],
whereas BRS unleashes the mobile manipulation capabilities
to perform broader real-world household tasks.

Low-Cost Hardware for Robot Learning Cost-effective
hardware has accelerated robot learning, including: 1) low-
cost robots—arms [39], hands [101-103]], mobile manipula-
tors [21, 130432, 84], and humanoids [104H110]; 2) teleop-
eration interfaces—puppeteering devices [34} 39, 40. [111],
exoskeletons [33, 74, [112], and AR/VR devices [25} 36l [113];
and 3) wearable or portable data collection devices [75, [114-
119]. Our JoyLo falls under teleoperation interfaces, provid-
ing a cost-effective, whole-body solution for mobile, dual-
arm robots with torsos. Unlike prior interfaces for stationary
arms [40) [74] or mobile bases without independent torso con-
trol [30} 134], JoyLo enables efficient, untethered teleoperation
of dual-arm mobile manipulators without needing a second
operator. Additionally, compared to common puppeteering
devices [40]], JoyLo offers rich haptic feedback via bilateral
teleoperation without requiring force sensors [[60, [61] or extra
real-robot arms [120].

Learning Whole-Body Manipulation Whole-body manip-
ulation uses the full robot body, including arms [13} 14} 30}
121} [122], torso [123H126], and base [29, 31}, 92} [127H132]],
to interact with objects. Traditional approaches rely on motion
planning [97, 124} [125| [133H137], while recent learning-based
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methods use reinforcement learning (30| [129-
[138H142], behavior cloning [30l (32| [36, [04, [143H147],
or large pretrained models [28] [91] 128 [148-150]]. Our
WB-VIMA introduces a novel algorithm for learning whole-
body manipulation on a high-DoF, wheeled, dual-arm robot
with a torso. Unlike prior methods that ignore action hierar-
chy [144]] or embodiment interdependencies
[139], WB-VIMA explicitly models them through autoregres-
sive whole-body action decoding, enabling coordinated poli-
cies for challenging real-world tasks. Additionally, WB-VIMA
dynamically fuses multi-modal observations via visuomotor
attention, extracting salient task-relevant information, which

prior works [94] often neglect.

VI. LIMITATIONS

While BRS demonstrates strong performance across real-
world household tasks, several limitations remain. In this sec-
tion, we discuss limiting assumptions, analyze failure modes
(Fig. [I0), and suggest directions for future work.

a) Mismatched camera field of view between robot and
operator.: During data collection with JoyLo, the operator
observes the robot from a third-person perspective using their
own vision. To collect data efficiently, they must position
themselves to maintain a clear view of the workspace without
appearing in the robot’s field of view. Additionally, the
operator must ensure that target objects are visible to the
robot’s cameras; otherwise, the resulting data will be partially
observable, complicating policy training. Future work could



incorporate active perception [36} [151]] so that the operator
sees exactly what the robot sees.

b) Compounding errors in long-horizon, multi-stage
tasks.: In complex tasks like “clean house after a wild party,”
WB-VIMA experiences compounding errors across multiple
sub-tasks and over long horizons. While sub-task success rates
remain high, these accumulated errors can significantly reduce
overall task success. This limitation could be mitigated by
learning on human correction data [35| [71), 93] or integrating
model-based task planning [152] to improve robustness over
extended execution.

c) Imperfect point cloud observations.: WB-VIMA
relies on point cloud data from onboard cameras, which can
be degraded by lighting conditions or reflective surfaces. For
example, policies trained on data collected during the day may
not generalize well to nighttime environments due to visual
discrepancies. Since our robot is equipped with stereo cameras,
future work could incorporate FoundationStereo [153] to
improve point cloud quality.

d) Robot-specific training data.: WB-VIMA is trained
on data collected exclusively with the R1 robot. It is intriguing
to explore how multi-embodiment data and cross-embodiment
transfer can benefit the training [22} 96, [154-156]. The current
dataset may also be insufficient for scene-level generalization.
Future work could integrate large pre-trained models, such
as VLA [157H159], to enhance scene understanding. Finally,
it would be valuable to study how whole-body manipulation
can benefit from synthetic data [160, [161] or human
data [38] [162H164].

VII. CONCLUSION

This paper presents BRS, a holistic framework for learning
whole-body manipulation to tackle diverse real-world house-
hold tasks. We identify three core capabilities essential for
household activities: coordination, stable

, and extensive end-effector . Achieving these
with learning-based methods requires overcoming challenges
in both data and modeling. BRS addresses them through two
innovations: 1) JoyLo, a cost-effective whole-body interface
for efficient data collection, and 2) WB-VIMA, a novel
algorithm that leverages embodiment hierarchy and models
interdependent whole-body actions. The BRS system demon-
strates strong performance across real-world household tasks
with unmodified objects in natural, unstructured environments,
marking a step toward greater autonomy and reliability in
household robotics.
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APPENDIX A
ROBOT HARDWARE DETAILS

This section provides additional hardware details, including
robot specifications, onboard sensors and computing, and the
communication scheme.

A. Robot Platform

We select the Galaxea R1 robot as our platform to meet the

three critical capabilities essential for household tasks:

coordination, stable and precise , and extensive
end-effector . As illustrated in Fig[3] the R1 robot
features two 6-DoF arms mounted on a 4-DoF torso. Each arm
is equipped with a parallel jaw gripper and has a maximum
payload of 5 kﬂ making it well-suited for manipulating most
objects encountered in daily household activities. The torso
incorporates four revolute joints: two for waist rotation and hip
bending, and two additional joints enabling knee-like motions.
This design allows the robot to transition smoothly between
standing and squatting positions, enhancing its reachability
in household environments. By integrating the torso into the
kinematic chain of the end-effectors, the R1 robot achieves an
effective reach range from ground level to 2m vertically and
up to 2.06 m horizontally, covering the workspace shown in
Fig.[2] The arms and torso are controlled using joint impedance
controllers, with target joint positions as inputs.

To ensure stable navigation in household environments, the
robot’s torso is mounted on an omnidirectional mobile base,
capable of moving in any direction on the ground plane at a
maximum speed of 1.5ms~!. Additionally, the base can inde-
pendently execute yaw rotations at a maximum angular speed
of 3rads~!. This mobility is powered by three wheel motors
and three steering motors. With a 30 mm ground clearance,
the mobile base can traverse most household terrains. It also
achieves horizontal accelerations of up to 2.5 ms~2, enhancing
maneuverability for tasks that require simultaneous movement
and manipulation, such as opening doors (Fig. [9). The mobile
base is controlled via velocity commands corresponding to its
three degrees of freedom on the ground plane: forward motion,
lateral motion, and yaw rotation.

For perception, we equip the R1 robot with a suite of
onboard sensors, including a stereo ZED 2 RGB-D camera
as the head camera, two stereo ZED-Mini RGB-D cameras
as wrist cameras, and a RealSense T265 tracking camera for
visual odometry. All RGB-D cameras operate at 60 Hz, stream-
ing rectified RGB and depth images. The cameras’ poses are
updated at 500 Hz via the robot’s forward kinematics, enabling
the effective fusion of sensory data from all three cameras.
This integration supports high-fidelity global and ego-centric
3D perception, such as colored point-cloud observations. Si-
multaneously, the visual odometry system operates at 200 Hz,
providing real-time velocity and acceleration estimates of the
mobile base, which is critical feedback for learning precise
velocity control for the mobile base.

TAll numbers related to the robot’s hardware capabilities are based on our
testing.

B. Hardware Specifications

1) Arms: The Galaxea R1 robot has two 6-DoF arms, each
equipped with a parallel jaw gripper. As shown in Fig.
each arm has a 128 mm width and a 923 mm full reach.
The arms are mirrored on the robot and are controlled via
a joint impedance controller, receiving target joint positions
as inputs. We set the following impedance gains: K, =
[140, 200, 120, 20, 20, 20] and K4 = [10, 50,5, 1,1, 0.4]. Each
gripper has a stroke range from 0 mm (fully closed) to 100 mm
(fully open), with a rated gripping force of 100 N. The grippers
are controlled by specifying a target opening width, which is
converted into the required motor current.

2) Torso: The torso consists of four revolute joints: two
joints for waist rotation and hip bending, and two additional
joints for knee-like motions. As shown in Fig. [A.Tb] the
torso has a 340 mm width and a 1223 mm height (excluding
the head) when fully extended. Table lists the motor
specifications.

TABLE A.I: Torso motor specifications.

Value

+ 3.057ad (175°)
—2.09rad (—120°) ~ 1.83rad (105°)
—2.79rad (—160°) ~ 2.53rad (145°)
—1.13rad (—65°) ~ 1.83rad (105°)

108N m
304Nm

Parameter

Waist Joint Range (Yaw)
Hip Joint Range (Pitch)
Knee Joint 1 Range
Knee Joint 2 Range
Rated Motor Torque
Maximum Motor Torque

3) Mobile Base: As illustrated in Fig. the mobile base
is wheeled and omnidirectional, equipped with three steering
motors and three wheel motors. The base can move in any
direction on the ground plane and perform yaw rotations.
It is controlled via a velocity controller with 3-DoF inputs
corresponding to forward velocity (x-axis), lateral velocity (y-
axis), and rotation velocity (z-axis). Performance parameters
are listed in Table [AJL

TABLE A.Il: Mobile base specifications.

Parameter Value
Forward Velocity Limit + 1.5ms™!
Lateral Velocity Limit + 1.5ms™!
Yaw Rotation Velocity Limit + 3rads™!
Forward Acceleration Limit + 2.5ms™2
Lateral Acceleration Limit + 1.0ms™2
Yaw Rotation Acceleration Limit =+ 1.0rads™2

C. Onboard Sensors and Computing

As shown in Fig. 3] the robot is equipped with several
onboard sensors: a ZED 2 RGB-D camera (head camera), two
ZED-Mini RGB-D cameras (wrist cameras), and a RealSense
T265 tracking camera (visual odometry). Camera configura-
tions are provided in Table

The three RGB-D cameras stream colored point clouds at
60 Hz, obtained from rectified RGB images and aligned depth
images. These point clouds are fused into a common robot
base frame. For each point cloud in the camera frame P¢*™¢"*,
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Fig. A.1: Robot diagrams. (a): Each arm has six DoFs and a parallel jaw gripper. (b): The torso features four revolute joints
for waist rotation, hip bending, and knee-like motions. (¢): The wheeled, omnidirectional mobile base is equipped with three

steering motors and three wheel motors.

TABLE A.III: Configurations for the ZED RGB-D cameras
and RealSense T265 tracking camera.

Parameter Value
RGB-D Cameras
Frequency 60 Hz
Image Resolution 1344x376
ZED Depth Mode PERFORMANCE
Head Camera Min Depth 0.2
Head Camera Max Depth 3
Wrist Camera Min Depth 0.1
Wrist Camera Max Depth 1
Tracking Camera
Odometry Frequency 200 Hz

where camera € all cameras = {head, left wrist, right wrist},
the transformation from the robot base frame to camera frames

is computed using forward kinematics at 500 Hz. Denote
rotation matrices as R°¥™¢"® ¢ R3*3 and translations as
teamera ¢ R3X1 the fused, ego-centric point cloud Pego-centric
is computed as Pego—cemric — Uig;la:zas Pcamera (Rcamera)T+
(teamera)T  An example of the fused ego-centric colored point
cloud is shown in Fig. The point cloud is then spa-
tially cropped and downsampled using farthest point sampling

(FPS) [165H167.

The RealSense T265 tracking camera provides 6D velocity
and acceleration feedback at 200 Hz. It is mounted on the back
of the mobile base using a custom-designed camera mount.

The R1 robot is equipped with an NVIDIA Jetson Orin,
dedicated to running cameras and processing observations at
a high rate.



Fig. A.2: Visualization of the fused, ego-centric colored
point clouds. Left: The colored point cloud observation,
aligned with the robot’s coordinate frame. Right: The robot’s
orientation and its surrounding environment.

D. Communication Scheme

The robot communicates with a workstation via the Robot
Operating System (ROS). Each camera operates as an in-
dividual ROS node. The workstation runs the master ROS
node, which subscribes to robot state nodes and camera nodes,
and issues control commands via ROS topics. To reduce
latency, a local area network (LAN) is established between
the workstation and the robot.

APPENDIX B
JOoYLO DETAILS

This section provides details on JoyLo, including its hard-
ware components, controller implementation, and data collec-
tion process.

A. Hardware Components

a

ﬁ (g
G

« P
Fig. A.3: Individual JoyLo arm links.

N

The JoyLo system consists of 3D-printable arm links, low-
cost Dynamixel motors, and off-the-shelf Joy-Con controllers.
The individual arm links are shown in Fig. [A3] Using a
Bambu Lab P1S 3D printer, we printed two arms in 13 h, con-
suming 317 g of PLA filament. The bill of materials is listed
in Table m Once assembled, we use the official Dynamixel
SDK to read motor states at 400 Hz - 500 Hz. The Joy-Cons
connect to the workstation via Bluetooth, communicating at
66 Hz.

B. Controller Implementation

We provide an intuitive, real-time Python-based controller

| to operate JoyLo with the R1 robot. As illustrated in Pseu-

docode [T} the controller includes a joint impedance controller

* for the torso and arms with target joint positions as inputs,

and a velocity controller for the mobile base with target base
velocities as inputs. Control commands are converted into
waypoints and sent to the robot via ROS topics at 100 Hz,
which we find to be sufficient in practice.

To enable bilateral teleoperation of JoyLo arms as dis-
cussed in Sec. we implement a joint impedance con-
troller using current-based control, where force is pro-
portional to motor current. We set proportional gains
K, = [0.5,0.5,0.5,0.5,0.5,0.5] and derivative gains Kq =
[0.01,0.01,0.01,0.01,0.01,0.01]. To ensure sufficient stall
torque for load-bearing joints in the JoyLo arms, such as
the shoulder joints, the two low-cost Dynamixel motors are
coupled together, as illustrated in Fig. [3]

C. Data Collection

During data collection, the robot operates at 100 Hz, while
samples are recorded at 10 Hz. Functional buttons on the
right Joy-Con (Fig. [3) control start, pause, save, and discard
actions. Recorded data includes RGB images, depth images,
point clouds, joint states, odometry, and action commands.

from brs_ctrl.robot_interface import RlInterface

# instantiate the controller
robot = RlInterface(...)
# send a control command
robot.control (
# the torso and arms commands are target Jjoint
positions
arm_cmd={
"left":
"right":

left_arm_target_g,
right_arm_target_g,
}!
gripper_cmd={
"left": left_gripper_target_width,
"right": left_gripper_target_width,
}y
torso_cmd=torso_target_g,
# the mobile base commands are target velocities
base_cmd=mobile_base_target_velocity,

)

Pseudocode 1: Python interface for the R1 robot controller.

APPENDIX C
MODEL ARCHITECTURES, POLICY TRAINING, AND
DEPLOYMENT DETAILS

This section provides details on WB-VIMA and baseline
model architectures, policy training, and real-robot deploy-
ment.

A. Preliminaries

a) Problem  Formulation: ~ We  formulate robot
manipulation as a Markov Decision Process (MDP)
M = (§,A T,po,R), where s € S represents states,

a € A represents actions, 7 is the transition function, pg is




TABLE A.IV: JoyLo bill of materials.

Item No. Part Name Description Quantity  Unit Price (§) Total Price ($) Supplier
1 Dynamixel XL330-M288-T  JoyLo arm joint motors 16 23.90 382.40 Dynamixel
2 Nintendo Joy-Con JoyLo hand-held controllers 1 70 70 Nintendo
3 Dynamixel U2D2 USB communication converter for controlling Dynamixel motors 1 32.10 32.10 Dynamixel
4 5V DC Power Supply Power supply for Dynamixel motors 1 <10 <10 Various
5 3D Printer PLA Filament PLA filament for 3D printing JoyLo arm links 1 ~5 ~5 Various

Total Cost: ~$499.5

the initial state distribution, and R is the reward function [[168]].
A policy 7y, parameterized by 6, learns the mapping S — A.

b) Denoising Diffusion for Policy Learning: A denoising
diffusion probabilistic model (DDPM) [69, [169, [170]
represents the data distribution p(2°) as the reverse denoising
process of a forward noising process ¢(z*|z*~1), where
Gaussian noise is iteratively applied. Given a noisy sample
2% and timestep k in the forward process, a neural network
€o(z¥, k), parameterized by 6, learns to predict the applied
noise e. Starting with a random sample ¥ ~ N(0, 1), the
reverse denoising process is described as

PN (s (:L‘k,ég (xk, k)),ol),

where 1, (-) maps the noisy sample z* and the predicted noise
€p to the mean of the next distribution, and a,% is the variance
obtained from a predefined schedule for £ = 1,... K.
Recently, DDPMs have been utilized to model policies my,
where the denoising network eg(a¥|s, k) is trained through
behavior cloning [64H66].

B. WB-VIMA Architecture

1) Observation Encoder: As introduced in Sec. there
are two types of observation tokens: the point-cloud token
EPd and the proprioceptive token EPP. A colored point-
cloud observation is denoted as Peolored ped = RNpea X6 \where
Npeq is the number of points in the point cloud. Each point
contains six channels: three for RGB values and three for
spatial coordinates. To encode point-cloud tokens, RGB values
are normalized to [0, 1] by dividing by 255; spatial coordinates
are normalized to [—1, 1] by dividing by task-specific spatial
limits; finally, a PointNet encoder [68|] processes the point
cloud. Proprioceptive observations include the mobile base
velocity Umobile base € R3, torso joint positions Giorso € R4, arms
joint positions gums € R'2, and gripper widths ggrippers € R
These values are concatenated and processed through an MLP.
Model hyperparameters for the PointNet and proprioception
MLP are listed in Table [AV]

TABLE A.V: Hyperparameters for PointNet and the pro-
prioception MLP.

(A1)

Hyperparameter  Value  Hyperparameter  Value
PointNet | Prop. MLP
Npcd 4096 Input Dim 21
Hidden Dim 256 Hidden Dim 256
Hidden Depth 2 Hidden Depth 3
Output Dim 256 Output Dim 256
Activation GELU | Activation ReLU

2) Multi-Modal Observation Attention: To effectively fuse
multi-modal observations, WB-VIMA employs a multi-
modal observation attention network—a transformer decoder
that applies causal self-attention over the input sequence:

_ ped prop a pcd paprop  pha
S - [Et_TO-Q-laEt_To+17Et7TO+17- c aEt aEt aEt} €
R3ToXE  where T, is the observation window size, E is

the token dimension, and E? represents the action readout
token. The transformer decoder’s hyperparameters are listed
in Table Action readout tokens are passive and do not
influence the transformer output; they only attend to previous
observation tokens to maintain causality. The final action
readout token at time step ¢, Ef, is used for autoregressive
whole-body action decoding. We use an observation window
size of T, = 2 for all methods.

TABLE A.VI: Hyperparameters for the transformer de-
coder used in multi-modal observation attention.

Hyperparameter Value
Embed Size 256
Num Layers 2
Num Heads 8
Dropout Rate 0.1

Activation GEGLU [171]

3) Autoregressive Whole-Body Action Decoding: As dis-
cussed in Sec. WB-VIMA jointly learns three inde-
pendent denoising networks for the mobile base, torso, and
arms, denoted as €pyse, €rorsos aNd €y, respectively. Each
denoising network is implemented using a UNet [67], with
hyperparameters listed in Table The denoising process
follows three sequential steps. First, the mobile base denoising
network ep,s. takes the action readout token E® as input
and predicts future mobile base actions ap € R7a*3
Subsequently, the torso denoising network €y 5o takes E¢ and
apase as input and predicts future torso actions s € RTax4,
Finally, the arms denoising network €,ms takes E?, ap,ge, and
Ao as input and predicts future arm and gripper actions
ayms € RTeX14 Here T}, is the action prediction horizon, and
we use 1, = 8 hereafter. To ensure low-latency inference,
denoising starts from the encoded action readout tokens,
meaning the observation encoders and transformer run only
once per inference call.

C. Baselines Architectures

We provide details on baseline methods DP3 [70]], RGB-
DP [65]], and ACT [39]. DP3 uses the same PointNet encoder
as WB-VIMA (Table [A.V), but ignores RGB channels. Pro-
prioceptive features are processed through the same MLP en-



TABLE A.VII: Hyperparameters for the UNet models used
for denoising.

Hyperparameter Value
Hidden Dim [64,128]
Kernel Size 2

GroupNorm Num Groups 5
Diffusion Step Embd Dim 8

coder. Encoded features are concatenated and passed through
a fusion MLP with two hidden layers and 512 hidden units. A
UNet denoising network (Table predicts a flattened 21-
DoF whole-body action trajectory. RGB-DP is similar to DP3
but uses a pre-trained ResNet-18 [172] as the vision encoder.
The last classification layer is replaced with a 512-dimensional
output layer for policy learning. We use the recommended
hyperparameters provided in Zhao et al. [39] for ACT.

D. Policy Training Details

Policies are trained using the AdamW optimizer [173], with
hyperparameters in Table 90% of collected data is
used for training, and 10% is reserved for validation. Policies
are trained for equal steps, using the last checkpoint for
evaluation. During training, we use the DDPM noise sched-
uler [[69,1169,170] with 100 denoising steps. During evaluation
and inference, we use the DDIM noise scheduler [174] with 16
denoising steps. Training is performed using Distributed Data
Parallel (DDP) on NVIDIA GPUs, including RTX AS5000,
RTX 4090, and A40.

TABLE A.VIII: Training hyperparameters.

Hyperparameter Value

Learning Rate 7x 1074
Weight Decay 0.1

Learning Rate Warm Up Steps 1000
Learning Rate Cosine Decay Steps 300,000
Minimal Learning Rate 5x10-6

E. Policies Deployment Details

During deployment, observations from the robot’s onboard
sensors are transmitted to a workstation, where policy infer-
ence is performed, and the resulting actions are sent back
for execution. To minimize latency, we implement asyn-
chronous policy inference. Concretely, policy inference runs
continuously in the background. When switching to a new
predicted trajectory, the initial few actions are discarded to
compensate for inference latency. This ensures non-blocking
execution, preventing delays caused by observation acquisition
and controller execution.

APPENDIX D
TASK DEFINITION AND EVALUATION DETAILS

This section provides detailed task definitions, generaliza-
tion conditions, and evaluation protocols.

A. Task Definition

Activity 1 Clean House After a Wild Party (Fig. |l| First
Row): Starting in the living room, the robot navigates to
a dishwasher in the kitchen (ST-1) and opens it (ST-2). It
then moves to a gaming table (ST-3) to collect bowls (ST-
4). Finally, the robot returns to the dishwasher (ST-5), places
the bowls inside, and closes it (ST-6). Stable and accurate

is the most critical capability for this task. We
collect 138 demonstrations, with an average human completion
time of 210s. We randomize the starting position of the robot,
bowl instances and their placements, and distractors on the
table.

Activity 2 Clean the Toilet (Fig. [I| Second Row): In a
restroom, the robot picks up a sponge placed on a closed toilet
(ST-1), opens the toilet cover (ST-2), cleans the seat (ST-3),
closes the cover (ST-4), and wipes it (ST-5). The robot then
moves to press the flush button (ST-6). Extensive end-effector

is the most critical capability for this task. We
collect 103 demonstrations, with an average human completion
time of 120 s. We randomize the robot starting position, sponge
instances, and placements.

Activity 3 Take Trash Outside (Fig. || Third Row): The
robot navigates to a trash bag in the living room, picks it
up (ST-1), carries it to a closed door (ST-2), opens the door
(ST-3), moves outside, and deposits the trash bag into a trash
bin (ST-4). Stable and accurate is the most critical
capability for this task. We collect 122 demonstrations, with
an average human completion time of 130s. We randomize
the robot starting position and the placement of the trash bag.

Activity 4 Put Items onto Shelves (Fig. [I| Fourth Row): In
a storage room, the robot lifts a box from the ground (ST-
1), moves to a four-level shelf, and places the box on the
appropriate level based on available space (ST-2). Extensive
end-effector is the most critical capability for this
task. We collect 100 demonstrations, with an average human
completion time of 60s. We randomize the robot starting
position, box placement, objects inside the box, shelf empty
spaces, and distractors.

Activity 5 Lay Clothes Out (Fig.[I| Fifth Row): In a bedroom,
the robot moves to a wardrobe, opens it (ST-1), picks up a
jacket on a hanger (ST-2), lays the jacket on a sofa bed (ST-
3), and then returns to close the wardrobe (ST-4).
coordination is the most critical capability for this task. We
collect 98 demonstrations, with an average human completion
time of 120s. We randomize the robot starting position,
clothing placements, and clothing instances.

B. Policy Evaluation Results

Numerical results from policy evaluation are presented in

Tables [AIX] [AX] [AXT [AXI] and [AXIII}

C. Simulation Ablation Details

We design a simulated table-wiping task in OmniGibson [§]]
to perform ablation studies. The robot must use whole-body
motions to wipe to a target hand position (marked by the
yellow hand in Fig. [/) while maintaining contact with the
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Fig. A.4: Participant demographics and questionnaire re-
sults.

table surface. To generate training data, we use cuRobo [175]]
to produce 100,000 whole-body trajectories, constraining the
motion space by locking the mobile base and the first two
torso joints. To isolate the effects of autoregressive whole-
body action decoding and multi-modal observation attention,
we replace camera input with a goal position, treated as a
separate observation modality alongside robot proprioception.

D. User Study Details

As described in Sec. [[V-0d, we conducted a user study
with 10 participants to compare JoyLo against two alternative
interfaces: VR controllers [25] and Apple Vision Pro [36, [72].
The study was conducted in the OmniGibson simulator [8]] on
the task “clean house after a wild party”. To provide equal
depth perception, participants wore a Meta Quest 3 headset
while using both JoyLo and VR controllers. To eliminate bias,
participants were exposed to the three interfaces in a random-
ized order. Each participant had a 10-minute practice session
for each interface before beginning the formal evaluation. A
successful task rollout is shown in Fig.

Video Annotator

Phases

1 2

Subtasks

navigate_to_dishwasher opendishwashe navig pickup_teacup

\ | \ I Il I | | |

os 517.35 0345 551.8 069.1 5863 1036 6208 1381 655.4 a7

Fig. A.5: GUI for annotating user study rollouts.

After the sessions, rollouts were manually segmented, and
task and sub-task completions were annotated using a GUI
(Fig. [A.5). For VR controllers and Apple Vision Pro, which
use inverse kinematics (IK) based on end-effector poses, singu-
lar configurations were identified when the Jacobian matrix’s
condition number exceeded a set threshold. For JoyLo, which
directly controls joints, excessive joint velocities were used as
an indicator of singular or near-singular configurations. The
post-session survey questions sent to participants are listed
below:

Q1: Do you have prior data collection experience in robot
learning? [Yes/No]

Q2: Before the session, which device did you expect to be
the most user-friendly? [VR/Apple Vision Pro/JoyLo]

Q3: After the session, which device did you find to be the
most user-friendly? [VR/Apple Vision Pro/JoyLo]

04: Did physically holding JoyLo arms help with data col-
lection? [Yes/No]

95: Did using thumbsticks for torso and mobile base move-

ment improve control? [Yes/No]



Fig. A.6: Successful task completion by a participant. The robot navigates to a dishwasher and opens it, moves to a table
to collect teacups, returns to the dishwasher, places the teacups inside, and closes it.

TABLE A.IX: Numerical evaluation results for the task ‘“clean house after a wild party”. Success rates are shown as
percentages. Values in parentheses indicate the number of successful trials out of the total trials.

ET ST-1 ST-2 ST-3 ST-4 ST-5 ST-6 Safety Violations
68% 100% 93% 100% 89% 94% 88%

Human Teleop. 5573y (7373 (69/74)  (69/69)  (64/72)  (60/64)  (53/60) N/A
o 40%  100%  80%  80%  73%  93%  93% .
U (6/15)  (15/15) (1215) (12/15) (11/15) (14/15) (14/15)
0% 80% 7% 27% 7% 3% 40%
DP3IT0L  (o15) 215y (/15)  @/15)  (15)  (515)  (6/15) 13
0% 93% 0% 0% 7% 7% 20%
RGB-DP O/15)  (14/15)  (015) (/15 (1/15)  (1/15)  (3/15) 2
ACT 0% 80% 0% 0% 0% 0% 0% 5

0/15)  (12/15)  (0/15) (0/15) (0/15) (0/15) (0/15)

TABLE A.X: Numerical evaluation results for the task “clean the toilet”. Success rates are shown as percentages. Values
in parentheses indicate the number of successful trials out of the total trials.

ET ST-1 ST-2 ST-3 ST-4 ST-5 ST-6  Safety Violations
Human Teleo 61% 91% 72% 99% 100% 98% 98% NA
uman Teleop.  160/164)  (150/164)  (106/148)  (104/105)  (103/103)  (102/104)  (100/102)
o 53% 100% 80% 100% 100% 100% 73% .
urs (8/15) (15/15) (12/15) (15/15) (15/15) (15/15) (11/15)
0% 100% 47% 93% 0% 13% 0%
DP3[701 (o5 (15/15) ans) (14/15) (0/15) ©ns) (0/15) 0
0% 93% 13% 7% 7% 0% 20%
RGB-DP (015) (14/15) ©/15) (1/15) (1/15) (0/15) (3/15) 2
0% 20% 0% 0% 0% 0% 0%

ACT (0/15) (3/15) (0/15) (0/15) (0/15) (0/15) (0/15)




TABLE A.XI: Numerical evaluation results for the task ‘“take trash outside”. Success rates are shown as percentages.
Values in parentheses indicate the number of successful trials out of the total trials.

ET ST-1 ST-2 ST-3 ST-4 Safety Violations
76% 91% 100% 85% 100%
Human Teleop. — g/157)  (116/128)  (124/124)  (106/125)  (115/115) N/A
Ours
0% 60% 53% 20% 1%
DP3LI01 (oy15) 9/15) (8/15) 3/15) (1/15) ?
0% 20% 7% 7% 7%
RGB-DP 03] /15, (3/15) (1/15) 1/15) a/15) 3
0% 0% 0% 0% 0%
ACT 32 o/15) (0/15) 0/15) (0/15) (0/15) 3

TABLE A.XII: Numerical evaluation results for the task ‘“put items onto shelf”’. Success rates are shown as percentages.
Values in parentheses indicate the number of successful trials out of the total trials.

ET ST-1 ST-2 Safety Violations

89% 90% 100%
(93/104)  (94/104)  (93/93)

Human Teleop. N/A

Ours
20% 27% 47%
DP3LIOL 315y @nisy s
13% 20% 40%
RGB-DP 0] 515y (315 (6/15)
0% 0% 33%
ACT 9N onsy 15y (3715) 1
Ours w/o W.B. Action Denoising (2?107;) (2(/)127) (g(/)lqso)
13% 33% 40%

Ours w/o Multi-Modal Obs. Attn. /15) (5/15) (6/15)

TABLE A .XIII: Numerical evaluation results for the task “lay clothes out”. Success rates are shown as percentages. Values
in parentheses indicate the number of successful trials out of the total trials.

ET ST-1 ST-2 ST-3 ST-4 Safety Violations
50% 56% 3% 9%  100%
Human Teleop.  54/108)  (60/108)  (56/60)  (54/56)  (54/54) N/A
Ours 60%
urs (9/15)
0% 13% 3%  21%  27%
DP3LI0L onsy @15y @15) @415 @15) 7
0% 13% 5% 13%  13%
RGB-DP[63] /gy (1/8) QR /) (I8) 3
0% 0% 0% 0% 0%
ACT 20 o5y o15)  (015) (015 (0/15) 1
. . 13% 33% 3% 13%
Ours w/o W.B. Action Denoising ©15) (5/15) A1/15)  (11/15)
0% 33% 0% 4% 13%

Ours w/o Multi-Modal Obs. Attn. o115) (5/15) (6/15) ans) /15)
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