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ABSTRACT

In the field of disease treatment, the simultaneous use of multiple medications can lead to
unforeseen adverse reactions, compromising patient safety and therapeutic efficacy. Con-
sequently, predicting drug-drug interactions (DDIs) has emerged as a pivotal research fo-
cus on improving disease treatment. While recent advancements have been made in deep
learning models for predicting drug pair relations, the nuanced consideration of individual
or cellular conditions as influential contextual factors in DDIs is notably lacking. In this
study, leveraging existing models, we introduce a methodology to predict DDIs through
a context-aware architecture. The evident performance improvement compared to estab-
lished methodologies underscores the crucial role of the context-aware mechanism in ad-
dressing context-conditional DDIs. Furthermore, we perform a systematic ablation analysis
to assess the impact of model elements. Simultaneously, we also investigate the potential
of incorporating pre-trained molecular representation learning models in this domain.

1 INTRODUCTION

In the treatment of various diseases, patients often require the simultaneous use of multiple medica-
tions. However, this polypharmacy scenario may give rise to drug-drug interactions (DDIs), leading
to unexpected adverse drug events (ADEs) (Vo et al., 2022). The existence of DDI remains a sig-
nificant challenge as it poses a potential threat to patient safety and treatment efficacy. With the
continuous development of artificial intelligence technology, an increasing amount of research is
focusing on DDI prediction (Rozemberczki et al., 2022) to improve disease treatment.

Nevertheless, adverse reactions and side effects between drugs often exhibit individual or even cell-
specific characteristics. The same pair of drugs may result in different drug interactions in distinct
individuals or cellular environments (contexts). Therefore, considering the context-dependent pre-
diction of DDI within a specific context is essential to advance the process of personalized medicine.

Deep learning-based approaches commonly consider a pair of drugs as input (Rozemberczki et al.,
2021). Recent attempts have aimed to highlight the context-dependent nature of DDI prediction by
incorporating context information. However, these methods usually simplify the process by merely
concatenating descriptors of drugs and context, without engaging in deep representation learning of
context-aware DDI information (Preuer et al., 2018). In Figure 1, we classify and visualize these
DDI prediction frameworks as ‘w/o context’ and ‘w/ context (concatenate)’ for distinguishing.

In this work, to improve context-conditional DDI prediction, we incorporate a bi-directional context-
aware attention mechanism to discern dependencies between drug pair and context representa-
tions. Our model exhibits a significant performance improvement when compared with established
methodologies. The ablation study results indicate the significance of acquiring context-aware rep-
resentations, highlighting the efficacy of a context-aware architecture in enhancing DDI tasks.

2 METHODOLOGY

We utilize a pair of molecular graphs along with contextual information as inputs to our model. The
drug encoder is constructed using graph isomorphism networks (GINs), drawing inspiration from the
2D graph molecular encoder that used in Liu et al. (2021). Contextual information is encoded using a
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Figure 1: DDI Prediction Frameworks. (a) w/o context: models excluding contextual information
(e.g. DeepDrug (Yin et al., 2020)). (b) w/ context (concatenate): models incorporating drug and
context descriptors concatenation for prediction (e.g. DeepSynergy (Preuer et al., 2018)). (c) w/
context (attention): based on the prior works, we independently encode drugs and context, employ-
ing a bi-directional context-aware attention module to enhance DDI prediction.

multi-layer perceptron (MLP). To capture intricate dependencies between drug pairs and contextual
factors, we integrate a bi-directional context-aware attention module. This module comprises two
distinct components that capture attention respectively from drug pairs to context (drug2context) and
from context to drug pairs (context2drug). The resulting attentions are subsequently concatenated
with the representations of drugs and context for DDI prediction, enhancing the model’s ability to
perceive the connections between a pair of drugs with the context for further prediction.

3 RESULTS

We benchmarked our model against the top-performing models outlined by Rozemberczki et al.
(2022). Comprehensive information regarding the four benchmark DDI databases used and detailed
experimental settings can be found in Appendix A.1, A.2. From the main results presented in Ta-
ble 1, our model exhibits a notable performance improvement when compared to DeepDrug and
DeepSynergy. This improvement indicates the efficacy of the integrated drug and context modules,
along with the attention mechanism, in revealing context-conditional DDI. To understand the spe-
cific contributions of each module, we conducted ablation studies (Appendix A.3) and the results
underscore the critical role of the context-aware mechanism in enhancing task performance.

Table 1: Performance comparison with DeepDrug (Yin et al., 2020) and DeepSynergy (Preuer et al.,
2018). The experiments were iterated 10 times per database with random seeds, performance is
reported as mean (standard deviations). The complete results could be found in Appendix A.6

database DrugComb DrugCombDB TwoSides
metrics AUROC AUPRC F1 AUROC AUPRC F1 AUROC AUPRC F1
DeepDrug 0.643 (0.001) 0.703 (0.002) 0.724 (0.001) 0.740 (0.001) 0.573 (0.001) 0.435 (0.010) 0.923 (0.004) 0.904 (0.002) 0.857 (0.002)
DeepSynergy 0.702 (0.003) 0.758 (0.003) 0.725 (0.002) 0.763 (0.005) 0.598 (0.008) 0.488 (0.012) 0.940 (0.001) 0.919 (0.001) 0.887 (0.001)
Ours 0.717 (0.002) 0.776 (0.002) 0.716 (0.015) 0.830 (0.001) 0.698 (0.001) 0.601 (0.015) 0.942 (0.002) 0.921 (0.003) 0.891 (0.003)

Futhermore, we explored the feasibility of transferring molecular representations from pre-trained
model to further enhance DDI prediction (Appendix A.4). The outcomes reveal that incorporating
refined molecular representations indeed contributes to the accurate identification of DDIs, provid-
ing valuable insights into the potential for leveraging pre-trained models in this domain.

4 CONCLUSION AND FUTURE WORK

To improve context-conditional DDI prediction, we employ distinct encoders to independently learn
representations of drugs and contexts. We incorporate a bi-directional context-aware attention mech-
anism to discern dependencies between drug pairs and contexts. Our findings underscore the sig-
nificance of learning context information for accurate predictions, highlighting the efficacy of a
context-aware architecture in enhancing DDI tasks. Substituting the drug encoder with pre-trained
2D graph molecular encoder that captures 3D information further enhances performance, indicating
the importance of acquiring meaningful drug representations in the relational learning of drug pairs.
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A APPENDIX

A.1 DATABASES

In this work, we predict whether a pair of drugs will interact in a specific context of interest. In
DrugComb and DrugCombDB, context refers to a specific cell line, predicting whether two drugs
exhibit synergy in that particular cell line. In DrugBankDDI, context denotes specific reaction
types (e.g., DDI 1 absorption decrease, DDI 9 serum concentration decrease), predicting if co-
administration of two drugs leads to a particular reaction. In TwoSides, context represents specific
adverse drug events (e.g., difficulty breathing, hypertension), predicting if a combination of two
drugs leads to a specific adverse event.

DrugComb A database derived from real drug combination experiments, containing results from
screening studies of drug combinations in various cancer cell lines. It encompasses 659,333 labels
for the synergy between 4,146 drugs across 288 cancer cell lines (Rozemberczki et al., 2022; Zheng
et al., 2021).

DrugCombDB A database curated from HTS assays, literature, FDA Orange Book and external
databases. DrugCombDB includes 191,391 drug combinations, covering 2,956 unique drugs and
112 human cell lines (Rozemberczki et al., 2022; Liu et al., 2020).

TwoSides A database of polypharmacy side effects for pairs of drugs, containing 249,791 sig-
nificant associations and 10 adverse events, with equal number of negative samples that generated
without collisions of triples with positive labels (Rozemberczki et al., 2022; Tatonetti et al., 2012).

DrugBankDDI DrugBank gold standard DDI dataset that contains 86 DDI types, covering
192,284 DDIs contributed by 191,878 drug pairs, with equal number of negative samples that gener-
ated without collisions of triples with positive labels (Rozemberczki et al., 2022; Ryu et al., 2018).

A.2 EXPERIMENTAL SETTINGS

For DrugComb, TwoSides and DrugBankDDI, we obtained the reported performances directly from
(Rozemberczki et al., 2022). In the case of DrugCombDB, to ensure a fair comparison, we conducted
all experiments on a NVIDIA GeForce RTX 3090. Each experiment was repeated 10 times with
distinct random seeds, ensuring consistent separation of train (80%), validation (10%), and test
(10%) sets and model parameter initialization. Under each setting, our model was trained for 80
epochs with a batch size of 512, learning rate of 1× 10−5, and a dropout rate of 0.2.

A.3 ABLATION STUDY

To delineate the specific contributions of each module, we conducted ablation studies to quantita-
tively analyze the significance of individual components in the task. The results are summarized in
Table 2. Notably, in the absence of context information, the model exhibits the poorest performance.
Concatenating context representations learned from the MLP module enhances model performance,
with additional improvement observed when employing the attention mechanism. Furthermore,
different attention mechanisms contribute to varying degrees in enhancing model performance. In-
triguingly, the Drug2Context attention outperforms Context2Drug, possibly due to the drug graph
containing more enriched information compared to the context. This finding suggests a potential
avenue for future research to acquire a more enriched representation of context.
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Table 2: Ablation Study Results on DrugCombDB database. Context: Indicates whether context
encoding was applied. DDI Module: Refers to the method used for combining drug and context
representations. Type: Specifies the type of attention mechanism employed for prediction.

Context DDI Module Type AUROC AUPRC F1
w/o - - 0.758 (0.001) 0.604 (0.004) 0.492 (0.008)

w/

Concatenate - 0.786 (0.001) 0.607 (0.003) 0.583 (0.007)

Attention
Drug2Context 0.823 (0.002) 0.689 (0.003) 0.593 (0.016)
Context2Drug 0.819 (0.001) 0.681 (0.001) 0.571 (0.014)
Bi-directional 0.830 (0.001) 0.698 (0.001) 0.601 (0.015)

A.4 TRANSFER LEARNING

Molecular representation learning (MRL) has garnered significant research attention in recent years,
with numerous studies focusing on employing advanced methodologies to enhance molecular repre-
sentation spaces through large-scale learning on diverse molecule datasets. These pre-trained mod-
els have demonstrated efficiency when transferred to downstream tasks such as molecular property
prediction and drug-target interaction (Zhou et al., 2022; Zhu et al., 2022; Fang et al., 2022).

Motivated by these studies, we propose the idea of substituting our molecular module with a pre-
trained 2D graph representation learning model whose encoder is enhanced by richer and more
discriminate 3D geometry, to explore the impact of a refined molecular representation on DDI pre-
diction performance. We selected the pre-trained 2D molecular encoder of GraphMVP (Liu et al.,
2021) and conducted experiments, with results summarized in Table 3.

The results reveal that the pre-trained molecular encoding module significantly enhances the perfor-
mance of context-conditional DDI prediction. Notably, the performance improvement is pronounced
when employing a bi-directional context-aware attention mechanism instead of simply concatenat-
ing molecular representations with context representations. From the results, leveraging the ad-
vancements in context-conditional DDI prediction through pre-trained MRL models, future research
could focus on refining and expanding enriched representations with increased contextual relevance.

Table 3: Transferring learning results on DrugCombDB database. Pre-trained Molecular Module:
indicates the use of pre-trained molecular module. DDI Module: attention = bi-directional attention.

Pre-trained Molecular Module DDI Module AUROC AUPRC F1

w/o concatenate 0.786 (0.001) 0.607 (0.003) 0.583 (0.007)
attention 0.830 (0.001) 0.698 (0.001) 0.601 (0.015)

w/ concatenate 0.844 (0.001) 0.719 (0.001) 0.606 (0.007)
attention 0.929 (0.005) 0.868 (0.008) 0.768 (0.010)

A.5 TRAINING PROCESS

The model was trained with 80 epochs on each database, during which the validation loss consis-
tently decreased along with the training loss (Figrue 2).

A.6 EXTENDED EXPERIMENTAL RESULTS

In addition to the main results in Table 1, we also compared our model with several other baselines
following the experiment details in Appendix A.2. The comprehensive performance is in Table 4.

A.7 REPRODUCIBILITY

To ensure reproducibility of our results, we have included our code base in the supplementary ma-
terial including instructions for installing the Conda virtual environment, data preprocessing scripts,
and training scripts. Additionally, our code is available on GitHub to facilitate reproducibility:
https://github.com/solanoon/CabidaDDI
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(a) Training Loss (b) Validation Loss

Figure 2: Training and validation loss curve.

Table 4: Performance comparison with baseline models. Experiments are repeated 10 times on each
dataset with random seeds, and the reported performance refers to mean (standard deviations).

(a) Performance on DrugComb database

metrics AUROC AUPRC F1
DeepDrug 0.643 (0.001) 0.703 (0.002) 0.724 (0.001)
GCN-BMP 0.594 (0.001) 0.662 (0.002) 0.707 (0.002)
MatchMaker 0.662 (0.002) 0.725 (0.001) 0.712 (0.002)
DeepSynergy 0.702 (0.003) 0.758 (0.003) 0.725 (0.002)
Ours 0.717 (0.002) 0.776 (0.002) 0.716 (0.015)

(b) Performance on TwoSides database

metrics AUROC AUPRC F1
DeepDrug 0.923 (0.004) 0.904 (0.002) 0.857 (0.002)
GCN-BMP 0.709 (0.003) 0.694 (0.002) 0.592 (0.003)
MatchMaker 0.912 (0.002) 0.892 (0.001) 0.849 (0.001)
DeepSynergy 0.940 (0.001) 0.919 (0.001) 0.887 (0.001)
Ours 0.942 (0.002) 0.921 (0.003) 0.891 (0.003)

(c) Performance on DrugBankDDI database

metrics AUROC AUPRC F1
DeepDrug 0.861 (0.003) 0.827 (0.003) 0.805 (0.002)
GCN-BMP 0.669 (0.001) 0.645 (0.002) 0.621 (0.001)
MatchMaker 0.987 (0.001) 0.981 (0.001) 0.959 (0.001)
DeepSynergy 0.992 (0.001) 0.987 (0.001) 0.968 (0.001)
Ours 0.992 (0.000) 0.988 (0.000) 0.969 (0.001)
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