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Abstract

Effective training of today’s large language models (LLMs) depends on large1

batches and long sequences for throughput and accuracy. To handle variable-length2

sequences on hardware accelerators, it is common practice to introduce padding3

tokens, so that all sequences in a batch have the same length. We show in this paper4

that the variation in sequence lengths in common NLP datasets is such that up to5

50% of all tokens can be padding. In less common, but not extreme, cases (e.g.6

GLUE-cola with sequence length 128), the ratio is up to 89%. Existing methods7

to address the resulting inefficiency are complicated by the need to avoid ‘cross-8

contamination’ in self-attention, by a reduction in accuracy when sequence ordering9

information is lost, or by customized kernel implementations only valid for specific10

accelerators. This paper introduces a new formalization of sequence packing in11

the context of the well-studied bin packing problem, and presents new algorithms12

based on this formulation which, for example, confer a 2x speedup for phase 213

pre-training in BERT. We show how existing models can be adapted to ensure14

mathematical equivalence between the original and packed models, meaning that15

packed models can be trained with existing pre-training and fine-tuning practices.16

1 Introduction17

Many language datasets, including the de-facto pre-training dataset for BERT—Wikipedia, have18

a skewed distribution of sequence lengths (see Figure 1). However, typical machine learning19

accelerators, and their corresponding libraries, exhibit poor performance when processing variable-20

length workloads. A simple mitigation is to set a maximum sequence length, and to pad shorter21

sequences with padding tokens. This naive batching is widely used and provided in the vanilla BERT22

implementation as well as the Hugging Face framework [32]. Its effect is enhanced by the offline23

dataset generation process which, in BERT, attempts to “pack” together sentences so as to fill the24

sequence length as completely as possible [8]. We improve this process at a whole-dataset level.25

We show that, even after this pre-processing, padding tokens represent 50% of all tokens of the26

Wikipedia pre-training dataset at sequence length 512. Thus, by avoiding processing the padding27

tokens one can get a 2x speed-up for phase 2. Overall, the lengths range between 5 tokens up to 512.28

Samples of length 512 represent only 23.5% of the dataset,29

Beyond the simple batching, other solutions have been addressed in the literature, and in open-source30

software implementations. When processing sequences, most libraries and algorithms mention31

packing as reference to concatenating sentences from the same document (BERT) or from different32

documents (BERT, T5 [24], GPT-3 [4], and RoBERTa [16]) as they arrive (GREEDY) from the33

source dataset to generate the training dataset. None of the respective papers addresses the packing34
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efficiency, i.e., remaining fraction of padding. To “separate” sequences from different documents, a35

separator token is introduced. However, this is not sufficient and can have a significant impact on36

performance. This is discussed only in the RoBERTa paper which shows that downstream F1 scores37

get consistently reduced on average by 0.35%. Alternative common approaches to overcome the large38

amount of padding in many datasets are “un-padding” as in Effective Transformer [5] and sorted39

batching (SORT) as in Faster Transformer [21], lingvo [28] fairseq [22], and RoBERTa. However, for40

running efficiently on arbitrary accelerators, these approaches require substantial hardware-specific41

low-level code optimizations only available on GPUs. Further details are in Sections C [1] and 4.4.42

Beyond language models, packing has been also present in other areas of machine learning, however43

with little to no exploration in the literature and mostly hidden in some libraries without any further44

discussion. For example, PyG (PyTorch Geometric) combines multiple small graphs in a batch to45

account for the large variation in size and to optimize the hardware usage when training a Graph46

Neural Network (GNN). Another example is the RNN implementation in PyTorch which introduces a47

“PackedSequence” object and states that “All RNN modules accept packed sequences as inputs” but48

does not address how sequences are packed efficiently and how the processing of packed sequences49

is implemented in an efficient manner while avoiding interaction between sequences. Even though50

we focus on BERT [6] and other transformers in this paper, the general principles can be transferred51

to many more machine learning algorithms with differently sized data samples.52

In this paper, we formally frame the packing problem in transformer based models, and provide some53

solutions, showing that sequences can be packed efficiently, separator tokens are not required, and54

cross-contamination can be avoided with little overhead.55

In summary, the contributions of the paper are as follows. In Section 2, we produce histograms of a56

variety of datasets showing the high percentage of padding tokens. In Section 3.1, we present two new57

deterministic and efficient packing algorithms based on established solvers which efficiently pack58

datasets with millions of sequences in a matter of seconds (or less). In Section 3.2 and Section 3.3, we59

describe ‘cross-contamination’ —the cause of the accuracy reduction which separator tokens do not60

mitigate— and show how the BERT model can be adjusted to show the same convergence behavior61

on packed and unpacked sequences. We empirically show that the proposed packing algorithms62

produce a nearly-optimal packing scheme for Wikipedia pre-training dataset (Section 4.1) and more63

in the Appendix. In Section 4.2, we demonstrate that the convergence of the BERT large model on64

the packed dataset is equivalent to that on the un-packed dataset with 2x throughput increase on the65

Wikipedia sequence length 512 pre-training dataset. Further experiments underline the necessity and66

efficiency of our changes.67

2 Sequence length distributions68

Figure 1: Sequence length distributions for different datasets. The three graphics at the top left show
Wikipedia BERT pre-training dataset sequence length histograms (token count excluding padding)
for different maximum sequence lengths based on the Wikipedia article dump from October 1st 2020.
The theoretical speed-up relates to not using any padding tokens and not having any overhead from
processing the different lengths. Top right: GLUE datasets. Bottom from left to right: SQuAD 1.1,
LibriSpeech text labels, LibriSpeech audio token sequence, and QM9 molecules of a graph in a
sequence.
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BERT is pre-trained using masked-language modelling and next-sentence prediction on a large69

corpus of Wikipedia articles. Each sequence is composed of one <CLS> token followed by the70

first “segment” of sentences, followed by a <SEP> token, and then finally the second “segment” of71

sentences. Because these “segments” are created in sentence-level increments there is no token-level72

control of sequence length. Furthermore 10% (default value, [7]) of sequences are intentionally73

cut short. This leads to significant levels of padding, especially for longer maximum sequence74

lengths (see Figure 1 and Section J[1]). At sequence length 128 (commonly used in phase 1 of75

pre-training) the theoretical speed-up is around 1.2, at sequence length 384 this increases to 1.7, and76

finally at sequence length 512 (commonly used for phase 2 of pre-training) it is 2.0. Despite the77

widespread use of the Wikipedia dataset for pre-training BERT such histograms have, to the best78

of our knowledge, not been published previously. This has perhaps lead to the underestimation of79

the speed-up opportunity available. To put things into perspective, the sequence length 512 dataset80

contains 8.33 billion tokens, of which 4.17 billion are padding tokens.81

Note that the skewed sequence length distributions are neither limited to Wikipedia, as shown with82

GLUE [30, 31] from Section L[1] and SQuAD 1.1 [25] from Section K[1] (2.2x speed up), to BERT83

training, as shown with LibiSpeech text distributions [23] from Section M[1], nor to text itself,84

given the LibriSpeech audio data distributions, and the QM9 molecular data [27, 26] (1.6x speed-up,85

Section Q[1]). All distributions can be found in Figure 1. Since LibriSpeech audio data is skewed to86

longer sequences, only 1.3x speed-up could be achieved despite the theoretical maximum of 1.6x.87

For all other cases, the algorithms presented in Section 3.1 lead to close to optimal packing.88

3 Methods89

Our approach consists of three distinct components. Firstly, we pack the n data samples efficiently90

during pre-processing to make full use of the maximum sequence length, sm (Sections 3.1 and F).91

Secondly, we introduce a series of model changes in Section 3.2 that preserve the equivalence with92

the original BERT implementation. The changes include a self-attention mask to prevent the model93

from attending between different sequences in the same pack (Section 3.2.2), and an adjustment94

of the the positional embeddings (Section 3.2.1) to handle packs of sequences. Other components95

of the model, such as the feed-forward layer [29], operate on a per-token basis and do not require96

modification for pre-training. In Section 3.2.3, we also demonstrate how to compute a per-sequence97

loss and accuracy for NSP and downstream fine-tuning tasks. Thirdly, we provide suggestions for98

hyperparameter adjustment (Section 3.3) that lead to analogous convergence behavior between the99

packed and un-packed BERT implementations. Additional videos and animations are provided as100

supplemental material.101

3.1 Packing algorithms102

The widely studied and well established bin packing problem deals with the assignment of items into103

bins of a fixed capacity such that the number of utilized bins is minimized. It has been known for104

decades if not centuries. Since an exact solution is strongly NP-complete [14], numerous approximate105

solutions have been proposed [12, 15, 13, 36]. Since most existing approximations have a high106

complexity of at least O(n log n), we propose two new heuristic offline algorithms that are tailored107

to the NLP setting applied to the whole dataset. For a detailed introduction to packing see Section F.108

3.1.1 Shortest-pack-first histogram-packing (SPFHP)109

Shortest-pack-first histogram-packing (SPFHP) works on the bins in the sequence length histogram110

(with bin size 1) rather than the individual samples. The histogram is traversed in sorted order from111

longest to shortest sequences. Then, to pack the data during the traversal, we apply the worst-fit112

algorithm [12, 36] such that the histogram bin being processed goes to the “pack”1 that has the most113

space remaining (“shortest-pack-first”). If the histogram bin does not fit completely, a new pack is114

created. We also limit the packing depth, in other words the maximum number of sequences that115

are allowed in a pack. Therefore, an existing pack is only extended if it is not already at maximum116

packing depth. The detailed code for the algorithm is provided in Listing 3. The time and space117

complexity of the algorithm are O(n+ s
2
m) and O(s2m) (Section G.2[1]).118

1We avoid the ambiguous terms “bin” and “sample/sequence”and use “pack” instead to refer to the multiple
sequences concatenated during packing.
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3.1.2 Non-negative least squares histogram-packing (NNLSHP)119

The proposed NNLSHP algorithm is based on re-stating the packing problem as a (weighted) non-120

negative least squares problem (NNLS) [3] of the form wAx = wb where x � 0. The vector b is the121

histogram containing the counts of all the sequence lengths in the dataset. Next, we define the A122

matrix (the “packing matrix“) by first generating a list of all possible sequence length combinations123

(“strategies”) that add up exactly to the maximum sequence length. We focus specifically on strategies124

that consist of at most 3 sequences per pack (independent of b) and encode each strategy as a column125

of the sparse matrix A. For example, a strategy consisting of the sequence length 128, 128, and126

256 in represented a column vector that has the value 2 at the 128th row, the value 1 at the 256th127

row, and zero at all other rows. The variable x describes the non-negative repetition count for each128

strategy. So a 24 in the ith row of x means that the strategy represented by the ith column of A should129

repeat 24 times. Moreover, in the un-weighted setting, Ax = b states that we would like to “mix” the130

pre-defined strategies (columns of A) such that the number of samples matches the histogram b, and131

where each strategy is used x � 0 times. We use the residual weight w to control the penalization132

of the Ax � b residual on different sequence lengths (different rows of b). Heuristically, we set133

the weight of 0.09 for all sequences of length 8 or smaller because they are considered acceptable134

padding sequences while all other sequence lengths get weight 1. We discuss this heuristic choice of135

parameters in Section F.4.5 and F.5[1]. The overall efficiency of the packing is not greatly influenced136

by the weighing (less than 1% extra speed-up).137

After solving wAx = wb for x � 0 using an off-the-shelf solver, we obtain a floating point solution,138

which means that the repetition counts are not necessarily integers. Since we cannot use a non-natural139

number of strategies, we round the solution x̂ to the nearest integer. The error introduced by this140

rounding is found to be negligible (a few hundred sequences in the worst case) compared to the size141

of the dataset (millions of sequences). The time complexity and space complexity of the algorithm142

are O(n+ s
5
m) and O(s3m). Further details are provided in Section F.4.143

3.2 packedBERT: model changes144

This section describes how any vanilla BERT implementation should be modified for packed sequence145

processing, such that the behavior of the model is the same as when processing unpacked sequences.146

Preserving the mathematical equivalence is necessary to ensure existing BERT pre-training and147

fine-tuning practices remain valid, as well as being required by benchmarks such as MLPerf™ [17].148

The presented approaches and principles apply to a variety of other models.149

3.2.1 Adjust positional embeddings150

The BERT model uses three types of embeddings: token, segment, and positional embeddings. The151

latter is canonically implemented as a bias add operation, rather than a full embedding look-up. This152

is possible because the positional indices increase linearly for every sequence. However, when using153

the packed data format the position index needs to be reset with each new packed sequence. For154

instance, when packing two sequences one of length 2 and one of length 3, the positional embedding155

indexes that need to be picked up are [0, 1, 0, 1, 2]. To achieve this, the bias add needs to be replaced156

by an embedding look-up to extract the correct positional embedding for each token in the pack. This157

also requires keeping an extra input which specifies the position of each token in its sequence. This158

required adjustment has only a minor impact on absolute accuracy/loss (see Section 4.2 and 4.2.1).159

3.2.2 Adjust attention masking160

# input
mask = np.array([[1, 1, 1, 2, 2]])
# 0, 1 mask
zero_one_mask = tf.equal(mask, mask.T)
# for use with softmax:
softmax_mask = tf.where(
    zero_one_mask, 0, -1000)

0

BBB@

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1

1

CCCA

Figure 2: Attention mask code [left], respective zero-one mask [middle], and vectorized unpacking
of the sequence loss[right]. White rectangles correspond to padding.

4



To maintain an implementation that is consistent with the un-packed version, tokens from different161

sequences within a pack should not be able to attend to each other. This is typically achieved in162

other implementations by unpacking the sequences using custom attention kernels and then doing163

the attention per-sequence [5]. Instead, we propose directly masking the attention matrix with a164

block-diagonal mask before the attention softmax. This is straightforward to implement in modern165

frameworks (see Figure 2). Naturally, there is a cost to both the mask construction and applying166

it to the attention matrix. However, it is required to keep the accuracy (see Table 1, Section 4.1,167

Section 4.2). See also the code of the deprecated tensor2tensor library and our own provided code.168

3.2.3 Adjust per-sequence loss and accuracy169

Canonical implementations of BERT compute the cross-entropy loss for the masked language model170

on a per-token basis. However other NLP tasks, such as SQuAD, compute the loss and accuracy on171

a per-sequence basis. This section discusses how to handle such tasks when training with packed172

sequences. Simply feeding packs of sequences to the same implementation of cross-entropy would173

result in a per-pack weighted loss. In other words, the overall loss on the micro-batch would sum-up174

the losses on the individual packs, rather than individual sequences. As a result, the model would175

converge to a different optimum than when running with the un-packed implementation. For instance,176

a pack of a single sequence would contribute to the loss with the same weight as a pack of three177

sequences.178

To recover the per-sequence averaging behavior of the canonical un-packed BERT implementation,179

we effectively “unpack” the incoming logits and labels. Once the sequences have been unpacked,180

we can compute the loss on each sequence separately as usual and then add up the losses. However,181

rather than looping through the sequences index, we compute on all indexes in parallel (see Figure 2).182

This minimizes the latency overhead of un-packing the loss calculation. As an example, we show how183

per-sequence loss can be implemented for the pre-training task. We use the “masked lm weight” [7]184

input tensor to represent which sequence a given masked token belongs to (0, 1, 2 and so on). This185

is consistent with the canonical BERT implementation where this input takes a value of either 1186

(belonging to the sequence) or 0 (belonging to padding). The full methodology is detailed in Listing 5187

and can be applied to other classification or pre-training tasks.188

3.3 Adjust hyperparameters189

In terms of convergence behavior, the primary consequence of packing is an increase in the effective190

batch size (with respect to number of sequences and real tokens) with some added variation over191

different iterations. If we look on the sentence level, the number of sentences in one batch increases192

by the packing factor. Similarly, the number of tokens in one batch increases. Hence, hyperparameters193

that are sensitive to these numbers need to be adjusted.194

A direct solution is to reduce the computational batch size by the packing factor (average number of195

sequences per pack) and keep all other hyperparameters the same. For example, if the packing factor196

is 2, cutting the gradient accumulation count by half is sufficient. The advantage of this strategy is that197

no fine-tuning of hyperparameters is required and performance curves are comparable. However, this198

approach might be not desirable as it might imply under-utilizing the memory/compute, especially if199

the micro batch size needs to be reduced.200

Hence to preserve batch size and optimize hardware utilization, we additionally propose an approxi-201

mate heuristic for updating the decay parameters of the LAMB optimizer [35] . For a packed dataset202

with a packing factor p, we update the decay parameters as: �1 := �
p
1 , �2 := �

p
2 . For p = 2, this203

corresponds to the exact parameters for calculating momentum and velocity, when updating with the204

same gradient twice (Section D). A common approach is to scale the learning rate with the batch size.205

However, our experiments in Section 4.2 show that this reduces convergence speed.206

Since these adjustments are only heuristics the convergence of the model will be comparable but not207

identical. In particular, it is unlikely that simply adjusting the hyperparameters will fully undo the208

impact of the increased batch size. However, with these adjustments, researchers should be able to209

continue to use existing configurations.210
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4 Experiments211

4.1 Bin packing algorithm comparison212

We evaluate our algorithms using the following metrics: number of packs, number of all tokens,213

number of padding tokens, solution time of the packing algorithm (after histogram and strategy214

creation), number of strategies used, packing efficiency (the fraction of non-padding tokens in the215

packed dataset), the speed-up achieved compared to not packing (depth 1), and the average number216

of sequences per sample (packing factor). For SPFHP, we analyse different (maximum) packing217

depth, since packing is less efficient with smaller depth and we want to get a general understanding218

on how the packing depth influences the processing time. For NNLSHP, we focus on packing219

depth 3 because it packs the data sufficiently well. For the speed-up analysis, we focus on the220

intelligence processing unit (IPU) [11] (IPU-M2000, 16 accelerator chips), BERT phase 2 pretraining221

setup as in Section 4.2. A GPU dynamically loads the code into the accelerator; in contrast, the222

IPU works with a static pre-compiled engine that gets loaded onto the chip at the start of the run.223

While other approaches result in excessive padding or continuous changes of the code, our approach224

can work with the same code for the whole dataset. So in this setting the IPU architecture would225

especially benefit from our approach since it avoids code changes. Nevertheless, it can be applied226

to any implementation on GPU or TPU. For determining the speed-up, we take advantage of the227

precompiled kernel. Since time measurements are quite noisy, we can profile the kernel and how228

many cycles it takes for processing a batch. That way, we can determine the overhead (in cycles)229

from processing the additional attention masking and for unpacking the loss. Combining overhead230

and packing factor, we get the speed-up estimate. No experiment repetitions are required since the231

algorithms and measurements are deterministic.232

Table 1: Key performance results of proposed packing algorithms (SPFHP and NNLSHP) on IPU.

pack. packing EFF p OH realized
depth algorithm (%) (%) speed-up
1 NONE 50.0 1.00 0.000 1.000
1 SORT 99.9 2.00 �100 ⌧1.000
⇡10 GREEDY ⇡78 ⇡1.6 ⇡4.48 ⇡1.5
2 SPFHP 80.5 1.61 4.283 1.544
3 SPFHP 89.4 1.79 4.287 1.716
3 NNLSHP 99.7 2.00 4.287 1.913
4 SPFHP 93.9 1.88 4.294 1.803
8 SPFHP 98.9 1.98 4.481 1.895
max SPFHP 99.6 1.99 4.477 1.905

Packing depth describes the maximum number of packed sequences. NONE is the baseline BERT
implementation, whereas SORT corresponds to sorted batching, and GREEDY concatenates se-
quences as they arrive until they would exceed 512 tokens. Setting no limit resulted in a maximum
packing depth of 16. EFFiciency is the percentage of real tokens in the packed dataset. The packing
factor describes the resulting potential speed-up compared to packing depth 1. With overhead (OH),
we denote the percentage decrease in throughput due to changes to the model to enable packing (such
as the masking scheme introduced in Section 3.2.2). The realized speed-up is the combination of
the speed-up due to packing (the packing factor) and the decrease in throughput due to the overhead
on the IPU. It is used to measure the relative speed-up in throughput and the overhead from masking
and loss adjustment. SORT can be only efficient on GPUs (see Section 4.4).

The main results for the performance metric evaluation are displayed in Table 1. The processing233

time for SPFHP on an Intel(R) Xeon(R) Gold 6138 CPU with 2.00GHz, 80 nodes, and 472G RAM234

was around 0.03s and independent from the packing depth. Classical First-Fit-Decreasing requires235

87-120s, a lot of memory, and scales almost linear with the number of samples. We see that the236

overhead slightly increases with packing depth but that the benefits of packing outweigh the cost. The237

best speed-up is obtained with NNLSHP at depth 3 which required 28.4s on the CPU for processing238

and ran out of memory for larger depth. With a value of 1.913, it is close to the theoretical upper239

bound of 2.001. The results show that efficiency, packing factor, and speed-up can be viewed inter-240

changeably. The amount of time needed to process a sample (a pack of sequences) is barely changed241

relative to the un-packed implementation. The packing factor, or the improvement in efficiency,242
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effectively provide an accurate estimate of the speed-up. GREEDY packing as used in T5 shows243

to be quite inefficient and sorted batching (SORT) is highly efficient in avoiding padding but the244

resulting different computational graphs cause a major overhead on the IPU that exceeds the benefits245

of avoiding the padding. Since we made our algorithm and code public available, results have been246

reproduced with a different framework on the Habana Gaudi accelerator [10] and confirmed that our247

approach is hardware and software independent giving it a huge advantage over existing approaches.248

4.2 MLPerf™ phase 2 pretraining setup: learning curves and hyperparameter adjustment249

For depth 1 (classic BERT) and NNLSHP with depth 3, we additionally evaluate on the MLPerf™ ver-250

sion 0.7 BERT pre-training benchmark [17]. Briefly, this involves training from a standard checkpoint251

to a masked-language model accuracy of 71.2% using 3 million sequences with a maximum length of252

512 tokens (refer to [19] for details). Following this standardized benchmark supports reproduction of253

results even on other systems and makes sure that the reproduction effort is moderate and setup rules254

are clearly documented. We compare the resulting speed-up as well as the respective learning curves255

by evaluating the data on a held-out validation dataset. The objective of this additional evaluation is256

to analyse if convergence behavior is changed by the packing strategy and if the theoretical speed-up257

can be achieved in practice.258

With packing, we effectively increase the average batch size by the packing factor (⇡ 2). However,259

with a different batch size, different hyperparameters are required (see Section 3.3) and there is no260

mapping that will generate exact matching of results but only heuristics. In a first comparison, we261

use the same hyperparameters when comparing packed and unpacked training except for cutting the262

accumulation count by half. This way, we make sure that the batch size is constant on average and263

we have the same amount of training steps. In the second comparison, we evaluate our heuristics and264

how they compensate the difference in batch size. This setup is more desirable because it is beneficial265

to use the hardware to its full potential and cutting the batch size by half usually reduces throughput.266

In the third comparison, we compare two optimized setups. In these two cases, packing takes half the267

amount of training steps.268

The learning curves are displayed in Figure 3. In the first setup, we see the curves almost matching269

perfectly when normalizing by the numbers of samples processed. Differences can be explained270

by the variation of the number of sequences in the packing batch, and general noise in the training271

process. Especially after the initial phase, the curves show a near-identical match. The second setup272

shows bigger differences since changing the batch size and hyperparameters changes the training273

dynamics. We observe slower convergence early on in training due to the increased batch size. This274

is expected. The adjustment of the learning rate actually decreases performance probably because we275

correct for the increased number of sequences already in the modified loss. With the adjustment of276

the decay parameter of LAMB, we see matching performance at the later training stages. However,277

it is not feasible to completely recover the early convergence behavior of the smaller batch size by278

adjusting the hyperparameters. For instance doubling the batch size of unpacked BERT to 3000279

and adjusting the LAMB decay parameters leads to more of a slow down in convergence than280

when running packed BERT with a batch size of 1500 and a packing factor of 2. n practice, our281

implementations exceeds the estimated 1.913 maximum speed-up. This estimate is based on the282

reduction in the computational work needed to process the dataset. However, packing the data also283

reduces the latency of the transferring the data to the device. Figure 3 shows that the realized total284

speed-up from packing exceeds 2x.285

4.2.1 Ablation study286

So far, we have shown that with the introduced adjustments, we can match the accuracy of unpacked287

BERT. In the following, we analyze in how far the masking adjustment is required. In Figure 4, we288

can see that without our adjustments, training loss and accuracy worsen drastically and a longer289

training time does not lead to a recovery. When not adjusting the positional embedding, the loss and290

accuracy almost match. However, the accuracy stalls at 71.8% and does not reach the target accuracy291

of 72.1%. So overall, both adjustments are crucial to avoid a reduction in performance.292

When running packed BERT without the NSP loss but keeping everything else the same in a full293

training setup, we observed that downstream performance on SQuAD reduced the F1 measure by294

1.31% and EM by 1.15%. Hence, we do not consider removing NSP as done in approaches like295

RoBERTa and T5 as discussed in Section I.296
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Figure 3: Comparison of learning curves for packed and unpacked processing, where all experiments
converged to the target accuracy within the same number of training samples(3 million). [left] same
effective batch size (ebs is batch size times packing factor), [middle] different heuristic adjustments
of the hyperparameters (batch size 1500 for all runs, such that ebs for packed runs is 1500 ⇤ 2), and
[right] realized speed-up from packing (in excess of desired 2x). Further learning curves are provided
in Section O.

Figure 4: Comparison of learning curves with and without mask or positional embedding adjustment
in our packed BERT approach. The grey accuracy baseline to reach is 72.1%.

4.3 Full pretraining and SQuAD finetuning297

Packing slightly violates the i.i.d. assumption of data. Thus, we have to check that downstream298

performance is not impacted by packing. This is especially relevant in a full training setup without299

a starting checkpoint. To this aim, we show that the packed and unpacked SQuAD 1.1 scores are300

comparable after a full-pretraining of BERT base and large plus fine-tuning. During pre-training,301

in order to avoid giving an advantage to packing by further hyperparameter tuning, we reduce the302

gradient accumulation count for the packed BERT training for phase 1 and phase 2 to match, on303

average, the total number of sequences that get processed before each weight update. With this304

approach, we can use the same hyperparameters and number of training steps but process each batch305

faster by avoiding the processing of padding. This gives a slight disadvantage to the packed run in306

terms of machine utilization, as explained in Section 3.3 and is different to the speedup analysis in307

Section 4.2. For Phase 2, we use sequence length 384 since longer range attention is not relevant308

for SQuAD 1.1. The respective speed-ups from packing for BERT base and large are shown in309

Table 2: the realized speed-up, measured as the quotient of the throughputs between the packed310

and unpacked runs, is slightly lower to the theoretical throughput (i.e. the packing factor) due to311

the packing overhead. Further learning curves with the loss function and accuracy are provided in312

Section P. For the fine-tuning training on SQuAD 1.1, we do not use packing. The scores, computed313

as the median of 10 different seeds, are displayed in Table 3. They are comparable to the reference314

ones in [6]: for BERT base (resp. large) the F1 score is reduced by 0.2% (resp. 0.3%) and the EM315

score increases by 0.3% (resp. 0.02%).316

Table 2: Measured speed-ups in BERT
pretraining with packing.

Model Sequence Packing Realized
size length factor speed-up

base 128 1.17 1.15
384 1.70 1.68

large 128 1.17 1.15
384 1.70 1.69

Table 3: SQuAD 1.1 scores after BERT pretrain-
ing with packing.

Model Configuration F1 Exact
size match

base [6] 88.5 80.8
Packed 88.32 81.03

large [6] 90.9 84.1
Packed 90.65 84.12
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4.4 Scaling analysis: Impact of accelerators count317

A further advantage of packing over competing un-padding approaches is the inherent load balancing318

provided by packing. So called un-padding approaches rely on dynamically launching custom kernels319

that ignore padding. A stated advantage of such implementations is the ability to avoid computing320

the complete (512 x 512) attention matrix. This provides additional computational savings compared321

to packing, where the attention matrix is computed in its entirety and then masked. Because of322

these additional savings, un-padding can exceed the theoretical upper bound for speed-up from323

packing (2.013 on Wikipedia). As a result of the dynamic nature of the approach, the processing324

time with un-padding is different for each sequence in the batch, and the amount of time required to325

process a batch of sequences will be determined by the processing time of the longest sequence in326

the batch (with the sequences being processed in parallel). Furthermore, in the multiple accelerator327

setting the processing time on each device will vary depending on the sequences in the batch that it328

receives. Devices which finish early have to wait for the slowest device to finish before exchanging329

gradients. This load-imbalance between the devices (and inside the batch) leads to a considerable330

decrease in the speed-up from un-padding as the number of accelerators is increased (see Figure 5331

and Section E [1]). In contrast, packing (our approach) is inherently load-balanced. The processing332

time on each accelerator is independent of the content inside the batch received by the device. Any333

number of accelerators can therefore operate in unison without having to wait for the slowest batch to334

process (all per-device batches are equally fast).335

Figure 5: Comparison of the theoretical speed-up as the number of accelerators is increased.

5 Conclusion336

Whereas packing is a well known concept, this paper sheds a new light onto it in multiple aspects.337

First, we visualize the sequence length distributions of multiple datasets not just from language338

domains but also audio and molecular domains to emphasize that packing is beneficial for a lot of339

datasets and that in many cases, more than 2x acceleration can be achieved by removing 50% or340

more padding. Second, we provide two new highly efficient packing approaches based on established341

solvers that leave almost no padding and that can tackle arbitrarily large datasets in a matter of342

seconds, in contrast to existing approaches that are slow and suboptimal. Third, we demonstrate that343

without adjusting the sequence processing algorithm (e.g., BERT) to the packed sequences, predictive344

performance is reduced. Thus, we propose several model adjustments that are all necessary to keep345

predictive performance. Last but not least, we prove that, thanks to such adjustments, predictive346

performance is preserved as if no packing was used — but speed significantly increases, especially347

since the adjustments come with an overhead of less than 5%. We prove in our experiments that348

downstream performance is not impacted by packing and that the anticipated 2x acceleration can be349

achieved.350

In the future, an interesting direction is the packing of images of different sizes to help accelerate351

computer-vision applications. This is especially relevant given the recent advances in the use of352

transformer-based approaches in the computer vision domain, for example the visual transformer [33].353

Note that many images come in different shapes and resolutions and packing them can be a new354

approach to tackle this diversity instead of casting them all to the same resolution and shape. Masking355

out the self-attention within transformers is easier to implement than avoiding cross-contamination of356

convolutions applied to packed images. Future work should explore improving the performance of357

other models (RoBERTa, GPT-3, T5) by avoiding contamination between non-contiguous segments358

from different documents. Even BERT itself might benefit from avoiding contamination between the359

two concatenated segments.360
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Checklist459

1. For all authors...460

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s461

contributions and scope? [Yes] Our paper has four main claims. First, in Figure 1462

we show the sequence length distribution of Wikipedia and many other datasets and463

the excessive padding that they require. Second, in Section 4.1, we show that we464

can efficiently pack the data which can be easily reproduced with the shared data and465

code [1]. Third, in Figure 3[right], we clearly show the 2x performance gain from466

packing and the related hyperparameter adjustment scheme. Fourth, multiple additional467

experiments on downstream tasks, ablation studies, and packing variants further verify468

the validity of our proposed approaches.469

(b) Did you describe the limitations of your work? [Yes] We see three potential limitations470

that we discuss in the paper. First, as stated in Section A “Broader Impact” in the471

appendix [1], our approach is clearly dependent on the sequence length distribution472

of the dataset. However, we looked into several other datasets beyond Wikipedia and473

observed even higher potential for acceleration and document this in multiple sections474

throughout the paper as well as in the appendix [1]. Second, we explain our focus475

on the IPU hardware in Section 4.1. Our theoretical analysis in Section 4.4 indicates476

that our approach benefits also GPUs. We also cite other work, that shows that our477

approach is hardware independent. Third, our changes to the network with a modified478

attention mask and loss calculation come with some overhead. This is addressed in479

Table 1 [overhead column] in Section 4.1.480

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We address481

this point in Section A “Broader Impact”, third paragraph, in the appendix [1].482

(d) Have you read the ethics review guidelines and ensured that your paper conforms to483

them? [Yes]484

2. If you are including theoretical results...485

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Detailed486

algorithm explanations, clarifications of assumptions, and proofs are provided in the487

supplemental material [1].488

(b) Did you include complete proofs of all theoretical results? [Yes] Sections D, E, and489

G in the supplemental material [1] provide the necessary derivations on theoretical490

results.491

3. If you ran experiments...492

(a) Did you include the code, data, and instructions needed to reproduce the main experi-493

mental results (either in the supplemental material or as a URL)? [Yes] All packing494

code is provided in the paper. The packing results on BERT got verified by multiple495

independent parties. One party used a draft of this paper to successfully reproduce its496

main findings. Links to implementations in three different frameworks will be provided497

after acceptance, to avoid violating the blind submission rules.498

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they499

were chosen)? [Yes] In the first part, we follow the MLPerf 0.7 benchmark rules.500

We document the parameters that we changed and why we change them. For the501

downstream tasks, we follow the reference and report where, how and why we change502

hyperparameters.503

(c) Did you report error bars (e.g., with respect to the random seed after running exper-504

iments multiple times)? [No] The packing algorithms are deterministic and have no505

error. Other experiments are only executed once to compare convergence curves. For506

downstream tasks, we report repetition details and the median as in the reference.507

(d) Did you include the total amount of compute and the type of resources used (e.g., type508

of GPUs, internal cluster, or cloud provider)? [Yes] We used 16 Graphcore Mk2 IPUs509

for acceleration on an internal cluster.510

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...511

(a) If your work uses existing assets, did you cite the creators? [Yes] Appropriate references512

to the BERT authors, all datasets, and the code snippet from the HugginFace inc. are513

appropriately referenced with citations and links.514
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(b) Did you mention the license of the assets? [Yes] For the only taken code snippet, the515

license is part of the file [Listing 7 in [1]]. Dataset licenses like Wikipedia’s “Creative516

Commons Attribution-ShareAlike 3.0 License” are covered by the references. New517

materials like packing code and histograms will be provided under an MIT license518

which will be added over a link to the resources in the final paper version.519

(c) Did you include any new assets either in the supplemental material or as a URL?520

[Yes] New materials like packing code and histograms are included in the supplement521

document as well as separate file. To avoid violating the blind submission rules, they522

will be linked in the final version like many other assets which are already publicly523

available under MIT license.524

(d) Did you discuss whether and how consent was obtained from people whose data you’re525

using/curating? [N/A] We did not curate other people’s data. We only provide a very526

high level aggregate of the used data.527

(e) Did you discuss whether the data you are using/curating contains personally identifiable528

information or offensive content? [N/A] We did not curate other people’s data.529

5. If you used crowdsourcing or conducted research with human subjects...530

(a) Did you include the full text of instructions given to participants and screenshots, if531

applicable? [N/A] Our experiments did not include crowdsourcing or human subjects.532

(b) Did you describe any potential participant risks, with links to Institutional Review Board533

(IRB) approvals, if applicable? [N/A] Our experiments did not include crowdsourcing534

or human subjects.535

(c) Did you include the estimated hourly wage paid to participants and the total amount536

spent on participant compensation? [N/A] Our experiments did not include crowd-537

sourcing or human subjects.538
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