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ABSTRACT

Due to the vulnerability of deep neural networks, the black-box attack has drawn
great attention from the community. Though transferable priors decrease the query
number of the black-box query attacks in recent efforts, the average number of
queries is still larger than 100, which is easily affected by the query number limit
policy. In this work, we propose a novel method called query prior-based method
to enhance the attack transferability of the family of fast gradient sign methods
by using a few queries. Specifically, for the untargeted attack, we find that the
successful attacked adversarial examples prefer to be classified as the wrong cat-
egories with higher probability by the victim model. Therefore, the weighted
augmented cross-entropy loss is proposed to reduce the gradient angle between
the surrogate model and the victim model for enhancing the transferability of the
adversarial examples. In addition, the fuzzy domain eliminating technique is pro-
posed to avoid the generated adversarial examples getting stuck in the local op-
timum. Specifically, we define the fuzzy domain of the input example z in the
e-ball of z. Then, temperature scaling and fuzzy scaling are utilized to eliminate
the fuzzy domain for enhancing the transferability of the generated adversarial
examples. Theoretical analysis and extensive experiments demonstrate that our
method could significantly improve the transferability of gradient-based adversar-
ial attacks on CIFAR10/100 and ImageNet and outperform the black-box query
attack with the same few queries.

1 INTRODUCTION

Deep Neural Network (DNN) has penetrated many aspects of life, e.g. autonomous cars, face recog-
nition and malware detection. However, the imperceptible perturbations fool the DNN to make
a wrong decision, which is dangerous in the field of security and will cause significant economic
losses. To evaluate and increase the robustness of DNN, the advanced adversarial attack methods
need to be researched. In recent years, the white-box attacks make a great success and the black-
box attacks make great progress. However, because of the weak transferability (with the low attack
strength) and the large number of queries, the black-box attacks can still be further improved.

Recently, a number of transferable prior-based black-box query attacks have been proposed to reduce
the number of queries. For example, Cheng et al.| (2019) proposed a prior-guided random gradient-
free (P-RGF) method, which takes the advantage of a transfer-based prior and the query information
simultaneously. |Yang et al.| (2020) also proposed a simple baseline approach (SimBA++), which
combines transferability-based and query-based black-box attacks, and utilized the query feedback
to update the surrogate model in a novel learning scheme. However, the average query number
of the most query attacks is larger than 100 in the evaluations on ImageNet. In this scenario, the
performance of these query attacks may be significantly affected when the query number limit policy
is applied in the DNN application.

Besides, many black-box transfer attacks have been proposed to enhance the transferability of the
adversarial examples, e.g. fast gradient sign method (FGSM) (Goodfellow et al.| [2015), iterative
FGSM (I-FGSM) (Kurakin et al.} 2017), momentum I-FGSM (MI-FGSM) (Dong et al., 2018), di-
verse input I-lFGSM (DI-FGSM) (Xie et al., 2019), scale-invariant Nesterov [-FGSM (SI-NI-FGSM)
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(Lin et al., 2020) and variance-tuning MI-FGSM (VMI-FGSM) (Wang & He| 2021)). [Zhang et al.
(2022a)) also proposed the relative cross-entropy loss (RCE) to enhance the transferability by maxi-
mizing the logit’s rank distance from the ground-truth class. However, these transfer attacks achieve
weak transferability of adversarial examples under the constraint of low attack strength.

Therefore, to solve the above problems, we make the following contributions:

* First, we propose the query prior-based attacks to enhance the transferability of adversarial
examples with few queries under the constraint of low attack strength. Specifically, we find
that: (i) The better the transferability of the transfer black-box attack, the smaller the gra-
dient angle between the surrogate model and the victim model. (ii) The successful attacked
adversarial examples prefer to be classified as the wrong categories with higher probabil-
ity by the victim model. Based on the aforementioned findings, the weighted augmented
cross-entropy (WACE) loss is proposed to decrease the gradient angle between the surro-
gate model and the victim model for enhancing the transferability of adversarial examples,
which is proved in Appendices and[A.3] The proposed query prior-based method en-
hances the transferability of the family of FGSMs by integrating the WACE loss and a few
queries (this contribution is described in detail in Appendix [C).

» Second, when the query prior is not achieved, the fuzzy domain eliminating technique is
used to enhance the transferability of adversarial examples. Specifically, we explore the
effectiveness of the temperature scaling in eliminating the fuzzy domain and propose the
fuzzy scaling to eliminate the fuzzy domain. By combining the temperature scaling and
fuzzy scaling, fuzzy domain eliminating based cross-entropy (FECE) loss is proposed to
enhance the transferability of the generated adversarial examples. In addition, the weighted
augmented fuzzy domain eliminating based cross-entropy (WFCE) loss, which consists of
the WACE and FECE loss, can further enhance the transferability of adversarial examples.

* Third, theoretical analysis and extensive experiments demonstrate that: (i) On the premise
of allowing query, the WACE loss is better than cross-entropy (CE) and RCE losses. (ii) The
temperature scaling and fuzzy scaling can effectively eliminate a part of the fuzzy domain.
(ii1) Under the constraint of low attack strength, the query prior-based method and fuzzy
domain eliminating technique can significantly improve the attack transferability of the
family of fast gradient sign methods on CIFAR10/100 (Krizhevsky, 2009) and ImageNet
(Russakovsky et al.,[2015]).

2 PRELIMINARIES

The family of FGSMs and the RCE loss are briefly introduced, which is helpful to understand our
methods in Section[3]and is regarded as the baselines in Section [

2.1 FAMILY OF FAST GRADIENT SIGN METHODS

The methods mentioned in this section are referred as the black-box transfer attacks with the objec-
tive of enhancing the transferability of adversarial examples.

Fast gradient sign method (FGSM) (Goodfellow et al., 2015)) is the first transfer attack, which
generates the adversarial examples £%%Y by maximizing the loss function L (2% y,; §) with a one-
step update:

xadv :x+e-8ign (V.LL(x7y079)) (1)

where ¢ is the attack strength, y, is the ground truth, € is the model parameters, sign(-) is the sign
function and VL (x, y,; 0) is the gradient of the loss function w.r.t. x.

Iterative FGSM (I-FGSM) (Kurakin et al., |2017) is the iterative version of FGSM by applying
FGSM with a small step size:

o ==, pfy = Clipg {a™ + a - sign (VoL (27", 50 0)) } @

where ClipS (-) function restricts the generated adversarial examples to be within the e-ball of x.
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Momentum I-FGSM (MI-FGSM) (Dong et al., 2018)) integrates the momentum into I-FGSM to
escape from the poor local maxima and enhance the transferability of adversarial examples:

v L( advvyo’a)
|V L( advvyov )Hl7
it = Clipg {§ + - sign (g011)}

Ji+1 = [~ Gs + | 3)

where ¢, is the accumulated gradient at iteration ¢, and y is the decay factor of g;.

Diverse inputs I-FGSM (DI-FGSM) (Xie et al., 2019) applies random transformations 77(-) to
the input images at each iteration with probability p instead of only using the original images to
generate adversarial examples.

Scale-invariant Nesterov I-FGSM (SI-NI-FGSM) (Lin et al., [2020) integrates Nesterov Acceler-
ated Gradient (NAG) into I-FGSM to leverage the looking ahead property of NAG, i.e. substitutes
224% in Eq. 3| with 2¢% + « - 1 - g4, and build a robust adversarial attack. Due to the scale-invariant
property of DNN, the scale-invariant attack method is also proposed to optimize the adversarial
perturbations over the scale copies of the input images.

Variance tuning MI-FGSM (VMI-FGSM) (Wang & Hel 2021)) further considered the gradient
variance to stabilize the update direction and escape from the poor local maxima instead of directly
using the current gradient for the momentum accumulation:

VoL (277, yo10) + vy
VL (@27, 036) + wef|,

Jt+1 = M- gt + | 4

1 N
Vt41 = N Z VmL (I?ldv’ Yos 9) V L ( ad”7yo; 9) ’ (5)
it = Clipg {§ + - sign (g011)}

where v, 1 is the gradient variance as the ¢-th iteration, 2% = 3% 47, r; ~ U[—(B-€)%, (8-€)7)],
and U [ d bd] stands for the uniform distribution in d dimensions and f is a hyperparameter.

2.2 RELATIVE CROSS-ENTROPY (RCE) LOSS

To escape from the poor local maxima, RCE loss (Zhang et al.,|2022a)) is a new normalized CE loss
that guides the logit to be updated in the direction of implicitly maximizing its rank distance from
the ground-truth class:

€z,

Softmax(z;) = ———, 6)

f (2i) S
Leg(x,y,;0) = —log Softmax(zo) @)
Lrce(w,9010) = Lop(@, 40 0) — Z Lop(,ye;0) ®)

where 2, is the logit of the ground truth label y,, C' is the number of category, y. is the category with
index c. Note that, Proposition [7] explains the effectiveness of the RCE loss from the perspective of
our domain fuzzy eliminating in the targeted transfer attacks.

3 METHODOLOGY

In this section, the motivation is introduced first. Then, the weighted augmented cross-entropy
(WACE) loss is proposed and a corresponding theoretical analysis is described. By combining the
WACE loss with a few queries, our query prior-based method is mentioned. The fuzzy domain
eliminating based cross-entropy (FECE) loss is proposed and its theoretical analysis is described.
Finally, By combining the advantages of the WACE and FECE losses, the WFCE loss is proposed.

3.1 MOTIVATION

First, though the transferable prior-based black-box query attacks (Cheng et al., 2019} |Yang et al.,
2020) significantly reduce the query number, the average number of queries is still larger than 100.
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Algorithm 1 Query prior-based VMI-FGSM (QVMI-FGSM)

Input: The surrogate model f with parameters ¢; the victim model h with parameters 6,; the
WACE loss Ly acg; an example x with ground truth label y,; the magnitude of perturbation ¢;
the number of iteration 7" and decay factor y; the factor 3 for the upper bound of neighborhood
and the number of example NV for variance tuning; the maximum number of queries ) and number
of the wrong top-n categories 7.

Output: An adversarial example 2%,
a=¢/T
go = 0;vg =O;938d” =z
fort =0—T—1do

Query the logit output of the victim model:

h(zg®), ifQ>T
Zy={ h(@®), if@<Tate{|5lili=01,,Q-1} ©)
Zn, ifQ<TAtg{l5]ili=01-,Q-1}

Calculate the gradient g; 11 = VyLwace (28, yo; 05, Zi, 1)
Update g;11 by variance tuning-based momentum:

Volwace (28, y0; 07, Zn, 1) + v,
HVILWACE (-T?dv7yo; 9f7 Zh7ﬁ') + th1

gt+1 =gt +
Update v;41 by sampling NV examples in the neighborhood of z:
1 N v = aav =
e+l = o7 Zi:l Volwace (28, Yo 05, Zn, ) — VaLwace (20, y0; 0, Z1, 1)

Update z¢¢4 by applying the sign of gradient z¢{} = Clip, {z¢% + o - sign (gi+1) }
end for
xadv — m%d'u

return %%

The performance of these query attacks may be greatly affected by the query number limit policy
of the DNN applications. On the contrary, we can use the results of a few queries as the priors to
enhance the transferability of the black-box transferable attacks. Specifically, we find the preference
of the attacked victim model (i.e., Proposition @ Then a novel black-box transfer attack is designed
to achieve higher transferability through the combination of the preference and the results of a few
queries. Note that the detailed motivation is described in Appendix

Second, a common phenomenon occurs in the black-box transfer attacks: under the same attack
strength, with the increase of the attack strength, the attack success rate (ASR) of the white-box at-
tacks fastly converges to 100%, but the ASR of the black-box transfer attacks is slowly approaching
100%. This phenomenon shows that there is a fuzzy domain between the surrogate model and the
victim model for the black-box attacks. The fuzzy domain is a locally optimal region where the
generated adversarial examples make the surrogate model wrong but the victim model still correct.
Therefore, the fuzzy domain eliminating technique can enhance the transferability of the black-box
transfer attacks. In this paper, the temperature scaling and fuzzy scaling are used to eliminate the
fuzzy domain.

3.2 WEIGHTED AUGMENTED CROSS-ENTROPY LOSS

In this section, we first introduce the characteristics and preference of the victim model, and then
propose the WACE loss based on the preference and give the theoretical analysis.

For the iterative gradient-based attacks, let f and h denote the surrogate model and the victim model,
respectively. We use 0y and ¢, to denote the parameters of the surrogate model and the victim
model, respectively. In the following, Definitions[T|and [2] are mentioned to define the gradient angle
between f and h, and the top-n wrong categories and the top-n wrong categories attack success rate
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(ASR) respectively, which are used in the introduction and Proofs of Propositions[T]and2]to analyze
the preference of the victim model. Propositions[I]and [2] are proved in Appendices and[A.2]

Definition 1 (Gradient angle between the surrogate model and the victim model) For the t-th itera-
tion adversarial example ¢ of the surrogate model f, the angle between ¥ , L(x3%1,; 0 ¢) and

V. L(x3% 1y, 0},) is the gradient angle between f and h at iteration t.

Proposition 1 When the step size « is small, the better the transferability of the transfer black-box
attack, the smaller the gradient angle between the surrogate model and the victim model.

Definition 2 (Top-n wrong categories and top-n wrong categories attack success rate (ASR)) For
the example (x,y,), if the output of the victim model h is h(x), the top-n wrong categories are Ti
number of categories with the largest value in h(x) except the ground truth y,, which is denoted as
{y+,|i < n}. The top-n wrong categories ASR denotes the accuracy of the adversarial example x*%
classified as the wrong category in the top-n wrong categories.

Proposition 2 When the victim model h is attacked by the white-box gradient-based attacks, the
successful attacked adversarial examples prefer to be classified as the wrong categories with higher
probability (i.e. the top-n wrong categories {y,|i < n}). Meanwhile, the higher the probability of
the wrong category, the more likely the adversarial example is to be classified as this category.

Therefore, according to Propositions|TJand[2)(the details in Appendix[A.3)), for the untargeted attack,
the weighted augmented CE (WACE) loss is proposed to enhance the transferability of the adver-
sarial examples. Besides maximizing the loss function Lo g (29%,y,; 0 ¢), the WACE loss also
minimizes the loss function L¢ g (2%, Yr.;07) where y,, belongs to the top-n wrong categories

{ynli <n}:
_ 1 n
Lwack (290301, Z,7) = Lo (2,50:0f) — — Zi:l w; - Leg (2,yr,;0f) (10)
Zh,7;
Zj:l e
where Z), = h(z) = [2n,1,2n,2, - , 2n,c] 1s the query logit output of the victim model & to , 7t is

the number of the top-n wrong categories. Note that Z?:l w,; = 1, and the higher the logit value of
the wrong category, the larger the weight w;.

According to Proposition [T} the following Theorem [I] verified that the transferability of the transfer
black-box attack based on the WACE loss is better than that based on the RCE and CE losses.

Theorem [T]is proved in Appendices and

Theorem 1 The angle between ¥V , Ly ace(x3%, yo; 0¢,Zy,n) and VLo (x8% y,;01) is less
than the angle between ¥V, Lrcp(28%,y0;05) and VLo (28, y,; 01,), and the angle between
VaLop(@{™, yo; 05) and Vo Lop(x{%, yo; 0n).

Propositions|l{and [2|and Theorem [1]are the theoretical analysis of the WACE loss, which explained
the high transferability of the WACE loss-based attacks.

3.3 QUERY PRIOR-BASED ATTACKS

The family of fast gradient sign methods in Section [2.1] uses the CE loss. However, on the premise
of allowing a few queries, the CE loss is replaced by the WACE loss in the family of fast gradient
sign methods. Therefore, VMI-FGSM (Wang & He, 2021)) is transformed into query prior-based
VMI-FGSM, namely QVMI-FGSM, which is described in Algorithm [I]in detail. Specifically, two
changes are made, compared with VMI-FGSM algorithm. First, the CE loss is replaced by our
WACE loss. Second, according to Eq. [0} if the maximum number of queries () is greater than or
equal to the number of attack iteration 7', QVMI-FGSM queries the logit output of the victim model
at each iteration, otherwise, QVMI-FGSM starts from 0 and performs equidistant query with L%J

as the interval.

Similarly, FGSM (Goodfellow et al.,|2015)), I-FGSM (Kurakin et al.|[2017), MI-FGSM (Dong et al.,
2018), DI-FGSM (Xie et al.l 2019) and SI-NI-FGSM (Lin et al., 2020) are transformed into Q-
FGSM, QI-FGSM, QMI-FGSM, QDI-FGSM and QSI-NI-FGSM by combining the query priors.



Under review as a conference paper at ICLR 2023

3.4 FuzzY DOMAIN ELIMINATING BASED CROSS-ENTROPY LOSS

In this section, we first define the fuzzy domain in the untargeted attacks and targeted attacks, re-
spectively. Then, the temperature scaling and fuzzy scaling are introduced. Finally, the FECE loss
is proposed based on these two scaling techniques and gives the theoretical analysis.

In Definitions [3| and 4] p is a probability threshold to identify whether the adversarial example &
is locally optimal, ¢ and 7 are respectively the wrong category with the highest probability and the
target category, and ps and p, are their corresponding probability in the probability vector of the
adversarial example & predicted by the surrogate model f, respectively. The ground truth of x is y,.

Definition 3 (The Fuzzy Domain in the untargeted attacks) In the spherical neighborhood B (x, €)
with the input x as the center and e as the radius, the subdomain containing the local optimal region
of the surrogate model f is Aﬁ p) = {Z|% € B(x,€) Aps < p}. On the contrary, the subdomain
without the local optimal region is Ay | (p) = B(x,€) — Ay _ (p) = {Z|& € B(x,€) Ap: > p}
For the victim model h, in the domain B (x,€), the subdomain with correct classification is
B+ = {%|% € B(x,€) Nargmaxh (&) = y,}, and the subdomain with wrong classification is
By = B(z,e) — By = {&|& € B(z,¢) Nargmaxh (&) # yo}. Therefore, in the domain
B (x,¢€), the fuzzy domain in the untargeted attacks (i.e., Mf\f}, h) where N'T' represents the non-
targeted attacks) is the region that makes the surrogate model fall into the local optimum and the
victim model classification correct:

M(ﬂc f,h) Af»— (p) N ]B%h,-‘r (12)

Definition 4 (The Fuzzy Domain in the targeted attacks) In the spherical neighborhood B (x,€)
with the input x as the center and € as the radius, the subdomain containing the local optimal region
of the surrogate model f is Ay _ (p) = {&|& € B(x,€) Ap; < p}. On the contrary, the subdomain
without the local optimal region is Ay 1 (p) = B(z,¢) — Ay _ (p) = {&|& € B(z,¢) Apr = p}.
For the victim model h, in the domain B (x, €), the subdomain classified as the target category T is
By 4+ = {j‘:|§: € B(z,e) A arg max h (&) =y, }, and the subdomain classified as other categories
is B, = B(x,e) =B+ = {22 € B(z,¢) ANarg maxh(A) # y.}. Therefore, in the domain
B (x,¢€), the fuzzy domain in the targeted attacks (i.e., M( ) where T'a represents the targeted
attacks) is the region that makes the surrogate model fall into the local optimum and is classified as
other categories by the victim model:

My = Ag— (p) B - (13)

The recent researches (Dong et al.| 2018} Xie et al.| 2019} [Lin et al.| 2020; Wang & Hel 2021)) are
trying to avoid stucking into the local optimum of the generated adversarial examples and make
progress on the transferability. Therefore, the local optimal region in Ay _ is closely related to By,
in the untargeted attacks and By, _ in the targeted attacks.

Assumption 1 Because the local optimal region in Ay _ is closely related to By,  in the untar-
geted attacks and By, _ in the targeted attacks, eliminating the domain Ay _ can achieve the task of
eliminating the fuzzy domain Mf\; Tf ny OF M@“ £.h)

Based on Assumption E], the temperature scaling and fuzzy scaling are used to eliminate Ay _.
The temperature scaling was firstly proposed by Hinton et al.| (2015) on knowledge distillation.
The fuzzy scaling uses a penalty parameter C to apply to the logit of the correct category in the
untargeted attacks (/C > 1) or the logit of the target category in the targeted attacks (0 < I < 1).
By combining the temperature scaling and fuzzy scaling, the fuzzy domain eliminating based cross-
entropy (FECE) loss is proposed for the untargeted attacks:

lC zo/T
Zo eZc 7Z =0
FESoftmazx (z;;T,K) = < /T+z€:f Frere " (14)
e’C-zO/TJrECC:lAC#D ezc/T ) { 7é o
LFECE' (.’E, Yo, 97 Ta IC) = - log FESoftmax (Zo; 7-7 ’C) (15)

where 7 is the temperature parameter in the temperature scaling (7 > 1), FESoftmax is a fuzzy
domain eliminating based Softmax. For the targeted attacks, the ground truth category y, replaces

as y, in Equations[T4]and
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Based on Assumption[I} Propositions[3|and [ prove that the temperature scaling (7 > 1 and £ = 1)
can eliminate a part of the fuzzy domain in the untargeted attacks and targeted attacks, respectively.
Propositions [5] and [0 prove that the fuzzy scaling can eliminate a part of the fuzzy domain in the
untargeted attacks (7 = 1 and K > 1) and targeted attacks (7 = 1 and 0 < K < 1) respectively.
Note that Propositions [3] @} [ and [6] are proved in Appendix

Proposition 3 In the untargeted attacks, when p > 0.5, the temperature scaling (T > land KK = 1)
can eliminate a part of the fuzzy domain M?;Tf h)-

Proposition 4 In the targeted attacks, when p > 0.5, the temperature scaling (T > 1 and K = 1)
can eliminate a part of the fuzzy domain M%;“ £.h)"

Proposition 5 In the untargeted attacks, the fuzzy scaling (T = 1 and IKC > 1) can eliminate a part

of the fuzzy domain Mf\; Tf hy:

Proposition 6 In the targeted attacks, the fuzzy scaling (T = 1 and 0 < K < 1) can eliminate a
part of the fuzzy domain Mz:vaf -

3.5 WEIGHTED AUGMENTED FUZZY DOMAIN ELIMINATING BASED CROSS-ENTROPY LOSS

To combine the advantages of the WACE and FECE losses, the weighted augmented fuzzy domain
eliminating based cross-entropy (WFCE) loss is proposed:

LWFCE (.’L', Yo; 0f7 Zh7 n, T7 ]C) =
1 n
LFECE (ZL’, Yo gfv Ta IC) - % Zi:l w; * LFEC'E ($, Yo, 9f7 T» ’C) (16)

4 EXPERIMENTS

To validate the effectiveness of the proposed query prior-based attacks and the fuzzy domain elimi-
nating technique, we conduct extensive experiments on CIFAR10/100 (Krizhevsky| 2009) and Im-
ageNet (Russakovsky et al.| [2015). The detailed experimental setup is described in Appendix
and all experimental results show in Appendix [B] In this section, we compare our method with com-
petitive baselines under various experimental settings. Experimental results demonstrate that our
method can significantly improve the transferability of the baselines. Finally, we provide further
investigation on hyper-parameters 7 and @) used for the query prior-based attacks, and 7 and K
used for the FECE loss based transfer attacks. The detailed experimental analysis is shown in Ap-
pendix B} All experiments are run on a single machine with four GeForce RTX 2080tis and the deep
learning framework is Pytorch.

4.1 COMPARISON WITH OR WITHOUT THE QUERY PRIORS ON THE UNTARGETED ATTACKS

Attacking a naturally trained model. As shown in Tables [I] and 0] when the attack
strength ¢ = 8/255, in comparison with different loss functions (the CE and RCE losses), the
query prior-based attacks with the WACE loss can not only significantly improve the transfer attack
success rate of the black-box setting but also improve the attack success rate of the white-box setting
on different surrogate models and datasets.

Attacking an adversarially trained model. As shown in Tables[3|and[9] in comparison with differ-
ent loss functions (the CE and RCE losses), the query prior-based attacks with the WACE loss can
enhance the transferability of the gradient iterative-based attacks when attacking the adversarially
trained model and the attack strength e = 8/255 on different surrogate models.

Attacking the other models. VMI-FGSM is selected as the baseline to compare the transferability
to the other models where a surrogate model and a query model are used to generate adversarial
examples to attack many other models. As shown in Tables [T3] 4} [I3] [T6] [I7] and [T§] when the
attack strength ¢ = 8/255, in comparison with different loss functions (the CE and RCE losses), the
query prior-based VMI-FGSM with the WACE loss can enhance the transferability of the generated
adversarial examples on different surrogate models, query models and datasets (except for the case
of the RCE loss in Table [16)).
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4.2 COMPARISON WITH OR WITHOUT THE FUZZY DOMAIN ELIMINATING TECHNIQUE ON
THE UNTARGETED ATTACKS

Attacking a naturally trained model. As shown in Tables|l|and |2} in comparison with different
loss functions (the CE and RCE losses), our FECE loss can significantly enhance the transferability
of the gradient iterative-based attacks when attacking the naturally trained model and the attack
strength ¢ = 8/255 on different datasets (CIFAR10/100). Table [3| shows that our FECE loss can
enhance the transferability of the latest gradient iterative-based attacks.

Attacking an adversarially trained model. As shown in Table [3| in comparison with different
loss functions (the CE and RCE losses), our FECE loss can enhance the transferability of VMI-
FGSM and keep (or slightly decrease) the transferability of the other attacks when attacking the
adversarially trained model on ImageNet.

Combination of the query priors and fuzzy domain eliminating technique in the untargeted
attacks. As shown in Tables and 3| when attacking the naturally trained model, in comparison
with our WACE and FECE losses, our WFCE loss can further improve the transferability of the
gradient iterative-based attacks on different datasets.

4.3 COMPARISON WITH CURRENT BLACK-BOX QUERY ATTACKS ON THE UNTARGETED
ATTACKS

As shown in Tables and E], when the attack strength ¢ = 8/255 and the allowed query
number () = 10, the attack success rate of our QVMI-FGSM is much larger than that of Square
and PRGF when attacking the naturally trained model and adversarially trained model on different
surrogate models and datasets (except for ImageNet with VGG16 as the surrogate model to attack
the adversarially trained models when compared with Square).

4.4 ABLATION STUDY ON THE UNTARGETED ATTACKS

Different numbers of the top-n wrong categories 7 and the query number (). Figures [5] and
[6] respectively evaluate the effect of different 72 and ) on the attack success rates of five naturally
trained victim models and two adversarially trained victim models when these victim models are
attacked by QI-FGSM (e = 8/255) with VGG16 for CIFAR10/100 and ImageNet. As shown in
Figure[5] when 7 is greater than a certain threshold, the attack success rate will not be improved. As
shown in Figure [6] the more the query, the greater the attack success rate.

Different sizes of the penalty parameter  and the temperature 7. Figures[9|and[I0]respectively
evaluate the effect of different /C and 7 on the attack success rates of ResNet50 to VGG16 using
various transfer attacks for CIFAR10/100 and ImageNet. As shown in Figure 9} with the increase
of K, the attack success rates of the gradient iterative-based attacks are significantly increased on
CIFAR10 except for SI-NI-FGSM. Complementarily, as shown in Figure [I0] with the increase of
T, the attack success rate of the SI-NI-FGSM is increased on CIFARI10, the attack success rates
of all gradient iterative-based attacks are significantly increased on CIFAR100 and the attack suc-
cess rates of the latest gradient iterative-based attacks (MI-FGSM, SI-NI-FGSM and VMI-FGSM)
are increased by a reasonable 7 on ImageNet. Figure [IT] further explores the optimal parameter
combinations of K and 7 on different datasets, which are summarized in Table[30]

4.5 COMPARISON WITH OR WITHOUT THE FUZZY DOMAIN ELIMINATING TECHNIQUE ON
THE TARGETED ATTACKS

As shown in Figure[12] slightly decreasing X from 1 can slightly increase the targeted attack success
rates of several gradient iterative-based attacks on CIFAR10/100. As shown in Figure [I3] with the
increase of the T, the targeted attack success rates of almost all the FECE (KC = 1) based attacks
are increased and close to that of the RCE based attacks (Propositions ] and [7]explain the result).
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5 RELATED WORK

5.1 ADVERSARIAL ATTACKS

Black-box Transfer Attacks are divided into five categories, i.e. feature destruction-based attacks,
gradient generation-based attacks, data augmentation-based attacks, model ensemble-based attacks,
model specific-based attacks, respectively. The feature destruction-based attacks (Wu et al.,[2020bj
Inkawhich et al.l 2019} [2020; [Huang et al., 2019; Zhang et al., [2022b} |Zhou et al., [2018}; |Ganeshan
et al., 2019; |Wang et al.l |2021b) enhance the transferability of adversarial examples by destroying
the features of the intermediate layers or critical neurons. The gradient generation-based attacks (Li
et al.,[2020a} |Guo et al., 2020; Xie et al.,[2019; |Gao et al.,[2020; [Lin et al., 2020; |Dong et al.} 2018;
Han et al.|[2022;|Wang & Hel [2021) enhance the transferability of adversarial examples by changing
the way of gradient generation. The data augmentation-based attacks (Wang et al., 2021a; |Li et al.,
2020b}; Zou et al., |2020; Huang et al., | 2021) increase the input diversity to enhance the transferability
of adversarial examples. The model ensemble-based attacks (Liu et al.,2017;|Li et al., 2020c; | Xiong
et al., 202 1)) use the common attention of various models to enhance the transferability of adversarial
examples. The model specific-based attacks (Wu et al., 2020a) use the high transferability of some
structures to enhance the transferability of adversarial examples, e.g. skip connection.

Black-box Query Attacks are divided into two categories, i.e., pure query attacks and transferable
prior-based query attacks. The pure query attacks (Chen et al., 2017; [Andriushchenko et al., [2020;
Zhang et al.| [2020) estimate the gradient or update the attack optimization model by querying the
output of the victim model. Recently,|Zhang et al.| (2020) utilized the feedback knowledge not only
to craft adversarial examples but also to alter the searching directions to achieve efficient attacks.
The transferable prior-based query attacks (Cheng et al.| 2019;|Yang et al., 2020; [Tashiro et al.,[2020)
use the prior knowledge of the surrogate model to decrease the query number. Recently, Tashiro et al.
(2020) proposed Output Diversified Sampling to maximize diversity in the target model’s outputs
among the generated samples.

5.2 ADVERSARIAL DEFENSES

Adpversarial training (Madry et al.| 2018} Zhang et al., |2019; |Wong et al.| [2020; [Pang et al.| [2021)
is the most effective method to defend against adversarial examples. Recently, [Zhang et al.|(2019)
designed a new defense method to trade off the adversarial robustness against accuracy. Wong
et al.| (2020) discovered that adversarial training can use a much weaker and cheaper adversary, an
approach that was previously believed to be ineffective, rendering the method no more costly than
standard training in practice. |Pang et al.|(2021) investigated the effects of mostly overlooked training
tricks and hyperparameters for the adversarially trained models.

6 CONCLUSION

Though transferable priors decrease the query number of the black-box query attacks, the average
number of queries is still larger than 100, which is easily affected by the number of queries limit
policy. On the contrary, we can utilize the priors of a few queries to enhance the transferability
of the transfer attacks. In this work, we propose the query prior-based method to enhance the
transferability of the family of FGSMs. Specifically, we find that: (i) The better the transferability of
the transfer attack, the smaller the gradient angle between the surrogate model and the victim model.
(ii) The successful attacked adversarial examples prefer to be classified as the wrong categories with
higher probability by the victim model. Based on the above findings, the weighted augmented cross-
entropy (WACE) loss is proposed to decrease the gradient angle between the surrogate model and
the victim model for enhancing the transferability of adversarial examples. In addition, because the
existence of the fuzzy domain makes it difficult to transfer the adversarial examples generated by the
surrogate model to the victim model, the fuzzy domain eliminating technique, which consists of the
fuzzy scaling and the temperature scaling, is proposed to enhance the transferability of the generated
adversarial examples. Theoretical analysis and extensive experiments demonstrate the effectiveness
of the query prior-based attacks and fuzzy domain eliminating technique.
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ETHICS STATEMENT

We do not anticipate any negative ethical implications of the proposed method. The datasets (CI-
FAR10/100 and ImageNet) used in this paper are publicly available and frequently used in the do-
main of computer vision. The proposed method is beneficial to the development of Al security.

REPRODUCIBILITY STATEMENT

Appendix [B.T] introduces the details experimental setup, including datasets, models, baselines and
hyper-parameters. Most baselines are implemented in a popular pytorch repository Kim| (2020).
Python implementation of this paper and all baselines are available in the supplementary materials.
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A PROOFS

We provide the proofs in this section.
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Figure 1: The cosine value of the gradient angle between the surrogate model and the victim model
at each iteration when the surrogate model is attacked by different methods for CIFAR10/100 and
ImageNet. For example, in subfigure (1), VGG16 as the surrogate model and ResNet50 as the
victim model are attacked by different transfer attacks for CIFAR10. Note that the attack strength
€ = 8/255.
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Figure 2: The top-n wrong categories attack success rate (ASR) (%) at each iteration ¢ when the
model is attacked by I-FGSM (white-box setting) for CIFAR10/100 and ImageNet. For example,
in subfigure (1), VGG16 is attacked by I-FGSM for CIFAR10. The successful attacked adversarial
examples prefer to be classified as the top-n wrong categories. With the increase of the iteration, the
top-n wrong categories ASR gradually increases and approaches 100%. Note that the attack strength
e = 8/255.

A.1 PROOF OF PROPOSITION[]

Proposition [T} When the step size o is small, the better the transferability of the transfer black-box
attack, the smaller the gradient angle between the surrogate model and the victim model.

Note that we explore the relationship between the cos ) (¢ is the gradient angle between the surro-
gate model and the victim model) and the transferability on the same surrogate model and victim
model pair using different transfer attack methods, but|Liu et al.|(2017) and |Demontis et al.[(2019)
explore the relationship between the cos ¢ and the transferability on the different surrogate and vic-
tim model pairs using the same transfer attack method.
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Figure 3: The average top-n wrong categories attack success rate (ASR) (%) at each iteration ¢ when
the model is attacked by I-FGSM (white-box setting) for CIFAR10/100 and ImageNet. For example,
in subfigure (1), VGG16 is attacked by I-FGSM for CIFAR10. The smaller 72, the higher the average
top-n wrong categories ASR. Therefore, the higher the probability of the wrong category, the more
likely the adversarial example is to be classified as this category. Note that the attack strength
€ = 8/255.

Proof (Empirical Proof) To verify the correctness of Proposition [l we compare the relationship
between the attack success rates of the family of fast gradient sign methods and the cosine values
(i.e., the average cosine values of the gradient angles between the surrogate model and the victim
model at all iterations) of the family of fast gradient sign methods when the attack strength, number
of iteration and step size are ¢, T, o« = 8/255,10,0.8/255. If the sort of the attack success rates is
the same as the sort of the cosine values, Proposition[l|is correct with high confidence. Empirically,
Proposition|[l|is verified on different surrogate models and datasets as follows.

When VGG 16 is the surrogate model and ResNet50 is the victim model for CIFAR10, Table[7|shows
that the sort of the attack success rates is VMI-FGSM (76.60%) > MI-FGSM (70.75%) > SI-NI-
FGSM (68.10%) > DI-FGSM (62.80%) > I-FGSM (61.45%) > FGSM (41.90%), and the Figure[I}
(1) shows that the sort of the cosine values is also basically VMI-FGSM > MI-FGSM > SI-NI-FGSM
> DI-FGSM > I-FGSM > FGSM.

When VGGIG is the surrogate model and ResNet50 is the victim model for CIFARI00, Table [8]
shows that the sort of the attack success rates is VMI-FGSM (77.70%) > MI-FGSM (69.30%) >
SI-NI-FGSM (64.35%) ~ FGSM (63.15%) > DI-FGSM (59.30%) > I-FGSM (50.70%), and the
Figure[I}(2) shows that the sort of the cosine values is also basically VMI-FGSM > MI-FGSM >
SI-NI-FGSM ~ FGSM > DI-FGSM > I-FGSM.

When VGG 16 is the surrogate model and ResNet50 is the victim model for ImageNet, Table 9 shows
that the sort of the attack success rates is VMI-FGSM (62.4%) > SI-NI-FGSM (56.6%) > MI-FGSM
(46.5%) > DI-FGSM (38.1%) > FGSM (32.8%) > I-FGSM (27.8%), and the Figure [I}(3) shows
that the sort of the cosine values is basically VMI-FGSM > FGSM > SI-NI-FGSM > MI-FGSM >
DI-FGSM > I-FGSM.

When ResNet50 is the surrogate model and VGGIG is the victim model for CIFARIO, Table[I|shows
that the sort of the attack success rates is VMI-FGSM (80.40%) > MI-FGSM (77.25%) > SI-NI-
FGSM (73.00%) > DI-FGSM (67.65%) > I-FGSM (59.85%) > FGSM (44.20%), and the Figure[I}
(4) shows that the sort of the cosine values is also basically VMI-FGSM > MI-FGSM > SI-NI-FGSM
> DI-FGSM > I-FGSM > FGSM.

When ResNet50 is the surrogate model and VGGI16 is the victim model for CIFARI00, Table
shows that the sort of the attack success rates is VMI-FGSM (84.40%) > MI-FGSM (77.35%) >
SI-NI-FGSM (72.90%) > DI-FGSM (68.40%) > FGSM (64.80%) > I-FGSM (61.45%), and the
Figure[I}(5) shows that the sort of the cosine values is also basically VMI-FGSM > MI-FGSM >
SI-NI-FGSM > DI-FGSM > I-FGSM > FGSM.
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When ResNet50 is the surrogate model and VGGI6 is the victim model for ImageNet, Table 3| shows
that the sort of the attack success rates is VMI-FGSM (69.1%) > SI-NI-FGSM (68.7%) > MI-FGSM
(55.4%) > DI-FGSM (52.6%) > FGSM (42.6%) > I-FGSM (32.1%), and the Figure[I}(6) shows
that the sort of the cosine values is also basically VMI-FGSM > FGSM > SI-NI-FGSM > MI-FGSM
> DI-FGSM > I-FGSM.

In conclusion, by discussing the above six cases for CIFAR10/100 and ImageNet datasets, for the
family of iterative fast gradient sign methods except for FGSM, Proposition |l|is correct with high
confidence. Therefore, decreasing the cosine value of the gradient angle between the surrogate
model and the victim model can enhance the transferability of adversarial examples.

Proof (Theoretical Proof) Assuming that the perturbatmn gradients of the surrogate model f and
the victim model h at the attack iteration t are ¥V, L(x¢%,yo;0) and ¥V, L(x¢%, yo; 0,), respec-
tively, and ¥ is the angle of them. Then, the perturbation gradient of the surrogate model [ (i.e.,

adv

Vo L(@3% y,;0;)) is decomposed as the parallel component VHL(
component V+ L(x¢%, y,; 0 1), which satisfied that

Yoy 0¢) and the vertical

VL (8%, 403 05) | VoL (277, yo; 0) (17)
VoL (8%, y0;05) LV L (2%, y0; 0n) (18)
VoL (207, y0;05) = VL (20, y0; 05) + VEL (2§, yo; 0f) (19)

For the victim model h, assuming that the variation of the loss funtion of the victim model h caused
by the perturbation V , is

A}LL (vx) =L ( gdv + Vi, Yo; 9h) - ( advﬂ/o» oh) (20)
where A}LL() represents the variation of the loss function of the victim model h.

According to Lemmall] for the victim model h, three properties (i.e., Equations[21] 22)and 23)) are
achieved.

For the first property, in the case of moving the same distance o (satisfied Lemma [I)) along the
gradient direction, the variation of the loss L (xt s Yos Hh) along the direction of the parallel

adv

component VLLL(
VLL( adv7 Yo Gf),

H adv . L adv :
Ah Vi L( ,yo,Qf) oAb <a~ VLL(advyyoyaf) ) Q1)
HVHL advvyo;gf)HQ HVQ;L( ,yo,ef)Hz

,Yo; 07) is greater than that along the direction of the vertical component

adv

For the second property, the variation of the loss L ( s Yos Hh) along the direction of the parallel

adv

component V!L( ,Yo; 07) is positively correlated with the moving distance o, i.e.,

VIL (2 “d“,yo;ef)
[Fho s,

VIL (2 adv,yo;ef)

A’i - i
o e )

>A | (a—Ay) -

(22)

where A, represents the variation of the moving distance a.

. . VL (28 yo;0 .
For the third property, the degree of correlation between A}LL <a ||VL( - Y ; f))‘ ) and o is
£ Y030
2

vi_ ( adv Yo' Hf)
%2 2ot o),

v!L( adv Y ef) ( VLL( adv Y Qf)
Al (a+ Ay) Al + A [(a—Ay)- 2 >
g HV“L ‘“‘”,yo;&f)H2 " [VEL (2%, yo3 05) |,

greater than that between A% (a . ) and o, ie.,

VHL adv 0;9 LL adv, 0;0
Ah ” ( 7y f) +Ah ( VJ_ ( o yef) > (23)
HV L xgdv yO;Gf)HQ HV L( 1 Yos f)HQ
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where A, represents the variation of the moving distance c.

At the gradient attack iteration t+1, assuming that the generated adversarial example J;?ﬁ'{ in range
B (a:?d'”, a) (i.e., in the sphere with radius o centered on the adversarial example x?d“ ). Hence, for

the surrogate model f, when the adversarial example x%4° moves the allowed maximum distance o
along the direction of the perturbation gradient V , L(z¢% | y; ), the moving distance along the

direction of the parallel component VLLL(x?d“, Yo; 07) is

al = a-cos, (24)

the moving distance along the direction of the vertical component V= L(x¢% y,; 0 r) is

1

ot =a-sind (25)
Then, we discuss the angle U in three cases, i.e., g <9 < g 0 <¥ < % and% <9 <,
respectively.
First, when % <9< g or0 < cost < g ~ 0.707, if the angle 9 is reduced by Ay,
Ay =a-[cos (¥ — Ay) —cosd] = - (Ay - sind) (26)
Ay =a-[sin (¥ — Ay) —sind] = a - (—Ay - cos V) (27)
= |Aau‘ > |Aaj_| (28)

Therefore, according to Equations[21| 22| 23|and 28} if the angle ¥ is reduced by Ay,
Vi L(@f ™, yoi 7) Vi L™, yo;0y)

A’IL/((CKH + |A(XH |) : ’ adv
HVL'EL(HJ?d”,yoﬂf)H [V L(@f®, yo; 05)
2

)+ AL (0" —[Aq2])

VAL yo; 0)
HVQL(JJ?”“’, Yo 0f) H2

. Vi_L(x?dvayo;af)
| V& L(xf%, yo3; 05) |,

A (@l 4 ]442]) - )+ AL((a" = |Aq1]) ) >

LL adv o
)+ Aot eI 29)
HvxL(xf 7y0;0f)H2

Al YL i)
EEET)

According to Assumption [2] in a small local area (i.e., « is small enough, which is satisfied
Lemma , the variation of the loss L(x3%,y,;0},) along the direction of the perturbation gra-
L VeL(@¢?,y0i0y)

| VoL y0505)]|,
sum of the variation of the loss L(x%%"y,; 0},) along the directions of the parallel and vertical com-

VL8 y0305) Bl VoL@ ,yoi6)
) I A ]
to Equation when the angle ¥ is reduced by Ay, the loss L(z$%  y,; 01,) is increased. According
to the statistical results of Figure[l| the average cosine of the angle ¥ between the latest transfer
attack generated perturbation gradients of the surrogate model and the victim model is far less than
0.707 (such as the maximum average cosine value is less than 0.25 on CIFARIO0, 0.18 on CIFAR100
and 0.05 on ImageNet). Therefore, with the latest transfer attack method as the baseline, increasing
the cosine of the angle ¥ can effectively improve the transferable attack success rate.

Second, when 0 < ¥ < % or 0.707 < cos?) < 1, if the angle 1) is reduced by Ay, Equation?l
may not be satisfied. Therefore, increasing the cosine of the angle 9 may not effectively improve the
transferable attack success rate.

Third, when g < ¥ < m, if the angle 9 is reduced by Ay, Equationdoes not hold. Therefore,
increasing the cosine of the angle ) can not improve the transferable attack success rate. According
to the statistical results of Figure[l} the average cosine of the angle ¥ is greater than 0 on the latest
attack methods, so 5 < ¥ < m usually does not happen.

dient of the surrogate model f (i.e., A’i(a )) is positively correlated with the

ponents (i.e., Al (al - | )). Therefore, according

Overall, with the latest transfer attack method as the baseline, increasing the cosine of the angle
can effectively improve the transferable attack success rate.
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Lemma 1 When « is small enough, the loss L( Y Yo; On) increases fastest along the direction of
the perturbation gradient V , L(z¢%  y,; Gh) in the region B(x¢4", ) (i.e., in the sphere with radius
o centered on the adversarial example x{ dv),

Proof When o is small enough, in the region B(z3%

L(z8%  yo; 01,) along the direction of the permrbcmon gradlent Vo L(x¢
to the Lipschitz constant of the loss function L(z¢%y,;0y) in this region.

), the rate of variation of the loss
adv v, 01) is almost equal

Assumption 2 In a small local area (i.e., o is small enough, which is satisfied Lemma [I)), the
variation of the loss L(x8% | y,; 05) along the direction of the perturbation gradient of the surrogate

model f (i.e., A (c - HVV LL ((;;dv ;" f;gff))‘l )) is positively correlated with the sum of the variation of
0i01) ],

the loss L(z¢, yo, 01) along the directions of the parallel and vertical components (i.e., A’i(a“ .
VHL(m“dU Yo3bs) Ah VEL(z2, Yo305)
||VHL(£EadU yo7‘9f)|| + ( HVJ‘L(J:Gd’U yo§9f)||2)).

Lemma [I] and Assumption [2] are used in the Theoretical Proof of Proposmon [[] Note that, As-
sumption [2[ is reasonable. When « is small enough, in the region B(z¢’, «), the rate of varia-

adv

tion of the loss L(z¢%, y,;0;) along the direction of the parallel component VHL( Yo 07)
(which is parallel to V. L(z “d”, Yo; Or)) is almost equal to the Lipschitz constant of the loss func-
tion L(x3% y,; 05 ) in this region. Meanwhile, in the region B(z¢?, o), the rate of variation of the
loss L(z¢ ad Y. 1o; 0p) along the direction of the vertical component VLL(.Z't ,Yo: 0f) (which is per-

)
pendicular to V, L(2¢%, y,; 01,)) is almost 0. Therefore, A" (a - Ve L(@™ poi67)
7ol

. tivel
VL], S POSiVely
VH L(:c“dv Yo30¢) + Ah ( VLL(m?d Yo0i0)) )

correlated with A% LT,

HVH L(w“d“ ymef)H

However, as « increases, the Lipschitz constant of the loss function L(x?9" v,;6;) in the re-
gion B(x¢4 ) also increases and is greater than the rate of variation of the loss L(z¢%, y,;05)
along the direction of the parallel component VL‘EL( 9dv y,:0;). Meanwhile, in the region
B(x$% ), the rate of variation of the loss L(z¢%, y,;0;) along the direction of the vertical
component VLL( “d“,yo,ef) becomes uncertain. Therefore, the positive correlation between
sYos \\L(£adv7 0i0r) V%L(wadvvyoﬂg ) :
Ah Vo L(@¢" y0305) d AP \ Yoils Ab(at . z Ly b i
(cv HV L(a2v, yo;gf)HQ) an ( HVHL(tad“ Yo ef)H )+ ( ||v;L(mgdv,yo;0f)H2) Wi
weaken, which is why the transferable attack success rate of the gradient iterative-based attacks
(I-FGSM, MI-FGSM, DI-FGSM, SI-NI-FGSM and VMI-FGSM) is higher than that of FGSM (be-
cause the attack step length of the gradient iterative-based attacks is less than that of FGSM).

Corollary 1 When 0 < cos? < 0.707, increasing cos?) is a necessary and insufficient condition
to improve the transferability of the generated adversarial examples. To effectively improve the
transferability, a small step size o is also needed.

Proof (Theoretical Proof) For 0 < cosv < 0.707, if «v is small and satisfied Lemmal so Propo-
sition |l| is correct. As o increases, the Lipschitz constant of the loss function L(z%, y,;05)
in the region B(x3% «) also increases and is greater than the rate of variation of the loss

adv

L(z$% yo; 01) along the direction of the parallel component VUDL( 2 Yo; 0f). Meanwhile, in

the region B(z§®, ) the rate of variation of the loss L(x3%,y,; Hh) along the direction of the
vertical component V+ L(x “d”, Yo; 07) becomes uncertain. Therefore, the positive correlation be-

h VL h VL yoi0r) h Vo Ly yoi6y)
tween A} (o 92 L™ ef)|| ) and A% (al HV”L TT— H )+ A% (ot ||VLL(wadU yo;‘gf)”Z)

adv
will weaken. When « is large to a certain extent, A («a HVV LL((;M ; 99 1N ) and Al (al -
o3V f

VI L(@$" y0305) )+Ah( 1. VaL® yei0y)
[ZhL e yoiop)| V& L(g? yo:0)]],
tion[29 does not hold, so Proposition[l|is incorrect. Therefore, a small step size o is a key parameter
to effectively improve the transferability.

) are no longer positively correlated. Then Equa-

Proof (Empirical Proof) As shown in Figure [I}(3), when VGGI16 is the surrogate model and
ResNet50 is the victim model for ImageNet, the sort of the cosine values is basically FGSM > SI-NI-
FGSM > MI-FGSM > DI-FGSM > I-FGSM, but the sort of the attack success rate is SI-NI-FGSM
(56.6%) > MI-FGSM (46.5%) > DI-FGSM (38.1%) > FGSM (32.8%) > I-FGSM (27.8%).
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As shown in Figure[I}(6), when ResNet50 is the surrogate model and VGGI6 is the victim model for
ImageNet, the sort of the cosine values is basically FGSM > SI-NI-FGSM > MI-FGSM > DI-FGSM
> [-FGSM, but the sort of the attack success rate is SI-NI-FGSM (68.7%) > MI-FGSM (55.4%) >
DI-FGSM (52.6%) > FGSM (42.6%) > I-FGSM (32.1%).

Therefore, to effectively improve the transferability, a small step size « is also needed. Note that, in
Figure[l] the attack strength e is the same, the step size « of FGSM is greater than SI-NI-FGSM,
MI-FGSM and DI-FGSM.

A.2 PROOF OF PROPOSITION[2]

Proposition [2; When the victim model h is attacked by the white-box gradient-based attacks, the
successful attacked adversarial examples prefer to be classified as the wrong categories with higher
probability (i.e. the top-n wrong categories {y,|i < i}). Meanwhile, the higher the probability of
the wrong category, the more likely the adversarial example is to be classified as this category.

Proof (Empirical Proof) To verify the correctness of Proposition |2| we explore the top-n wrong
categories attack success rate (ASR) on I-FGSM at each iteration where the attack strength, number
of iterations and step of size are €, T, = 8/255,10,0.8/255. Assuming that ASR™=" denotes
the top-n wrong categories ASR, and ASR"™" denotes the average top-n wrong categories, namely
ASR"™" = ASRTH. First, if the top-n wrong categories ASR is significantly higher than the
average level (i.e., ﬁ where C' is the number of categories of the classification task), namely
ASR™=" > Cl 1, the previous sentence of Proposition|2|is correct with high confidence. Second,
whennl < n2, if the average top nl wrong categorles ASR is higher than the average top-n2 wrong
categories ASR, namely AS R > 4ASR" , the last sentence of Proposition|2|is correct with

high confidence. Empirically, Proposition|2]is verlﬁed on different surrogate models and datasets as
follows.

When VGG16 for CIFARIO is attacked by I-FGSM, Flgure l-(]) shows that ASR"=> > ASR"=*

> ASR"™3 > ASR"2 > ASR™! > 69% > 10 1 at each iteration. With the increase of the
=1

iteration t AS R=n gradually mcreases and approaches 100%. Figure|3 I( 1) shows that ASR"
>ASR > ASR"> > ASR"™' > ASR"™ at each iteration.

When ResNet50 for CIFARIO0 is attacked by I-FGSM, Figure [2L(2) shows that ASR™=> > ASR"=*

> ASR™=3 > ASR"=2 > ASR"=! > 76% > 15— at each iteration. With the increase of the

iteration t AS R=n gradually mcreases and approaches 100%. Figure 3| I-(4 ) shows that ASR" !

> ASR"~ > ASR" > ASR"™ > ASR" at each iteration.

When VGG16 for CIFAR100 is attacked by I-FGSM, Flgure I-(3) shows that ASR™"=°0 > ASR"=20

> ASR™10 > ASR™® > ASR™! > 54% > 100 7 at each iteration. With the increase ofthe

iteration. t, AS R™" gradually i increases and approaches 100%. Figure |3 I-( 2) shows that ASR" -

SASR " > ASR " > ASR " > ASR"" at each iteration.
When ResNet50 for CIFARIOO is attacked by I-FGSM, Figure [g}(4) shows that ASR™=%0 >
ASR™=20 > ASR"=10 > ASR"5 > ASR"=! > 52% > 15— at each iteration. With the

increase of the iteration t ASR=" ' gradually i mcreases and approaches 100%. Figure I( 5) shows
=10

that ASR'~ > ASR"~" > ASR"~ " > ASR" " > ASR"""" at each iteration.
When VGG16 for ImageNet is attacked by I-FGSM, Flgure [Z]-( 5) shows that ASR"=%0 > ASR"=20

> ASR™10 > ASR"5 > ASR™! > 33% > 1000 1 at each iteration. With the increase ofthe
=1

iteration t AS R=n gradually increases and approaches 100%. Figure|3 I-(3 ) shows that ASR"

SASR " >ASR " > ASR " > ASR"" at each iteration.
When ResNet50 for ImageNet is attacked by I-FGSM, Figure |2}(6) shows that ASR"=50 >
ASR™20 > ASR™=19 > ASR"=% > ASR"™=! > 43% > 1555— at each iteration. With the

increase of the iteration t ASR=" ' gradually i mcreases and approaches 100%. Figure|3 ( 6) shows

that ASR"~ > ASR"™" > ASR" =10 > ASR"™ ASH’n:5 at each iteration.
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In conclusion, by discussing the above six cases on CIFAR10/100 and ImageNet datasets, the Propo-
sition [2| is correct with high confidence. Therefore, after knowing the output of the victim model,
directly classifying the adversarial examples into the category in the top-n wrong categories can
remove the gradient perturbation of the other wrong categories.

Proof (Theoretical Proof) To explore whether the successful adversarial examples prefer to be
classified as the wrong categories with higher probability or not, the derivation formula of Lo g
w.r.t. the input x is

6LCE o 8LCE 62’0 zc: 8LCE (3',21

or 0z, Ox ‘ 0z  Ox
=1(i#0)
1 e*° 0z 1 C eZi 9z
=——|1-—=—1]" O+7' - .l (30)
In2 ( Zil eZi ) Or In2 i_l(z#o) Zle ez Ox

=) is less than 0, and the

According to Equatlon the coeﬁ‘iczent of < 9% (je., ln 5

0z; 1
> In2 ZC

(1_20

coefficient of G =) is greater than 0. The greater the logit output z; of the wrong

(i.e.

category i, ., 1n2 . ZC = ~). Therefore, in the process of the
1

gradient ascent of the loss function Lo g, the greater the logtt output z; of the wrong category y; is,
the faster z; grows. Due to the fact that the greater the logit output z; of the wrong category y;, the
larger the probability p;, the successful adversarial examples prefer to be classified as the wrong
categories with higher probability.

A.3 THE DETAIL DESIGN PROCESS OF THE WACE LOSS

According to Proposmon [} decreasing the gradient angle between the surrogate model f and the
victim model £, i.e., the angle between V, Lo g (8%, y,;0¢) and VLo g (28, yo; 0p), can en-
hance the transferability of adversarial examples.

According to the previous sentence of Proposition 2] because the successful attacked adversarial ex-
amples prefer to be classified as the wrong categories with higher probability, to avoid the gradient
perturbation of the other wrong categories, besides maximizing the loss function Lo g (9%, ,; 0 ),
we also minimize the distance between the model output and the top-n wrong categories with higher
probability, namely maximizing Lo g (2%%, yo; 05) — i1 = - Lop(z®®, ys,; 05) where each cat-
egory in {y.,|¢ < i} is equally important.

According to the last sentence of Proposition [2] the higher the probability of the wrong category,

the more likely the adversarial example is to be classified as this category. Therefore, we add
weight to the distance calculation of the top-n wrong categories according to the logit of each cat-

T

egory in the top-n wrong categories, namely maximizing Lo g (229, y0;0;) — Zl 1 W .
. "o

Lep(a™,yr,;0f).
Therefore, the WACE loss is:

I e*h,T;

-Leg (z,y7308)  (31)
i=1 Z] L€

B 1
Lwack (290101, Zn,7) = Lo (2,y0;0f) — — >

A.4 PROOF OF THEOREM]
Theoreml: The angle between V LWACE (29 o305, Zp, ) and V . Lo (28%  yo; 01) is less

than the angle between ¥V, Lpcr (289,403 01) and ¥V, Lop (289, yo; 01), and the angle between
\Y% LC’E(xt 7y079f) andv LCE(xt uyoaeh)-
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Proof According to Proposition 2}
C

OLck OLck 0%n,0 OLcr Ozn,
VL Y Yo;0n) = =— = J .
CE ( Y h) ax?dv azh,o awgdv . 1(21750) aZh i wgdv
1 1 e*ho ( 0zp.0 ) n i e~hoi 0zhi
o YLy Dai i=1(i#o0) chzl e O
1 e#hso 0zh.o o e*hoi 0zh.r,
~ — 1 e — . — ) + _ . 5T 32
In2 ( ( ZZCZI eZh,i > ( axgdv) ; 22;1 ezh,fj arztzdv ( )

Eq. 6, 7 and 9 in the main paper are the CE loss, the RCE loss and the WACE loss, respectively. The
gradient of each loss w.r.t. z3% on the surrogate model f is as follows, respectively.

C
8LCE 8LCE 62’0 8LCE 321
V.L i 0 - - ,
CE ( ) y f) al,g,du 820 axtadv i_l(zi?go) 8Zi axtadv

1 e*e 0z ¢ e 0%
= . 1l — 4 4 | [ = o )+ . ¢ (33)
In2 ( > ezi> ( axgd“> 2 S e Oxgt

i i=1(i%0)
c
OLRrcE OLRrcE 0z, OLrce 0z
VIL adv’ o} 0 — _ . . )
rop (20 0101) = e 02, v 1—1%;&0) 0z 0aid
c
1 0z, 1 0z;
_ 1 ([ 1 34
o (o) + 5 &) o
c
OL OL 0z OL 0z;
adv _ OLwace WACE o WACE i
V;CLWACE (xt » Yo ef) - azady - Oz ! (_ axadu> Z Oz : axadu
¢ ° ¢ i=1(io) ! ¢
1 0% u e*mmi 0%,
- . _ _ . i 35
2 (( i) 25T 8w:&dv> )

Assuming that £°% is a successful attacked adversarial example and x3% is correctly classified by

the surrogate model f and the victim model h with almost 100% probabzllty When the iteration t is

equalto 0, (1 — ZC = —;) and (1 — s h:zh ) are approximately 0, and ; z:ezj and Je 1h o
are approximately 0. Eq.[32|and[33)are transformed as follows, respectively.
1 " e i 0zh.r,;
VL ;0 — = . 2 36
CE( " Yo h) In2 ; Z;:1 e Qaddv (36)

VaoLcr (2¢%,yo;05) = 0 (37)

Therefore, according to Proposition 2} in comparison with the gradient of the CE and RCE losses,
Eq.[34] [33] B6land[37] show that the gradient of the WACE loss remove the gradient of the unrelated
wrong categories (i.e., the wrong categories with minimum probability).

With the increase of the iteration t, according to Proposition 2] in comparison with the CE loss,
Eq. 32| B3| and [33] show that the gradient of the WACE loss removes the gradient of the unrelated
wrong categories and enhances the weight (or coefficient) of the gradient of the ground truth. In
comparison with the RCE loss, Eq.[32) 34 and[33] show that the gradient of the WACE loss removes
the gradient of the unrelated wrong categories.

Therefore, Theoremm is correct.
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(1) VGG16 to ResNet50 on CIFAR10 (2) VGG16 to ResNet50 on CIFAR100 (3) VGG16 to ResNet50 on ImageNet
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Figure 4: The cosine value of the gradient angle between the surrogate model and the victim model
at each iteration ¢ when the surrogate model is attacked by different methods for CIFAR10/100
and ImageNet. For example, in subfigure (1), VGG16 as the surrogate model and ResNet50 as the
victim model are attacked by different transfer attacks for CIFAR10. The query prior-based attacks
can significantly improve the cosine value of the gradient angle between the surrogate model and the
victim model, i.e. decrease the gradient angle between the surrogate model and the victim model.
Note that the attack strength € = 8/255.

A.5 THE REDUCTION OF THE GRADIENT ANGLE WITH THE WACE LOSS

To verify that the WACE loss can reduce the gradient angle between the surrogate model and the
victim model, we compare the cosine value of the gradient angle between the family of iterative
FGSM and their query prior-based version. As shown in Figure ] for CIFAR10/100 and ImageNet,
at each iteration, the cosine value of the gradient angle between the surrogate model and the victim
model on the family of iterative FGSM are smaller than that on their query prior-based version.
Therefore, the WACE loss can reduce the gradient angle between the surrogate model and the victim
model.

A.6 PROOF OF PROPOSITIONS 3} [ [5] AND [6]

Proposition[3; In the untargeted attacks, when p > 0.5, the temperature scaling (T > 1and K = 1)
can eliminate a part of the fuzzy domain Mf\; 7} h)-

Proof When T > 1 and K = 1, Eq.|l4|is transformed as:

exi/T
FESoftmazx (z;;T,1) = ———— (38)
i ch=1 eze/T
Assuming that (i) the adversarial example T is generated without the temperature scaling and the
logit output of the surrogate model f is Zy = f (&) = [zf1,25,2,- -+ , 25, (i) the adversarial
example &' is generated with the temperature scaling and the logit output of the surrogate model f is
Z,=f(2)= [2},1’ 29500+ 24 o | (iii) the same attack eventually makes thatNe, 2 [T = zfc.
- NT
If& € M s ny
e*f.e ez},é/T
e = _ _ _<p (39)
COXene Sl et

where ¢ is the wrong category with the highest probability. To make &' not belong to Mé\f} h)?

according to Assumption (I} &' does not belong to Ay _ (p). Therefore, the probability threshold p
should satisfied:
el T eZr.e
25:1 el T <PS
1 1

Ty <PS
chzle%(z.f,c_z.f,é) h

= (40)
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When the condition that Ve < C A ¢ # ¢, z} 8> z} . is satisfied,

1 1
e 50 G T, e e @1)
Hence,
p> 0.5
:>VC<C/\C7éé7Z},é> Z},c

1 1
00 S AT PSS @
Therefore, the temperature scaling can eliminate the fuzzy domain with 0.5 < - e%(lz} —) <

=1 Fe TS,

D.

Propositiond}: In the targeted attacks, when p > 0.5, the temperature scaling (T > 1 and K = 1)
can eliminate a part of the fuzzy domain ME[;” £.h)"

Proof The Proof of Proposition[d|is the same as that of Proposition[3| Note that the category y; is
changed to y..

Proposition [} In the untargeted attacks, the fuzzy scaling (T = 1 and K > 1) can eliminate a part

o MINT
of the fuzzy domain M(x,f,h)'

Proof When T =1 and K > 1, Eq.[[4]is transformed as:

Lzo

“Zo ezc 7i =0
FESoftmax (2;;1,K) = e* +Z§5““¢° » (43)
,i# o0

K-z C Zc
€ O+ZC:1/\C¢06 ¢

Assuming that (i) the adversarial example & is generated without the fuzzy scaling and the logit
output of the surrogate model f is Zy = f(&) = [zp1,2f2, - ,2f,c) (ii) the adversarial
example &' is generated with the fuzzy scaling and the logit output of the surrogate model f is
Z} = f(&) = {Z},p Z},za e ,2}70} ; (iii) the same attack eventually makes that Ve < C A ¢ #
é, Zfc= Z},C,Zﬂo =K- Z},O. If.fi' S Mé\;?}vh)’

er'a ezlf,é

Pe = =¢ = K c
2 -z /
Zc:l esre € oo+ Zc:l/\c;ﬁo Zf,c

To make &' not belong to Mé\fﬁTf hy according to Assumption we need to make 3’ does not belong
to Ay _ (p). Therefore, when z¢, = K - z},o > 0,

<p (44)

’ !
e*f.e e?f.é

<P (45)
K-z C 2" C Py
e he + Zc:l/\c;ﬁo e fe Zc:l e fe
When zf, = K - 2 , <0, & and &' are almost successfully attacked, i.e., &,3" ¢ Mé\g} hy-
Therefore, the fuzzy scaling can eliminate the fuzzy domain with e Ee Cf 2 = < p when
€ °+ c=1Ac#o0 € <

2% 5 > 0.

Proposition [6} In the targeted attacks, the fuzzy scaling (T = 1 and 0 < K < 1) can eliminate a
part of the fuzzy domain M@“ £.h)"

Proof When T =1and 0 < K < 1, Eq.[I4is transformed as:

Kozr ,

€

“zZr ezc ) t=T
FESoftmax (z;1,K) = er +Zeccz:imc¢f » (46)
AFET

: e}
T e nenr €5
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Table 1: The untargeted attack success rates (%) on six naturally trained models for CIFAR10 using
various transfer attacks and two query attacks with the attack strength ¢ = 8/255. The adversarial
examples are generated by ResNet50. * denotes the attack success rates under white-box attacks.
Average means to calculate the average value except *. Note that ) = 1 in Q-FGSM.

Model Attack Loss V16 V19 R50 WRN-16-4 D121 M-v2  Average
Square(Q = 10) : 205 1270 1520 19.00 1885 2730 1753
PRGF(Q = 10) - 335 415 2695 810 775 660 617

CE 3420 4620 65507 36.15 5315 5500 5096

FGSM RCE 3705 3895 5470 4925 4565 4970 443
FECE(Ours) 5040 5250 75.80%*  63.00  59.10 5995 5699

_ WACEOurs) ~ 4870 4705  71.55% 59.75 5620 5800  53.94
Q-FGSMOurs)  WECE©Ours) 4830 4675  71.30% 59.80 5565 5765  53.63
CE 5985 6255 99.85" 9395 8870 8435 7188

LFGSM RCE 5805 6010  99.05* 90.60 86.15 8225 7543
FECE(Ours) 6675 6935  100% 9570 9175 8735 8218

, WACEOurs) ~ 6805  68.50  99.90% 9690 9280 8945  83.14
QLFGSM(Ours)  weCE(Ours) 7120 70.60  99.95% 96.85 9360 9050  84.55
CE 7725 7960 99.05% 93.60 8970 8705 85.46

MIL-FGSM RCE 7095 7290  97.35* 88.50 8490 8255  79.96
FECE(Ours) 8330 8470  100% 9630 9240 9005 8935

 TWACE(Ours) 8440 8290  99.70% 9700 9355 9185  89.04

ResNetso ~ QMIFGSMOurs) — wpepoursy 8500 8255 99.70% 97.15 9385 9200  90.11
CE 6765 6965 98207 90.80 8700 8210 79.44

DLFGSM RCE 6375 6365  94.50% 83.05 8045 7690  73.56
FECEOurs) 7505 7605  99.35% 9330 9115 8795 8470

WACEQOurs) ~ 7505 7320  99.25% 9420 9150 8875 8454

QDI-FGSM(Ours)  wrcgOurs) 7720 7520 99,15+ 93.95 9110  89.00 8529
CE 7300 7580 98.10% 9235 8905 8645 8351

SINLFGSM RCE 8245 8420  99.55* 96.75 0485 9235  90.12
FECE(Ours) 8305 8555  99.65%* 97.10 9525 9285 9076

WACE(Ours) ~ 8755 87.85  99.85% 9840 9625 9535  93.08

QSINL-FGSM(OUrs)  wrcgOurs)  87.65  87.40  99.80% 98.60 925 9525  93.03
CE 8040 8220 99.20% 0460 9080 8895 8730

VMLFGSM RCE 7775 7805  97.50% 92.15 89.00 87.60 8491
FECE(Ours) 8395 8550  100* 9635 9270 9000  89.7

WACE(Ours) ~ 88.60 8610 99.65%  97.95 9540 9450 9251

QVMI-FGSM(OUrS)  wrcpOurs) 8775 85.50  99.60% 97.65 9465 9355 9182

Assuming that (i) the adversarial example & is generated without the fuzzy scaling and the logit
output of the surrogate model f is Zy = f(&) = [zf1,252, - ,%25,¢); (ii) the adversarial
example T’ is generated with the fuzzy scaling and the logit output of the surrogate model f is

} = f(3) = [Z},,l, 29,127 . ’z}’c} ; (iii) the same attack eventually makes that Ve < C A ¢ #
& 2fe = z}’c, zrr=K- z}ﬂ.. Ift e Ma%f,h)’

et eK'Zlf,r

br = C = K2 C
25 2l /
Ec:l et € b+ Ec:l/\c;éT Zf,c

<p 47)

To make &' not belong to M%;“ £.h) according to Assumption we need to make &' does not belong

to Ay _ (p). Therefore, when z¢r = K- 2 . > 0, because (z’fc - Z}T) < (z’fc -K- Z}T>

1 1
C 2zl —K-2 C 2 =2
1+ Zc:l/\c;ér € s fr Z €75 70

e

= <P = (48)

lC<z’.T C / 2% .
ers +Zc:1/\c¢7— Zf.c Zc:le Jre

When zf . = K - 2z} . <0, & and &’ are almost failed attacked.

’
e

Therefore, the fuzzy scaling can eliminate the fuzzy domain with < p when

(A <
e j’T+Zc=1/\c;éT Z/f,c

2, > 0.
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Table 2: The untargeted attack success rates (%) on six naturally trained models for CIFAR100 using
various transfer attacks and two query attacks with the attack strength ¢ = 8/255. The adversarial
examples are generated by ResNet50. * denotes the attack success rates under white-box attacks.
Average means to calculate the average value except *. Note that ) = 1 in Q-FGSM.

Model Attack Loss V16 R50 RN50  WRN-16-4  DI21 M-v2  Average
Square(Q = 10) - 3335 3630 4145 .45 3305 5135  39.99
PRGE(Q = 10) : 870 4365 1245 .15 1250 810 1078

— CE 6480 83407 6875 7215 7160 6660 6878

RCE 6385 8175% 6755 7055 6995 6635  67.65

Q-FGSM(Ours)  ~WACE(Ous)~ 6530  83.75%  69.65 7280 7260 6765  69.6

CE 6145 99.00F 8140 8205 810 5805 7231

LEGSM RCE 6945 98.50%  84.10 8580 8435 6800 7834

FECE(Ours) 6945  08.60%  83.80 8700 8385 6775 7837

WACEOurs)~ 7125  99.40%  88.55 9030 8765 7050  81.65

QLFGSMOurs)  Wrcpours) 7240 99.40% 8915 90.90 8850 7210 8261

CE 7735 9780 8555 8670 8570 7405 8187

MIEGSM RCE 7900 96.90%  86.50 8810 8710 7820 838

FECE(Ours) 8045  97.15%  87.15 8825 8730 7825 8428

WACE(Ours)~ 80.90 98.80%  89.45 9140 9005 7935 8623

QMEFGSMOUrs)  wrcpursy 8125 98.55%  89.90 91.65 9005 7990 8655

ResNet50 CE 6340 9755 8340 83.05 8125 6585 7639

DLFGSM RCE 7255  96.05% 8350 85.25 8310 7170 7922

FECE(Ours) 7325  96.40%  85.00 8535 8365 7185 7982

WACE(Ours)~ 7470  9825% 8825 89.65 8830 7515 8321

QDIFGSMOUrs)  wrcE(Ours)  74.55 9845+  89.05 89.35 88.15 7585  83.39

CE 7290 97.00F  82.60 8335 8265 7075 7875

SINLEGSM RCE 8485 9955% 9170 9275 9200 8405  89.07

FECE(Ours) 8470  99.50%  91.75 9295 9255 8315  89.02

WACEOurs)~ 8610  99.65%  93.70 9375 9390 8220  89.93

QSINLEGSM(Ours)  \wrcpours) 8640 99705 9380 9410 9385 8225  90.08

CE 8440 0820 8875 9035 8005 8070 86.69

VMLFGSM RCE 8400 97.00+ 9045 9120 9055 8270 8778

FECE(Ours) 8530  98.00%  90.10 9140 9040 8275  87.99

WACE(Ours) ~ 87.05  9895% 9270 9435 9320 8460 9038

QVMIEGSM(OUrS)  \wrepours) 8720 9890 92.60 9445 9330 8505  90.52
(1) VGG16 on CIFAR10 (2) VGG16 on CIFAR100 (3) VGG16 on ImageNet
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Figure 5: The untargeted attack success rates (%) on the victim models with adversarial exam-
ples generated by QI-FGSM (e = 8/255) for CIFAR10/100 and ImageNet (the surrogate model is
VGG16) when varying the number of the top-n wrong categories 7.

B DETAILED EXPERIMENTAL ANALYSIS

In this section, we first introduce the experimental setup, then we compare our method with com-
petitive baselines under various experimental settings.

B.1 EXPERIMENTAL SETUP

Datasets. Different methods are compared on CIFAR10/100 (Krizhevsky}, [2009) and ImageNet
(Russakovsky et al., 2015). We randomly pick 2,000 clean images from the CIFAR10/100 test
dataset and 1,000 clean images from the ILSVRC 2012 validation set (Russakovsky et al., |2015)),
where the selected images are correctly classified by both surrogate model and victim model.

Models. We consider nine naturally trained networks, including VGG16 (V16) (Simonyan &
Zisserman, 2015), VGGI19 (V19) (Simonyan & Zisserman, 2015, ResNet50 (R50) (He et al.,
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Table 3: The untargeted attack success rates (%) of six naturally trained models and two adversari-
ally trained models on ImageNet using various transfer attacks and two query attacks with the attack
strength e = 8/255. The adversarial examples are generated on ResNet50. * denotes the attack
success rates under white-box attacks. Avg. means to calculate the average value of the naturally
trained models except *. Note that () = 1 in Q-FGSM.

Model Attack Loss V16 V19 R50 RI52  1-v3 M-v2  Avg. al-v3  ae-IR-v2
Square(Q = 0) - 37.5 353 18.1 12.9 18.2 35.8 26.3 13.8 13.4
Square(Q = 1) - 38.8 36.5 20.2 14.6 19.1 37.4 27.8 16.3 14.8
Square(Q = 10) - 44.4 414 25.6 18.3 24.1 43.7 32.9 21.7 17.6
PRGF(Q = 10) - 6.9 5.5 80.2%* - 32 7.1 5.7 3.2 1.7

CE 42.6 40.8  90.4* 423 29.9 412 39.4 20.5 11.5
FGSM RCE 37.7 362  80.5*% 30.6 24.6 35.2 329 19.0 10.2
FECE(Ours) 4350 414 90.0* 42.4 30.7 41.1 39.8 20.0 11.0
Q-FGSM 'WACE(Ours) 44.2 42.5 90.7* 42.6 31.2 42.8 40.7 20.1 10.8
(Ours) WECE(Ours)  43.60 423  90.8* 41.9 31.1 43.5 40.5 19.5 11.4
LEGSM CE 32.1 29.7 100* 45.0 17.0 332 31.4 9.1 6.0
RCE 28.9 28.0 100%* 35.2 16.2 29.7 27.6 8.4 5.7

QI-FGSM "
(Ours) WACE(Ours) 39.9 36.6 100 53.0 22.6 44.4 39.3 10.9 73
R CE 55.4 53.0 100* 70.7 37.8 58.6 55.1 17.1 11.9
N MI-FGSM RCE 57.1 56.6 100%* 63.6 359 56.2 53.9 16.1 11.6
IET FECE(Ours) 5870 573 100%* 65.9 37.4 56.3 55.1 16.6 11.8
A QMI-FGSM ‘WACE(Ours) 62.5 60.5 100* 74.8 43.1 65.0 61.2 19.9 13.3
t (Ours) WECE(Ours) 6330 589 100* 74.9 41.9 66.1 61.0 19.8 13.8
5 DLEGSM CE 52.6 49.2 100* 62.7 36.9 56.0 51.5 11.7 9.3
RCE 46.1 46.9 100%* 53.0 36.1 48.4 46.1 12.2 9.5

0 QDLFGSM
(Ours) WACE(Ours) 61.0 569  100* 68.9 41.5 64.5 58.6 16.9 12.7
CE 68.7 68.2 100%* 81.8 51.4 72.3 68.5 242 16.7
SINI-FGSM RCE 70.5 69.5 100%* 81.0 52.5 73.7 69.4 21.6 16.1
FECE(Ours) 7230 711 100%* 84.0 52.5 74.2 70.8 23.7 16.4
QSINI-FGSM 'WACE(Ours) 73.1 72.0 100* 87.1 57.0 78.9 73.6 26.1 21.0
(Ours) WECE(Ours) 7510 713 100* 87.4 57.0 79.3 74.0 26.0 21.1
CE 69.1 68.5  99.9% 83.9 53.1 72.1 69.3 21.4 16.9
VMI-FGSM RCE 69.9 70.9 100* 79.5 52.1 71.8 68.8 22.1 18.7
FECE(Ours) 7590 741 100%* 83.2 553 74.9 72.7 22.8 19.1
QVMI-FGSM 'WACE(Ours) 78.6 74.8 100* 88.2 60.8 82.3 76.9 27.3 23.2
(Ours) WECE(Ours) 7890  75.0 100* 88.8 60.4 81.5 76.9 272 22.7
(1) VGG16 on CIFAR10 (2) VGG16 on CIFAR100 (3) VGG16 on ImageNet
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Figure 6: The untargeted attack success rates (%) on the victim models with adversarial exam-
ples generated by QI-FGSM (e = 8/255) for CIFAR10/100 and ImageNet (the surrogate model is
VGG16) when varying the number of queries ().

2016), ResNet152 (R152) (He et al.l 2016), ResNext50 (RN50) (Xie et al., [2017), WideResNet-
16-4 (WRN-16-4) (Zagoruyko & Komodakis, 2016), Inception-v3 (I-v3) (Szegedy et al., |2016),
DenseNet121 (D121) (Huang et al.,|2017) and MobileNet-v2 (M-v2) (Sandler et al.,[2018)) and two
adversarially trained models, namely adversarial Inception-v3 (a-I-v3) and adversarial ensemble
Inception-Resnet-v2 (ae-IR-v2) (Tramer et al., [2018)). We choose VGG16 and ResNet50 as source
models for CIFAR10/100 and ImageNet, respectively. The CIFAR10/100 models are trained from
scratch and the ImageNet models are the pretrained models in (Wightman, 2019} |[Huang] [2017).

Baselines. Several most recently proposed methods aiming at generating transferable adversarial
examples are taken as baselines, i.e. FGSM (Goodfellow et all 2015), [-FGSM (Kurakin et al.,
2017), MI-FGSM (Dong et al.| 2018)), DI-FGSM (Xie et al., [2019), SI-NI-FGSM (Lin et al., [2020)
and VMI-FGSM (Wang & He, |[2021)), which are implemented in a pytorch repository (Kim) 2020).
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Table 4: The untargeted attack success rates (%) on six naturally trained models for CIFAR10 using
various transfer attacks and two-query attacks with the attack strength e = 16/255. The adversarial
examples are generated by ResNet50. * denotes the attack success rates under white-box attacks.
Average means to calculate the average value except *. Note that ) = 1 in Q-FGSM.

Model Attack Loss V16 V19 R50 WRN-16-4 D121 M-v2  Average
Square(Q = 10) : 10 MB350 5.0 37,70 5730 6620 5197
PRGE(Q = 10) : 025 1040 43457 19.25 1655 1540 1417

CE 6660 6955 80.25" 7585 7395 7795 7278

FGSM RCE 6090 6435  74.90% 71.35 6830 7600  68.18
FECE(Ours) 7345 7550 84.65% 8035 7665 8085 7736

, WACEQOurs) ~ 7125 7100  82.70% 7735 7405 7930  74.59
Q-FGSMOurs)  wECE©Ours) 7075 7135 83.00% 76.60 7390 7975 7447
CE 8455 8670 I100F 99.05 9755 9450 9247

LFGSM RCE 8450 8560  100* 99.15 9670 9550  92.29
FECE(Ours) 8870  90.10  100* 9960 9820 9640 9460

, WACEOurs) ~ 89.30 9015  100* 9970 98.60 9625 948
QLFGSM(Ours)  weCE(Ours) 9200 9200 100% 99.80 9855 9755 9598
CE 0550 0645  99.05% 9950 9875 9720 9748

MIL-FGSM RCE 9430 9535  99.85* 9890 9790 9625  96.54
FECE(Ours) 9745 98.10  100* 100 9970 9810 9867

. TWACE(Ours) | 97.35 9745  100* 99.80 9920 9825 034l

ResNetso ~ QMIFGSMOurs)  wpcpousy  97.80 9745 100+ 99.75 9930 9910  98.68
CE 03.10 9420 99.95% 99.05 9780 9645 96.12

DLFGSM RCE 9135 9165  99.45* 98.15 97.05 9640  94.92
FECE(Ours) 9520 9545  100* 99.75 9905 9810 9751

. TWACE(urs) 9595 9500  100* 99.80 9920 9845  97.68
QDI-FGSM(Ours)  wrcEOurs)  95.80 9585 100% 99.80 9920 9875  97.88
CE 9650 07.10 99.95% 99,55 9875 9785 9795

SINLFGSM RCE 9825 9875  100* 99.95 9970 9935 992
FECE(Ours) 9835 9890  100* 100 9975 9945  99.29

. TWACEurs) 9870 9870 100 100 9990 9880  99.22
QSINL-FGSM(Ours)  wrcpOurs)  98.95  98.80  100% 99.95 9990 9890 9930
CE 0680 07.10 99.95% 9925 0885 9740 0788

VMLFGSM RCE 9765 9770  99.80* 9930 9920 9890  98.55
FECE(Ours) 9745  97.85  100* 9970 9925 9770 9839

“WACEOurs) ~ 9855 98.60  100% 9975 9970 9930  99.18

QVMI-FGSM(OUrs)  wrcpOurs) 9840 9830 100* 99.65 99.55 9940  99.06
(1) ResNet50 on CIFAR10 (2) ResNet50 on CIFAR100 (3) ResNet50 on ImageNet
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Figure 7: The untargeted attack success rates (%) on the victim models with adversarial exam-
ples generated by QI-FGSM (e = 8/255) for CIFAR10/100 and ImageNet (the surrogate model is
ResNet50) when varying the number of the top-n wrong categories 7.

In addition, the RCE loss (Zhang et al., |2022a)), which is integrated into the above transfer attacks
instead of cross-entropy loss (CE), and two black-box query attacks, i.e. P-RGF (Cheng et al.|[2019)
and Square (Andriushchenko et al.,2020), are taken as baselines to further validate the effectiveness
of our method.

Hyper-parameters. On CIFAR10/100 and ImageNet, we set the maximum perturbation, number
of iteration and step size as €, T, o = 8/255,10,0.8/255 or 16/255, 10, 1.6/255. We set the decay
factor . = 1.0 for MI-FGSM, SI-NI-FGSM and VMI-FGSM. The transformation probability is set
to 0.5 for DI-FGSM. The number of scale copies is 5 for SI-NI-FGSM. The number of sampled
examples in the neighborhood and the upper bound of neighborhood are 20 and 1.5, respectively.
The number of query, which is the same as that of our query prior-based attacks, is set to ) = 10
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Table 5: The untargeted attack success rates (%) on six naturally trained models for CIFAR100 using
various transfer attacks and two query attacks with the attack strength e = 16/255. The adversarial
examples are generated by ResNet50. * denotes the attack success rates under white-box attacks.
Average means to calculate the average value except *. Note that ) = 1 in Q-FGSM.

Model Attack Loss V16 R50 RN50  WRN-16-4  DI21 M-v2  Average

Squarc(Q=10) : 7325 7415 7490 77.95 7180 8480  76.14

PRGE(Q=10) : 1805  6095F 2665 36,40 3500 1705 2265
—— CE 8475 OLI5*  86.05 8305 8580 8660 8629
RCE 8355  9090%  85.80 87.65 8525 8655 8576

Q-FGSM(Ours) ~ ~WACE(Ous) ~ 8430  91.90%  87.00 8930 8600 8740 8638
CE 8055 99007 91.65 9345 9085 7580 86.46

LFGSM RCE 8680  99.90%  94.30 95.85 9450 8595 9148

FECE(Ours) 8775  99.85%  93.95 9550 9415 8490 9125

WACE(Ours) ~ 8820  99.90%  96.05 96.95 9560 8570  92.5
QIFGSMOurs)  Wecpurs)  89.15  99.90%  95.05 97.90 935 8735 9334

CE 9210 99707 93.05 9625 9475 89.00 9321
MI-FGSM RCE 0480  99.45%  96.00 97.10 9600 9320 9542

FECE(Ours) 9530  99.55% 9575 9700 9595 9225 9525
WACE(Ours) ~ 9470  99.80%  97.05 9855 9700 9190 9584
QMEFGSMOUrs)  wrcpursy 9480  99.85%  97.10 98.30 97.15 9255  95.98

ResNet50 CE 8765 99607 93.75 9500 9390 8345  90.75
DLFGSM RCE 9170 99.30%  94.50 96.10 9460 89.10 932
FECE(Ours) 9220  99.45%  95.05 96.15 9565 8990  93.79
WACE(Ours) ~ 9285  99.80%  97.00 9780 9705 9095  95.13
QDLEGSM(Ours)  wrepous) 9325 99.65%  96.75 9765 9685 OLI0  95.12
CE 9195 99707 93.70 9640 9550 0140  93.79
SINL-FGSM RCE 9750 1005 9835 9880 9895 9735  98.19
FECE(Ours) 9745  99.95%  98.05 9890  99.00 9635  97.95
WACE(Ours) ~ 9690  100%  98.65 98.65 0885 9525  97.66
QSINLEGSM(Ours)  \wrpepours)  97.05 1005 98.80 98.55 9875 9530  97.69

CE 0585 9975 06.20 3.1 9720 9415 9631
VMIL-FGSM RCE 9725 9970  97.90 9830 9780 9550 9735
FECE(Ours) 9725  99.85%  97.30 9850 9815 9570 9738
WACE(Ours) ~ 9740  99.85%  98.05 99.25 9860 9630  97.92
QVMIEGSM(OUrS)  \wrpepours)  97.65  99.90%  97.90 9935 9845 9605  97.88

(1) ResNet50 on CIFAR10 (2) ResNet50 on CIFAR100 (3) ResNet50 on ImageNet
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Figure 8: The untargeted attack success rates (%) on the victim models with adversarial exam-
ples generated by QI-FGSM (e = 8/255) for CIFAR10/100 and ImageNet (the surrogate model is
ResNet50) when varying the number of queries Q).

for Square and P-RGF. For the proposed method, we set =1 and ( = 10 for CIFAR10, n=5 and
@ = 10 for CIFAR100 and ImageNet. Table 30]concludes the best parameter combination of /C and
T for the FECE loss on different transfer attacks and datasets with the ResNet50 as the surrogate
model.

B.2 COMPARISON WITH OR WITHOUT THE QUERY PRIORS ON THE UNTARGETED ATTACKS
B.2.1 ATTACKING A NATURALLY TRAINED MODEL
To validate that the query priors can enhance the transferability of the transfer attacks, we per-

form six transfer attacks with or without the query priors to attack six naturally trained models for
CIFAR10/100 and ImageNet. As shown in Tables [} 2 B} [7] [§] and [9] when the attack strength
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Table 6: The untargeted attack success rates (%) on six naturally trained models and two adversari-
ally trained models for ImageNet using various transfer attacks and two query attacks with the attack
strength e = 16/255. The adversarial examples are generated by ResNet50. * denotes the attack
success rates under white-box attacks. Avg. means to calculate the average value of the naturally
trained models except *. Note that () = 1 in Q-FGSM.

Model Attack Loss \209 V19 R50 R152 I-v3 M-v2 Avg. a-1-v3 ae-IR-v2
Square(Q=0) - 718 732 422 30.7 40.4 722 56.1 35.1 30.4
Square(Q=1) - 785  74.6 44.0 335 41.9 73.0 57.6 37.3 322
Square(Q=10) - 83.8  80.6 55.8 434 51.9 79.5 65.8 47.3 40.1
PRGF(Q=10) - 12.1 11.0  88.9*% - 6.7 13.6 10.9 59 3.6

CE 66.7 63.0 87.I% 52.8 414 61.4 57.1 32.7 19.0
FGSM RCE 62.8 613  80.6% 444 38.1 60.7 53.5 31.8 18.6
FECE(Ours) 66.7 632  87.0% 53.0 42.0 61.6 57.3 332 19.1
Q-FGSM WACE(Ours) 669 638 86.8* 51.8 423 63.3 57.6 33.7 21.3
(Ours) WEFCE(Ours) 662 63.6  86.9*% 51.4 42.8 63.5 57.5 332 20.3
LLFGSM CE 493 468 100% 66.5 29.2 53.6 49.1 15.1 10.0
RCE 524 49.0 100%* 60.9 30.2 524 49.0 15.9 9.6

QI-FGSM N
(Ours) WACE(Ours) 61.8 57.1 100 75.6 36.4 64.6 59.1 17.4 11.2
l: CE 7.1 75.7 100* 84.8 56.2 755 739 27.8 18.7
N MI-FGSM RCE 828 813 100%* 84.0 57.9 80.1 77.2 28.5 19.2
N FECE(Ours) 843 814 100%* 85.5 57.6 80.6 77.9 28.8 18.6
e QMI-FGSM WACE(Ours)  81.3  78.9 100* 88.6 61.0 82.5 78.5 28.6 23.5
‘ (Ours) WFCE(Ours)  83.5 80.6 100* 88.8 63.2 83.8 80.0 30.2 22.4
5 DLFEGSM CE 73.1 71.0 100% 83.7 56.7 75.7 72.0 19.3 135
RCE 758 723 100%* 81.3 54.6 74.8 71.8 18.7 13.8

0 QDLFGSM

(Ours) WACE(Ours)  81.0  78.5 100* 89.8 62.7 83.3 79.1 24.2 17.0
CE 91.8 912 100* 96.6 79.3 91.9 90.2 41.2 30.0
SINI-FGSM RCE 93.1 94.3 100%* 97.5 79.5 94.4 91.8 37.0 26.7
FECE(Ours) 939 945 100* 97.5 80.2 94.3 92.08 40.1 28.8
QSINI-FGSM ~ WACE(Ours)  90.5 89.2 100* 96.3 78.0 92.8 89.4 38.8 31.4
(Ours) WFCE(Ours)  90.7  89.8 100* 96.4 77.9 93.3 89.6 39.8 32.1
CE 89.3 88.3 100* 95.7 74.2 88.6 87.2 38.1 32.6
VMI-FGSM RCE 91.7 912 100%* 96.5 80.1 91.2 90.1 44.2 38.9
FECE(Ours) 923 925 100%* 97.5 81.0 92.2 91.1 44.6 37.2
QVMI-FGSM ~ WACE(Ours) 91.5 91.8 100* 97.6 82.3 93.7 91.4 47.0 40.5
(Ours) WEFCE(Ours)  92.1 91.8 100* 97.6 82.2 93.7 91.5 47.2 41.8

Table 7: The untargeted attack success rates (%) on six naturally trained models for CIFAR10 using
various transfer attacks and two query attacks with the attack strength ¢ = 8/255. The adversarial
examples are generated by VGG16. « denotes the attack success rates under white-box attacks.
Average means to calculate the average value except *. Note that Q = 1 in Q-FGSM.

Model Attack Loss V16 V19 R50 WRN-16-4 D121 M-v2  Average
Square (O = 10 : 265 1300 1415 875 1040 2705 1752
PRGE (Q = 10) : 3375F 430 420 3.00 520 490 472
— CE 6240 4520 4100 4690 4355 4840  45.00
RCE  5665* 4130 3845 42,95 3900 4425 4119
Q-FGSM (Ours) WACE ~ 72.85% 4930 4550 5160 47.05 5465  49.62
LrGSM CE 9780 6895 6145 7263 6830 7090 6845
RCE  9680* 6810 60.80 7220 68.10 7065  67.97
QLFGSM (Ours) ~WACE ~ 98.80* 7435 6865 8090 7650 8035  76.15
MLEGSM CE 9335 7575 075 76.05 TE00 7410 7413
RCE  90.70* 7260 6885 7290 7140 7255 7166
VGG16  QMI-FGSM (Oursy ~WACE ~ 96.65* 80.80 77.65 8420 8095 8470  81.66
DLEGSM CE  0130F 6930 6280 7150 6920 7060 6368
RCE  89.60% 6720 6125 68.90 6490 6810  66.07
QDLFGSM (Ours) ~WACE ~ 95.85* 7425 7115 8140 7645 8080 7681
CE 94007 7210 6810 7790 7285 7555 733
SI-NI-FGSM RCE  98.60* 8560  80.30 87.45 8545 8635 8503
QSLNL-FGSM (Ours) ~WACE ~ 99.25% 8825 8495  90.80 8920 9070  88.78
CE 0400 8000 7660 8160 7840 7995 7931
VMI-FGSM RCE  9170* 7730 7550  79.10 7665 7875 7746

QVMI-FGSM (Ours) WACE  97.10%  84.40  83.35 88.40 8570  89.10 86.19

€ = 8/255, the query prior-based attacks with the WACE loss can not only significantly improve
the transfer attack success rate of the black-box setting but also improve the attack success rate of
the white-box setting on different surrogate models and datasets. In comparison with the CE loss,
the average increase of the ASR is 2.98 to 4.43% on Q-FGSM and 4.12 to 15.48% on the other five
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Table 8: The untargeted attack success rates (%) on six naturally trained models for CIFAR100 using
various transfer attacks and two query attacks with the attack strength ¢ = 8/255. The adversarial
examples are generated by VGG16. x denotes the attack success rates under white-box attacks.
Average means to calculate the average value except *. Note that ) = 1 in Q-FGSM.

Model Attack Loss V16 R50 RN50  WRN-16-4  DI21 M-v2  Average
Square (O = 10 : 3675 31.60 3940 3140 3340 4990 3874
PRGF(Q = 10) : 3620 690 8.0 800 695 695 738

" CE  8575F 63015 6430 63.65 6625 6645  65.76

RCE  8355% 6105 6325 67.20 6525 6440 6423

Q-FGSM (Ours) WACE ~ 85.30% 6320  65.65 6875 6700 67.65 6645
S CE  99.60+ 500 3870 RE 5410 5065 55.06

RCE  99.50* 4725 5630 60.00 5410 5290 5411

QLFGSM (Ours) ~WACE ~ 99.75%  60.70 6945 7205 6670 6150  66.08
MLFGSM CE 9930 6930 7275 76.35 TLI0 6935 7L77
RCE  99.10* 6820 7250 76.05 7255 7025 7191

VGG16  QMI-FGSM (Oursy ~WACE ~ 99.30% 7650  79.80 8250 7770 7645 7859
DLEGSM CE 9860 3930 6405 6635 6025 3850  61.60
RCE  9730% 5760 6390 67.70 5970 6225 6223

QDLFGSM (Ours)y ~WACE ™ 99.00%  67.05  73.45 7560 6945 6940  70.99
CE 9675 6435 70.10 7390 7065 6820 6944

SENI-FGSM RCE  99.60* 7165 76.15 80.05 7610 7525 7584
QSLNI-FGSM (Ours) ~WACE ~ 99.90% 7715 8140 8370  80.55 7775  80.11
CE  99.55% 7770 30.00 8285 7070 7685 7942

VMI-FGSM RCE  99.05% 7920 8020 83.90 8030 79.65  80.65
QVMLFGSM (Ours) ~WACE ~ 99.35* 8330  85.50 8775 8440 8140 8447

Table 9: The untargeted attack success rates (%) on six naturally trained models and two adver-
sarially trained models for ImageNet using various transfer attacks and two query attacks with the
attack strength ¢ = 8/255. The adversarial examples are generated by VGG16. x denotes the attack
success rates under white-box attacks. Avg. means to calculate the average value of the naturally
trained models except *. Note that Q = 1 in Q-FGSM.

Model Attack Loss V16 V19 R50 R152 I-v3 M-v2 Avg. a-1-v3 ae-IR-v2
Square (Q = 0) - M2 345 165 124 179 341 259 123 iz
Square (Q — 1) - 412 357 178 135 192 351 271 145 12.4
Square (Q = 10) - 477 416 232 162 236 413 323 203 16.8
PRGE (Q = 10) : 825 211 43 - 77 61 86 25 70

— CE 956 728 38 246 260 &0 306 180 10.1

RCE 950 670 276 182 211 383 344 170 79

Q-FGSM (Ours) WACE ~ 964% 727 339 244 264 439 403 181 104
RGSM CE 94 8§79 278 184 150 373 373 738 39

RCE  100% 822 184 122 104 287 304 70 36

QLFGSM (Oursy ~WACE~ 100%  90.6 339 226 212 466 430 85 5.9
CE 994 058 465 335 327 %83 534 138 72

MI-FGSM RCE  100* 945 383 273 283 554 488 140 72
VGGI6  QMLEGSM (Ours) ~WACE ~ 100% 965 524 395 367 650 580  16.1 92
DLEGSM CE  96° 941 381 262 270 523 475 88 354
RCE 999 909 276 177 202 448 402 90 45

QDLFGSM (Oursy ~WACE ~ 100+ 949 456 335 340 610 538 107 7.8
CE 100" 980 3566 418 438 03 6.1 177 115

SINI-FGSM RCE 100 977 543 411 405 704 608 169 103
QSLNI-FGSM (Ours)y ~WACE ~ 100 975 645 516 473 754 673 211 13.9
CE 94 080 624 485 436 28 650 175 113

VMI-FGSM RCE 1005 961 554 423 413 684 607 167 104
QVMLFGSM (Oursy ~WACE ~ 100+  98.1 692 546 505 782 701 198 145

query prior-based transfer attacks for CIFAR10, 0.69 to 0.82% on Q-FGSM and 3.69 to 11.18% on
the other five query prior-based transfer attacks for CIFAR100, 0.7 to 1.3% on Q-FGSM and 4.6 to
7.9% on the other five query prior-based transfer attacks for ImageNet. In comparison with the RCE
loss, the average increase of the ASR is 8.43 to 9.64% on CIFAR10 and 2.96 to 10.98% on the other
five query prior-based transfer attacks for CIFAR10, 1.95 to 2.22% on Q-FGSM and 0.86 to 11.97%
on the other five query prior-based transfer attacks for CIFAR100, 5.9 to 7.8% on Q-FGSM and 4.2
to 13.6% on the other five query prior-based transfer attacks for ImageNet.

In addition, as shown in Tables 6 and when the attack strength ¢ = 16/255, in
comparison with the CE and RCE losses, the query prior-based attacks with the WACE loss can still
effectively enhance the transferability of the gradient iterative-based attacks on different surrogate
models and datasets.
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Table 10: The untargeted attack success rates (%) on six naturally trained models for CIFAR10 using
various transfer attacks and two query attacks with the attack strength e = 16/255. The adversarial
examples are generated by VGG16. x denotes the attack success rates under white-box attacks.
Average means to calculate the average value except *. Note that ) = 1 in Q-FGSM.

Model Attack Loss V16 V19 R50 WRN-16-4 D121 M-v2  Average
Square (Q = 10) : 80 4255 43350 5175 3810 6505 5196
PRGF (Q = 10) : 3930 1280 1053 13.60 170 1260 1255
- CE 7050 6465 6570  67.60 6175 7625 67.19
RCE  6635% 6205 6300 6475 5940 7420 6468
Q-FGSM (Ours) WACE ~ 7770% 6750 6975 7145 6725 7935 7106
LFGSM CE 9975 8760 .00 8925 8405 8490 8498
RCE  9945% 8715 80.75 89.40 8525 8670 8585
QLFGSM (Ours) ~WACE ~ 99.90* 9160 8595 9430 9075 9075  90.67
MLFGSM CE 9800 0400 9000 9345 OL15 9075  OL87
RCE  9850* 9315 90.00  93.15 9140 9145 9183
VGG16  QMI-FGSM (Oursy ~WACE ~ 99.35% 9555 9310 9665 9450 9490  94.94
DLEGSM CE  98.10F 9100 8595 9185 8870 8905  89.67
RCE  9735% 9035 8465 90.25 8770 8945 8848
QDLFGSM (Ours)y ~WACE ~ 99.00% 9425 9150 9600 9435 9560  94.34
CE 99907 9625 943 9670 9420 9405 9500
SENI-FGSM RCE 9970 9770 9620  98.05 9640 9750  97.17
QSLNI-FGSM (Ours)y ~WACE ~ 99.95% 9930 9770  98.80 9840 98.10  98.46
CE  9985F 0735 0510 9680 0540 9615  96.16
VMI-FGSM RCE  99.50* 9730 9625 97.40 96.85 9725 9701

QVMI-FGSM (Ours) WACE  99.80* 98.70  97.80 99.25 98.35  99.00 98.62

Table 11: The untargeted attack success rates (%) on six naturally trained models for CIFAR100
using various transfer attacks and two query attacks with the attack strength e = 16/255. The
adversarial examples are generated by VGG16. * denotes the attack success rates under white-box
attacks. Average means to calculate the average value except *. Note that ) = 1 in Q-FGSM.

Model Attack Loss \20 R50 RN50  WRN-16-4 D121 M-v2 Average
Square (Q = 10) ; 7610 7220 7425 7870 7110 8385 7603
PRGF(Q = 10) - 5365 1545 1835 17.60 730 1485 16.11

. CE 9150+ 8480 8500 8705 8480 8675 859

RCE  90.95% 8395 8540 86.50 8400 8635 8524

Q-FGSM (Ours) WACE ~ 91.60* 8570  86.55 88.10 8515 87.50 866
LRGSM CE 100 6825 7450 T840 7135 69.60 242

RCE  100% 6675 7350 7860 7220 7425  73.06

QLFGSM (Oursy ~WACE 1005  77.85  83.40 8630 8130 7940 8165
MLFGSM CE 100 8795 8850 91.10 8735 8615 8821
RCE  100% 8885  90.15 92.85 8950 8950  90.17

VGG16  QMLFGSM (Ours) ~WACE 100  92.65 9220 9535 9200 9085  92.61
DLEGSM CE 9975 7755 8155 86.25 8010 7950 8093
RCE  99.70* 7840 8275 86.30 81.10 8300 8231

QDLFGSM (Ours) ~WACE ~ 99.95% 8580  88.60 9210 8730 8730 8822
CE  9985F 8800 90.40 92,45 8940 8960 90.15

SENI-FGSM RCE 1005 9110 9255 9330 02.10 9340 9249
QSLNLFGSM (Ours) ~WACE ~ 100%  93.10  92.85 9595 9330 9275  93.59
CE 1005 9325 9230 9510 9275 9165 9301

VMI-FGSM RCE  100* 9395 9380 95.75 9375 9365 9418
QVMLFGSM (Ours) ~WACE ™ 99.95% 9575  96.05 9650 9445 9385 9532

In conclusion, through the comparison with or without the query priors, at the low attack strength, i.e.
€ = 8/255, the query prior-based attacks can significantly enhance the transferability of adversarial
examples to attack the naturally trained models. At the high attack strength, i.e. ¢ = 16/255, most
query prior-based attacks can enhance the transferability of adversarial examples, but the average
ASR of QSI-NI-FGSM has a slight decrease on ImageNet with VGG16 as the surrogate model.

B.2.2 ATTACKING AN ADVERSARIALLY TRAINED MODEL

Tables [3|and [9] perform six transfer attacks with or without the query priors to attack two adversari-
ally trained models for ImageNet on different surrogate models when the attack strength e = 8/255.
The results show that the query prior-based attacks with the WACE loss can enhance the trans-
ferability of the gradient iterative-based attacks when attacking the adversarially trained model. In
comparison with the CE loss, the increase of the ASR is 0.1 to 0.3% on Q-FGSM and 0.7 to 6.3% on
the other five transfer attacks for ImageNet (except for a slight decrease on Q-FGSM with ResNet50

31



Under review as a conference paper at ICLR 2023

Table 12: The untargeted attack success rates (%) on six naturally trained models and two adver-
sarially trained models for ImageNet using various transfer attacks and two query attacks with the
attack strength e = 16/255. The adversarial examples are generated by VGG16. * denotes the attack
success rates under white-box attacks. Avg. means to calculate the average value of the naturally
trained models except *. Note that () = 1 in Q-FGSM.

Model Attack Loss V16 V19 R50 R152 I-v3 M-v2  Avg. a-l-v3  aeIR-v2
Squarc (Q = 0) - 00 726 396 276 384 709 547 322 776
Square (Q = 1) } 794 733 411 298 3907 717 558 348 29,1
Square (Q = 10) - 840 802 515 401 507 794 643 464 382
PRGE (Q = 10) - 955 389 103 - 57 131 170 58 71

—— CE 048 829 474 364 358 616 528 320 6.8

RCE  954* 815 434 321 341 615 505 315 147

Q-FGSM (Ours) WACE ~ 95.8% 824 479 359 348 628 528 327 159
LRGSM CE  994% 972 462 317 281 588 524 139 75

RCE  100% 963 359 254 222 522 464 140 6.5

QLFGSM (Oursy ~WACE ~ 100 97.6 534 392 324 664 578 154 8.2
CE 094 087 600 542 5L1 798 706 245 146

MI-FGSM RCE  100* 992 667 509 482 811 692 242 13.0
VGGI6  QMLEGSM (Ours) ~WACE ~ 100% 991 730 607 549 8.7 739 255 16.1
DLEGSM CE 996 086 602 448 #4638 644 156 92
RCE 100 979 502 381 37.5 683 584 144 83

QDLFGSM (Oursy ~WACE ~ 100+ 987 67.1 533 501 809 700  17.6 123
CE  100F 997 860 731 708 917 83 325 209

SENI-FGSM RCE 100+ 996 851 710 67.6 911 8.9 284 18.5
QSLNI-FGSM (Ours)y ~WACE ~ 100% 995 847 723 684 902 830  33.5 25
CE  098% 004 834 722 658 883 818 325 722

VMI-FGSM RCE 100+ 994 849 709 672 895 824 327 2.9
QVMLEGSM (Ours)y ~WACE 100 997 872 784 703 90.6 852 373 28.0

Table 13: The untargeted attack success rates (%) on five naturally trained models for CIFAR10
using VMI-FGSM as the baseline with the attack strength ¢ = 8/255. The adversarial examples are
generated by VGG16 and ResNet50, which are the surrogate model and the query model, respec-
tively. Note that ResNet50 is both the query model and the victim model.

Surrogate Query

Model Model Attack Loss \%20 R50 WRN-16-4 D121 M-v2 Average
CE 8000 7660 RI60 7840 7995 7930
VGG16  ResNet50 VMI-FGSM RCE 7730 7550 79.10 7665 7875 7746

QVMI-FGSM(Ours)  WACE  84.50  83.35 85.40 83.90 84.45 84.32

as the surrogate model). In comparison with the RCE loss, the increase of the ASR is 0.6 to 2.5%
on Q-FGSM and 1.6 to 5.2% on the other five transfer attacks for ImageNet.

In addition, as shown in Tables @ and when the attack strength ¢ = 16/255, in comparison
with the CE and RCE losses, the query prior-based attacks with the WACE loss can still effectively
enhance the transferability of the gradient iterative-based attacks to attack the adversarially trained
models on different surrogate models (except for QSI-NI-FGSM with ResNet50 as the surrogate
model to attack adversarial Inception-v3).

In conclusion, through the comparison with or without the query priors, at the low attack strength,
i.e. € = 8/255, the query prior-based attacks except for Q-FGSM can enhance the transferability
of adversarial examples to attack the adversarially trained models. At the high attack strength,
i.e. ¢ = 16/255, the query prior-based attacks except for Q-FGSM can enhance the transferability
of adversarial examples to attack the adversarially trained models, but QSI-NI-FGSM reduces the
attack success rate.

B.2.3 ATTACKING THE OTHER MODELS

In all baseline methods, because VMI-FGSM has the highest overall performance, VMI-FGSM is
selected as the baseline to further compare the transferability to the other models. Then, a surrogate
model and a query model are used to generate adversarial examples to attack many other models
where the query model is a target victim model queried by our query-prior based attack method.
Here, VGG16 and ResNet50 (ResNet50 and VGG16) are used as the surrogate model and the query
model respectively on CIFAR10/100 and ImageNet.
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Table 14: The untargeted attack success rates (%) on five naturally trained models for CIFAR10
using VMI-FGSM as the baseline with the attack strength e = 8/255. The adversarial examples are
generated by ResNet50 and VGG16, which are the surrogate model and the query model, respec-
tively. Note that VGG16 is both the query model and the victim model.

Surrogate Query

Model Model Attack Loss V16 V19 WRN-16-4 D121 M-v2  Average
CE 8040 8220 9460 9080 8805 8739
ResNet50  VGGI6 VMI-FGSM RCE 7775 7805 92.15 8900 87.60 8491

QVMLFGSM(Ours)y ~WACE ~ 88.60 87.10 9630 9375 9260 9167

Table 15: The untargeted attack success rates (%) on five naturally trained models for CIFAR100
using VMI-FGSM as the baseline with the attack strength e = 8/255. The adversarial examples are
generated by VGG16 and ResNet50, which are the surrogate model and the query model, respec-
tively. Note that ResNet50 is both the query model and the victim model.

Surrogate Query
Model Model Attack Loss R50 RN50  WRN-16-4  DI121 M-v2  Average
CE 7770 80.00 8785 7970 7685 7942
VGG16  ResNet50 VMI-FGSM RCE 7920 8020 83.90 8030 79.65  80.65
QVMLFGSM(Ours) ~WACE ~ 8330  81.70 8405  80.65 7800 8154

When VGG16 and ResNet50 are the surrogate model and the query model, respectively, as shown
in Tables[I3] [I5]and[I7] the attack success rate of QVMI-FGSM is almost higher than that of VMI-
FGSM (with the CE loss). Specifically, the average increase of the ASR is 5.01% on CIFARIO,
2.12% on CIFAR100 and 1.78% on ImageNet. In addition, the ASR of QVMI-FGSM is higher than
that of VMI-FGSM with the RCE loss.

When ResNet50 and VGG16 are the surrogate model and the query model, respectively, as shown
in Tables and [T8] the attack success rate of QVMI-FGSM is also almost higher than that of
VMI-FGSM (with the CE loss). Specifically, the average increase of the ASR is 4.28% on CIFARI10,
0.64% on CIFAR100 and 3.42% on ImageNet. In addition, the ASR of QVMI-FGSM is also almost
higher than that of VMI-FGSM with the RCE loss (except for CIFAR100 with ResNet50 as the
surrogate model and VGG16 as the query model).

Overall, the adversarial examples generated by QVMI-FGSM not only perform better on the query
model but also perform better on the other models.

Why does the transferable attack success rate of the adversarial examples generated by the surro-
gate model and the query model improve on the other models? Two points answer the question.
First, there are similarities between models, which is also the reason why the adversarial examples
have transferability. Second, attacking multiple models is similar to attacking an ensemble model.
Because attacking the surrogate model and the query model at the same time is similar to attacking
the ensemble model consisting of them and Liu et al.|(2017) found that the adversarial examples gen-
erated by the ensemble model have higher transferability, QVMI-FGSM has higher transferability
than VMI-FGSM to the other models.

B.3 COMPARISON WITH OR WITHOUT THE FUZZY DOMAIN ELIMINATING TECHNIQUE ON
THE UNTARGETED ATTACKS

B.3.1 ATTACKING A NATURALLY TRAINED MODEL

To validate that the fuzzy domain eliminating technique can enhance the transferability of the trans-
fer attacks, we perform six transfer attacks with or without the fuzzy domain eliminating technique to
attack six naturally trained models for CIFAR10, five gradient iterative-based attacks for CIFAR100,
FGSM and three latest gradient iterative-based attacks (MI-FGSM, SI-NI-FGSM and VMI-FGSM)
for ImageNet. Note that, according to Table when L = 1 and 7 = 1, the FECE loss becomes
the CE loss. As shown in Tables and |3| when the attack strength e = 8/255, our FECE loss
can significantly enhance the transferability of the transfer attacks to attack the naturally trained
models on different datasets. In comparison with the CE loss, the average increase of the ASR is
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Table 16: The untargeted attack success rates (%) on five naturally trained models for CIFAR100
using VMI-FGSM as the baseline with the attack strength e = 8/255. The adversarial examples are
generated by ResNet50 and VGG16, which are the surrogate model and the query model, respec-
tively. Note that VGG16 is both the query model and the victim model.

Surrogate Query

Model Model Attack Loss V16 RN50  WRN-16-4  DI21 M-v2  Average
CE 8440 8875 9035 8935 8070  86.60
ResNet50  VGGI6 VMI-FGSM RCE 8400 9045 91.20 9055 8270 8778
QVMIFGSM(Ours) ~WACE ~ 87.05  89.20 9050 9010 7980  87.33

Table 17: The untargeted attack success rates (%) on five naturally trained models for ImageNet
using VMI-FGSM as the baseline with the attack strength e = 8/255. The adversarial examples are
generated by VGG16 and ResNet50, which are the surrogate model and the query model, respec-
tively. Note that ResNet50 is both the query model and the victim model.

Surrogate Query

Model Model Attack Loss V19 R50 RI152  I-v3 M-v2  Average
CE 980 624 485 436 28 6506
VGGI6  ResNet50 VMI-FGSM RCE 961 554 423 413 684 607

QVMI-FGSM(Ours)  WACE  97.6  69.2 50.8 44.1 72.5 66.84

6.03% on FGSM and 2.31 to 7.25% on the other five gradient iterative-based attacks for CIFAR10,
1.3 to 10.27% on the five gradient iterative-based attacks for CIFAR100, 0.4% on FGSM and 2.3
to 3.4% on the latest gradient iterative-based attacks (SI-NI-FGSM and VMI-FGSM) for ImageNet.
In comparison with the RCE loss, the average increase of the ASR is 12.69% on FGSM and 0.64 to
11.14% on the other five gradient iterative-based attacks for CIFAR10, 0.21 to 0.6% on several gra-
dient iterative-based attacks (MI-FGSM, DI-FGSM and VMI-FGSM) for CIFAR100 (the average
ASR is kept on I-FGSM and SI-NI-FGSM), 6.9% on FGSM and 1.2 to 3.9% on the latest gradient
iterative-based attacks for ImageNet.

In addition, as shown in Tables and @ when the attack strength e = 16/255, in comparison
with the CE loss, our FECE loss based attacks can still effectively enhance the transferability of
the gradient iterative-based attacks on different datasets. In comparison with the RCE loss, our
FECE loss based attacks can also still effectively enhance the transferability of the gradient iterative-
based attacks on CIFAR10 and ImageNet, and keep the transferability of the gradient iterative-based
attacks on CIFAR100.

In conclusion, through the comparison with or without the fuzzy domain eliminating technique, at
the low attack strength, i.e. ¢ = 8/255, our FECE loss can effectively enhance the transferability
of adversarial examples to attack the naturally trained models on different datasets. At the high
attack strength, i.e. € = 16/255, our FECE loss can effectively enhance the transferability of ad-
versarial examples to attack the naturally trained models on CIFAR10 and ImageNet, and keep the
transferability of adversarial examples on CIFAR100.

B.3.2 ATTACKING AN ADVERSARIALLY TRAINED MODEL

Table |3| performs the three latest transfer attacks (MI-FGSM, SI-NI-FGSM and VMI-FGSM) with
or without the fuzzy domain eliminating technique to attack two adversarially trained models for
ImageNet when the attack strength ¢ = 8/255. In comparison with different loss functions (the CE
and RCE losses), our FECE loss can enhance the transferability of VMI-FGSM and keep (or slightly
decrease) the transferability of the other transfer attacks.

In addition, as shown in Table @, when the attack strength ¢ = 16/255, in comparison with the CE
loss, our FECE loss can enhance the transferability of FGSM, MI-FGSM and VMI-FGSM, and keep
the transferability of SI-NI-FGSM. In comparison with the RCE loss, our FECE loss can enhance
the transferability of FGSM and SI-NI-FGSM, and keep (or slightly decrease) on MI-FGSM and
VMI-FGSM.

In conclusion, through the comparison with or without the fuzzy domain eliminating technique, at
the low attack strength, i.e. ¢ = 8/255, our FECE loss can steadily improve the transferability of
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Table 18: The untargeted attack success rates (%) on five naturally trained models for ImageNet
using VMI-FGSM as the baseline with the attack strength e = 8/255. The adversarial examples are
generated by ResNet50 and VGG16, which are the surrogate model and the query model, respec-
tively. Note that VGG16 is both the query model and the victim model.

Surrogate Query

Model Model Attack Loss V16 V19  RI52 I-v3 M-v2  Average
CE 691 685 89 531 720 6034
ResNetS0  VGG16 VMI-FGSM RCE 699 709 795 521 718  63.84

QVMI-FGSM(Ours) WACE  78.6  72.5 85.2 52.5 75.0 72.76

Table 19: The untargeted attack success rates (%) on adversarial Inception-v3 for ImageNet using
various transfer attacks and a query attack with the attack strength ¢ = 8/255. The adversarial
examples are generated by adversarial ensemble Inception-Resnet-v2. Note that Q = 1 in Q-FGSM
and @ = 5 in the other attacks.

a-1-v3
Attack Square  Q-FGSM  QI-FGSM  QMI-FGSM  QDI-FGSM  QSI-NI-FGSM  QVMI-FGSM
ae-IR-v2 16.9 232 134 22.9 17.7 24.5 28.7

VMI-FGSM. At the high attack strength, i.e. ¢ = 16/255, the CE, RCE and FECE losses have their
own advantages on different transfer attacks.

B.3.3 COMBINATION OF THE QUERY PRIORS AND FUZZY DOMAIN ELIMINATING TECHNIQUE

As shown in Tables and @, whether the attack strength e = 8/255 or 16/255, when at-
tacking the naturally trained model, in comparison with our WACE and FECE losses, our WFCE loss
can further improve the transferability of the gradient iterative-based attacks on different datasets. In
addition, when attacking the adversarially trained model and the attack strength e = 16/255, in com-
parison with our WACE and FECE losses, our WFCE loss can further improve the transferability of
the latest VMI-FGSM on ImageNet.

B.4 COMPARISON WITH CURRENT BLACK-BOX QUERY ATTACKS ON THE UNTARGETED
ATTACKS

As shown in Tables [1] 21 3| A [3] [6] [7] [8] [0 ., [11]and [12] whether the attack strength e = 8/255

or 16/255, when the allowed query number ) = 10, the attack success rate of our QVMI-FGSM is
much larger than that of Square and PRGF when attacking the naturally trained models on different
surrogate models and datasets.

As shown in Tables @ E] and whether the attack strength ¢ = 8/255 or 16/255, when the
allowed query number () = 10, the attack success rate of our QVMI-FGSM is much larger than
that of PRGF when attacking the adversarially trained models on different surrogate models for
ImageNet.

As shown in Table when the attack strength e = 8/255 and the allowed query number (Q = 10, the
attack success rate of our QVMI-FGSM is larger than that of Square when attacking the adversarially
trained models on ImageNet.

To highlight the advantages of the query prior-based attacks for attacking the adversarially trained
models when compared with Square, we set adversarial ensemble Inception-Resnet-v2 as the sur-
rogate model rather than the naturally trained models (i.e. VGG16 or ResNet50) and adversarial
Inception-v3 as the victim model, and reduce the query number from 10to 5 (i.e. @ = 5). As shown
in Table[I9] when the attack strength is 8/255, by comparing the best query prior-based attacks with
Square, the increase of the ASR is 11.8%. As shown in Table[@], when the attack strength is 16/255,
the increase of the ASR is 7.5%.

In conclusion, (i) through the comparison with Square, whether the attack strength is low or high,
the ASR of the query prior-based attacks is far greater than that of Square for attacking six naturally
trained models. When attacking two adversarially trained models, at the low attack strength, i.e.
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Table 20: The untargeted attack success rates (%) on adversarial Inception-v3 for ImageNet using
various transfer attacks and a query attack with the attack strength e = 16/255. The adversarial
examples are generated by adversarial ensemble Inception-Resnet-v2. Note that ) = 1 in Q-FGSM
and @ = 5 in the other attacks.

a-1-v3
Attack Square  Q-FGSM  QI-FGSM  QMI-FGSM  QDI-FGSM  QSI-NI-FGSM  QVMI-FGSM
ae-IR-v2 39.4 41.3 214 36.3 28.3 38.5 46.9

Table 21: The untargeted attack success rates (%) on five naturally trained models for CIFAR10
using [-FGSM as the baseline with the attack strength ¢ = 8/255. VGG16 is the surrogate model
and the query number of QI-FGSM is 1, i.e., Q = 1.

Model Attack Loss V19 R50 WRN-16-4 D121 M-v2  Average
LFGSM CE 68.95  61.45 72.65 68.30  70.90 68.45
VGG16 RCE 68.10  60.80 72.20 68.10  70.65 67.97
QI-FGSM(Q=1)  WACE 74.60  68.70 81.50 76.55  80.70 76.41

e = 8/255, some query prior-based attacks are better than Square (Q = 10). At the high attack
strength, i.e. € = 16/255, Square () = 10) is better than the query prior-based attacks and Square
(Q = 0) is better than the transfer attacks (i.e., the family of FGSMs). However, when we use
the adversarially trained model as the surrogate model and reduce the query number, regardless
of whether the attack strength is low or high, the ASR of the query prior-based attacks is greater
than that of Square for attacking the other adversarially trained models. (ii) P-RGF is inefficient
at limits of a few queries on six naturally trained models and two adversarially trained models for
CIFAR10/100 and ImageNet. The ASR of the query prior-based attacks is far greater than that of
P-RGF.

B.5 ABLATION STUDY ON THE UNTARGETED ATTACKS

B.5.1 DIFFERENT NUMBERS OF THE TOP-N WRONG CATEGORIES

Figures [5|and[7] respectively evaluate the effect of different 72 on the attack success rates of five nat-
urally trained victim models and two adversarially trained victim models when these victim models
are attacked by QI-FGSM (e = 8/255) with VGG16 and ResNet50 for CIFAR10/100 and ImageNet.
As shown in Figures[5|and[7] when @ is greater than a certain threshold, the attack success rate will
not be improved, e.g., Figure E] shows that the threshold is 2 for CIFAR10, 10 for CIFAR100 and
5 for ImageNet approximately, and Figure [7| shows that the threshold is 2 for CIFAR10, 5 for CI-
FAR100 and 10 for ImageNet approximately. Because increasing 7 increases the calculation time
of the gradient, 7 is not the bigger the better.

B.5.2 DIFFERENT QUERY NUMBERS

Figures|[6|and [§] respectively evaluate the effect of different @ on the attack success rates of five nat-
urally trained victim models and two adversarially trained victim models when these victim models
are attacked by QI-FGSM (e = 8/255) with VGG16 and ResNet50 for CIFAR10/100 and Ima-
geNet. On the victim models, the more the query, the greater the attack success rate. As shown in
Figure[6] when the query number increases from 1 to 10, the attack success rate increases by 3.5%
at most for CIFAR10, 10% at most for CIFAR100 and 5% at most for ImageNet approximately, and
the increased attack success rate is mainly increased in the first five queries. As shown in Figure (]
when the query number increases from 1 to 10, the attack success rate increases by 3% at most for
CIFAR10, 8% at most for CIFAR100 and 5% at most for ImageNet approximately, and the increased
attack success rate is mainly increased in the first five queries.

B.5.3 COMPARISON WITH OR WITHOUT THE QUERY PRIORS WHEN () = 1

When @ = 0, the query prior-based methods will be transformed into the usual methods, e.g., QI-
FGSM — I-FGSM. To further explore the effectiveness of the query-prior based method, we set the
query number @ as 1 and I-FGSM is selected as the baseline.
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Table 22: The untargeted attack success rates (%) on five naturally trained models for CIFAR10
using [-FGSM as the baseline with the attack strength e = 8/255. ResNet50 is the surrogate model
and the query number of QI-FGSM is 1, i.e., Q = 1.

Model Attack Loss V16 V19 WRN-16-4 D121 M-v2  Average
LEGSM CE 59.85  62.55 93.95 88.70  84.35 77.88
ResNet50 RCE 58.05  60.10 90.60 86.15  82.25 75.43
QI-FGSM(Q=1) WACE  68.45  68.55 96.85 93.25  89.60 83.34

Table 23: The untargeted attack success rates (%) on five naturally trained models for CIFAR100
using [-FGSM as the baseline with the attack strength ¢ = 8/255. VGG16 is the surrogate model
and the query number of QI-FGSM is 1, i.e., Q = 1.

Model Attack Loss R50 RN50  WRN-16-4 D121 M-v2 Average
LFGSM CE 50.70 58.70 61.15 54.10  50.65 55.06
VGG16 RCE 47.25 56.30 60.00 54.10  52.90 54.11
QI-FGSM(Q=1) = WACE  58.95 68.35 70.55 64.25  58.95 64.21

As shown in Tables and 26] even if the number of query Q is 1, the query prior-
based method can still significantly improve the transferability of the baseline method on different

surrogate models and different datasets with attack strength € = 5=-.

B.5.4 FURTHER VERIFY THE EFFECTIVENESS OF THE QUERY PRIOR-BASED ATTACKS

To further verify the effectiveness of the query prior-based attacks, we make a more fair compar-
ison that QVMI-FGSM compared with the combination of VMI-FGSM and Square. As shown in
Tables and29] when the attack strength ¢ = 8/255 and the allowed query number Q = 10,
the results of our QVMI-FGSM have higher performance than the combination of VMI-FGSM and
Square to attack five naturally trained models on CIFAR10/100 and ImageNet.

B.5.5 DIFFERENT SIZES OF THE TEMPERATURE PARAMETER

Figure [9]evaluates the effect of different K on the attack success rates of ResNet50 to VGG16 using
various transfer attacks for CIFAR10/100 and ImageNet. As shown in Figure [0 with the increase
of IC, the attack success rates of the gradient iterative-based attacks are significantly increased on
CIFARI10 except for SI-NI-FGSM. When the K increases to 2, the performance of all gradient
iterative-based attacks is almost optimal on CIFAR10.

B.5.6 DIFFERENT SIZES OF THE PENALTY PARAMETER

Figure[I0]evaluates the effect of different 7 on the attack success rates of ResNet50 to VGG16 using
various transfer attacks for CIFAR10/100 and ImageNet. As shown in Figure with the increase
of T, the attack success rate of the SI-NI-FGSM is increased on CIFAR10, the attack success rates of
all gradient iterative-based attacks are significantly increased on CIFAR100 and the attack success
rates of the latest gradient iterative-based attacks (MI-FGSM, SI-NI-FGSM and VMI-FGSM) are
increased by a reasonable 7 on ImageNet.

In addition, Figure[TT]further explores the optimal parameter combinations of K and 7 on different
datasets, which are summarized in Table 30}

B.6 COMPARISON WITH OR WITHOUT THE FUZZY DOMAIN ELIMINATING TECHNIQUE ON
THE TARGETED ATTACKS

As shown in Figure[12] slightly decreasing K from 1 can slightly increase the targeted attack success
rates of several gradient iterative-based attacks on CIFAR10/100. As shown in Figure with
the increase of the 7T, the targeted attack success rates of almost all the FECE (I = 1) based
attacks are increased and close to that of the RCE based attacks, which are theoretically analyzed in
Propositions [4 and
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Table 24: The untargeted attack success rates (%) on five naturally trained models for CIFAR100
using [-FGSM as the baseline with the attack strength e = 8/255. ResNet50 is the surrogate model
and the query number of QI-FGSM is 1, i.e., Q = 1.

Model Attack Loss V16 RN50  WRN-16-4  DI21 M-v2  Average
LEGSM CE 61.45  81.40 82.05 81.10  58.05 72.81
ResNet50 RCE 6945  84.10 85.80 84.35  68.00 78.34
QI-FGSM(Q=1) WACE 68.70  86.05 88.45 86.75  67.15 79.42

Table 25: The untargeted attack success rates (%) on five naturally trained models for ImageNet
using [-FGSM as the baseline with the attack strength ¢ = 8/255. VGG16 is the surrogate model
and the query number of QI-FGSM is 1, i.e., Q = 1.

Model Attack Loss V19 R50 R152 I-v3 M-v2  Average
LLEGSM CE 879 278 18.4 15.0 373 373
VGG16 RCE 822 184 12.2 10.4 30.4 30.4
QI-FGSM(Q=1) WACE 874 311 21.7 20.2 42.4 40.6

Proposition 7 With the increase of the T, the targeted attack success rates of almost all the FECE
(KX = 1) based attacks are close to that of the RCE based attacks.

Proof In the targeted attacks, the RCE and FECE losses respectively are Eq. 9 and[50

Lrce(z,yr;0) = —Lcp(z,y-; 0 tea Z Leg(2,ye;0) (49)

Lrgcp (x,y-;0,7T,1) =log FESoftmax (z.;T,1) (50)

where KC = 1 in the FECE loss. To explore the targeted attack success rates of almost all the FECE
(IC = 1) based attacks are close to that of the RCE based attacks with the increase of the T, the
derivation formula of Lrcog(x,y,;0) and Lrgcr (x,y-; 0, T, 1) w.rt. the input x respectively are

Eq.[51)and[52}

OLrce _ OLrcn <3ZT> n 20: OLrcr 0z

ox 0z, ox - 0z; or
i=1(i#7)
_ L (o) L 0 1)
" In2 ox P C Oz
OLppce _ OLrpce [0z n XC: OLppce 0z
dr 9z 0z = 0z; Ox
i=1(1#7)
1 ez /T 0z, = eil T 0z;
T 7 2 <1 O e ><8x> Z C em/T dx |’ >2)
2= €T i=1(i%7) 2j=1 67
. . e/ T ~ C—1 2 /T -
In Eq. with the increase of T, when T — 400, (1 — W) ~ 51 and W ~ 4.
When C'is large, €51 ~ 1. Then,
oL oL
stgn ROE ) ~ stgn ZoEECE (53)
ox ox

where sign(-) is the sign function. Therefore, with the increase of the T, the targeted attack success
rates of almost all the FECE (K = 1) based attacks are close to that of the RCE based attacks.

Therefore, according to Proposition[d} the high performance of the RCE loss in the targeted transfer
attacks can be explained as the fuzzy domain eliminating technique.

38



Under review as a conference paper at ICLR 2023

Table 26: The untargeted attack success rates (%) on five naturally trained models for ImageNet
using [-FGSM as the baseline with the attack strength e = 8/255. ResNet50 is the surrogate model
and the query number of QI-FGSM is 1, i.e., Q = 1.

Model Attack Loss V16 V19 RI152  I-v3 M-v2  Average
LEGSM CE 321 297 45.0 17.0 332 314
ResNet50 : RCE 289  28.0 35.2 16.2 29.7 27.6

QI-FGSM(Q=1) WACE 38.1 333 49.1 20.8 41.0 36.5

Table 27: The untargeted attack success rates (%) on five naturally trained models for CIFAR10
using the combination of VMI-FGSM and Square as the baseline with the attack strength e = 8/255.
VGG16 is the surrogate model and the query number of QVMI-FGSM and Square is 10, i.e., Q =
10.

Model Attack Loss V19 R50 WRN-16-4 D121 M-v2  Average
CE 8005 7740 8165 7005 8035 7972
vegle ~ YMIFGSM&Square  prop 7745 7535 7925 7725 7985 7783
QVMLFGSM(Ours) ~WACE ~ 84.40 8335 8840 8570 89.10  86.19

B.7 LIMITATION

The query prior-based attacks are effective for the untargeted attack. However, because Proposition 2]
is more conducive to the exploration of the untargeted attack than the targeted attack, the proposed
query prior-based attacks are designed as the untargeted attacks, which may not work in the targeted
attack. In the future, the design of the query prior-based targeted attack is still a problem that needs
to be studied.

C THE DETAILED CONTRIBUTION INTRODUCTION OF THE QUERY
PRIOR-BASED ATTACKS

The detailed contributions of the query prior-based attacks as follows.

First, we propose Proposition [T] and Corollary [T} which explore the relationship between the cos 9
(¥ is the gradient angle between the surrogate model and the victim model) and the transferability
on the same surrogate model and victim model pair using different transfer attack methods. In
addition, we propose Proposition 2} which finds the preference property of deep neural networks.
The Theoretical and Empirical Proofs of Propositions and Corollary (1] are represented in the

appendices[A.T|and[A.2]

Second, by utilizing Propositions and Corollary |1} we designed a simple WACE loss function.
Theorem [I] and Figure [ proved that the WACE loss is better than CE and RCE losses on reducing
the gradient angle between the surrogate model and victim model. Based on the WACE loss, we
designed the query prior-based attacks, which solved two problems. First, compared with several
latest transfer attack methods, the query prior-based attacks significantly improve the transferable
attack success rate on the target victim model for CIFAR10/100 and ImageNet, and effectively
improve the transferable attack success rate on the other models for CIFAR10/100 and ImageNet.
Second, compared with two latest effective query attack methods, when the number of query is
reduced to 10, the attack success rate of our QVMI-FGSM still remains high and is much higher
than them.

Third, as far as we know, our query-prior based attack method is the first try to solve the problem of
black-box attack that allows a few queries (i.e., less or equal to 10).

D THE DETAILED MOTIVATION OF THE DESIGNED QUERY PRIOR-BASED
ATTACKS

To the best of our knowledge, we can divide the current black-box attacks into three scenarios.
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Table 28: The untargeted attack success rates (%) on five naturally trained models for CIFAR100
using the combination of VMI-FGSM and Square as the baseline with the attack strength € = 8/255.
VGG16 is the surrogate model and the query number of QVMI-FGSM and Square is 10, i.e., Q =
10.

Model Attack Loss  R50 RN50 WRN-164 DI2I _M~v2 _ Average
CE 8025 82.05 84.80 8195 8025  81.86
vegle YMIFGSM&Square  pop goos 3150 85.05 8230 8130  82.08
QVMIFGSM(Ours) ~WACE ~ 8330  85.50 87.75 84.40 8140  84.47

Table 29: The untargeted attack success rates (%) on five naturally trained models for ImageNet
using the combination of VMI-FGSM and Square as the baseline with the attack strength e = 8/255.
ResNet50 is the surrogate model and the query number of QVMI-FGSM and Square is 10, i.e.,
Q = 10.

Model Attack Loss V6 V19 RI152  I-v3 M-v2  Average
CE 740 740 847 564 751 730
ResNetso  VMEFGSM&Square pep 2571 746 801 539 756 719
QVMLFGSM(Ours)y ~WACE ~ 78.6 748 882 60.8 8.3 769

The first scenario is the query-free transfer-based attack, i.e., the allowed number of query @ = 0.
The adversarial examples are generated by the surrogate model without any knowledge of any target
model. For example, the current transfer-based attacks are the query-free transfer-based attack, i.e.,
FGSM, I-FGSM, MI-FGSM, DI-FGSM, SI-NI-FGSM and VMI-FGSM.

The second scenario is the query-based attack without transfer prior, i.e., a sufficient number of
query and without transfer prior. The adversarial examples are generated by gradient estimation or
random search. For example, a typical effective algorithm is Square.

The third scenario is the query-based attack with transfer prior, i.e., a sufficient number of query
and with transfer prior. The adversarial examples are generated by the combination of the transfer
prior and gradient estimation (or random search) where the transfer prior is used to improve the
efficiency of gradient estimation and reduce the number of query. For example, a typical effective
algorithm is PRGFE.

In our paper, we explore a novel scenario, i.e., the fourth scenario. The fourth scenario is the
transfer-based attack with a few queries, i.e., the allowed number of query Q < 10. The adversarial
examples are generated by the surrogate model with a few query outputs of a target victim model
(the number of query @ < 10).

The fourth scenario is reasonable, and there is no black-box attack algorithm specifically belonging
to the fourth scenario at present. Why is the fourth scenario reasonable? There are two reasons to
answer the question and the two reasons are also the problems that existed in the first, second and
third scenarios.

First, in the second and third scenarios, although the number of queries in the current query-based
attacks is decreasing, it still needs hundreds of queries. Even if the number of query Q < 10,
the attack success rates of the query-based attacks with or without transfer prior are significantly
reduced, and are far lower than the query-free transfer-based attack in the first scenario, which can
be found in our experimental results.

Second, Proposition |I{and Corollary [1| of our paper explore the reason why the attack success rate
of the current query-free transfer-based attack in the first scenario is increasing (i.e., when the step
size « is small, the better the transferability of the transfer-based attack, the smaller the gradient
angle 1) between the surrogate model and the victim model). To reduce the angle ¢ for improving
the transferability, Proposition [2] of our paper explores the preference of deep neural network imple-
mented classification models after being attacked by the gradient-based attack algorithm (i.e., the
successful attacked adversarial examples prefer to be classified as the wrong categories with higher
probability). By utilizing Propositions [T} 2] and Corollary [I| we can design an algorithm to reduce
the angle ) for enhancing the transferability of the generated adversarial examples with a few query
outputs of a target victim model.

40



Under review as a conference paper at ICLR 2023

Table 30: The optimal parameter of the FECE loss on the combination of different methods and
datasets with ResNet50 as the surrogate model.

CIFARI10 CIFAR100 ImageNet

T K T K T K

FGSM 1.0 20 1.0 1.0 1.0 1.02
BIM 1.0 35 45 1.15 1.0 1.0
MIFGSM 1.0 30 30 105 35 1.015
DIFGSM 1.0 25 35 1.0 1.0 1.0
SINIFGSM 5.5 1.0 35 1.0 2.0 1.0

VMIFGSM 1.0 25 2.0 1.05 2.0 1.0
(1) ResNet50 to VGG16 on CIFAR10 (2) ResNet50 to VGG16 on CIFAR100 (3) ResNet50 to VGG16 on ImageNet
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Figure 9: The untargeted attack success rates (%) of ResNet50 to VGG16 using various transfer
attacks for CIFAR10/100 and ImageNet when varying the size of /C (C > 1) in the FECE loss. Note
that 7 in the FECE loss is 1.

Therefore, by utilizing Propositions [T} ] and Corollary [I] we design a simple WACE loss function.
Theorem|I]and Figure @ prove that the WACE loss is better than the CE and RCE losses on reducing
the gradient angle between the surrogate model and the victim model. Based on the WACE loss, we
design the query prior-based attacks, which solves the above two problems and are verified by the
extended experiments. Overall, in the fourth scenario (i.e., the allowed number of query () < 10),
our method has the highest attack success rate when compared with the current black-box attacks.
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(3) ResNet50 to VGG16 on ImageNet

Figure 10: The untargeted attack success rates (%) of ResNet50 to VGG16 using various transfer
attacks for CIFAR10/100 and ImageNet when varying the size of 7 (7 > 1) in the FECE loss. Note
that /C in the FECE loss is 1.
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Figure 11: The untargeted attack success rates (%) of ResNet50 to VGG16 using various transfer
attacks for CIFAR10/100 and ImageNet when varying the size of IC (C > 1) in the FECE loss. Note
that 7 in the FECE loss is the optimal value.
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Figure 12: The targeted attack success rates (%) of ResNet50 to VGG16 using various transfer
attacks for CIFAR10/100 and ImageNet when varying the size of K (0 < I < 1) in the FECE loss.

Note that 7 in the FECE loss is 1.
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Figure 13: The targeted attack success rates (%) of ResNet50 to VGG16 using various transfer
attacks for CIFAR10/100 and ImageNet when varying the size of 7 (7 > 1) in the FECE loss. Note
that /C in the FECE loss is 1.
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