
Under review as submission to TMLR

Ensemble learning for Physics Informed Neural Networks: a
Gradient Boosting approach

Anonymous authors
Paper under double-blind review

Abstract

While the popularity of physics-informed neural networks (PINNs) is steadily rising, to this
date, PINNs have not been successful in simulating multi-scale and singular perturbation
problems. In this work, we present a new training paradigm referred to as "gradient boosting"
(GB), which significantly enhances the performance of physics informed neural networks
(PINNs). Rather than learning the solution of a given PDE using a single neural network
directly, our algorithm employs a sequence of neural networks to achieve a superior outcome.
This approach allows us to solve problems presenting great challenges for traditional PINNs.
Our numerical experiments demonstrate the effectiveness of our algorithm through various
benchmarks, including comparisons with finite element methods and PINNs. Furthermore,
this work also unlocks the door to employing ensemble learning techniques in PINNs, providing
opportunities for further improvement in solving PDEs.

1 Introduction

Physics informed neural networks have recently emerged as an alternative to traditional numerical solvers for
simulations in fluids mechanics Raissi et al. (2020); Sun et al. (2020), bio-engineering Sahli Costabal et al.
(2020); Kissas et al. (2020), meta-material design Fang & Zhan (2019); Liu & Wang (2019), and other areas in
science and engineering Tartakovsky et al. (2020); Shin et al. (2020). However, PINNs using fully connected,
or some variants architectures such as Fourier feature networks Tancik et al. (2020), fail to accomplish stable
training convergence and yield accurate predictions at whiles, especially when the underlying PDE solutions
exhibit high-frequencies or multi-scale features Fuks & Tchelepi (2020); Raissi (2018). To mitigate this
pathology, Krishnapriyan et al. (2021) proposed a sequence-to-sequence learning method for time-dependent
problems, which divide the time domain into sub-intervals and solve the problem progressively on each them.
This method avoids the pollution of the underlying solution due to the temporal error accumulation. Wang
et al. (2022) elaborated the reason that the PINNs fail to train from a neural tangent kernel perspective,
and proposed an adaptive training strategy to improve the PINNs’ performance. An empirical learning-rate
annealing scheme has been proposed in Wang et al. (2021), which utilizes the back-propagated gradient
statistics during training to adaptively assign importance weights to different terms in a PINNs loss function,
with the goal of balancing the magnitudes of the gradients in backward propagation. Although all of these
works were demonstrated to produce significant and consistent improvements in the stability and accuracy
of PINNs, the fundamental reasons behind the practical difficulties of training fully-connected PINNs still
remain unclear Fuks & Tchelepi (2020).

Besides PINNs, many other machine learning tasks suffer from the same issues, and some of these issues
have been resolved by gradient boosting method. The idea of gradient boosting is blending several weak
learners into a fortified one that gives better predictive performance than could be obtained from any of
the constituent learners alone Opitz & Maclin (1999). For example, Zhang & Haghani (2015) proposes a
gradient-boosting tree-based travel time prediction method, driven by the successful application of random
forest in traffic parameter prediction, to uncover hidden patterns in travel time data to enhance the accuracy
and interpretability of the model. Callens et al. (2020) used gradient boosting trees to improve wave forecast
at a specific location whose RMSE values in average 8% to 11% lower for the correction of significant wave
height and peak wave period. Recently, many researchers have contributed to gradient boosting method

1

Under review as submission to TMLR

and further improved its performance. Friedman (2002) shows that both the approximation accuracy and
execution speed of gradient boosting can be substantially improved by incorporating randomization into the
procedure, and this randomized approach also increases robustness against overcapacity of the base learner.
Ke et al. (2017) found that the efficiency and scalability of Gradient Boosting Decision Tree (GBDT) are
unsatisfactory when the feature dimension is high and data size is large and a greedy algorithm has been
used to effectively reduce the number of features without hurting the accuracy of split point determination
by much and thus solve the issue.

Inspired by the above-mentioned literature review, we arrive at our proposed method in this paper. In this
work, we present a gradient boosting physics informed neural networks (GB PINNs), which adopts a gradient
boosting idea to approximate the underlying solution by a sequence of neural networks and train the PINNs
progressively. Specifically, our main contributions can be summarized into the following points:

1. Inspired by the GB technique prevalent in traditional machine learning, we introduce a GB PINNs
approach. This addresses many of PINNs’ shortcomings, including issues related to sharp gradients.

2. Our method’s enhanced performance is justified from various perspectives. Initially, drawing parallels
with traditional gradient boosting, we deduce that a composite learner outperforms isolated ones.
Furthermore, leveraging the neural tangent kernel theory, we demonstrate that our approach effectively
mitigates lazy training challenges.

3. To substantiate our techniques, we present several rigorous experiments, encompassing even those in
numerical analysis. We provide an ablation study and detail the trade-offs between time and memory,
aiding readers in comprehending the practical implications of our method.

4. In our research, we not only corroborate the efficacy of Fourier feature networks through extensive
numerical experiments—as previously established in related work Wang et al. (2022; 2021); Tancik et al.
(2020)—but also extend these findings in a meaningful way. Specifically, our ablation studies reveal
that our GB PINNs framework, which integrates Fourier features as a key component, consistently
outperforms standalone Fourier feature networks. This result underscores the unique synergistic
advantages of combining GB PINNs with Fourier features, thereby making a novel contribution to
the existing body of literature.

We introduce some preliminaries for key ingredients of our algorithm in section 2. Then we present our
algorithm with motives in section 3. Numerical experiments are shown in section 4 to verify our algorithm.
We discuss our algorithm and conclude the paper in section 5.

2 Preliminaries

In this section, we will provide a brief overview of the related topics that are relevant to the proposed
algorithm in this paper. For a more in-depth understanding of these topics, we encourage readers to refer to
the original papers cited below.

2.1 Physics informed neural networks

In this subsection, we provide a brief overview of PINNs. For a more comprehensive introduction to PINNs,
readers are directed to Raissi et al. (2019). PINNs are a method for inferring a continuous latent function
u(x) that serves as the solution to a nonlinear PDE of the form:

N [u](x) = 0, in Ω, (1)
B[u](x) = 0, on ∂Ω, (2)

where Ω is an open, bounded set in Rd with a piecewise smooth boundary ∂Ω, x ∈ Rd, and N and B are
nonlinear differential and boundary condition operators, respectively.

2

Under review as submission to TMLR

The solution to the PDE is approximated by a deep neural network, uθ, which is parameterized by θ. The
loss function for the network is defined as:

L(u; θ) = ωe

Np

Np∑
i=1
|N [uθ](xp

i)|2 + ωb

Nb

Nb∑
i=1
|B[uθ](xb

i)|2, (3)

where {xp
i }

Np

i=1 and {xb
i}

Nb
i=1 are the sets of points for the PDE residual and boundary residual, respectively,

and ωe and ωb are the weights for the PDE residual loss and boundary loss, respectively. The neural network
uθ takes the coordinate x as input and outputs the corresponding solution value at that location. The partial
derivatives of the uθ with respect to the coordinates at N in equation 3 can be readily computed to machine
precision using reverse mode differentiation Baydin et al. (2018).

The loss function L(u; θ) is typically minimized using a stochastic gradient descent algorithm, such as Adam,
with a batch of interior and boundary points generated to feed the loss function. The goal of this process is
to find a set of neural network parameters θ that minimize the loss function as much as possible.

It is worth noting that the abstract PDE problem in equation 1-equation 2 can easily be extended to
time-dependent cases by considering one component of x as a temporal variable. In this case, one or more
initial conditions should be included in the PDE system and additional initial condition constraints should be
added to the loss function 3.

2.2 Gradient boosting machines

In this subsection, we offer a concise overview of GB for traditional machine learning tasks. For a thorough
exploration of this topic, refer to Hastie et al. (2009). Gradient Boosting (GB) is a powerful machine learning
technique that is commonly used in regression and classification tasks. It is an additive ensemble of weak
prediction models, similar to AdaBoost, but with a key difference - unlike other ensemble algorithms, GB
does not have trainable weights, and the sub-models are trained sequentially instead of in parallel. For the
sake of simplicity, in the rest of the paper, we will use f(x; θ) to denote a general neural network f with input
x and parameterized by θ.

Given a neural network f(x; θ) and a training dataset, the loss function L(f ; θ) is defined as the sum of the
individual losses for each sample, as follows:

L(f ; θ) =
N∑

i=1
L(yi, f(xi; θ)),

where N is the total number of samples in the dataset, yi is the true label for sample xi, and f(xi; θ) is the
predicted label for sample xi.

To minimize this loss function, a common approach is to use the stochastic gradient descent algorithm. This
algorithm updates the network’s parameters, θ, iteratively using the following update rule:

θ ← θ − γ
∂

∂θ
L(f ; θ), (4)

where γ is a user-specified learning rate that controls the step size of the updates.

The goal of the gradient boosting (GB) method is to minimize the loss function L(f ; θ) with respect to the
neural network function f . GB method assumes that the surrogate model can be represented in the following
iterative form:

fm(x; Θm) = fm−1(x; Θm−1) + ρmhm(x; θm), for m = 1, 2, 3, · · · , (5)
where f0(x; θ0) is a pre-selected baseline neural network, ρm is the learning rate, fm(x; Θm−1) is parameterized
by Θm =

⋃m
i=0 θi, and hm(x; θm) is a neural network designed to enhance the accuracy of the predictor

fm−1(x; Θm−1). The gradient descent algorithm is used to choose hm(x; θm), which is defined as:

hm(x; θm) = − ∂

∂fm−1(x; Θm−1)L(fm−1; Θm−1). (6)

3

Under review as submission to TMLR

Therefore, the model update rule is defined as:

fm(x; Θm) = fm−1(x; Θm−1)− ρm
∂

∂fm−1(x; Θm−1)L(fm−1; Θm−1). (7)

In this fashion, the corresponding loss at the m-th step reads

L(fm; Θm) = L(fm−1 + ρmhm; Θm). (8)

The technique outlined in this construction is commonly referred to as a GB method. The update function,
hm(x; θm) in equation 6, is similar in nature to the gradient vector in equation 4, however, GB operates by
taking the gradient with respect to the function, rather than the parameter vector as traditional gradient
descent does. This distinction is the reason why we refer to GB as a method that descends the gradient in
function space. For further information on gradient boosting methods, please refer to the reference Hastie
et al. (2009). Furthermore, it is worth noting that in the context of PINNs, this method has been adapted to
a simpler form that is easily implementable.

3 Gradient boosting physics informed neural networks

Despite a series of promising results in the literature Hennigh et al. (2021); Kissas et al. (2020); Raissi (2018);
Raissi et al. (2020); Sun et al. (2020), the original formulation of PINNs proposed by Raissi et al. (2019) has
been found to struggle in constructing an accurate approximation of the exact latent solution. While the
underlying reasons remain largely elusive in general, certain failure modes have been explored and addressed,
as evidenced in Wang et al. (2021; 2022); Krishnapriyan et al. (2021). However, some observations in the
literature can be used to infer potential solutions to this issue. One such observation is that the prediction
error in PINNs is often of high frequency, with small and intricate structures, as seen in figures 4(b) and
6(a) and (b) of Wang et al. (2022). As demonstrated in Tancik et al. (2020), high-frequency functions can
be learned relatively easily using Fourier features. Based on these findings, it is natural to consider using a
multi-layer perceptrons (MLPs) as a baseline structure in PINNs, followed by a Fourier feature network, to
further minimize the error. This idea led to the development of GB PINNs.

3.1 Introduction of GB PINNs and mathematical formulation

The proposed method, referred to as GB PINNs, utilizes a sequence of neural networks in an iterative update
procedure to gradually minimize the loss function. As shown in equation 6, the update model hm(x; θm)
is defined by the gradient of the loss with respect to the previous output fm−1. However, in the context
of PINNs, the PDE residual loss in equation 3 typically includes gradients of the outputs with respect to
the inputs. This necessitates the computation of twisted gradients, which is a unique characteristic of this
approach. For example

∂

∂f(x; θ)

[(
∂f(x; θ)

∂x

)2
]

,

which is definitely not elementary and should be avoided. Despite the mathematical validity of the gradient

∂

∂fm−1(x; Θm−1)L(fm−1; Θm−1),

it can be challenging to compute it using automatic differentiation (AD) due to the fact that L(fm−1; θ) is
typically a leaf node in the computational graph.

Fortunately, we can still utilize the formulation in equation 8 to establish an appropriate GB algorithm for
PINNs. Rather than computing the gradient as previously mentioned, we introduce the core algorithm of
this paper. Instead of determining hm as depicted in equation 6, a neural network is employed to represent
hm, and it is trained following the same procedure as PINNs. Specifically, once the training of the (m− 1)-th
step concludes, we incorporate an additional, pre-selected neural network, denoted as ρmhm(x; θm), to the
preceding predictor fm−1(x; Θm−1). Subsequently, a fresh batch of training points is generated to facilitate

4

Under review as submission to TMLR

the training process. This iterative procedure allows us to gradually minimize the loss and improve the
accuracy of the predicted solution.

It is important to note that the neural networks utilized in the proposed GB PINNs algorithm do not need to
possess a consistent structure. In fact, they can be composed of a variety of surrogate models, as long as
they have the same input and output dimensions. Examples of such models include MLPs, Fourier feature
networks, radial basis neural networks, and even finite element representations. This flexibility allows for a
more versatile approach to minimizing the loss and improving the accuracy of the approximation to the exact
latent solution.

Another notable point regarding our proposed method is its foundation in GB from conventional machine
learning tasks. However, GB PINNs is not merely a straightforward amalgamation of GB and PINNs. This
is primarily due to the distinct nature of GB in this context. The most significant distinction lies in how we
determine the model update, hm. While traditional GB derives the update from the gradient in function
space, as indicated in equation 6, our proposed GB PINNs, albeit inspired by conventional GB, derives the
update using a neural network, following the PINNs training procedure. The common ground between these
two methodologies is represented by equation 8, yet the approach to the model update hm diverges in each
case.

3.2 Determination of the learning rate parameter, ρm

In concluding the algorithm description, we must address the determination of the parameter, ρm. In GB
training, the term ρm from equation 5 acts as a learning rate within the function space gradient descent and
additionally modulates the magnitude of hm(x; θm). Since the learning rate is inherently a hyperparameter
in machine learning, a universal method to obtain an optimal value often remains elusive. Yet, we can derive
insights from the intuitive and empirical aspects of the training process.

In many PINNs applications, upon the completion of the training for fm−1(x; Θm−1) with a notably low
loss value, a reliable predictor emerges. This suggests that the relative error between the current predictor
and the actual ground truth (e.g., the relative l2 error defined later) is minimal. Even when the loss is not
minimal, the neural network’s output typically surpasses its random initial state. In other words, even if
post-training accuracy falls short, it’s evident that the neural network has absorbed some features during the
training phase. Subsequently, the additive model, hm(x; θm), is trained to further minimize the error, leading
us to expect a decreasing magnitude of hm(x; θm) with each iteration step, m. By extension, it’s logical to
expect a corresponding decrement in ρm over m.

In the subsequent experiments, we adopt an exponential decay for ρm, aligning it with conventional gradient
descent approaches. Nevertheless, despite the aforementioned rationale, it’s imperative to underscore that
this configuration is empirical and might not universally apply.

3.3 Comprehensive Overview of the GB PINNs Algorithm

The proposed algorithm can be summarized as follows:

The proposed algorithm, described in Algorithm 1, utilizes a sequence of neural networks and an iterative
update procedure to minimize the loss gradually. At each iteration step i, the forward prediction relies on
the union parameter set Θi, while the backward gradient propagation is only performed on θi. This results in
a mild increase in computational cost during the training of GB iteration. The simplicity of this algorithm
allows practitioners to easily transfer their PINNs codes to GB PINNs’. In the following section, we will
demonstrate that this simple technique can enable PINNs to solve many problems that were previously
intractable using the original formulation of Raissi et al. (2019).

Additionally, the proposed GB PINNs algorithm also introduces another dimension of flexibility in terms
of network architecture design, namely the combination of different neural networks. This opens up new
opportunities for fine-tuning the architecture to minimize PDE residual losses and improve overall predictive
accuracy. As shown in the following section, the performance of GB PINNs is relatively insensitive to the
specific choice and arrangement of networks, as long as their capacity is sufficient.

5

Under review as submission to TMLR

Algorithm 1 Gradient boosting physics informed neural network.
Input:

A baseline neural network f0(x; θ0) and an ordered neural network set {hm(x; θm)}M
m=1 that contains

models going to be trained in sequence;
A set of learning rate {ρm}M

m=0 that correspond to {f0(x; θ0)} ∪ {hm(x; θm)}M
m=1. Usually, ρ0 = 1 and

ρm is decreasing in m;
Set fm(x; Θm) = fm−1(x; Θm−1) + ρmhm(x; θm), for m = 1, 2, 3, · · · , M .
Given PDEs problem 1-2, establish the corresponding loss 3.

Output:
1: Train f0(x; θ0) = ρ0f0(x; θ0) to minimize loss 3.
2: for m = 1 to M do
3: In fm(x; Θm) = fm−1(x; Θm−1) + ρmhm(x; θm), set trainable parameters as θm. Train fm(x; Θm) to

minimize loss 3.
4: end for
5: return fM (x; ΘM) as a predictor of the solution of 1-2 for any point in Ω.

3.4 Conceptual insights of GB PINNs

In this subsection, we elucidate why GB PINNs can be expected to outperform vanilla PINNs, considering
two primary reasons.

Firstly, GB, a recognized technique in traditional machine learning tasks like tree models, systematically
adds new models in each step to rectify its predecessor’s errors. This principle extends to GB PINNs as well.
Although the update model hm for each step is derived from a new network rather than gradient descent in
function space, every update reduces the residuals left by the preceding model. As more models are integrated,
the entire system’s complexity amplifies, enabling it to encapsulate more intricate patterns in PDE solutions.
This behavior is evident in our first three numerical examples concerning sharp gradient solutions.

Secondly, as emphasized in Wang et al. (2022), the neural tangent kernel (NTK) of expansive and deep neural
networks tends to remain consistent during training, potentially hindering the learning of solutions with
sharp gradients. It’s also observed that large neural networks face the challenge of ’lazy training’ Chizat
et al. (2019). Here, the network’s weights rarely exhibit significant shifts during training, which constrains
its expressive capacity. While shrinking the network’s size can alleviate these issues, it risks underfitting if
excessively reduced. GB PINNs, through their algorithmic design, harness smaller networks to counteract the
lazy training and NTK stability. They subsequently leverage larger networks to address potential underfitting.

Such insights also inspire an approach where a compact network forms the initial solution approximation,
which is successively refined using heftier networks. 1

In the next section, we will delve into numerical experiments to validate our proposed approach. Although
we have not set strict prerequisites for our method’s application, its efficacy for sharp gradient and certain
nonlinear time-evolution problems with periodic boundary conditions will be demonstrated. Nonetheless, the
method isn’t universally optimal, showing limitations with complex challenges like conservation laws, which
we will touch upon in the conclusion.

4 Numerical Experiments

In this section, we will demonstrate the effectiveness of the proposed GB PINNs algorithm through a
comprehensive set of numerical experiments. To simplify the notation, we use a tuple of numbers to denote
the neural network architecture, where the tuple represents the depth and width of the layers. For example,
a neural network with a two-dimensional input and a one-dimensional output, as well as two hidden layers

1It’s important to clarify that our proposed neural network structure remains conceptual and might not always deliver peak
results. Depending on the distinct problem, the selection and organization of neural networks could differ. Our numerical
experiments will offer deeper perspectives on tailoring neural networks to specific challenges.

6

Under review as submission to TMLR

Table 1: Default Experiment Set up
Name Value
Activation function GeLU
Method to initialize the neural network Xavier
Optimizer Adam
learning rate 10−3

learning rate decay period 10, 000
learning rate decay rate 0.95

with width 100 is represented as (2, 100, 100, 1). Our default experimental setup is summarized in Table 1,
and will be used in all experiments unless otherwise specified.

To quantify the model’s accuracy, we use the relative l2 error over a set of points {xi}N
i=1:

Error =
∑N

i=1 |upred(xi)− utrue(xi)|2∑N
i=1 |utrue(xi)|2

.

In our analysis, we assess the error across a defined set of grid points. In the subsequent experiments, we
produce a set of 1, 000 equidistant points for each dimension within the domain. These points are then
combined using the Cartesian product to establish the grid coordinates.

4.1 1D singular perturbation

In this first example, we utilize GB PINNs to solve the following 1D singular perturbation problem.

−ε2u′′(x) + u(x) = 1, for x ∈ (0, 1),
u(0) = u(1) = 0.

The perturbation parameter, 0 < ε≪ 1, is set to 10−4 in this case. The exact solution to this problem is
given by

u(x) = 1− e−x/ε + e(x−1)/ε

1 + e−1/ε
.

Despite the boundedness of the solution, it develops boundary layers at x = 0 and x = 1 for small values of ε,
a scenario in which traditional PINNs have been known to perform poorly.

Utilizing the notation established in Algorithm 1, we designate f0 as (1, 50, 1), h1 as (1, 100, 1), h2 as
(1, 100, 100, 1), h3 as (1, 100, 100, 100, 1) and h4 as a Fourier feature neural network (1, 50, 50, 1) with frequencies
ranging from 1 to 10. For the sake of clarity in subsequent examples, we will simply present a series of network
architectures, which will implicitly represent the f0 and hm (m = 0, 1, 2, · · ·) configurations in sequence. The
details of the Fourier feature method used in this study can be found in the appendix A.1. The step size ρm

in equation 5 was set to 0.5m, where m = 0, 1, · · · , 4 is the model index.

For each GB iteration, we train 10, 000 steps using a dataset of 10, 000 uniform random points in (0, 1). The
weights in the loss function 3 are set to ωe = 1 and ωb = 10, respectively, and the batch size for PDE residual
computation is 10, 000.

The output of GB PINNs is shown in Figure 1, where the relative l2 error is found to be 0.43%. The boundary
layers at x = 0 and x = 1 are clearly visible in the solution, which is a result of the thinness of the layers
and the almost right angle curvature of the solution at these points. Despite the singularity present in the
solution, GB PINNs were able to provide an accurate solution for this problem. To further highlight the
contribution of GB PINNs in this example, an ablation study was conducted. A vanilla PINNs approach,
using a network structure of (1, 256, 256, 256, 256, 1) and 50, 000 training steps, was used to solve the same
problem. To make this comparison fair, we use the same amount of training points in total. Therefore, we set
the batch size of the training points as the same as before. The training takes 249.47s. Notably, even though

7

Under review as submission to TMLR

this network possesses greater depth and width than any single network in the GB PINNs ensemble, the
resulting relative l2 error is a much higher 12.56%, as shown in Figure 2. Additional experiments including
ablation studies and comparisons can be found in appendix 2.

However, getting this high level of accuracy comes with its costs. Using a series of neural networks instead
of just one means more time and memory are needed. The training times for the GB PINNs networks are
57.44s, 77.63s, 126.96s, 196.08s, and 259.44s, respectively. The peak memory requisition touched 0.28GB.
In a scenario where only the largest configuration within the GB PINNs’ network spectrum, specifically
(1, 100, 100, 100, 1), is utilized, the memory footprint scales down to 0.16GB. Compared to the standard
PINNs, this method takes about three times longer and uses twice the memory. But the accuracy was more
than 20 times better. Another discernible trend is the incremental rise in training time in correlation to the
network’s order. As we advance to training the m-th network, even with the parameters of the preceding
networks remaining static, the computational intensity during both forward and backward propagations
escalates, leading to protracted training durations.

Furthermore, we demonstrate the robustness of our algorithm against the choice of network structure and
arrangement through this example. We solve the problem using a variety of networks, including (1, 50, 1),
(1, 100, 1), (1, 100, 100, 1), followed by a Fourier feature network (1, 100, 100, 100, 1) with frequencies ranging
from 1 to 10. The resulting relative l2 error is around 1.1%, which is comparable to the previously mentioned
result. It is possible that there exists a specific set of hyperparameters and configurations that would allow
a single neural network to perfectly solve this problem. After all, by the universal approximation theorem
Hornik et al. (1989), even a neural network with a simple structure possesses the ability to approximate
a complicated function. However, the fine-tuning of hyperparameters is a common challenge in machine
learning tasks and can consume significant computational resources. Contrarily, GB PINNs mitigate the
intricacies associated with adjusting network structures, as the multiple networks intrinsically refine the
outputs, saving both effort and computational resources. It is worth noting, however, that this does not
obviate the need to fine-tune other hyperparameters, such as the learning rate.

An additional observation from our ablation study and further detailed in Appendix A.2, highlights a
limitation inherent to the proposed GB PINNs. As illustrated in the final row of Table 2, enriching the neural
network spectrum by adding more networks failed to improve accuracy. A closer examination of Figure 1
offers some insights into this phenomenon. The current neural network configuration generates a solution
where errors predominantly localize at both endpoints. This presents a challenge for neural networks, as the
error distribution lacks smoothness. Consequently, simply augmenting the number of networks is unlikely to
mitigate this issue.

In conclusion, we juxtapose our GB PINNs framework with a rudimentary ensemble approach for comparison.
Employing the same architecture outlined initially—(1, 50, 1), (1, 100, 1), (1, 100, 100, 1), (1, 100, 100, 100, 1),
and a Fourier feature neural network (1, 50, 50, 1) with frequency ranges from 1 to 10—we assign equal
weightings of 0.2 to each model. The cumulative output is consequently the arithmetic mean of these five
individual networks. All models are concurrently trained using the Adam optimizer over a span of 50, 000
steps. The findings are illustrated in Figure 3.

While the ensemble method attains a relatively low error rate of 0.89%, a closer examination reveals a notable
error in the boundary layer, as is evident from the figure. Although the maximal error is nearly commensurate
with that of our GB PINNs, the ensemble approach exhibits pronounced jumps at the boundary layer, thereby
distorting the overall solution.

4.2 2D singular perturbation with boundary layers

In this example, we aim to solve the Eriksson-Johnson problem, which is a 2D convection-dominated diffusion
equation. As previously noted in the literature, such as in Demkowicz & Heuer (2013), this problem
necessitates the use of specialized finite element techniques in order to obtain accurate solutions, such as the
Discontinuous Petrov Galerkin (DPG) finite element method.

8

Under review as submission to TMLR

Figure 1: Prediction of singular perturbation problem by GB PINNs, ε = 10−4. Left: predicted solution
(black) v.s. ground truth (red). Right: pointwise error.

Figure 2: Prediction of singular perturbation problem by PINNs for ablation study, ε = 10−4. Left: predicted
solution (black) v.s. ground truth (red). Right: pointwise error.

9

Under review as submission to TMLR

Figure 3: Rudimentary ensemble method by taking the mean of the five networks, ε = 10−4. Left: predicted
solution (black) v.s. ground truth (red). Right: pointwise error.

Let Ω = (0, 1)2. The model problem is

−ε∆u + ∂u

∂x
= 0 in Ω,

u = u0 on ∂Ω.

The manufactured solution is

u(x, y) = er1(x−1) − er2(x−1)

e−r1 − e−r2
sin(πy) with r1,2 = −1±

√
1 + 4ε2π2

−2ε
.

In this example, we set ε = 10−3. To resolve this problem, we sequentially employ a range of neural network
architectures as follows: (2, 50, 1), (2, 100, 1), (2, 100, 100, 1), (2, 100, 100, 100, 1), (2, 100, 100, 1), culminating
in a Fourier feature network (1, 100, 100, 1) with frequencies ranging from 1 to 50. For each iteration of our
GB algorithm, we train for 20, 000 steps. We set the weights in equation 3 as ωe = 1 and ωb = 10, 000,
respectively. The batch sizes for PDE residuals and boundaries are set at 10, 000 and 50, 00, respectively.
The predicted solution is visualized in Figure 4. We can see that our model prediction is in good agreement
with the ground truth, with a relative l2 error of 1.03%. The training times of each individual network are
92.72s, 119.62s, 204.66s, 329.35s, and 459.93s, respectively. The maximum memory consumption reached
0.71GB. However, when only using the largest network configuration, (2, 100, 100, 100, 1), the peak memory
usage stands at 0.31GB.

Notably, there is a boundary layer present on the right side of the boundary (x = 1), which is not easily
recognizable to the naked eye due to its thinness. However, GB PINNs are able to provide a reasonable
degree of predictive accuracy even in this challenging scenario.

To further demonstrate the efficacy of our proposed method, we also attempted to solve this problem using a
single fully connected neural network of architecture (2, 256, 256, 256, 256, 1). We train this network by 20, 000
steps under the same hyperparameter settings as before. For a fair comparison, we maintain the same total
number of training points. Consequently, we have increased the batch size of the training points by fivefold.
However, the resulting relative l2 error was 57.66%. This training consumed 811.82s of time. As can be
seen in Figure 5, there is a significant discrepancy between the predicted solution and the reference solution.
Additional experimental results, including an ablation study and comparisons, can be found in Appendix 3.

10

Under review as submission to TMLR

Figure 4: Prediction of 2D singular perturbation with boundary problem by GB PINNs, ε = 10−3. Left:
predicted solution. Middle: ground truth. Right: pointwise error.

Figure 5: Prediction of 2D singular perturbation with boundary problem by PINNs, ε = 10−3. Left: predicted
solution. Middle: ground truth. Right: pointwise error.

11

Under review as submission to TMLR

Figure 6: Prediction of 2D singular perturbation with interior boundary problem by GB PINNs, ε = 10−4.
Left: predicted solution. Middle: ground truth. Right: pointwise error.

4.3 2D singular perturbation with an interior boundary layer

In this example, we address a 2D convection-dominated diffusion problem featuring curved streamlines and
an interior boundary layer. The model problem is

−ε∆u + β · ∇u = f in Ω,

u = u0 on ∂Ω,

with β = ex(sin(y), cos(y)) and f , u0 are defined such that

u(x, y) = arctan
(

1−
√

x2 + y2

ε

)
.

This example has been solved by DPG finite element method in Demkowicz & Heuer (2013). A specific
value of ϵ = 10−4 was chosen for the purpose of this study. The neural network architectures are sequentially
employed in the following order: (2, 200, 200, 200, 1), (2, 100, 100, 100, 1), (2, 100, 100, 1), culminating in a
Fourier feature network (2, 50, 50, 1) with frequency ranging from 1 to 5. The weights for the loss function
in equation 3 were set as ωe = 1 and ωb = 10, 000, respectively. The batch size for the PDE residual and
boundary were set to 10, 000 and 5, 000, respectively. For each iteration of our GB algorithm, we train for
20, 000 steps. The results of this study are shown in Figure 6 and exhibit a relative l2 error of 3.37%. The
training times for each individual network are 409.65s, 463.84s, 525.87s, and 562.61s, respectively. The peak
memory allocation for the GB PINNs and the largest configuration are 0.84GB and 0.63GB, respectively.

As a part of an ablation study, we resolve this problem using a fully connected neural network architecture of
(2, 512, 512, 512, 512, 1), while maintaining the other configurations as same as the previous experiment. We
train this network by 20, 000 steps. For a fair comparison, we maintain the same total number of training
points. Consequently, we have increased the batch size of the training points by fourfold. This training
consumed 1067.96s of time. The relative l2 error obtained in this case is 43%. The predictions and the
corresponding errors are depicted in Figure 7. Additional experiments pertaining to the ablation study and
comparisons can be found in the appendix, section 4.

4.4 2D nonlinear reaction-diffusion equation

In this example, we investigate the solution of a time-dependent nonlinear reaction-diffusion equation. As
demonstrated in Krishnapriyan et al. (2021), conventional PINNs have been shown to be inadequate in
accurately learning the solution of such equations.

12

Under review as submission to TMLR

Figure 7: Prediction of 2D singular perturbation with interior boundary problem by PINNs, ε = 10−4. Left:
predicted solution. Middle: ground truth. Right: pointwise error.

Figure 8: Prediction of nonlinear reaction-diffusion equation by GB PINNs. Left: predicted solution. Middle:
ground truth. Right: pointwise error.

Let Ω = (0, 2π). The model problem is

∂u

∂t
− 10∂2u

∂x2 − 6u(1− u) = 0, x ∈ Ω, t ∈ (0, 1],

u(x, 0) = h(x) x ∈ Ω,

with periodic boundary conditions, where

h(x) = e
− (x−π)2

2(π/4)2 .

In order to impose an exact periodic boundary condition, we use (sin(x), cos(x)) as the spatial input instead of
x, while maintaining the temporal input unchanged. This eliminates the need for boundary loss. Additionally,
we include an additional loss term for the initial condition in the loss function, equation 3. For this problem, we
employ neural network architectures in the following sequential order: (2, 200, 200, 200, 1), (2, 100, 100, 100, 1),
(2, 100, 100, 1). The weights for the PDE residual and initial condition loss are set to 1 and 1, 000, respectively.
The batch sizes for the PDE residual and initial condition loss are 20, 000 and 1, 000, respectively. For each
iteration of our GB algorithm, we train for 20, 000 steps. We present our results in Figure 8. The relative
l2 error is 0.58%. As shown in Krishnapriyan et al. (2021), the relative error for traditional PINNs with
ρ = ν = 5 is 50%. A comparison between the exact solution and the PINNs’ prediction can also be found in
the figure. The training times for each individual network are 391.99s, 483.21s, and 579.77s, respectively. The
peak memory allocation for the GB PINNs and the largest configuration are 0.99GB and 0.77GB, respectively.

In the aforementioned study, Krishnapriyan et al. (2021) proposed a sequence-to-sequence learning approach
to address this problem, achieving a relative l2 error of 2.36% for ρ = ν = 5. This approach begins by

13

Under review as submission to TMLR

uniformly discretizing the temporal domain, resulting in sequential subintervals. Each of these temporal
subintervals is then combined with the spatial domain, forming distinct subdomains. The problem is solved
sequentially by applying traditional PINNs through these spatio-temporal subdomains. For the cited example
above, the sequence-to-sequence model trained the neural network across 20 such intervals, necessitating the
solution of 20 consecutive problems via PINNs.

In contrast, our methodology, executed with ν = 10 and ρ = 6, which is a notably more complex setting,
required training for only three networks. Rather than partitioning the domain at the physical level and
employing multiple learners to construct solutions on subdomains before amalgamating them, our strategy
utilizes supplemental learners to reinforce the base learner, thereby enhancing its precision. Remarkably,
our approach yielded an error rate nearly four times lower than the former method, signifying a substantial
enhancement.

5 Conclusion

In this paper, we propose a GB PINNs algorithm, which utilizes multiple neural networks in sequence to
predict solutions of PDEs. The algorithm is straightforward to implement and does not require extensive
fine-tuning of neural network architectures. Additionally, the method is flexible and can be easily integrated
with other PINNs techniques. Our experimental results demonstrate its effectiveness in solving a wide range
of intractable PDE problems.

However, it should be noted that the algorithm has some limitations. Firstly, it is not suitable for solving
conservation laws with derivative blow-ups, such as the inviscid Burgers’ equation and the Sod shock tube
problem. This is due to the lack of sensitivity of these equations’ solutions to PDE loss. The addition of more
neural networks alone cannot overcome this issue. Secondly, the optimal combination of neural networks is
not always clear, and the current experimental selection is mostly based on experience and prior estimation
of the PDE problem. Further research into the theoretical and quantitative analysis of this method is an
interesting direction for future work.

References
Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. Automatic

differentiation in machine learning: a survey. Journal of Marchine Learning Research, 18:1–43, 2018.

Aurélien Callens, Denis Morichon, Stéphane Abadie, Matthias Delpey, and Benoit Liquet. Using random
forest and gradient boosting trees to improve wave forecast at a specific location. Applied Ocean Research,
104:102339, 2020.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming. Advances
in neural information processing systems, 32, 2019.

Leszek Demkowicz and Norbert Heuer. Robust dpg method for convection-dominated diffusion problems.
SIAM Journal on Numerical Analysis, 51(5):2514–2537, 2013.

Zhiwei Fang and Justin Zhan. Deep physical informed neural networks for metamaterial design. IEEE Access,
8:24506–24513, 2019.

Jerome H Friedman. Stochastic gradient boosting. Computational statistics & data analysis, 38(4):367–378,
2002.

Olga Fuks and Hamdi A Tchelepi. Limitations of physics informed machine learning for nonlinear two-phase
transport in porous media. Journal of Machine Learning for Modeling and Computing, 1(1), 2020.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of statistical
learning: data mining, inference, and prediction, volume 2. Springer, 2009.

Oliver Hennigh, Susheela Narasimhan, Mohammad Amin Nabian, Akshay Subramaniam, Kaustubh Tangsali,
Zhiwei Fang, Max Rietmann, Wonmin Byeon, and Sanjay Choudhry. Nvidia simnet™: An ai-accelerated

14

Under review as submission to TMLR

multi-physics simulation framework. In International Conference on Computational Science, pp. 447–461.
Springer, 2021.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing
systems, 30, 2017.

Georgios Kissas, Yibo Yang, Eileen Hwuang, Walter R Witschey, John A Detre, and Paris Perdikaris. Machine
learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4d flow mri
data using physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering,
358:112623, 2020.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Characterizing
possible failure modes in physics-informed neural networks. Advances in Neural Information Processing
Systems, 34:26548–26560, 2021.

Dehao Liu and Yan Wang. Multi-fidelity physics-constrained neural network and its application in materials
modeling. Journal of Mechanical Design, 141(12), 2019.

David Opitz and Richard Maclin. Popular ensemble methods: An empirical study. Journal of artificial
intelligence research, 11:169–198, 1999.

Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial differential equations. The
Journal of Machine Learning Research, 19(1):932–955, 2018.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational physics, 378:686–707, 2019.

Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning velocity and
pressure fields from flow visualizations. Science, 367(6481):1026–1030, 2020.

Francisco Sahli Costabal, Yibo Yang, Paris Perdikaris, Daniel E Hurtado, and Ellen Kuhl. Physics-informed
neural networks for cardiac activation mapping. Frontiers in Physics, 8:42, 2020.

Yeonjong Shin, Jerome Darbon, and George Em Karniadakis. On the convergence of physics informed neural
networks for linear second-order elliptic and parabolic type pdes. arXiv preprint arXiv:2004.01806, 2020.

Luning Sun, Han Gao, Shaowu Pan, and Jian-Xun Wang. Surrogate modeling for fluid flows based on
physics-constrained deep learning without simulation data. Computer Methods in Applied Mechanics and
Engineering, 361:112732, 2020.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal,
Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn high frequency
functions in low dimensional domains. Advances in Neural Information Processing Systems, 33:7537–7547,
2020.

Alexandre M Tartakovsky, C Ortiz Marrero, Paris Perdikaris, Guzel D Tartakovsky, and David Barajas-Solano.
Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface
flow problems. Water Resources Research, 56(5):e2019WR026731, 2020.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow pathologies in
physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–A3081, 2021.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent kernel
perspective. Journal of Computational Physics, 449:110768, 2022.

Yanru Zhang and Ali Haghani. A gradient boosting method to improve travel time prediction. Transportation
Research Part C: Emerging Technologies, 58:308–324, 2015.

15

Under review as submission to TMLR

A Appendix

A.1 Fourier features networks

In this subsection, we present the Fourier feature network structure that we employed in our experiments.
For a more in-depth explanation of Fourier features, please refer to Tancik et al. (2020).

Given an input x ∈ RN×d for the neural network, where N is the batch size and d is the number of features,
we encode it as v = γ(x) = [cos(2πxB), sin(2πxB)] ∈ RN×2m, where B ∈ Rd×m, and m is half of the output
dimension of this layer. The encoded input v is then passed as input to the subsequent hidden layers, while
the rest of the neural network architecture remains the same as in a traditional MLP. Different choices of B
result in different types of Fourier features.

In our experiment, we utilized the axis Fourier feature. We first selected a range of integers as our frequencies
and denoted them as f = (f0, f1, · · · , fp) ∈ Rp. We then constructed a block matrix B = [F 0, F 1, · · · , F p] ∈
Rd×dp, where F i is a diagonal matrix with all of its diagonal elements set to fi. This results in the desired
matrix B ∈ Rd×dp, and dp = m is half of the output dimension for this layer.

A.2 Additional ablation study results

In this subsection, we present additional experiments to demonstrate the relative l2 error for various neural
network selections. The objective of these experiments is to demonstrate the following:

1. The use of GB PINNs can significantly improve the accuracy of a single neural network.

2. The method is relatively insensitive to the selection of neural networks, as long as the spectral and
capacity are sufficient.

In order to simplify the presentation, we will only display the hidden layers of fully-connected neural networks
and utilize the list notation in Python. For instance, [50] ∗ 3 represents three hidden layers, each containing
50 neurons. The input and output layers are implied by context and not explicitly shown. For Fourier feature
neural networks, we denote them using the notation Fk, where k represents the range of frequencies used
(e.g., F10[100] ∗ 2 denotes a Fourier feature neural network with frequencies ranging from 1 to 10, and two
hidden layers with 100 neurons each). In the case of the 2D nonlinear reaction-diffusion equation problem,
we use the prefix P to indicate the use of a periodic fully-connected neural network. The weight for each
study is set to 2−n, where n is the index of the neural network.

In order to facilitate clear comparisons, the reported results will be presented in the last line of the following
tables.

In the following results, it becomes evident that incorporating a Fourier feature network enhances performance,
primarily by smoothing the neural tangent kernels. However, we argue that relying solely on a single Fourier
feature network is insufficient for attaining the level of accuracy achieved by GB PINNs. As corroborated by
data presented in Table 2 through Table 4, specifically in the penultimate row, there exists a discernible gap
in accuracy between a standalone Fourier feature network and GB PINNs. This discrepancy is particularly
noticeable in 2D problems. Therefore, the superior accuracy of GB PINNs can be attributed to the synergistic
interaction among multiple networks, rather than the implementation of a Fourier feature network alone.

16

Under review as submission to TMLR

Table 2: Ablation study for 1D singular perturbation
Neural network structures Relative l2 error
[50], [100] 31.36%
[50], [100], [100] ∗ 2 11.05%
[50], [100], [100] ∗ 2, [100] ∗ 3 10.79%
[50], [100], [100] ∗ 2, [100] ∗ 3, [100] ∗ 2, F10[50] ∗ 2 0.85%
[50], [100], [100] ∗ 2, F10[100] ∗ 3 1.1%
[512] ∗ 6 15.16%
F10[256] ∗ 4 0.60%
F10[50] ∗ 2 1.27%
[50], [100], [100] ∗ 2, [100] ∗ 3, F10[50] ∗ 2 0.43%

Table 3: Ablation study for 2D singular perturbation with boundary layers
Neural network structures Relative l2 error
[50], [100] 61.56%
[50], [100], [100] ∗ 2 57.01%
[50], [100], [100] ∗ 2, [100] ∗ 3 57.25%
[50], [100], [100] ∗ 2, [100] ∗ 3, [100] ∗ 2 57.23%
[50], [100], [100] ∗ 2, F50[100] ∗ 2 2.67%
F50[256] ∗ 4 4.01%
F50[100] ∗ 2 15.56%
[50], [100], [100] ∗ 2, [100] ∗ 3, [100] ∗ 2, F50[100] ∗ 2 1.03%

Table 4: Ablation study for 2D singular perturbation with an interior boundary layer
Neural network structures Relative l2 error
[200] ∗ 3, [100] ∗ 3, [100] ∗ 2 8.69%
[200] ∗ 3, [100] ∗ 3, F5[50] ∗ 2 6.46%
[200] ∗ 3, [100] ∗ 3, [100] ∗ 2, F5[50] ∗ 2, [100] ∗ 3 6.03%
F5[512] ∗ 4 38.9%
F5[50] ∗ 2 16.15%
[200] ∗ 3, [100] ∗ 3, [100] ∗ 2, F5[50] ∗ 2 3.37%

Table 5: Ablation study for 2D nonlinear reaction-diffusion equation
Neural network structures Relative l2 error
P [200] ∗ 3 1.18%
P [200] ∗ 3, P [100] ∗ 3 1.18%
P [200] ∗ 3, P [100] ∗ 3, P [100] ∗ 2, P [100] ∗ 3 0.59%
P [200] ∗ 3, P [100] ∗ 3, P [100] ∗ 2 0.58%

17

	Introduction
	Preliminaries
	Physics informed neural networks
	Gradient boosting machines

	Gradient boosting physics informed neural networks
	Introduction of GB PINNs and mathematical formulation
	Determination of the learning rate parameter, m
	Comprehensive Overview of the GB PINNs Algorithm
	Conceptual insights of GB PINNs

	Numerical Experiments
	1D singular perturbation
	2D singular perturbation with boundary layers
	2D singular perturbation with an interior boundary layer
	2D nonlinear reaction-diffusion equation

	Conclusion
	Appendix
	Fourier features networks
	Additional ablation study results

