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Abstract
Sufficiently modeling the correlations among vari-
ables (aka channels) is crucial for achieving accu-
rate multivariate time series forecasting (MTSF).
In this paper, we propose a novel technique called
Temporal Query (TQ) to more effectively cap-
ture multivariate correlations, thereby improv-
ing model performance in MTSF tasks. Tech-
nically, the TQ technique employs periodically
shifted learnable vectors as queries in the atten-
tion mechanism to capture global inter-variable
patterns, while the keys and values are derived
from the raw input data to encode local, sample-
level correlations. Building upon the TQ tech-
nique, we develop a simple yet efficient model
named Temporal Query Network (TQNet), which
employs only a single-layer attention mecha-
nism and a lightweight multi-layer perceptron
(MLP). Extensive experiments demonstrate that
TQNet learns more robust multivariate correla-
tions, achieving state-of-the-art forecasting accu-
racy across 12 challenging real-world datasets.
Furthermore, TQNet achieves high efficiency
comparable to linear-based methods even on high-
dimensional datasets, balancing performance and
computational cost. The code is available at:
https://github.com/ACAT-SCUT/TQNet.

1. Introduction
Effectively modeling correlations among variables (aka
channels) is crucial for multivariate time series forecasting
(MTSF), a task that plays a critical role in various real-world
applications, including energy planning, traffic monitoring,
medical forecasting, and climate modeling (Qiu et al., 2024;
Wang et al., 2024b; Wen et al., 2023; Luo et al., 2024).
The accuracy of MTSF relies heavily on capturing precise
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Figure 1: Comparison of inter-variable correlation patterns
on the Traffic dataset. (a) Global correlations computed
across the entire training set; (b) Correlations learned by the
proposed TQ technique; (c) Correlations from individual
samples, which may be distorted by non-stationary distur-
bances such as extreme values, missing data, and noise. The
comparison between panels (a) and (b) shows that TQ effec-
tively captures global correlation structures, while panel (c)
illustrates the instability of sample-level correlations.

inter-variable correlations, as these correlations significantly
influence the quality of predictions (Wang et al., 2024c).

However, accurately identifying the correlation patterns
among multivariate input sequences is inherently challeng-
ing, particularly when the sequences are affected by non-
stationary disturbances, such as extreme values, missing
data, and noisy perturbations (Huang et al., 2023). As illus-
trated in Figure 1 (a) and (c), these disturbances can create
significant discrepancies between the inter-variable corre-
lations observed in individual samples and the global cor-
relations derived from the entire training set. Bridging the
gap between local (sample-level) and global (dataset-level)
correlation patterns is essential for improving predictive
performance (Cai et al., 2024).

To address this issue, we propose the Temporal Query (TQ)
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technique, which integrates global and local correlations
within the attention mechanism. It uses periodically shifted
learnable vectors as queries to emphasize stable, global de-
pendencies across variables, while the raw input sequences
serve as keys and values to capture instance-specific (i.e.,
local) relationships. The TQ technique offers two key ad-
vantages: its learnable nature enables adaptive modeling to
capture optimal representations of inter-variable relation-
ships, while its periodic time-shifting mechanism facilitates
parameter reuse, resulting in more robust and stable cor-
relation learning. As shown in Figure 1 (a) and (b), the
correlations of queries captured by the learned TQ align
more closely with the global correlations of the training set,
enabling the model to establish stable dependencies during
prediction and achieve more accurate forecasts.

Building upon the strong capability of the TQ technique
in modeling inter-variable correlations, we propose a sim-
ple yet effective multivariate forecaster, termed Tempo-
ral Query Network (TQNet). TQNet consists of only a
single-layer multi-head attention (MHA) mechanism and
a shallow multi-layer perceptron (MLP). Extensive exper-
iments demonstrate that TQNet achieves state-of-the-art
performance on 12 real-world multivariate datasets by effec-
tively capturing robust inter-variable dependencies. More-
over, its lightweight architecture enables TQNet to maintain
high computational efficiency comparable to linear-based
methods (e.g., DLinear (Zeng et al., 2023)), even on high-
dimensional datasets, while delivering superior forecasting
accuracy.

In summary, the contributions of this paper are as follows:

• We propose a novel Temporal Query (TQ) technique,
which models global inter-variable correlations within
the attention mechanism using periodically shifted
learnable vectors as queries.

• Based on the TQ technique, we introduce TQNet, a
simple yet powerful model that effectively captures
multivariate and temporal dependencies using only
a single-layer multi-head attention mechanism and a
shallow MLP. This lightweight architecture ensures
TQNet achieves efficiency comparable to linear-based
models across datasets of varying dimensions.

• Extensive experiments on 12 challenging real-world
multivariate datasets demonstrate that TQNet achieves
overall state-of-the-art performance by extracting ro-
bust inter-variable correlations.

2. Related Work
In recent years, deep learning-based approaches have made
significant progress in MTSF tasks (Wang et al., 2024b;
Qiu et al., 2024; Shao et al., 2024; Lin et al., 2025). These

advances reflect a transformation in the strategies for mod-
eling multivariate dependencies, which can be categorized
as follows:

Channel Mixing (CM): CM-based methods treat each time
step as an input unit, meaning that multiple observed val-
ues (i.e., variables) at a given time step are mixed and em-
bedded together. This approach is adopted by many early
Transformer-based models (Vaswani et al., 2017), such as
LogTrans (Li et al., 2019), Informer (Zhou et al., 2021), Aut-
oformer (Wu et al., 2021), FEDformer (Zhou et al., 2022),
ETSformer (Woo et al., 2022), and Pyraformer (Liu et al.,
2021). However, such methods often make variable relation-
ships indistinguishable within the model (Liu et al., 2024c).
As a result, even with their large parameter sizes, these
models sometimes fail to outperform simple linear-based
baselines (Zeng et al., 2023; Lin et al., 2024a; Toner &
Darlow, 2024).

Channel Independence (CI): To address the limitations of
CM-based methods, PatchTST (Nie et al., 2023) introduced
the concept of channel independence (CI). This strategy sep-
arates the modeling of each variable and uses a parameter-
sharing unified model to make independent forecasts for
each channel. Although these methods reduce the capac-
ity for modeling inter-variable dependencies, they enhance
model robustness, which is often more critical for time se-
ries forecasting tasks (Han et al., 2024b). Consequently,
CI-based methods, including SegRNN (Lin et al., 2023),
TiDE (Das et al., 2023), N-HiTS (Challu et al., 2023), FITS
(Xu et al., 2024), STID (Shao et al., 2022), TimeMixer
(Wang et al., 2024a), PDF (Dai et al., 2024), CATS (Kim
et al., 2024), SparseTSF (Lin et al., 2024a), and CycleNet
(Lin et al., 2024b), have seen widespread adoption in recent
years. Nonetheless, their lack of explicit inter-variable rela-
tionship modeling has become a bottleneck, limiting their
performance in multivariate scenarios.

Channel Dependence (CD): To overcome the limitations
of CI-based methods, researchers have developed advanced
techniques to model inter-variable dependencies. These
methods often treat segments of time series or entire chan-
nels as input units, or employ advanced mechanisms to bet-
ter understand multivariate relationships. Such approaches
include various attention-based methods, such as TimeXer
(Wang et al., 2024c), iTransformer (Liu et al., 2024c), Cross-
former (Zhang & Yan, 2023), CARD (Xue et al., 2024),
SAMformer (Ilbert et al., 2024), Leddam (Yu et al., 2024)
, UniTST (Liu et al., 2024a), SSCNN (Deng et al., 2024),
TimeBridge (Liu et al., 2024b), and DUET (Qiu et al., 2025).
Additionally, other paradigms have also been proposed to
tackle this challenge. These include graph neural networks
(e.g., CrossGNN (Huang et al., 2023), FourierGNN (Yi
et al., 2023)), convolutional neural networks (e.g., MICN
(Wang et al., 2023), TimesNet (Wu et al., 2023), Mod-
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ernTCN (Luo & Wang, 2024)), and MLP-based solutions
(e.g., LightTS (Zhang et al., 2022), MTS-Mixers (Li et al.,
2023b), TSMixer (Chen et al., 2023; Ekambaram et al.,
2023), HDMixer (Huang et al., 2024), SOFTS (Han et al.,
2024a)). These methodologies demonstrate diverse and ef-
fective ways to capture and model the intricate dependencies
among multivariate time series.

In this paper, we focus on attention-based approaches within
the scope of CD-based methods and aim to design a min-
imalist yet efficient network for MTSF. Inspired by the
periodicity modeling in CycleNet (Lin et al., 2024b), which
employs learnable parameters to capture period patterns,
we propose the Temporal Query (TQ) technique. The TQ
technique introduces periodically shifted learnable vectors
as query inputs to the attention mechanism, enabling the
model to incorporate inherent periodic structures in the data
while more effectively capturing robust inter-variable rela-
tionships.

3. Methodology
The goal of multivariate time series forecasting (MTSF) is
to predict future sequences Yt ∈ RC×H based on observed
historical sequences Xt ∈ RC×L at time step t, where C
represents the number of variables (or channels), H is the
forecasting horizon, and L is the length of the look-back
window. To address the MTSF task, the workflow of the
proposed Temporal Query Network (TQNet) is illustrated
in Figure 2, with the corresponding pseudocode provided in
Appendix A.1.

3.1. Overview of TQNet

TQNet consists of a series of simple yet essential compo-
nents. Specifically, given an input sequence Xt ∈ RC×L,
the temporal query-enhanced multi-head attention (TQ-
MHA) layer is first applied to capture multivariate correla-
tions. This is followed by a shallow multi-layer perceptron
(MLP), which models temporal dependencies. Both the TQ-
MHA and MLP are enhanced with residual connections (He
et al., 2016) to improve learning stability. Finally, a linear
layer with Dropout (Srivastava et al., 2014) is employed to
project the learned hidden representations onto the target
outputs Ȳt ∈ RC×H . Below, we detail the key components
of TQNet.

3.2. Components of TQNet

Temporal Query Technique The Temporal Query (TQ)
technique uses periodically shifted learnable vectors as
queries in the attention mechanism to capture global inter-
variable correlations (see Figure 3). Mathematically, given
the periodic length W of the dataset, we initialize θTQ ∈
RC×W , which serves as a set of learnable parameters. These

parameters are initialized to zeros and dynamically updated
during training to adaptively capture the underlying correla-
tions among variables.

Herein, the hyperparameter W determines the length of
the learnable vectors and the interval for periodic shifts.
Its value should align with the stable periodicity of the
dataset, which can be identified either through prior knowl-
edge about the data (Lin et al., 2024b) or via computational
methods, such as the autocorrelation function (ACF) (Mad-
sen, 2007). In Section 4.3, we will provide a detailed dis-
cussion on the criteria for selecting W and its influence on
the performance of the TQ technique.

TQ-Enhanced Multi-Head Attention (TQ-MHA) To
effectively capture multivariate dependencies, TQNet em-
ploys a single-layer multi-head attention (MHA) mechanism
enhanced by the proposed TQ technique. Conventional self-
attention mechanisms, such as those in iTransformer (Liu
et al., 2024c), derive the queries, keys, and values (Q, K,
V ) directly from the input sample sequences. However, as
discussed earlier, non-stationary disturbances in real-world
data, such as noise or extreme values, can impede the ac-
curate modeling of correlations within individual samples.
To address this, we propose a TQ-enhanced MHA mecha-
nism, where the queries are generated from the TQ vectors
to capture global correlations:

Q = θt,LTQ ∈ RC×L. (1)

Here, θt,LTQ is a segment of the learnable parameters θTQ ∈
RC×W , extracted periodically for each input sample. Specif-
ically, for a given time step t, the starting index is computed
as t mod W , and a segment of length L is cyclically se-
lected from θTQ (as shown in Figure 3). This implies that
for samples spaced W time steps apart, the extracted TQ
vectors will remain identical, which can be expressed as:

θt,LTQ = θ
(t+i·W ),L
TQ , i ∈ N. (2)

The periodic shifting mechanism ensures that θt,LTQ cycles
periodically over time, aligning with the prior knowledge
of periodic variations in real-world data (Lin et al., 2024b).
This mechanism also facilitates efficient parameter reuse,
enabling the modeling of more robust sequence correlations
by mitigating (i.e., averaging) the impact of localized noisy
perturbations. By integrating TQ into the MHA mechanism,
the attention process for each head h becomes:

Headh = Softmax
(
QhK

⊤
h√

L

)
Vh, (3)

where Qh = θt,LTQ WQ
h , Kh = XtW

K
h , and Vh = XtW

V
h .

After computing the attention outputs for all heads, the
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Figure 2: The architecture of the proposed TQNet model. It comprises the lightweight and efficient TQ-MHA and MLP
modules, with an optional IN module to mitigate distributional drift.
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Figure 3: Temporal Query-enhanced Multi-Head Attention
(TQ-MHA). The proposed TQ technique employs periodi-
cally shifted learnable parameters as queries to adaptively
model inter-variable correlations within individual samples.

MHA mechanism concatenates the outputs:

MHA(Q,K, V ) = Concat(head1, . . . , headH)WO, (4)

where WO is the output projection matrix of MHA module.

By incorporating θt,LTQ as query vectors, the TQ-enhanced
MHA mechanism fuses global priors with local input fea-
tures, enabling more robust modeling of inter-variable cor-
relations. Specifically, the periodic design of θt,LTQ captures
stable global patterns (as shown in Figure 1(b)), while keys
and values from Xt retain sample-specific information (as
shown in Figure 1(c)). This design improves resilience to
noise and missing data by balancing global consistency and
local adaptability.

Multi-Layer Perceptron (MLP) Following the TQ-
enhanced attention mechanism, a lightweight MLP is em-
ployed to model temporal dependencies within the sequence.
Previous studies have demonstrated the robustness of MLPs
in extracting temporal features (Li et al., 2023a). The MLP

in TQNet consists of two fully connected layers interspersed
with GeLU activations (Hendrycks & Gimpel, 2016), de-
fined as:

hmlp = Linear(GeLU(Linear(hattn))), (5)

where hattn represents the output of the TQ-MHA module.

Output Projection The output of the MLP is fed into
a linear layer, optionally with Dropout (Srivastava et al.,
2014), to project the learned representations onto the target
forecasting horizon:

Ȳt = Linear(Dropout(hmlp)). (6)

Instance Normalization (IN) Distributional shifts are
common in real-world data and can significantly impact
the generalization performance of models. To address this
challenge, recent research has explored various approaches,
such as RevIN (Kim et al., 2021) and FAN (Ye et al., 2024).
In this paper, we adopt a simple yet effective IN method that
used in iTransformer (Liu et al., 2024c) and CycleNet (Lin
et al., 2024b), which involves removing the mean and vari-
ance of the input data before and after the model’s operation:

Xt =
Xt − µ√
σ2 + ϵ

, (7)

Ȳt = Ȳt ×
√
σ2 + ϵ+ µ, (8)

where µ and σ2 denote the mean and variance of the input
data, and ϵ is a small constant added for numerical stability.

4. Experiments
4.1. Setup

The experiments in this section are implemented using Py-
Torch (Paszke et al., 2019), with the models optimized using
L2 loss and evaluated based on both Mean Squared Error
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(MSE) and Mean Absolute Error (MAE). Further details
about the experimental setup can be found in Appendix A.2.
The datasets and baseline models used for evaluation are
outlined as follows.

Table 1: Detailed information about the datasets. The hyper-
parameter W of TQ technique is configured to align with
the stable cycle length of each dataset, following the guide-
lines in CycleNet (Lin et al., 2024b).

Dataset Channels Timesteps Interval HParam. W Domain

ETTh1 7 14,400 1 hour 24 Electricity
ETTh2 7 14,400 1 hour 24 Electricity
ETTm1 7 57,600 15 mins 96 Electricity
ETTm2 7 57,600 15 mins 96 Electricity

Electricity 321 26,304 1 hour 168 Electricity
Solar 137 52,560 10 mins 144 Energy

Traffic 862 17,544 1 hour 168 Transportation
Weather 21 52,696 10 mins 144 Weather
PEMS03 358 26,208 5 mins 288 Transportation
PEMS04 307 16,992 5 mins 288 Transportation
PEMS07 883 28,224 5 mins 288 Transportation
PEMS08 170 17,856 5 mins 288 Transportation

Datasets We evaluate the proposed method on 12 widely
used real-world datasets, including the ETT series (Zhou
et al., 2021), PEMS series (Liu et al., 2022a), Electricity,
Solar, Traffic, and Weather datasets (Wu et al., 2021). These
datasets vary in scale, dimensionality (i.e., the number of
variables), frequency, and domain. Detailed information
about the datasets is provided in Table 1.

Baselines To evaluate the performance of the proposed
TQNet, we compare it against several representative mod-
els from recent years, including TimeXer (Wang et al.,
2024c), CycleNet (Lin et al., 2024b), iTransformer (Liu
et al., 2024c), MSGNet (Cai et al., 2024), TimesNet (Wu
et al., 2023), PatchTST (Nie et al., 2023), Crossformer
(Zhang & Yan, 2023), DLinear (Zeng et al., 2023), SCINet
(Liu et al., 2022a). Following the setting of iTransformer,
TQNet defaults to a look-back length of 96.

4.2. Main Results

Table 2 compares the forecasting errors of TQNet with base-
line models across 12 real-world datasets. Lower MSE and
MAE values indicate higher forecasting accuracy. TQNet
consistently achieves Top 2 performance in 22 out of 24 fore-
casting error metrics, demonstrating overall state-of-the-art
accuracy. Notably, TQNet excels in high-dimensional mul-
tivariate datasets, such as Electricity and PEMS (over 100
variables). This highlights TQNet’s advantages in handling
complex multivariate data.

In addition, iTransformer and TimeXer, which are also ad-
vanced attention-based methods, exhibit strong performance
in complex multivariate scenarios. However, as mentioned

earlier, these methods rely entirely on self-attention to ex-
tract dependencies, making them more vulnerable to noisy
disturbances in input samples. This susceptibility limits
their potential for further improvements in predictive perfor-
mance. Conversely, methods like PatchTST and DLinear,
which are CI-based approaches lacking explicit mechanisms
for modeling inter-variable dependencies, exhibit subopti-
mal performance on high-dimensional multivariate datasets.

Overall, despite the simplicity of TQNet’s architecture, it
achieves superior performance. This significant improve-
ment is primarily attributed to the TQ technique, which
effectively enhances the model’s ability to capture com-
plex multivariate correlations. In the following sections, we
delve deeper into the contributions of the TQ technique in
modeling multivariate dependencies.

4.3. Ablation Studies and Analysis

Ablation Study on the Design of TQ-MHA The goal
of the proposed TQ technique is to better integrate both
global and local correlations within the attention mechanism.
Specifically, the queries Q are generated from periodically
shifted learnable vectors θTQ, while the keys K are derived
from the raw input sequences. To examine the effects of
global versus local correlations, we compare the following
three settings:

1. Both Q and K are generated from raw data, capturing
only per-sample correlations. This is the conventional
approach used in models such as iTransformer and
TimeXer.

2. Q is generated from the learnable TQ vectors, while
K is derived from the raw data. This enables the at-
tention score computation (i.e., QK⊤

√
L

) to incorporate
both global and sample-specific correlations. This cor-
responds to the design used in our TQNet.

3. Both Q and K are generated from the learnable TQ vec-
tors, thereby focusing the attention mechanism solely
on global correlations, ignoring local variations.

Table 3 presents the average performance across four fore-
casting horizons on large-scale multivariate datasets (those
with more than 100 variables). As shown, the TQNet strat-
egy (i.e., both global and per-sample correlations are con-
sidered) yields the best performance. This is followed by
the setting that considers only per-sample correlations, and
then the purely global setting. These results validate that a
proper integration of both global and local correlations is
indeed beneficial for multivariate forecasting.

Ablation Study on TQNet Components To further in-
vestigate the individual contributions of TQNet’s compo-
nents, we conduct ablation experiments on high-dimensional
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Table 2: Comparison of multivariate time series forecasting results across 12 real-world datasets. The reported results are
averaged over all prediction horizons H ∈ {96, 192, 336, 720}, with detailed results available in Table 5. The look-back
length L is uniformly fixed at 96. The best results are highlighted in bold, the second best are underlined, and the Count
row counts the number of times each model ranks in the top 2.

Model
TQNet
(Ours)

TimeXer
(2024c)

CycleNet
(2024b)

iTransformer
(2024c)

MSGNet
(2024)

TimesNet
(2023)

PatchTST
(2023)

Crossformer
(2023)

DLinear
(2023)

SCINet
(2022a)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.441 0.434 0.437 0.437 0.457 0.441 0.454 0.448 0.453 0.453 0.458 0.450 0.469 0.455 0.529 0.522 0.456 0.452 0.747 0.647
ETTh2 0.378 0.402 0.368 0.396 0.388 0.409 0.383 0.407 0.413 0.427 0.414 0.427 0.387 0.407 0.942 0.684 0.559 0.515 0.954 0.723
ETTm1 0.377 0.393 0.382 0.397 0.379 0.396 0.407 0.410 0.400 0.412 0.400 0.406 0.387 0.400 0.513 0.495 0.403 0.407 0.486 0.481
ETTm2 0.277 0.323 0.274 0.322 0.266 0.314 0.288 0.332 0.289 0.330 0.291 0.333 0.281 0.326 0.757 0.611 0.350 0.401 0.571 0.537

Electricity 0.164 0.259 0.171 0.270 0.168 0.259 0.178 0.270 0.194 0.301 0.193 0.295 0.205 0.290 0.244 0.334 0.212 0.300 0.571 0.537
Solar 0.198 0.256 0.237 0.302 0.210 0.261 0.233 0.262 0.263 0.292 0.301 0.319 0.270 0.307 0.641 0.639 0.330 0.401 0.282 0.375

Traffic 0.445 0.276 0.466 0.287 0.472 0.301 0.428 0.282 0.660 0.382 0.620 0.336 0.481 0.300 0.550 0.304 0.625 0.383 0.804 0.509
Weather 0.242 0.269 0.241 0.271 0.243 0.271 0.258 0.278 0.249 0.278 0.259 0.287 0.259 0.273 0.259 0.315 0.265 0.317 0.292 0.363
PEMS03 0.097 0.203 0.112 0.214 0.118 0.226 0.113 0.222 0.150 0.251 0.147 0.248 0.180 0.291 0.169 0.282 0.278 0.375 0.114 0.224
PEMS04 0.091 0.197 0.105 0.209 0.119 0.232 0.111 0.221 0.122 0.239 0.129 0.241 0.195 0.307 0.209 0.314 0.295 0.388 0.093 0.202
PEMS07 0.075 0.171 0.085 0.182 0.113 0.214 0.101 0.204 0.122 0.227 0.125 0.226 0.211 0.303 0.235 0.315 0.329 0.396 0.119 0.217
PEMS08 0.142 0.229 0.175 0.250 0.150 0.246 0.150 0.226 0.205 0.285 0.193 0.271 0.280 0.321 0.268 0.307 0.379 0.416 0.159 0.244

Count 22 11 9 4 0 0 0 0 0 2

Table 3: Performance comparison of different Query-Key
configurations in TQ-MHA. The setting (Q = TQ,K =
Raw), where Q is generated from global learnable TQ vec-
tors and K is derived from local raw data, corresponds to
the default configuration in TQNet.

Setup (Q=Raw,K=Raw) (Q=TQ,K=Raw) (Q=TQ,K=TQ)

Metric MSE MAE MSE MAE MSE MAE

Electricity 0.175 0.267 0.164 0.259 0.179 0.269
Solar 0.208 0.257 0.198 0.256 0.213 0.268

Traffic 0.426 0.279 0.445 0.276 0.429 0.281
PEMS03 0.114 0.222 0.097 0.203 0.111 0.221
PEMS04 0.112 0.222 0.091 0.197 0.113 0.222
PEMS07 0.094 0.195 0.075 0.171 0.092 0.195
PEMS08 0.170 0.252 0.142 0.229 0.174 0.257

datasets. Specifically, the core of TQNet consists of an atten-
tion mechanism (i.e., MHA) enhanced by the TQ technique
for modeling multivariate correlations and a MLP module
for capturing temporal dependencies.

Herein, when the TQ technique is removed, TQNet reduces
to a standard self-attention module combined with an MLP
module, where channel correlations are more susceptible
to noisy disturbances. When the attention mechanism is
removed, TQNet becomes a variant of an MLP augmented
with channel identifiers (Shao et al., 2022), which explicitly
distinguish different channels but lack the ability to directly
model inter-channel correlations. When both the TQ module
and the attention mechanism are removed, TQNet further
simplifies into a pure MLP model.

As shown in the results on the left side of Table 4, the TQ
technique plays a pivotal role in TQNet’s performance, as
removing the TQ module leads to the most significant perfor-
mance degradation. Additionally, the attention mechanism
is also critical for modeling inter-variable correlations, as it

enables effective channel-wise information interaction. Fi-
nally, the pure MLP model performs the worst due to its lack
of any mechanism for channel correlations modeling. As a
result, these findings underscore the effectiveness of the TQ
technique and demonstrate that its integration with the at-
tention mechanism significantly enhances the performance
of multivariate forecasting tasks.

Integration Study Beyond validating the critical role of
the TQ technique within TQNet, we further explore its porta-
bility and effectiveness in improving the multivariate fore-
casting capabilities of existing models. Specifically, we
integrate the TQ technique into several mainstream time
series forecasting models to examine whether it enhances
their predictive performance.

Notably, i) For iTransformer, a Transformer-based method
that uses self-attention to model multivariate correlations,
we directly replace the original query inputs with the pro-
posed TQ vectors. ii) For PatchTST and DLinear, which are
CI-based methods without dedicated attention mechanisms
for modeling channel correlations, we embed a complete
attention mechanism (i.e., MHA) incorporating the TQ tech-
nique to jointly model channel dependencies.

The results on the right side of Table 4 demonstrate that in-
corporating the TQ technique (either by enhancing existing
attention mechanisms or by embedding a complete attention
module with TQ) consistently improves the original models’
performance. This indicates the versatility and effectiveness
of the TQ technique in elevating the predictive capabilities
of diverse forecasting methods, showcasing its portability
across different architectures.

Representation Learning of the TQ Technique To fur-
ther explore the underlying factors contributing to the suc-
cess of TQNet, we examine the intrinsic representations
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Table 4: Ablation and integration studies of the TQ technique. Left: Ablation study revealing the effectiveness of the TQ
technique within TQNet. Right: Integration study exploring the portability and adaptability of the TQ technique.

Model TQNet (MLP + TQ & MHA) iTransformer (2024c) PatchTST (2023) DLinear (2023)

Setup Original MHA→ None TQ→ None Pure MLP Original + TQ Original + TQ & MHA Original + TQ & MHA

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty

96 0.134 0.229 0.138 0.233 0.149 0.241 0.165 0.252 0.150 0.241 0.133 0.230 0.164 0.254 0.136 0.235 0.195 0.277 0.154 0.252
192 0.154 0.247 0.155 0.248 0.162 0.254 0.173 0.260 0.164 0.255 0.152 0.247 0.174 0.265 0.157 0.254 0.194 0.279 0.168 0.264
336 0.169 0.264 0.172 0.267 0.178 0.271 0.190 0.277 0.178 0.272 0.166 0.264 0.193 0.285 0.177 0.277 0.207 0.295 0.181 0.279
720 0.201 0.294 0.210 0.300 0.210 0.300 0.230 0.312 0.210 0.300 0.202 0.298 0.232 0.320 0.215 0.313 0.244 0.330 0.224 0.319

Avg 0.164 0.259 0.169 0.262 0.175 0.267 0.190 0.276 0.175 0.267 0.163 0.260 0.191 0.281 0.171 0.270 0.210 0.295 0.182 0.279

PE
M

S0
3

12 0.060 0.161 0.061 0.164 0.065 0.168 0.071 0.177 0.106 0.219 0.067 0.166 0.072 0.179 0.068 0.168 0.105 0.221 0.100 0.185
24 0.077 0.182 0.078 0.186 0.086 0.195 0.103 0.212 0.090 0.199 0.085 0.185 0.102 0.213 0.084 0.191 0.183 0.299 0.172 0.227
48 0.104 0.215 0.110 0.218 0.126 0.239 0.158 0.265 0.199 0.304 0.108 0.210 0.155 0.263 0.115 0.223 0.315 0.407 0.325 0.300
96 0.148 0.253 0.157 0.255 0.174 0.284 0.208 0.309 0.242 0.348 0.156 0.248 0.204 0.305 0.155 0.263 0.455 0.508 0.532 0.382

Avg 0.097 0.203 0.101 0.206 0.113 0.221 0.135 0.241 0.159 0.268 0.104 0.202 0.133 0.240 0.106 0.211 0.265 0.359 0.282 0.273

PE
M

S0
4

12 0.067 0.166 0.072 0.176 0.076 0.180 0.086 0.193 0.081 0.189 0.067 0.167 0.087 0.195 0.069 0.172 0.114 0.228 0.074 0.177
24 0.077 0.181 0.086 0.194 0.094 0.204 0.119 0.229 0.097 0.207 0.079 0.182 0.119 0.231 0.082 0.189 0.187 0.298 0.093 0.202
48 0.097 0.206 0.111 0.223 0.124 0.238 0.174 0.283 0.128 0.241 0.092 0.199 0.172 0.279 0.101 0.212 0.319 0.402 0.138 0.248
96 0.123 0.233 0.138 0.246 0.156 0.268 0.224 0.328 0.176 0.284 0.128 0.233 0.221 0.323 0.131 0.247 0.424 0.481 0.211 0.313

Avg 0.091 0.197 0.102 0.210 0.113 0.223 0.151 0.258 0.120 0.230 0.091 0.195 0.150 0.257 0.096 0.205 0.261 0.352 0.129 0.235
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Figure 4: Visualization of the learned TQ representations using t-SNE (Van der Maaten & Hinton, 2008) and their
corresponding raw channel sequences. The data is sourced from the Traffic dataset.

learned by the TQ technique. Specifically, Figure 4 presents
a visualization of the t-SNE (Van der Maaten & Hinton,
2008) compressed representations of the TQ vectors after
TQNet has been trained to convergence.

Remarkably, channels that are closer in the t-SNE represen-
tation tend to exhibit similar sequence patterns in their raw
time series, whereas channels that are farther apart demon-
strate distinct sequence patterns. This suggests that the TQ
technique effectively captures intrinsic correlations among
different channels. This ability allows the model to leverage
information from correlated channels to stabilize predictions
for a given channel, particularly in the presence of noisy dis-
turbances. As a result, this characteristic not only improves
forecasting accuracy but also enhances the interpretability
of the model.

Dependency Study In previous experiments, we demon-
strated the effectiveness of the TQ technique in improving

forecasting accuracy and learning meaningful semantic rep-
resentations. In this section, we further investigate whether
TQ can capture more robust multivariate dependencies that
contribute to better predictive performance.

To this end, we conduct the multivariate-to-univariate fore-
casting task, where the objective is to predict a single target
channel using a varying number of input variables, rang-
ing from no covariate information to utilizing all available
variables. As shown in Figure 5, incorporating a moderate
amount of covariate information notably enhances the fore-
casting accuracy of TQNet on the target channel. Overall,
using more covariates generally leads to better performance.
These results provide direct evidence that TQNet effectively
leverages multivariate dependencies to improve prediction
quality.

Impact of the Hyperparameter W In the TQ technique,
the length of the learnable TQ vectors, denoted as the hyper-
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Figure 5: Performance of TQNet with varying amounts of covariate information. The forecasting target is the last channel
of the dataset, and the results are averaged across forecasting horizons H ∈ {96, 192, 336, 720}. ”None” denotes that no
covariates are used, ”Full” indicates the use of all available covariates, and the numbers represent the use of a partial subset
of covariates.
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Figure 6: Performance of TQNet on the Electricity dataset
with varying hyperparameter W . Results are averaged
across forecasting horizons H ∈ {96, 192, 336, 720}.

parameter W , is a critical factor as it determines the periodic
shifting interval of the TQ vectors. In principle, this length
W should align with the maximum periodic length of the
dataset (Lin et al., 2024b), such as the length of a day for
daily datasets or the length of a week for weekly datasets,
to maximize its effectiveness. To investigate the impact
of the hyperparameter W , we conduct experiments on the
Electricity dataset, which exhibits both daily and weekly
periodicity.

As shown in Figure 6, TQNet achieves its best perfor-
mance when W matches the weekly periodicity of the
dataset (W = 1681). When W matches only the daily
periodicity (W = 24), TQNet delivers suboptimal perfor-

1The Electricity dataset is sampled hourly, so the weekly length
corresponds to 24× 7 = 168

mance as the model captures only partial periodic features.
In addition, when W is set to the length of two weeks
(W = 2 × 168 = 336), TQNet still achieves competitive
performance. This is primarily because setting W to an in-
teger multiple of the true period merely reduces the number
of training samples allocated to each TQ parameter propor-
tionally, without significantly impairing the effectiveness of
the TQ mechanism itself.

In contrast, when W does not align with any true periodic
length (e.g., W = 23 or W = 167), the TQ technique
introduces semantic inconsistencies, which lead to perfor-
mance degradation. Additionally, a special case arises when
W = 1. Although it does not correspond to any periodic
cycle, it functions as a weakened form of channel identifier,
allowing the model to distinguish between different chan-
nels (Shao et al., 2022). This enables TQNet to still achieve
performance improvements over the absence of the TQ tech-
nique, highlighting its robustness and inherent ability to
enhance forecasting accuracy. Finally, we further provide a
more detailed discussion in Appendix A.3 on how to deter-
mine a proper value of the hyperparameter W and analyze
the challenges posed by multi-periodic patterns.

Efficiency Analysis Benefiting from the powerful TQ
technique and the lightweight architectural design of TQNet,
the model achieves exceptional multivariate forecasting per-
formance while maintaining high computational efficiency.
As shown in Figure 7 Left, TQNet delivers state-of-the-art
forecasting accuracy with significantly smaller parameter
sizes and shorter training times compared to other mod-
els. This highlights TQNet’s ability to balance forecasting
performance with computational cost effectively.

Moreover, while TQNet demonstrates impressive capabili-
ties in modeling multivariate correlations, its attention mech-
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Figure 7: Computational efficiency of TQNet. Left: Comparison of prediction accuracy, parameter size, and training time
on the Electricity dataset (forecast horizon H = 720). Right: Comparison of training time with varying channel numbers on
the Traffic dataset, which includes up to 862 channels in the complete setting.

anism has a quadratic complexity, which may raise concerns
for certain real-world applications. However, due to the
overall lightweight design of TQNet and advancements in
modern GPU parallelization technologies, the model can
operate with near-linear computational overhead across vary-
ing numbers of channels. As illustrated in Figure 7 Right,
TQNet maintains minimal computational overhead even
with different channel counts, closely approaching the ef-
ficiency of linear-based methods (i.e., DLinear). This indi-
cates that in most practical scenarios (e.g., when the number
of channels C < 1000), TQNet can operate with remark-
ably low computational costs, making it highly suitable for
real-world applications.

5. Limitations
This paper presents an efficient and robust approach for
modeling multivariate correlations in time series forecasting.
However, TQNet still has several practical limitations worth
noting:

• Similar to CycleNet (Lin et al., 2024b), TQNet heavily
relies on the inherent periodicity of the data to deter-
mine the hyperparameter W . This dependency may
limit its generalization to datasets without clear peri-
odic patterns.

• When the underlying multivariate correlations in the
data are weak or insignificant, enforcing strong multi-
variate modeling may introduce unnecessary complex-
ity and even negatively impact performance.

• As shown in Figure 8 in Appendix B, the benefits of
multivariate modeling diminish as the look-back win-
dow becomes sufficiently long. On the one hand, a
longer look-back provides richer temporal information,

which can partially substitute for multivariate cues. On
the other hand, longer input windows introduce more
noise, increasing the risk of overfitting in correlation
modeling.

We believe that addressing these challenges will further
enhance the robustness and generalizability of TQNet, and
we leave this for future exploration.

6. Conclusion
This paper presented TQNet, a simple yet efficient model
for multivariate time series forecasting. At the core of
TQNet lies the Temporal Query (TQ) technique, an inno-
vative method that employs periodically shifted learnable
parameters as queries in the attention mechanism to model
global inter-variable correlations. The TQ technique en-
hances the model’s ability to capture complex multivariate
dependencies, offering improved robustness, interpretabil-
ity, and adaptability. Extensive experiments on 12 chal-
lenging real-world datasets demonstrated the effectiveness
of TQNet, achieving state-of-the-art performance across
diverse scenarios. Remarkably, TQNet maintains high com-
putational efficiency, comparable to linear-based methods,
even when applied to high-dimensional datasets with nearly
1,000 variables. This balance between accuracy and effi-
ciency underscores TQNet’s potential as a practical and
robust solution for real-world forecasting challenges.
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A. More Details of TQNet

Algorithm 1 Overall Pseudocode of TQNet

Require: Historical look-back input Xt ∈ RC×L, cycle
index t mod W ∈ N0

Ensure: Forecasting output Ȳt ∈ RC×H

1: Initialize learnable parameters θTQ ∈ RC×W ← 0
2: if Instance Normalization is applied then
3: µ, σ ← Mean(Xt),STD(Xt)
4: Xt ← Xt−µ√

σ2+ϵ

5: end if
6: indexTQ ∈ NL

0 ← (t mod W + Range(L)) mod W

7: θt,LTQ ∈ RC×L ← θTQ[:, indexTQ]

8: hattn ∈ RC×L ← Multi-Head Attention (Q =

θt,LTQ ,K = Xt, V = Xt) +Xt

9: h′
attn ∈ RC×d ← Linear(hattn)

10: hmlp ∈ RC×d ← Multi-Layer Perceptron(h′
attn) + h′

attn
11: Ȳt ∈ RC×H ← Linear(Dropout(hmlp))
12: if Instance Normalization is applied then
13: Ȳt ← Ȳt ×

√
σ2 + ϵ+ µ

14: end if

A.1. Method Details

The pseudocode of TQNet is presented in Algorithm 1.
It takes as input the historical look-back sequence Xt ∈
RC×L and the cycle index t mod W ∈ N0, and outputs the
predicted sequence Ȳt ∈ RC×H .

The algorithm begins by initializing the learnable param-
eters θTQ ∈ RC×W to zeros. Here, W is a hyperparameter
that represents the prior cycle length of the dataset. During
training, θTQ is optimized to capture the underlying inter-
variable correlations adaptively.

In the input processing stage, an optional instance normal-
ization layer can be applied to Xt. This step removes the
sample’s mean and variance to mitigate potential issues
arising from distributional shifts and ensure that the input
sequence is stationary. If instance normalization is applied,
the corresponding de-normalization is performed on the
model output to recover the original scale.

Next, the indexTQ ∈ NL
0 is computed, representing the in-

dices in θTQ to extract the segment θt,LTQ for the current sam-
ple. This is efficiently calculated as:

indexTQ = (t mod W + Range(L)) mod W, (9)

where Range(L) generates the array [0, 1, . . . , L−1]. Using
these indices, θTQ[:, indexTQ] is extracted to obtain θt,LTQ ∈
RC×L, which serves as the TQ vectors for the sample.

In the multivariate dependency modeling stage, the TQ vec-
tors are incorporated into the multi-head attention (MHA)

mechanism. Specifically, θt,LTQ is used as the query (Q),
while the input sequence Xt serves as the key (K) and value
(V ). To stabilize training and enhance robustness, a residual
connection is applied by adding Xt to the output of the
MHA, yielding hattn ∈ RC×L.

In the temporal dependency modeling stage, the dimension-
ality of hattn is first transformed from RC×L to RC×d via a
linear layer, resulting in h′

attn. Then, a two-layer multi-layer
perceptron (MLP) with GeLU activation is used to extract
non-linear temporal dependencies. Similar to the attention
mechanism, a residual connection is added to stabilize train-
ing. This process outputs hmlp ∈ RC×d.

In the output stage, a linear layer with Dropout maps the
learned hidden representations hmlp to the desired forecast-
ing horizon H , resulting in the final output Ȳt ∈ RC×H . If
instance normalization was applied during the input stage,
de-normalization is performed here to restore the predictions
to their original scale.

A.2. Experimental Details

The complete experimental details can be found in our open-
source code repository2. Specifically, the experiments in
this paper are implemented using PyTorch (Paszke et al.,
2019) and executed on a single NVIDIA GeForce RTX 4090
GPU with 24 GB memory. The models are trained using
the Adam optimizer (Kingma & Ba, 2014) and optimized
with the L2 loss function. The training-validation-test splits
are consistent with prior works, such as iTransformer (Liu
et al., 2024c) and TimesNet (Wu et al., 2023). Specifically,
the data splits follow a 6:2:2 ratio for the ETT and PEMS
series datasets and a 7:1:2 ratio for the remaining datasets.

TQNet is trained for 30 epochs with early stopping based
on a patience of 5 on the validation set. The learning rate
is set to 3 × 10−3 for most datasets, except for smaller
datasets (i.e., the ETT series), where it is reduced to 1 ×
10−3. The batch size varies based on the dataset’s scale to
maximize GPU utilization while avoiding out-of-memory
errors. For instance, a batch size of 16 is used for the Traffic
dataset, while 64 is used for the Weather dataset. In TQNet,
the number of attention heads in the multi-head attention
mechanism is fixed at 4, and the dropout rate is set to 0.5
by default. Additionally, the dropout rate in the output layer
is set to 0.5 for smaller datasets (e.g., the ETT series and
Weather) and 0 for larger datasets. To ensure reproducibility,
all experiments are conducted with a fixed random seed of
2024.

2https://github.com/ACAT-SCUT/TQNet
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A.3. Discussion about Hyperparameter W

The hyperparameter W , which represents the prior cy-
cle length of the dataset, is determined based on domain-
specific knowledge of periodic patterns and sampling in-
tervals, as suggested by CycleNet (Lin et al., 2024b), or
alternatively through computational techniques such as the
autocorrelation function (ACF) (Madsen, 2007). The se-
lected W values for TQNet are aligned with the cycle length
settings used in CycleNet, as summarized in Table 1.

For a detailed explanation of ACF and its use in identifying
periodicities in time series data, we strongly refer readers to
Appendix B.2 of the CycleNet paper (Lin et al., 2024b). We
have provided the corresponding runnable code snippets in
our open-source repository3, and omit further details here
for brevity.

Moreover, since TQNet considers only a single periodic
length W per dataset, it may encounter challenges when
dealing with multi-period scenarios (e.g., hourly, daily,
weekly, or monthly patterns). This issue can be discussed in
two representative cases:

1. Overlapping periodicities. This scenario is gener-
ally manageable. For example, the Traffic dataset ex-
hibits both daily (24-hour) and weekly (7×24-hour)
patterns. In such cases, selecting the longest period-
icity (weekly) is typically sufficient, as it implicitly
captures the shorter cycle. In fact, most real-world
datasets fall into this category, meaning that TQNet
remains effective in practical applications.

2. Irregularly interwoven periodicities. In contrast,
datasets with irregularly overlapping periodicities, such
as weekly (7×24-hour) and monthly (30×24-hour) pat-
terns, pose a greater challenge. Simply choosing the
longest periodicity may fail to capture the nuances of
the overlapping weekly cycle. A practical compromise
in such cases is to focus solely on the daily periodicity
(24-hour). Alternatively, one could ensemble multi-
ple TQNet models, each configured with a different
W , to improve adaptability to complex periodic struc-
tures. Overall, effectively modeling multi-periodicity
remains an open research question, even for existing
methods.

A.4. Effectiveness analysis

The TQ technique lies at the core of TQNet, aiming to
enhance the robustness of global inter-variable correlation
modeling within the attention mechanism. In this subsection,
we provide theoretical insights into why the TQ technique
facilitates more stable and expressive representations of
variable correlations.

3acf plot.ipynb in https://github.com/ACAT-SCUT/TQNet

In TQ-MHA, the queries Q are generated from globally
shared, periodically shifted learnable vectors, while the keys
K and values V are directly derived from the raw input
sequence Xt, thereby encoding more localized, sample-
specific patterns. For simplicity, we assume only a single
attention head in MHA. During training, the model is opti-
mized to maximize the attention output:

O = Softmax
(
QiKi⊤
√
L

)
V i, (10)

which implies that, for each input sample i, the learnable
queries Qi is encouraged to align with the corresponding
key Ki. This alignment allows the queries to capture more
relevant inter-variable information, which is crucial for ac-
curate forecasting. This alignment can be interpreted as
maximizing their directional similarity:

Corr(Qi) ≈ Corr(Ki), (11)

where Corr(·) ∈
{
A ∈ [−1, 1]C×C

∣∣A = A⊤, diag(A) = 1
}

denotes a normalized correlation measure between the
vectors.

Furthermore, since the query Qi is extracted periodically
from the shared learnable parameter θTQ, multiple samples
spaced W time steps apart will share the same queries. As
a result, the effective correlation learned by Qi remains
consistent across periods and is effectively an average over
multiple local samples:

Corr(Qi) = Corr(Qi+nW ), n = 0, 1, . . . , N − 1, (12)

and

Corr(Qi) ≈ 1

N

N−1∑
n=0

Corr(Ki+nW ), (13)

where W is the periodic length, N is the number of sampled
periods, and Ki+nW denotes the keys derived from the raw
inputs at those respective time steps.

Therefore, in practice, the TQ-based queries Qi serves as
an averaged representation of correlations across multiple
periodic samples in the dataset. This averaging effect miti-
gates the influence of local non-stationary noise or outliers,
leading to more stable and robust inter-variable correlation
modeling.
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Table 5: Full multivariate time series forecasting results of Table 2 for all prediction horizons H ∈ {96, 192, 336, 720}.
The look-back length L is fixed at 96, and the reproduced baseline results are sourced from TimeXer (Wang et al., 2024c),
iTransformer (Liu et al., 2024c), and CycleNet (Lin et al., 2024b). The best results are highlighted in bold, while the
second-best results are underlined.

Model
TQNet
(Ours)

TimeXer
(2024c)

CycleNet
(2024b)

iTransformer
(2024c)

MSGNet
(2024)

TimesNet
(2023)

PatchTST
(2023)

Crossformer
(2023)

DLinear
(2023)

SCINet
(2022a)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.371 0.393 0.382 0.403 0.375 0.395 0.386 0.405 0.390 0.411 0.384 0.402 0.414 0.419 0.423 0.448 0.386 0.400 0.654 0.599
192 0.428 0.426 0.429 0.435 0.436 0.428 0.441 0.436 0.443 0.442 0.436 0.429 0.460 0.445 0.471 0.474 0.437 0.432 0.719 0.631
336 0.476 0.446 0.468 0.448 0.496 0.455 0.487 0.458 0.482 0.469 0.491 0.469 0.501 0.466 0.570 0.546 0.481 0.459 0.778 0.659
720 0.487 0.470 0.469 0.461 0.520 0.484 0.503 0.491 0.496 0.488 0.521 0.500 0.500 0.488 0.653 0.621 0.519 0.516 0.836 0.699

Avg 0.441 0.434 0.437 0.437 0.457 0.441 0.454 0.448 0.453 0.453 0.458 0.450 0.469 0.455 0.529 0.522 0.456 0.452 0.747 0.647

E
T

T
h2

96 0.295 0.343 0.286 0.338 0.298 0.344 0.297 0.349 0.329 0.371 0.340 0.374 0.302 0.348 0.745 0.584 0.333 0.387 0.707 0.621
192 0.367 0.393 0.363 0.389 0.372 0.396 0.380 0.400 0.402 0.414 0.402 0.414 0.388 0.400 0.877 0.656 0.477 0.476 0.860 0.689
336 0.417 0.427 0.414 0.423 0.431 0.439 0.428 0.432 0.440 0.445 0.452 0.452 0.426 0.433 1.043 0.731 0.594 0.541 1.000 0.744
720 0.433 0.446 0.408 0.432 0.450 0.458 0.427 0.445 0.480 0.477 0.462 0.468 0.431 0.446 1.104 0.763 0.831 0.657 1.249 0.838

Avg 0.378 0.402 0.368 0.396 0.388 0.409 0.383 0.407 0.413 0.427 0.414 0.427 0.387 0.407 0.942 0.684 0.559 0.515 0.954 0.723

E
T

T
m

1

96 0.311 0.353 0.318 0.356 0.319 0.360 0.334 0.368 0.319 0.366 0.338 0.375 0.329 0.367 0.404 0.426 0.345 0.372 0.418 0.438
192 0.356 0.378 0.362 0.383 0.360 0.381 0.377 0.391 0.377 0.397 0.374 0.387 0.367 0.385 0.450 0.451 0.380 0.389 0.439 0.450
336 0.390 0.401 0.395 0.407 0.389 0.403 0.426 0.420 0.417 0.422 0.410 0.411 0.399 0.410 0.532 0.515 0.413 0.413 0.490 0.485
720 0.452 0.440 0.452 0.441 0.447 0.441 0.491 0.459 0.487 0.463 0.478 0.450 0.454 0.439 0.666 0.589 0.474 0.453 0.595 0.550

Avg 0.377 0.393 0.382 0.397 0.379 0.396 0.407 0.410 0.400 0.412 0.400 0.406 0.387 0.400 0.513 0.495 0.403 0.407 0.486 0.481

E
T

T
m

2

96 0.173 0.256 0.171 0.256 0.163 0.246 0.180 0.264 0.182 0.266 0.187 0.267 0.175 0.259 0.287 0.366 0.193 0.292 0.286 0.377
192 0.238 0.298 0.237 0.299 0.229 0.290 0.250 0.309 0.248 0.306 0.249 0.309 0.241 0.302 0.414 0.492 0.284 0.362 0.399 0.445
336 0.301 0.340 0.296 0.338 0.284 0.327 0.311 0.348 0.312 0.346 0.321 0.351 0.305 0.343 0.597 0.542 0.369 0.427 0.637 0.591
720 0.397 0.396 0.392 0.394 0.389 0.391 0.412 0.407 0.414 0.404 0.408 0.403 0.402 0.400 1.730 1.042 0.554 0.522 0.960 0.735

Avg 0.277 0.323 0.274 0.322 0.266 0.314 0.288 0.332 0.289 0.330 0.291 0.333 0.281 0.326 0.757 0.611 0.350 0.401 0.571 0.537

E
le

ct
ri

ci
ty

96 0.134 0.229 0.140 0.242 0.136 0.229 0.148 0.240 0.165 0.274 0.168 0.272 0.181 0.270 0.219 0.314 0.197 0.282 0.286 0.377
192 0.154 0.247 0.157 0.256 0.152 0.244 0.162 0.253 0.185 0.292 0.184 0.289 0.188 0.274 0.231 0.322 0.196 0.285 0.399 0.445
336 0.169 0.264 0.176 0.275 0.170 0.264 0.178 0.269 0.197 0.304 0.198 0.300 0.204 0.293 0.246 0.337 0.209 0.301 0.637 0.591
720 0.201 0.294 0.211 0.306 0.212 0.299 0.225 0.317 0.231 0.332 0.220 0.320 0.246 0.324 0.280 0.363 0.245 0.333 0.960 0.735

Avg 0.164 0.259 0.171 0.270 0.168 0.259 0.178 0.270 0.194 0.301 0.193 0.295 0.205 0.290 0.244 0.334 0.212 0.300 0.571 0.537

So
la

r-
E

ne
rg

y 96 0.173 0.233 0.215 0.295 0.190 0.247 0.203 0.237 0.210 0.246 0.250 0.292 0.234 0.286 0.310 0.331 0.290 0.378 0.237 0.344
192 0.199 0.257 0.236 0.301 0.210 0.266 0.233 0.261 0.265 0.290 0.296 0.318 0.267 0.310 0.734 0.725 0.320 0.398 0.280 0.380
336 0.211 0.263 0.252 0.307 0.217 0.266 0.248 0.273 0.294 0.318 0.319 0.330 0.290 0.315 0.750 0.735 0.353 0.415 0.304 0.389
720 0.209 0.270 0.244 0.305 0.223 0.266 0.249 0.275 0.285 0.315 0.338 0.337 0.289 0.317 0.769 0.765 0.356 0.413 0.308 0.388

Avg 0.198 0.256 0.237 0.302 0.210 0.261 0.233 0.262 0.263 0.292 0.301 0.319 0.270 0.307 0.641 0.639 0.330 0.401 0.282 0.375

Tr
af

fic

96 0.413 0.261 0.428 0.271 0.458 0.296 0.395 0.268 0.608 0.349 0.593 0.321 0.462 0.290 0.522 0.290 0.650 0.396 0.788 0.499
192 0.432 0.271 0.448 0.282 0.457 0.294 0.417 0.276 0.634 0.371 0.617 0.336 0.466 0.290 0.530 0.293 0.598 0.370 0.789 0.505
336 0.450 0.277 0.473 0.289 0.470 0.299 0.433 0.283 0.669 0.388 0.629 0.336 0.482 0.300 0.558 0.305 0.605 0.373 0.797 0.508
720 0.486 0.295 0.516 0.307 0.502 0.314 0.467 0.302 0.729 0.420 0.640 0.350 0.514 0.320 0.589 0.328 0.645 0.394 0.841 0.523

Avg 0.445 0.276 0.466 0.287 0.472 0.301 0.428 0.282 0.660 0.382 0.620 0.336 0.481 0.300 0.550 0.304 0.625 0.383 0.804 0.509

W
ea

th
er

96 0.157 0.200 0.157 0.205 0.158 0.203 0.174 0.214 0.163 0.212 0.172 0.220 0.177 0.210 0.158 0.230 0.196 0.255 0.221 0.306
192 0.206 0.245 0.204 0.247 0.207 0.247 0.221 0.254 0.211 0.254 0.219 0.261 0.225 0.250 0.206 0.277 0.237 0.296 0.261 0.340
336 0.262 0.287 0.261 0.290 0.262 0.289 0.278 0.296 0.273 0.299 0.280 0.306 0.278 0.290 0.272 0.335 0.283 0.335 0.309 0.378
720 0.344 0.342 0.340 0.341 0.344 0.344 0.358 0.349 0.351 0.348 0.365 0.359 0.354 0.340 0.398 0.418 0.345 0.381 0.377 0.427

Avg 0.242 0.269 0.241 0.271 0.243 0.271 0.258 0.278 0.249 0.278 0.259 0.287 0.259 0.273 0.259 0.315 0.265 0.317 0.292 0.363

PE
M

S0
3

96 0.060 0.161 0.070 0.173 0.066 0.172 0.071 0.174 0.078 0.187 0.085 0.192 0.099 0.216 0.090 0.203 0.122 0.243 0.066 0.172
192 0.077 0.182 0.092 0.194 0.089 0.201 0.093 0.201 0.108 0.218 0.118 0.223 0.142 0.259 0.121 0.240 0.201 0.317 0.085 0.198
336 0.104 0.215 0.129 0.229 0.136 0.247 0.125 0.236 0.178 0.272 0.155 0.260 0.211 0.319 0.202 0.317 0.333 0.425 0.127 0.238
720 0.148 0.253 0.157 0.261 0.182 0.282 0.164 0.275 0.238 0.328 0.228 0.317 0.269 0.370 0.262 0.367 0.457 0.515 0.178 0.287

Avg 0.097 0.203 0.112 0.214 0.118 0.226 0.113 0.222 0.150 0.251 0.147 0.248 0.180 0.291 0.169 0.282 0.278 0.375 0.114 0.224

PE
M

S0
4

96 0.067 0.166 0.074 0.178 0.078 0.186 0.078 0.183 0.086 0.199 0.087 0.195 0.105 0.224 0.098 0.218 0.148 0.272 0.073 0.177
192 0.077 0.181 0.087 0.195 0.099 0.212 0.095 0.205 0.101 0.218 0.103 0.215 0.153 0.275 0.131 0.256 0.224 0.340 0.084 0.193
336 0.097 0.206 0.110 0.214 0.133 0.248 0.120 0.233 0.127 0.247 0.136 0.250 0.229 0.339 0.205 0.326 0.355 0.437 0.099 0.211
720 0.123 0.233 0.148 0.251 0.167 0.281 0.150 0.262 0.174 0.292 0.190 0.303 0.291 0.389 0.402 0.457 0.452 0.504 0.114 0.227

Avg 0.091 0.197 0.105 0.209 0.119 0.232 0.111 0.221 0.122 0.239 0.129 0.241 0.195 0.307 0.209 0.314 0.295 0.388 0.093 0.202

PE
M

S0
7

96 0.051 0.143 0.057 0.152 0.062 0.162 0.067 0.165 0.079 0.182 0.082 0.181 0.095 0.207 0.094 0.200 0.115 0.242 0.068 0.171
192 0.063 0.159 0.079 0.179 0.086 0.192 0.088 0.190 0.099 0.206 0.101 0.204 0.150 0.262 0.139 0.247 0.210 0.329 0.119 0.225
336 0.081 0.179 0.099 0.191 0.128 0.234 0.110 0.215 0.133 0.239 0.134 0.238 0.253 0.340 0.311 0.369 0.398 0.458 0.149 0.237
720 0.103 0.203 0.107 0.205 0.176 0.268 0.139 0.245 0.179 0.279 0.181 0.279 0.346 0.404 0.396 0.442 0.594 0.553 0.141 0.234

Avg 0.075 0.171 0.085 0.182 0.113 0.214 0.101 0.204 0.122 0.227 0.125 0.226 0.211 0.303 0.235 0.315 0.329 0.396 0.119 0.217

PE
M

S0
8

96 0.071 0.170 0.075 0.176 0.082 0.185 0.079 0.182 0.105 0.211 0.112 0.212 0.168 0.232 0.165 0.214 0.154 0.276 0.087 0.184
192 0.096 0.196 0.102 0.201 0.117 0.226 0.115 0.219 0.141 0.243 0.141 0.238 0.224 0.281 0.215 0.260 0.248 0.353 0.122 0.221
336 0.149 0.244 0.158 0.248 0.169 0.268 0.186 0.235 0.211 0.300 0.198 0.283 0.321 0.354 0.315 0.355 0.440 0.470 0.189 0.270
720 0.253 0.309 0.366 0.377 0.233 0.306 0.221 0.267 0.364 0.387 0.320 0.351 0.408 0.417 0.377 0.397 0.674 0.565 0.236 0.300

Avg 0.142 0.229 0.175 0.250 0.150 0.246 0.150 0.226 0.205 0.285 0.193 0.271 0.280 0.321 0.268 0.307 0.379 0.416 0.159 0.244
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B. More Results of TQNet
B.1. Full Comparison Results

Table 5 presents the full comparison results of TQNet
against several baseline methods across 12 real-world multi-
variate datasets. The results demonstrate that TQNet con-
sistently achieves state-of-the-art forecasting performance
under most experimental settings, underscoring the effec-
tiveness of the proposed approach.

B.2. Univariate Forecasting Results

Previously, we primarily demonstrated the performance
of TQNet in multivariate forecasting scenarios. How-
ever, in real-world applications, a more common setting
is multivariate-to-univariate forecasting, where exogenous
variables are utilized to predict a single target variable.
Therefore, we further present a comparison of forecasting
results under this setting (see Table 6). As shown, TQNet
exhibits strong competitiveness compared to state-of-the-art
models specifically designed for multivariate-to-univariate
tasks, such as TimeXer.

B.3. Impact of Module Stacking

TQNet achieves state-of-the-art performance using only the
most essential components: a single-layer attention mech-
anism and a single MLP. This design achieves an effective
balance between forecasting accuracy and computational
efficiency. To investigate whether increasing model capacity
leads to further improvements, we experiment with stacking
three layers of TQ-MHA and MLP modules within TQNet.

The results in Figure 7 show that adding more stacked mod-
ules does not yield significant performance gains. In most
datasets, performance slightly declines, although modest
improvements are observed on the PEMS datasets. This
outcome highlights the robustness and soundness of the
original TQNet design, which already delivers near-optimal
performance with minimal architectural complexity.

These findings not only validate the effectiveness of our
approach but also reinforce our central claim: TQNet strikes
an ideal trade-off between forecasting accuracy and com-
putational cost. Finally, we also advocate for lightweight
model designs in time series forecasting, as they enhance in-
terpretability, facilitate practical deployment, and maintain
strong predictive performance.

B.4. Comparison with ETS

ETS (Exponential Smoothing (Hyndman & Athanasopou-
los, 2018)) is a classical forecasting method that leverages
periodic patterns in time series data. In Table 8, we com-
pare the performance of TQNet and ETS across multiple
datasets, demonstrating the superior forecasting capabilities

of TQNet. The following points are worth noting when
interpreting the results:

1. ETS is fundamentally a univariate forecasting method
and cannot leverage multivariate information, whereas
this is a key capability emphasized by TQNet. This
limitation puts ETS at a disadvantage in case where
inter-variable dependencies play an important role.

2. ETS requires the look-back window L to satisfy L ≥
2W , where W denotes the period length. Accordingly,
we set L = 336 and L = 720 for ETS to meet this
constraint, instead of using the default L = 96 adopted
in the TQNet experiments.

3. ETS is primarily designed for short-term forecasting
based on statistical extrapolation. When applied to
long-horizon forecasting, its predictions often diverge
significantly from the ground truth, with errors com-
pounding over time. This explains the substantial in-
crease in MSE observed for ETS under large forecast-
ing horizons (e.g., H = 720).

B.5. Impact of Look-back Length

Table 8 illustrates the impact of varying look-back lengths
on the performance of TQNet and other models. The results
reveal that under shorter input lengths, CD-based methods
(e.g., iTransformer) exhibit a significant advantage over CI-
based methods (e.g., PatchTST). In these scenarios, TQNet
outperforms other CD-based methods, demonstrating the
effectiveness of the proposed TQ technique in capturing
robust multivariate dependencies.

When the input length increases, models can leverage more
temporal dependencies to compensate for the limitations
in modeling multivariate relationships. Consequently, the
performance gap between CD-based and CI-based methods
diminishes. However, overall, CD-based methods maintain
a distinct advantage and are more suitable for practical de-
ployment. For instance, in real-world scenarios where it
may be challenging to obtain sufficiently long historical data,
CD-based methods can effectively enhance predictive per-
formance by leveraging superior multivariate dependency
modeling.

B.6. Robustness of TQNet

To evaluate the robustness of TQNet, we conducted multiple
runs of the model under different random seeds and learning
rates. The results indicate that TQNet consistently maintains
low standard deviations across all settings, demonstrating
its stability and reliability. This robustness suggests that
TQNet is resilient to variations in initialization and hyperpa-
rameter configurations, making it a dependable choice for
multivariate time series forecasting tasks.
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Table 6: Multivariate-to-univariate forecasting time series forecasting results. The look-back length L is fixed at 96, and the
reproduced baseline results are sourced from TimeXer (Wang et al., 2024c). The best results are highlighted in bold, while
the second-best results are underlined.

Model
TQNet
(Ours)

TimeXer
(2024c)

iTransformer
(2024c)

TimesNet
(2023)

PatchTST
(2023)

Crossformer
(2023)

DLinear
(2023)

SCINet
(2022a)

NSformer
(2022b)

Autoformer
(2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2

96 0.064 0.181 0.067 0.188 0.071 0.194 0.073 0.200 0.068 0.188 0.149 0.309 0.072 0.195 0.253 0.427 0.098 0.229 0.133 0.282
192 0.097 0.231 0.101 0.236 0.108 0.247 0.106 0.247 0.100 0.236 0.686 0.740 0.105 0.240 0.592 0.677 0.161 0.302 0.143 0.294
336 0.128 0.272 0.130 0.275 0.140 0.288 0.150 0.296 0.128 0.271 0.546 0.602 0.136 0.280 0.777 0.790 0.243 0.362 0.156 0.308
720 0.181 0.330 0.182 0.332 0.188 0.340 0.186 0.338 0.185 0.335 2.524 1.424 0.191 0.335 1.117 0.960 0.326 0.441 0.184 0.333

Avg 0.118 0.254 0.120 0.258 0.127 0.267 0.129 0.270 0.120 0.258 0.976 0.769 0.126 0.263 0.685 0.714 0.207 0.334 0.154 0.304

E
le

ct
ri

ci
ty

96 0.239 0.348 0.261 0.366 0.299 0.403 0.342 0.437 0.339 0.412 0.265 0.364 0.387 0.451 0.390 0.462 0.298 0.407 0.432 0.502
192 0.283 0.375 0.316 0.397 0.321 0.413 0.384 0.461 0.361 0.425 0.313 0.390 0.365 0.436 0.375 0.456 0.340 0.433 0.492 0.492
336 0.342 0.415 0.367 0.429 0.379 0.446 0.439 0.493 0.393 0.440 0.380 0.431 0.391 0.453 0.468 0.519 0.405 0.471 0.508 0.548
720 0.427 0.477 0.365 0.439 0.461 0.504 0.473 0.514 0.482 0.507 0.418 0.463 0.428 0.487 0.477 0.524 0.444 0.489 0.547 0.569

Avg 0.323 0.404 0.327 0.408 0.365 0.442 0.410 0.476 0.394 0.446 0.344 0.412 0.393 0.457 0.428 0.490 0.372 0.450 0.495 0.528

Tr
af

fic

96 0.129 0.201 0.151 0.224 0.156 0.236 0.154 0.249 0.176 0.253 0.154 0.230 0.268 0.351 0.371 0.448 0.214 0.323 0.290 0.290
192 0.131 0.204 0.152 0.229 0.156 0.237 0.164 0.255 0.162 0.243 0.180 0.256 0.302 0.387 0.450 0.503 0.195 0.307 0.291 0.291
336 0.131 0.208 0.150 0.232 0.154 0.243 0.167 0.259 0.164 0.248 0.164 0.241 0.298 0.384 0.447 0.501 0.198 0.309 0.322 0.416
720 0.148 0.228 0.172 0.253 0.177 0.268 0.197 0.292 0.189 0.267 0.203 0.277 0.340 0.416 0.521 0.548 0.835 0.507 0.307 0.414

Avg 0.135 0.210 0.156 0.235 0.161 0.246 0.171 0.264 0.173 0.253 0.175 0.251 0.302 0.385 0.447 0.500 0.361 0.362 0.303 0.353
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Figure 8: Performance of TQNet and comparative models on the Electricity dataset with different look-back lengths. The
forecast horizon is set as 96.

Table 7: Comparison of the performance between the origi-
nal TQNet model and the stacked version (three layers) on
multiple datasets. Results are averaged across forecasting
horizons H ∈ {96, 192, 336, 720}.

Model Original Stacking

Metric MSE MAE MSE MAE

ETTh1 0.441 0.434 0.443 0.447
ETTh2 0.378 0.402 0.382 0.405
ETTm1 0.377 0.393 0.391 0.404
ETTm2 0.277 0.323 0.280 0.324

Electricity 0.164 0.259 0.167 0.262
Solar 0.198 0.256 0.203 0.265
traffic 0.445 0.276 0.451 0.285

weather 0.242 0.269 0.242 0.271
PEMS03 0.097 0.203 0.095 0.197
PEMS04 0.091 0.197 0.084 0.189
PEMS07 0.075 0.171 0.072 0.167
PEMS08 0.142 0.229 0.147 0.225

Table 8: Comparison of TQNet and ETS for multivariate-
to-univariate forecasting across multiple datasets. Re-
sults are averaged across forecasting horizons H ∈
{96, 192, 336, 720}.

Model TQNet ETS

Metric MSE MAE MSE MAE

ETTh1 0.074 0.213 0.206 0.337
ETTh2 0.178 0.337 231.3 8.006
ETTm1 0.048 0.164 0.169 0.268
ETTm2 0.121 0.263 12.19 1.788

Electricity 0.299 0.388 0.778 0.599
Solar 0.260 0.299 18.06 1.160

Traffic 0.122 0.201 92.69 0.490
Weather 0.002 0.029 0.007 0.044
PEMS03 0.151 0.245 0.618 0.357
PEMS04 0.063 0.186 0.345 0.352
PEMS07 0.094 0.233 0.253 0.359
PEMS08 0.178 0.309 0.426 0.458
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Table 9: Performance of TQNet under different random seeds and learning rates. Mean represents the average value, and Std
denotes the standard deviation.

Setup Random Seed Learning Rate

2024 2025 2026 Mean Std 0.001 0.002 0.003 Mean Std

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.371 0.393 0.371 0.394 0.372 0.393 0.371 0.393 0.001 0.000 0.371 0.393 0.376 0.398 0.378 0.396 0.375 0.395 0.004 0.002
192 0.428 0.426 0.430 0.424 0.430 0.423 0.429 0.424 0.001 0.002 0.428 0.426 0.435 0.429 0.435 0.432 0.433 0.429 0.004 0.003
336 0.476 0.446 0.481 0.453 0.476 0.446 0.478 0.448 0.003 0.004 0.476 0.446 0.480 0.448 0.494 0.458 0.483 0.451 0.010 0.007
720 0.487 0.470 0.510 0.487 0.491 0.472 0.496 0.476 0.012 0.009 0.487 0.470 0.510 0.486 0.521 0.493 0.506 0.483 0.017 0.012

E
T

T
h2

96 0.295 0.343 0.295 0.346 0.295 0.343 0.295 0.344 0.000 0.002 0.295 0.343 0.302 0.346 0.301 0.348 0.299 0.346 0.004 0.002
192 0.367 0.393 0.370 0.394 0.366 0.391 0.368 0.392 0.002 0.002 0.367 0.393 0.374 0.393 0.376 0.396 0.372 0.394 0.005 0.002
336 0.417 0.427 0.418 0.427 0.415 0.428 0.417 0.428 0.001 0.001 0.417 0.427 0.418 0.433 0.424 0.434 0.419 0.431 0.004 0.004
720 0.433 0.446 0.441 0.450 0.441 0.451 0.438 0.449 0.004 0.003 0.433 0.446 0.437 0.449 0.437 0.449 0.436 0.448 0.002 0.002

E
T

T
m

1

96 0.311 0.353 0.316 0.355 0.310 0.352 0.312 0.353 0.003 0.001 0.311 0.353 0.315 0.356 0.321 0.359 0.316 0.356 0.005 0.003
192 0.356 0.378 0.358 0.380 0.362 0.382 0.359 0.380 0.003 0.002 0.356 0.378 0.365 0.384 0.361 0.381 0.361 0.381 0.004 0.003
336 0.390 0.401 0.389 0.402 0.392 0.402 0.390 0.402 0.001 0.001 0.390 0.401 0.398 0.407 0.393 0.405 0.393 0.404 0.004 0.003
720 0.452 0.440 0.451 0.441 0.452 0.441 0.452 0.441 0.001 0.001 0.452 0.440 0.460 0.447 0.455 0.443 0.456 0.443 0.004 0.003

E
T

T
m

2

96 0.173 0.256 0.172 0.255 0.174 0.255 0.173 0.255 0.001 0.001 0.173 0.256 0.174 0.256 0.175 0.258 0.174 0.256 0.001 0.001
192 0.238 0.298 0.239 0.299 0.241 0.300 0.239 0.299 0.002 0.001 0.238 0.298 0.240 0.299 0.244 0.301 0.241 0.299 0.003 0.002
336 0.301 0.340 0.305 0.342 0.298 0.338 0.301 0.340 0.003 0.002 0.301 0.340 0.306 0.342 0.302 0.340 0.303 0.341 0.003 0.001
720 0.397 0.396 0.397 0.396 0.398 0.396 0.397 0.396 0.000 0.000 0.397 0.396 0.396 0.395 0.396 0.395 0.396 0.395 0.001 0.001

E
le

ct
ri

ci
ty

96 0.134 0.229 0.135 0.230 0.135 0.229 0.134 0.230 0.000 0.000 0.136 0.231 0.135 0.230 0.135 0.230 0.135 0.230 0.001 0.000
192 0.154 0.247 0.153 0.246 0.153 0.246 0.153 0.246 0.000 0.000 0.154 0.247 0.152 0.246 0.152 0.246 0.153 0.246 0.001 0.001
336 0.169 0.264 0.168 0.264 0.169 0.264 0.169 0.264 0.000 0.000 0.169 0.263 0.169 0.264 0.168 0.263 0.169 0.263 0.001 0.000
720 0.201 0.294 0.204 0.296 0.210 0.302 0.205 0.298 0.005 0.004 0.202 0.292 0.201 0.292 0.201 0.294 0.201 0.293 0.001 0.001

PE
M

S0
3

12 0.060 0.161 0.061 0.161 0.060 0.161 0.060 0.161 0.000 0.000 0.061 0.163 0.061 0.162 0.061 0.161 0.061 0.162 0.000 0.001
24 0.077 0.182 0.076 0.181 0.077 0.182 0.076 0.182 0.001 0.001 0.077 0.184 0.076 0.182 0.077 0.183 0.077 0.183 0.000 0.001
48 0.104 0.215 0.107 0.215 0.110 0.216 0.107 0.215 0.003 0.001 0.110 0.218 0.107 0.215 0.109 0.215 0.109 0.216 0.001 0.002
96 0.148 0.253 0.150 0.255 0.144 0.251 0.148 0.253 0.003 0.002 0.146 0.256 0.152 0.256 0.152 0.256 0.150 0.256 0.003 0.000

PE
M

S0
4

12 0.067 0.166 0.067 0.167 0.066 0.166 0.067 0.167 0.000 0.000 0.069 0.170 0.067 0.167 0.067 0.166 0.068 0.168 0.001 0.002
24 0.077 0.181 0.077 0.182 0.077 0.181 0.077 0.181 0.000 0.000 0.082 0.187 0.078 0.183 0.078 0.182 0.079 0.184 0.002 0.003
48 0.097 0.206 0.095 0.205 0.096 0.205 0.096 0.206 0.001 0.001 0.103 0.213 0.097 0.207 0.096 0.206 0.099 0.209 0.003 0.004
96 0.123 0.233 0.122 0.233 0.123 0.232 0.123 0.233 0.000 0.000 0.129 0.242 0.122 0.233 0.126 0.235 0.125 0.236 0.004 0.005

PE
M

S0
7

12 0.051 0.143 0.052 0.143 0.052 0.144 0.052 0.144 0.000 0.000 0.053 0.147 0.052 0.144 0.051 0.143 0.052 0.145 0.001 0.002
24 0.063 0.159 0.063 0.159 0.063 0.159 0.063 0.159 0.000 0.000 0.065 0.164 0.063 0.160 0.063 0.160 0.064 0.161 0.001 0.002
48 0.081 0.179 0.080 0.180 0.081 0.180 0.080 0.180 0.000 0.000 0.084 0.188 0.081 0.181 0.080 0.180 0.082 0.183 0.002 0.004
96 0.103 0.203 0.103 0.203 0.108 0.207 0.105 0.204 0.003 0.002 0.113 0.217 0.106 0.207 0.102 0.202 0.107 0.209 0.005 0.008

PE
M

S0
8

12 0.071 0.170 0.072 0.170 0.070 0.170 0.071 0.170 0.001 0.000 0.073 0.174 0.071 0.170 0.070 0.169 0.071 0.171 0.002 0.003
24 0.096 0.196 0.097 0.196 0.094 0.195 0.096 0.196 0.001 0.001 0.102 0.204 0.097 0.198 0.095 0.194 0.098 0.199 0.003 0.005
48 0.149 0.244 0.152 0.247 0.150 0.245 0.150 0.245 0.001 0.002 0.166 0.259 0.155 0.249 0.155 0.249 0.158 0.252 0.006 0.006
96 0.253 0.309 0.265 0.310 0.256 0.306 0.258 0.308 0.006 0.002 0.297 0.331 0.266 0.310 0.259 0.306 0.274 0.316 0.020 0.013

So
la

r

96 0.173 0.233 0.191 0.254 0.181 0.245 0.182 0.244 0.009 0.010 0.192 0.256 0.184 0.236 0.184 0.235 0.187 0.243 0.005 0.012
192 0.199 0.257 0.191 0.250 0.191 0.254 0.194 0.254 0.004 0.003 0.196 0.248 0.191 0.252 0.193 0.255 0.193 0.252 0.002 0.003
336 0.211 0.263 0.202 0.263 0.213 0.272 0.209 0.266 0.006 0.005 0.203 0.256 0.206 0.259 0.205 0.264 0.205 0.260 0.002 0.004
720 0.209 0.270 0.217 0.270 0.220 0.269 0.216 0.270 0.006 0.001 0.208 0.260 0.207 0.265 0.214 0.271 0.210 0.265 0.004 0.005

Tr
af

fic

96 0.413 0.261 0.412 0.261 0.410 0.260 0.412 0.260 0.001 0.000 0.417 0.266 0.412 0.262 0.414 0.261 0.414 0.263 0.003 0.003
192 0.432 0.271 0.433 0.271 0.431 0.270 0.432 0.271 0.001 0.001 0.434 0.276 0.432 0.272 0.431 0.270 0.432 0.273 0.002 0.003
336 0.450 0.277 0.451 0.277 0.450 0.277 0.450 0.277 0.001 0.000 0.448 0.283 0.443 0.279 0.448 0.277 0.446 0.280 0.003 0.003
720 0.486 0.295 0.493 0.297 0.485 0.296 0.488 0.296 0.004 0.001 0.491 0.301 0.481 0.296 0.477 0.296 0.483 0.298 0.007 0.003

W
ea

th
er

96 0.157 0.200 0.158 0.201 0.158 0.201 0.158 0.201 0.001 0.001 0.157 0.200 0.160 0.204 0.158 0.201 0.158 0.202 0.002 0.002
192 0.206 0.245 0.206 0.245 0.206 0.246 0.206 0.245 0.000 0.000 0.206 0.245 0.205 0.244 0.206 0.246 0.206 0.245 0.001 0.001
336 0.262 0.287 0.262 0.287 0.264 0.288 0.263 0.288 0.001 0.001 0.262 0.287 0.264 0.288 0.264 0.289 0.263 0.288 0.001 0.001
720 0.344 0.342 0.343 0.342 0.343 0.342 0.343 0.342 0.001 0.000 0.344 0.342 0.344 0.342 0.344 0.342 0.344 0.342 0.000 0.000
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