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Abstract

In this paper, we explore advanced techniques in novel001
view rendering, particularly Gaussian Splatting, to create002
a simulator using a large-scale outdoor dataset. Our simu-003
lator, Beogym, is data-driven and built from data collected004
using a mobile robot. Our proposed pipeline processes the005
dataset to obtain an interconnected sequence of Gaussian006
splat files. These are then used by an engine to load ap-007
propriate splat files and render image frames during sim-008
ulation. Beogym offers first-person view imagery, facilitat-009
ing realistic training environments that could be used for010
enhancing and evaluating the learning capabilities of au-011
tonomous agents for visual navigation. It incorporates a012
sophisticated motion model and a sequence graph for seam-013
less querying and loading of different sectors of the environ-014
ment. The result closely resembles real-world navigation015
through smooth transitions across splat files.016

1. Introduction017

Learning to navigate without map is a task designed to en-018
able agents to mimic human-like goal-oriented behaviors,019
relying solely on visual observations. Simulators are widely020
used in practice to seamlessly enable the agent to learn such021
behaviors. However, many recent works [1] attempt to ful-022
fill only a few aspects out of the following; simulators that023
have photorealistic rendering, high performance, efficient024
utilization of compute resources and real-world transfer-025
ability. Our method aims fulfill all the above requirements026
through advanced techniques in novel view rendering, such027
as Neural Radiance Fields (NeRF) [5] or Gaussian Splatting028
[3]. By interpolating these intermediate views, we seek to029
develop a real-time simulator that would not only facilitate030
more effective learning and navigation for robotic agents031
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but also enhance their applicability in real-world environ- 032
ments. 033
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Figure 1. Comparision with other simulators. Rendering speed
or Frames per Second (FPS) recorded for a single thread pro-
cess with frame resolution of 1280 × 720, single episode ∼ 200
timesteps.

2. Proposed Simulator 034

We propose Beogym, a real-time simulator that allows an 035
autonomous agent capable of navigating in an environment. 036
After the agent executes an action/control signal ut, given 037
an input image It the simulator computes the pose xt+1 at 038
the next timestep using a motion model and renders an im- 039
age, by querying from the splat file. One of the crucial as- 040
pects of a simulator apart from realistic quality is high per- 041
formance in terms of rendering speed. Our method ensures 042
that the visual feedback provided to the agent is both realis- 043
tic and computationally efficient, facilitating more effective 044
training and navigation. We compare the performance of 045
our simulator with other SoTA simulators as shown in Fig- 046
ure 2. 047

2.1. Gaussian splat based rendering 048

The dataset that we use for our simulator consists of im- 049
ages and pointcloud data collected on a mobile robot that 050
is collected across the USC campus [4]. In our methodol- 051
ogy, each sector, defined as a splat file that is trained using 052
a segmented portion of a trajectory. To optimize the effi- 053
ciency and performance of reconstruction, we subdivided 054
each session into several sectors, each containing 1250 im- 055
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Figure 2. Overview of our simulator. The agent obtains a percept/image from the simulator and estimates a control signal ut. The outer
loop in the simulator determines whether the agent has passed the boundaries of the current sector and if a new splat file has to be loaded
using the sequence graph. The inner loop corresponds to the motion model that computes the pose xt that is then used to render the percept
in the next timestep using the gaussian splat file.

ages captured from the five cameras. For every sector, we056
utilize the collection of images and use COLMAP [7] to au-057
tomatically obtain poses. This pose-annoted set of images058
is passed as an input for training a splat file using Gaussian059
Splatting [3]. The result would then be obtained as an ex-060
plicit 3D representation of a specific scene or a sector. Sub-061
sequently, we store these splat files, which are later used for062
rendering purposes.063

2.2. Sequence Graph for querying splat files064

To facilitate navigation between sectors, we constructed a065
sequence graph based on discrete image poses. In this066
graph, each sector serves as a node corresponding to a splat067
file and other related metadata. The connectivity between068
sectors is represented by an edge that corresponds to a trans-069
formation matrix Tb

a from a splat file a to the other b.070
As the agent navigates within the simulation environ-071

ment, a key element of realism is its interaction between072
different sectors. When the agent approaches the boundary073
of its current sector, the simulator recognizes this transition074
and initiates the process of loading the appropriate splat file075
for the new sector. This mechanism ensures a seamless vi-076
sual experience as the agent moves through diverse parts of077
the simulated environment.078

2.3. Motion model079

In the Beogym simulator, given a specific control signal, the080
agent’s subsequent pose xt at timestep t is governed by the081
motion model. This model is crucial for simulating realis-082
tic navigation behaviours, akin to those exhibited by actual083
robots in real-world scenarios. One key challenge addressed084
in our model is the maintenance of consistent height, raw085
and yaw orientation relative to the ground by the agent. This086

is crucial for ensuring realism and practical applicability, 087
especially environments where the terrain may vary, poten- 088
tially leading to the agent ”floating” above the ground or 089
colliding with terrain features. To address this, we employ 090
a sophisticated method to compute the z-axis component or 091
the elevation of the agent’s pose accurately, using elevation 092
and occupancy maps obtained from the LiDAR data. 093

Furthermore, our simulation is designed to be adaptable 094
and responsive. An agent can be initialized at any location 095
within the simulation environment determined by the oc- 096
cupancy map. As the agent moves, guided by the motion 097
model, its pose is continually updated, and the rendering 098
process adapts accordingly, thus creating a seamless and 099
continuous simulation experience. This iterative process, 100
where the motion model predicts the next pose and the sim- 101
ulator renders the new view, forms the core inner-loop of 102
our simulation as shown in Figure 2. 103

As stated before, Within each sector, we employ 104
COLMAP [6] to obtain image poses that are then used for 105
training a splat file. However, it’s important to note that 106
these poses do not represent ground-truth poses obtained 107
from the LiDAR sensor, and merely are used for training a 108
Gaussian splat file. To utilize elevation maps derived from 109
ground-truth point clouds, we must transform the coordi- 110
nate system of the poses from COLMAP to those of the 111
elevation maps. We employ the Kabsch algorithm [2] to 112
compute this coordinate transformation. The ground truth 113
poses obtained from LiDAR in each sector are less dense 114
than image data and we pair these poses with images having 115
the closest timestamps. After forming all pairs, the Kabsch 116
algorithm is executed to derive optimal translation and ro- 117
tation matrices that minimize the root mean square (RMS) 118
deviation between the two sets of points. 119
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