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ABSTRACT

In sequential decision-making tasks, methods like reinforcement learning (RL) and
heuristic search have made notable advances in specific cases. However, they often
require extensive exploration and face challenges in generalizing across diverse
environments due to their limited grasp of the underlying decision dynamics. In
contrast, large language models (LLMs) have recently emerged as powerful general-
purpose tools, due to their capacity to maintain vast amounts of domain-specific
knowledge. To harness this rich prior knowledge for efficiently solving complex
sequential decision-making tasks, we propose treating LLMs as prior action dis-
tributions and integrating them into RL frameworks through Bayesian inference
methods, making use of variational inference and direct posterior sampling. The
proposed approaches facilitate the seamless incorporation of fixed LLM priors
into both policy-based and value-based RL frameworks. Our experiments show
that incorporating LLM-based action priors significantly reduces exploration and
optimization complexity, substantially improving sample efficiency compared to
traditional RL techniques, e.g., using LLM priors decreases the number of required
samples by over 90% in offline learning scenarios.

1 INTRODUCTION

Many real-world tasks, including robotics (Polydoros & Nalpantidis, 2017; Brunke et al., 2022; Rana
et al., 2023), autonomous driving (Naranjo et al., 2005; Song et al., 2022), human-AI dialogue (Li
et al., 2019; McTear, 2022), and human-AI gaming (Granter et al., 2017; Yan et al., 2024), involve
complex sequential decision-making (SDM) challenges. Traditional approaches to SDM, such as
optimal control (Garcia et al., 1989), heuristic search (Świechowski et al., 2023) and reinforcement
learning (RL) (Mnih, 2013), have seen substantial success. Notably, AlphaGo (Silver et al., 2016)
and AlphaStar (Vinyals et al., 2019), both based on deep reinforcement learning (DRL), have
achieved human-level proficiency in the games of Go and StarCraft II, respectively. However, these
methods still suffer from high computational complexity, along with poor generalizability and limited
applicability across diverse domains (Dulac-Arnold et al., 2015; Cobbe et al., 2019).

Recently, Large Language Models (LLMs) have emerged as effective tools for tackling diverse
general-purpose tasks, such as in dialogue systems (Brooks et al., 2023), decision-making (Zhao
et al., 2024a), and mathematical reasoning (Imani et al., 2023). Their impressive performance across
various domains is largely attributed to the vast amounts of human knowledge compressed during the
pre-training phase on extensive corpora (Tucker & Tuckute, 2023). Inspired by how humans make
decisions using existing knowledge while learning from new tasks, LLM-based agents are emerging
as a promising approach for solving SDM tasks. For instance, researchers leverage human-crafted
prompts to guide LLMs in making decisions directly (Zhang et al., 2023; Wang et al., 2023; Ma
et al., 2023). While this approach relies heavily on the quality of the prompts and the LLMs’ inherent
capabilities, another line of research aims to fine-tune LLMs with RL algorithms (RLFT) (Carta
et al., 2023; Christianos et al., 2023; Tan et al., 2024; Zhou et al., 2024) to enhance their decision-
making precision. A more detailed exploration of related work can be found in Section 5. However,
these approaches are resource-intensive, as they require meticulously crafted human prompts and an
expensive fine-tuning process for LLMs for each specific task.

Inspired by these, this work stands in the position of combining the advantages of leveraging rich
domain knowledge with the strengths of reinforcement learning (RL), but in a different perspective to
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use fixed LLMs to enhance traditional RL. The key insight is that while it may be challenging for an
LLM to generate optimal plans at every state with limited experience, it can still offer suboptimal
action proposals or significantly reduce the size of the action space to a manageable scope, thereby
alleviating computational burdens. Building on this idea, we treat the LLM as an action prior
distribution and incorporate it into Markov Decision Processes (MDPs) solving from a Bayesian
inference perspective (Hu et al., 2023). The primary objective is to approximate the posterior action
distribution that aligns with task goals through probabilistic inference approaches such as variational
inference or direct posterior sampling. Building on these approaches, we derive the incorporation of
LLMs into both policy-based and value-based RL frameworks in a simple yet logically sound manner.
We conduct experiments on major benchmarks like ALFWorld and Overcooked, demonstrating that
the sample efficiency of traditional RL algorithms, such as value-based DQN and policy-based PPO,
can largely benefit from integrating LLM action priors.

In summary, our main contributions are three-fold:

1. We present a unified framework for integrating Large Language Models (LLMs) as proba-
bilistic priors into Markov decision-making frameworks. (Section 2)

2. We practically implement the framework by leveraging LLMs as the refined action sampler
for value-based online RL (Section 3.1), offline RL (Section 3.2) or behavior regularizer for
policy-based RL (Section 3.3).

3. Extensive experiments on ALFWorld and Overcooked demonstrate that our new framework
can significantly boost sample efficiency compared with both pure RL and pure LLM
baselines, and also bring in more robust and generalizable value function. (Section 4)

2 FORMULATION

We seek to utilize LLMs to solve complex SDM tasks from a Bayesian inference perspective.
Although LLM struggles to directly generate optimal plans in sequential decision-making tasks, it can
still provide valuable suggestions for possible sub-optimal actions with rich prior knowledgeHao et al.
(2023); Zhang et al. (2024b). Building on this insight, we treat the LLM as a reliable prior distribution
over possible actions and analyze its role in solving MDPs from a Bayesian inference perspective,
using traditional probabilistic tools such as variational inference and probabilistic sampling.

Markov Decision Process A Markov Decision Process (MDP) can be described as a tuple
⟨S,A, P, r, γ⟩. S is the state space, and A is the finite action space. We consider the textual
action space and state space here. Each state s and each action a is a sentence s, a ∈ V∞, where V
is the vocabulary set. P : S × A → ∆(S) is the transition kernel, mapping the current state st to
the next state st+1 following the action at. r : S ×A → R is the reward function. γ is the discount
factor.

LLM as an action prior It is challenging to directly solve textual decision-making tasks due
to the lack of task-specific experience, yet powerful LLMs demonstrate the ability to generate
reasonable action proposals Hao et al. (2023); Yao et al. (2024). To maximize the potential of LLMs
in decision-making, we treat the LLM as an action sampler, denoted as pLLM(a|st). Regarding the
implementation details of sampling from LLM priors, it is challenging for an LLM to output an
executable action directly. Therefore, we prompt the LLM with the textual state and admissible
actions, then get a free-form output from the LLM (e.g., a 7B LLM). This output is subsequently
mapped to an executable action through a simple rule-based projection, formally described as follows:
pLLM(a|st) =

∑
o p(a|o)LLM(o|st), where p(a|o) is a projection from the LLM output o to action

a. More detailed explanations of the LLM prior setting can be found in Appendix.

2.1 VARIATIONAL INFERENCE FOR MARKOV DECISION PROCESS

Similar to the Control as Inference framework proposed by (Levine, 2018), we introduce a binary
optimality variable O to indicate the quality of a trajectory τ = {s0, a0, r0, s1, ..., sn}, where O = 1
represents an optimal/successful trajectory, and O = 0 otherwise. Hence, the likelihood, positively
related to the reward, can be written as p(O = 1|τ) ∝ exp (

∑
t γ

trt/α), with α as the temperature

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

parameter. Our goal is to maximize the optimal marginal distribution. To do that, we first apply
variational inference:

p(O = 1) ≥ Eq(τ) [log p(O = 1|τ)]− KL [q(τ)∥p(τ)] (1)

We define the prior p(τ) as the trajectory distribution, which follows the factorization: p(τ) =
p(s0)

∏
t p(at|st)P (st+1|st, at). Here, we specify pLLM(a|s) as the action prior p(a|s). The vari-

ational distribution q(τ) follows a similar factorization: q(τ) = p(s0)
∏

t q(at|st)P (st+1|st, at).
Substituting these factorizations back into Eq. 1, we obtain the step-wise objective as:

argmax
θ

∑
t

Eπθ

[
γtrt

]
− αKL [πθ(at|st)∥pLLM (at|st)] , (2)

and we learn a language model policy πθ as the variational distribution q(at|st), with parameter θ.
More detailed derivation can be found in Appendix 8.1.

However, fine-tuning language models in policy-based methods can be challenging in practice. To
address this, we propose an alternative approach: direct posterior inference, which allows us to
sample directly from the optimal posterior distribution p(τ |O = 1) for sequential decision-making.

2.2 DIRECT POSTERIOR INFERENCE FOR MARKOV DECISION PROCESS
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Figure 1: An illustration of the process of approximate sampling from the intractable posterior:
q(a|s,O = 1) ∝ p(O = 1|a, st)pLLM(a|st), implemented by reweighting the action prior proposals
according to Q-values, which act as likelihood estimates. In our experiments, the Q function adopts
BERT to encode textual state-action pairs and output a scalar value through an adaptor network.

Since the optimal posterior distribution over trajectory τ can be factorized into step-wise posterior
described as: p(τ |O = 1) ∝ p(s0)

∏
t p(at|st,O = 1)P (st|st−1, at−1), the learning procedure

can be divided into two stages, modeling and inference of step-wise posterior p(a|st,O = 1). The
modeling stage will point out and decompose the desirable distribution into more solvable probabilistic
terms. The inference stage will give the desirable outputs using sampling-based techniques (Korbak
et al., 2022).

Posterior Modeling We first use Bayes’ rule to translate the intricate posterior into accessible
terms:

p(a|st,O = 1) =
p(O = 1|a, st)p(a|st)

p(O = 1|st)
∝ p(O = 1|a, st)p(a|st), (3)

which is a combination of the likelihood p(O = 1|a, st) and the prior p(a|st). Here, we use the LLM
as the prior action distribution p(a|st)← pLLM(a|st). Recall that the optimality likelihood in MDPs
is given by: p(O = 1|a, st) ∝ exp

(∑
i=t γ

i−tri
)
, which corresponds to whether the goal state is

achieved, similar to the concept of the Q function Q(st, a) in RL. In practice, methods such as MCTS
or TD-learning can estimate the optimality likelihood p(O = 1|st, a)

Action Inference Having described the posterior as a product between LLM prior pLLM (a|st)
and estimate Q function Qθ(st, a), we can implement the inference from the posterior distribution
p(a|st,O = 1) by following these steps:

• Sample actions based on the prior policy pLLM: Obtain k action candidates for the current
state st, denoted as: Ck(st) = {a1, a2, · · · , ak}, where ai ∼ pLLM(a|st).

3
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• Choose the next action from the candidates based on the estimated Q-values: Select an
action a∗ according to the softmax probability distribution over the estimated Q-values.
Specifically, a∗ ∼ softmax(Qθ(st, a1)/α,Q

θ(st, a2)/α, . . . , Q
θ(st, ak)/α), where α is a

hyper-parameter.

This sampling strategy is illustrated in Figure 1, where the action candidates are reweighted based on
the Q-values.
Proposition 1. The above action inference strategy—selecting an action from the action priors
reweighted based on Q-values—can be described as following a distribution q. As k →∞, we have:

lim
k→∞

q(a|st) = pLLM(a|st)exp(Qθ(s, a)/α)/Eaj∼pLLM(·|s) exp(Q
θ(s, aj)/α) (4)

The limiting policy corresponds to the policy that optimizes the Q-values with a KL regularizer:

lim
k→∞

q(·|st) = argmax
π

Eπ(a|st)[Q
θ(st, a)]− αKL (π(·|st)∥pLLM(·|st)) (5)

Then, the posterior sampling strategy is highly related to the solution of variational inference as
shown in Eq. 2. Proof. Please see the appendix 8.2.

3 PRACTICAL IMPLEMENTATION

In this section, we introduce the practical implementation of posterior approximation within robust
RL frameworks. We describe a policy-based RL method with an LLM prior to solve the variational
inference problem. In the meantime, as discussed earlier, optimality likelihood estimation is critical
for direct posterior inference and is positively associated with Q-values in the MDP setting. We
consider Q-value estimation with an LLM prior for value-based RL in both online and offline settings.
Finally, we propose three simple yet efficient RL algorithms: one policy-based RL algorithm and two
Q-learning variants.

We will first introduce the two Q-learning variants, which perform exploration and optimization
within a narrowed yet reliable LLM prior action space, eliminating the need for fine-tuning the
language model-based policy. Then, we will present a policy-based PPO variant that incorporates a
KL loss with respect to the LLM prior. Detailed descriptions of classic Q-learning algorithms, DQN
Mnih (2013) and CQL Kumar et al. (2020), can be found in the Appendix 7.

3.1 ONLINE VALUE-BASED RL WITH LLM PRIOR

The Q-value estimation is based on DQN (Mnih, 2013), a widely used value-based RL method, under
the online setting. Unlike traditional DQN, which performs exploration and Bellman updates over
the full action space A, we propose a variant with an LLM prior, referred to as DQN-Prior. This
variant limits these processes to the prior action space Ck ⊆ A, which is sampled from pLLM. This
prior action space represents a reduced and more rational subspace where clearly irrelevant actions
may be filtered out in advance. Specifically, DQN-Prior alternates between the following steps:

Exploration Roll out new episodes using the posterior inference strategy as described in Sec. 2.2,
specifically:

• For a state st, sample the action prior space Ck(st) = {a1, a2, · · · , ak}, ai ∼ pLLM(a|st).
• Then sample the action at ∼ softmax

(
Qθ(st, a1)/α, · · · , Qθ(st, ak)/α

)
.

• Apply the action at to the environment, and obtain the next state st+1 ∼ P (·|st, at).
• Add the tuple to the replay buffer: D = D

⋃
(st, at, st+1).

Q-function Update After expanding the replay buffer, we use TD-learning to update the Q-network.
The loss function for the i-th iteration is given as:

Li(θ) = E(s,a,s′)∼D
[
(Qθi(s, a)− yi)

2
]
, (6)

where yi = B∗Qθi−1(s, a) = r(s, a) + γmaxa′∈Ck(s′) Q
θi−1(s′, a′). Compared to traditional DQN,

the DQN-Prior performs exploration and applies the Bellman optimal operator within the LLM prior
action space, as highlighted in red in Eq. 6.

4
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For most experiments, we use Qwen-1.5 7B Bai et al. (2023) to generate k = 5 prior actions. To
represent the Q-network, Bert (Devlin, 2018) is used to encode state-action pairs and remains frozen
during optimization. Then, we introduce an adapter (a 3-layer MLP) on top of Bert’s embeddings, as
illustrated in Figure 1, and optimize the adapter’s weights by minimizing the temporal difference loss.
Therefore, we do not propagate any gradients through the Bert to avoid expensive computational
overhead.

3.2 OFFLINE VALUE-BASED RL WITH LLM PRIOR

This study also explores the feasibility of using gradient-free LLM priors for successful SDM based
solely on offline datasets. (Snell et al., 2023) have explored the use of offline RL for language
generation tasks based on the SFT LLM from offline datasets. This approach assumes the entire token
vocabulary as the action space, where each action corresponds to a single token, resulting in a vast
action space with tens of thousands of possible actions. In our work, we consider a discrete action
space where each action is a short phrase consisting of several tokens. For the SDM tasks we address,
the action space is significantly smaller, with fewer than a hundred possible actions. Additionally,
by leveraging an action prior, we can first obtain a tidy sub-action space Ck, thereby narrowing the
optimization space.

We apply this action prior within the CQL framework, a widely used offline RL approach, and refer
to this variant as CQL-Prior. The loss function for the proposed CQL-Prior is given as:

Li(θ) = βE(s,a)∼D

log ∑
a′∈Ck(s)

exp(Qθi(s, a′))−Qθi(s, a)

+1

2
E(s,a,s′)∼D

[
(Qθi(s, a)− yi)

2
]
,

(7)
where yi = r(s, a) + γmaxa′∼Ck(s′) Q

θi−1(s′, a′) and β is a hyper-parameter. The main difference
from traditional CQL is that it restricts the overestimation of Q-values to the tidy action prior space
and applies the Bellman optimal operator within this space, as highlighted in red.

3.3 POLICY-BASED RL WITH LLM PRIOR
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Figure 2: An illustration of the training process of GFlan-Prior, a policy-based RL algorithm with an
LLM prior. A fixed LLM serves as a suboptimal prior, while the action policy learns to approximate
the posterior action distribution, guided by both environmental rewards and the LLM prior.

We implement variational inference for MDPs with LLMs as action priors using a policy-based RL
framework. Specifically, we build upon GFlan (Carta et al., 2023), let the Flan-T5 small model (Rae
et al., 2021) (with less than 1B parameters) as the action policy for leveraging pre-stored knowledge
to solve complex SDMs and fine-tune it via Proximal Policy Optimization (PPO) (Schulman et al.,
2017). Our variant, called GFlan-Prior, incorporates a KL regularizer into the PPO loss to optimize
Eq. 2. During implementation, we sample k = 5 examples from LLM prior distribution pLLM(a|s) to
compute the approximated KL divergence. Formally, for the i-th iteration, the policy πθi is learned
by optimizing:

argmax
θ

E(st,at)∼πθi−1
CLIP

(
πθ(at|st)

πθi−1
(at|st)

)
Ât+ηH(πθ(·|st))−αKL[πθ(·|st)∥p̂LLM(·|st)], (8)

where At is the estimated advantage, η is the hyperparameter that encourages exploration, and
p̂LLM(·|st) is the discrete distribution constructed by k action proposals from the LLM. θi−1 represents

5
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Figure 3: Results of comparison with online baselines. We plot the mean and standard error of the
cumulative reward. Periodic evaluation results are plotted for online baselines.

the parameters of the action policy learned in the last iteration. The illustration of the training process
of GFlan-Prior can be found in Figure 2.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of incorporating the LLM prior into the RL frame-
work, including both policy-based and value-based algorithms in online and offline settings. LLM
priors are used to reduce the exploration and optimization space or regulate the action policy’s
behavior, thereby resulting in a more efficient RL framework. Further details on experimental settings
and more ablation study results can be found in the Appendix 9.

4.1 ENVIRONMENTS

We consider three environments:
ALFWorld (Shridhar et al., 2020) is a popular benchmark for examining LLM-based agents’ decision-
making ability. This benchmark contains thousands of Textworld (Côté et al., 2019) games with the
embodied engine. We focus solely on the text game part, where the action space consists of high-level
plans such as "go to a room". The legal actions are finite but large, with the maximum possible
admissible action space reaching up to 50, making it challenging to explore from scratch. It contains
thousands of tasks, making testing the generalization performance on unseen tasks convenient. We
consider two classes of ALFWorld tasks: ALFWorld(pick) and ALFWorld(examine). There are no
auxiliary rewards, except for a reward of 1.0 for reaching the final goal.
Overcooked We use the partially observed text overcooked game(Tan et al., 2024); the observation
describes the position of visible items, and the agent should take a sequence of actions to deliver a
dish. We consider two overcooked tasks: Overcooked(Tomato), deliver a dish of chopped tomato;
Overcooked(Salad), deliver a salad containing chopped tomato and lettuce. The maximum possible
action space is 8. Besides the reward of 1 for successfully delivering a dish, the textual Overcooked
environment from (Tan et al., 2024) also provides dense reward signals. The reward shaping is as
follows: 0.2 for correctly chopping an ingredient, 1 terminal reward for successfully delivering the
correct dish, −0.1 for delivering any incorrect item, and −0.001 for each time step.
Frozen Lake is a grid world game; the agent should move to the goal position while avoiding falling
into holes. There are four admissible actions: up, down, right, and left. The agent will receive a
reward of 1 for reaching the final goal and a penalty of −1 for falling into holes. More details of state
and action representations can be found in Appendix 9.1.
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4.2 BASELINES

We first test the ability of LLM Prior to solve SDMs in a zero-shot manner, without deliberately
designed prompts. Next, we will introduce the value-based and policy-based RL algorithms:

Valued-Based RL: For the online setting, we use DQN and our DQN-Prior, which explores and
updates the Q-function within the LLM prior space. For the offline setting, we compare the CQL,
CQL-prior, and Behavioral Cloning(BC). Similarly, compared to CQL, CQL-Prior regulates and
updates Q-values in the narrowed prior action space. We set k = 5 for DQN-Prior and CQL-Prior.
The BC utilizes the Flan-T5 small (Rae et al., 2021) as the action policy, and learns the action policy
by optimizing: argminπ −E(s,a)∼D[log π(a|s)].
Policy-Based RL: GFlan (Carta et al., 2023) lets the LLM Flan-T5 small as the action policy
and finetunes it via PPO (Schulman et al., 2017). GFlan-Prior adds a KL constraint between the
optimized action policy and LLM prior action on the basis of GFlan, as shown in Eq. 8.

LLM Setting Due to the Qwen-1.5 series (Bai et al., 2023) containing a range of LLMs with
different scales, we use Qwen-1.5 for our main experiments. Specifically, we use Qwen-1.5 7B (Bai
et al., 2023) as the backbone of the LLM prior for most environments, except for the more complex
Overcooked(Salad) task, where Qwen-1.5 14B is used.

4.3 RESULTS ANALYSIS

4.3.1 INCORPORATING LLM PRIORS INTO VALUE-BASED RL

The effectiveness of LLM Prior on Online Q-Learning As shown in Figure 3, our DQN-Prior
outperforms traditional online RL baselines such as DQN and GFlan by exploring and optimizing
within a narrowed, more valuable prior action space. In complex ALFWorld tasks, DQN and GFlan
struggle to bootstrap due to the large original action space, which can include up to 50 possible actions
and the lack of dense reward incentives. In contrast, our DQN-Prior leverages the LLM’s domain
knowledge to reduce the exploration space to just five suboptimal actions, significantly improving
sample efficiency. Additionally, in the Overcooked (Salad) and Frozen Lake tasks, the LLM prior
cannot directly solve these tasks by sampling one action per state. However, DQN-Prior still achieves
success and demonstrates greater sample efficiency than traditional RL methods, despite the small
action space (only 4 or 8 actions). This shows that the LLM prior can provide a suboptimal action
proposal space, and conducting RL within this space significantly enhances sample efficiency.

Table 1: Results of offline algorithms. We consider two tasks, ALFWorld (Pick) and Overcooked
(Salad), referred to as Pick and Salad for simplicity. To further compare the sample efficiency of the
baselines, we use offline datasets of varying sizes for Overcooked (Salad), denoted as Salad (N ),
each containing approximately N (s, a, s′) tuples.

Baseline Pick Salad(1000) Salad(4000) Salad(8000) Salad(12000) Salad(24000)
DQN 0.27 0.14 0.31 0.32 0.32 0.32
CQL 0.03 0.32 0.32 0.32 0.32 1.33

DQN-Prior 0.49 0.98 0.81 - - -
CQL-Prior 0.80 1.01 1.19 - - 1.31

BC 0.31 0.57 0.91 0.78 0.53 0.74

The effectiveness of LLM Prior on Offline Q-Learning Table 1 illustrates the performance of
baselines trained on offline datasets. A more detailed description of the offline datasets can be found
in the Appendix. Table 1 shows that CQL-Prior outperforms all other baselines on the ALFWorld
(Pick) and Overcooked (Salad) datasets. Although DQN-Prior lacks constraints on Q-values, it still
demonstrates superior performance compared to DQN and CQL, which operate on the full action
space. These results indicate that in offline RL, avoiding overestimation of Q-values and performing
Bellman updates only within the suboptimal prior action space reduces optimization complexity,
thereby improving sample efficiency.

Additionally, we provide further evidence to support this conclusion by testing the sample require-
ments for CQL and CQL-Prior. We find that traditional CQL, with fewer than 12000 examples, fails
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Table 2: Results on the generalization performance of posterior sampling on ALFWorld(Pick). We
use Qwen-1.5 7B with k = 5 to generate LLM prior action proposals for training the Q function via
DQN-Prior and CQL-Prior. This LLM prior configuration is highlighted by (*).

Online (DQN-Prior)
Seen Tasks Unseen Tasks

k = 1 k = 5 k = 10 k = 15 k = 1 k = 5 k = 10 k = 15
Qwen-1.5 4B 0 0.35 0.46 0.35 0 0.08 0.25 0.29
Qwen-1.5 7B 0.19 0.62∗ 0.77 0.65 0.04 0.38 0.42 0.42
LLaMa-3 8B 0.04 0.62 0.73 0.69 0.13 0.42 0.38 0.38

Qwen-1.5 14B 0.19 0.65 0.77 0.65 0.16 0.54 0.54 0.38
Qwen-1.5 32B 0.35 0.77 0.81 0.73 0.33 0.5 0.5 0.46

Offline (CQL-Prior)
Seen Tasks Unseen Tasks

k = 1 k = 5 k = 10 k = 15 k = 1 k = 5 k = 10 k = 15
Qwen-1.5 4B 0 0.27 0.38 0.62 0.0 0.17 0.17 0.38
Qwen-1.5 7B 0.19 0.80∗ 0.81 0.77 0.04 0.46 0.50 0.50
LLaMa-3 8B 0.04 0.85 0.88 0.81 0.13 0.54 0.50 0.54

Qwen-1.5 14B 0.19 0.73 0.92 0.73 0.16 0.54 0.58 0.54
Qwen-1.5 32B 0.35 0.81 0.85 0.69 0.33 0.63 0.42 0.50

to learn how to achieve the final goal, only managing to reach the subgoal of chopping the tomato and
lettuce (with a reward of 0.4). In contrast, CQL-Prior, with just around 1000 examples, successfully
learns how to achieve the final goal (with a reward of 1.0) with high probability. Therefore, our
CQL-Prior reduces the number of required samples by at least 90% compared to CQL on this task.

The generalization ability across unseen tasks and LLMs Table 2 demonstrates the generalization
ability of our posterior sampling framework by combining the Q-function, trained with the LLM
prior setting of Qwen-1.5 7B and k = 5, with other LLMs and varying action proposal numbers (k)
during inference. Even though the Q-network is trained with Qwen-1.5 7B and k = 5, it can still
effectively guide the decision-making process, i.e., action selection, for unseen LLMs of different
scales and architectures. It is worth noting that, although Qwen-1.5 4B was originally unable to solve
ALFWorld (Pick), it becomes capable of tackling such complex tasks by leveraging the Q-function
trained with more powerful LLMs. This value-based RL approach, which utilizes an LLM prior,
presents a promising opportunity to train an information-rich Q-network using larger LLMs while
deploying only the Q-network and smaller LLMs on the client side. This method enhances reasoning
speed and reduces deployment complexity. Furthermore, larger LLMs generally perform better during
inference, as their action proposals are of higher quality. k = 1 indicates the performance of the LLM
on its own, without involving the Q-function. The setting of k = 5 was chosen during training for
querying efficiency, but it is not necessarily the optimal choice. We observed better test performance
with k = 10 on seen tasks, indicating that our method can generalize to a larger action space to some
extent. In most cases, inference performance increases and then decreases as k increases. This may
occur because a larger action space is more likely to include the optimal action, but an excessively
large action space can introduce unseen (s, a) pairs during training, leading to out-of-distribution
(OOD) problems in both online and offline settings.

Regarding generalization to unseen tasks, multiple LLM action proposals with k > 1, guided by the
Q-function, generally outperform the LLM’s zero-shot performance with k = 1. This demonstrates
the generalization capability of our posterior sampling framework, enabled by the powerful LLM as
an action prior and the Q-function’s ability to compress interactive experiences.

4.3.2 INCORPORATING LLM PRIORS INTO POLICY-BASED RL

The Figure 4(a), 4(b), 4(c) show the results of policy-based RL algorithms. As shown in Figure 4(a),
GFlan-Prior significantly outperforms GFlan and achieves performance comparable to DQN-Prior.
Unlike GFlan, GFlan-Prior leverages the prior knowledge embedded in LLMs by aligning with the
LLM prior distribution through the incorporation of a KL constraint, as shown in Equation 8. In
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Figure 4: (a) Comparison of policy-based RL algorithms, we plot DQN-Prior and LLM-Prior for
reference. (b) The ablation study on the number of LLM action proposals k used to approximate the
KL divergence. (c) The ablation of the KL coefficient of GFlan-Prior. (d) The ablation of the softmax
temperature over Q values of the DQN-Prior

our main results, we sample k = 5 action proposals from the LLM prior to approximate the KL
divergence. An ablation study on k can be found in Figure 4(b) and Figure 5 in the Appendix. Similar
to the results in Table 2, with k = 5, we are more likely to sample the optimal action than with k = 1,
thereby better supervising the learning of the action policy.

The ablation study on the coefficient of the KL divergence is shown in Figure 4(c). A large α will
cause the learned policy π to closely follow the LLM prior proposals, while a small α encourages
exploration. In DQN-Prior, the hyperparameter α regulates exploration by acting as the temperature
in the softmax over Q, generating a Boltzmann distribution based on Q, as investigated in Figure
4(d). GFlan-Prior appears to be more sensitive to the hyperparameter on controlling exploration than
DQN-Prior.

5 RELATED WORK

This study explores the fusion of Bayesian inference and LLMs for decision-making tasks. Herein,
we present related works on LLM-Agent for decision-making tasks and how previous research
pursues this combination. More discussions on the use of LLMs for value-based inference and reward
function generation are provided in Appendix 10.

LLM-driven Agent The idea of LLM-as-Agent has gone viral since the release of powerful
large language models. Among all the works, some apply direct prompt engineering techniques
using human-designed prompt and retrieval to harness LLMs for complex interactive tasks, such
as ProAgent by (Zhang et al., 2023), Voyager by (Wang et al., 2023) and generative agent by (Park
et al., 2023). Many researchers have also tried searching-based methods. (Yao et al., 2023) propose
Tree-of-Thought (TOT) using BFS/DFS algorithm to search accurate decision sequences. (Hao et al.,
2023) suggests using Monte-Carlo Tree Search to perform a more comprehensive search. These
methods often fall into the framework of Proposer-Verifier (Snell et al., 2024) where the language
proposes a number of possible sequences and the verifier picks desirable candidates. There are also a
few works that relate LLM to conventional reinforcement learning settings and investigate how the
superiority in language space helps RL agents’ capability in decision-making. For instance, (Brooks
et al., 2024) uses LLM as a world model and performs policy iteration by in-context learning. GFlan
proposed by (Carta et al., 2023) uses a learnable LLM as a probability likelihood estimator for all
possible actions and incorporates it into actor-critic learning frameworks where a value function
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generates assessment and fine-tuning the LLM correspondingly. (Yan et al., 2023) also resort to
an actor-critic learning paradigm but instead of fine-tuning the language model, they train a simple
classifier that selects valuable outputs from a fixed language model (e.g. GPT3.5). (Zhang et al.,
2024b) use LLM as a behavior regularize and add it to the value estimate. (Wen et al., 2024) leverages
entropy-regularized reinforcement learning to train LLM agents for verbal sequential decision-making
tasks. Our work also falls into the category of LLM-driven RL agent. However, different from others,
we see a large language model as an excellent action proposer and perform Q-learning directly on
the reformed action sequence space, thereby achieving better learning efficiency with minimum
modification.

LLM in Bayesian Sense The probabilistic nature of transformer-based language models makes
them well-suited for a Bayesian inference framework. As highlighted by (Korbak et al., 2022),
the Bayesian approach offers a unified perspective on both modeling and inference. In in-context
learning (ICL), some researchers argue for the Bayesian properties of ICL ((Jiang, 2023; Wang
et al., 2024b; Ye et al., 2024)). Extending beyond ICL, (Yang & Klein, 2021) trains a classifier to
approximate the likelihood function, framing conditional text generation as a Bayesian inference
problem, with the LLM serving as the prior. (Hu et al., 2023) interprets Chain-of-Thought (CoT)
reasoning in natural language processing (NLP) tasks, such as text infilling and sequence continuation,
as probabilistic inference problems, using GFlowNet to fine-tune the model. In this context, the
language model functions as a unified probabilistic generative process, capable of representing both
prior and likelihood distributions. Similarly, (Zhao et al., 2024b) adopts a Bayesian perspective,
utilizing Sequential Monte Carlo (SMC) methods to generate undesired outcomes. (Gallego, 2024)
frames LLM inference as sampling from a posterior distribution focused on high-reward regions,
applying this approach to self-improvement tasks. Inspired by these works, we also formulate our
agent framework within a Bayesian setting, exploring the use of LLMs as priors.

6 CONCLUSION

In this work, we aim to leverage the rich domain knowledge and strong reasoning abilities of LLMs
to solve complex decision-making tasks while avoiding the costly prompt design and fine-tuning of
large language models. Given their rich prior knowledge but lack of task-specific experience, we do
not rely on LLMs to directly output optimal plans. Instead, we focus on simplifying their role to
generate reliable action proposals. Thus, we treat the powerful LLM as an action prior distribution
and, from a Bayesian inference perspective, analyze how to incorporate LLM priors into solving
MDPs. We utilize variational inference and posterior sampling to achieve this, ultimately proposing
both policy-based and value-based frameworks with LLM priors. LLM priors improve traditional
RL frameworks by reducing the exploration space or regulating the behavior of the action policy
according to suboptimal LLM action proposals. Experimental results demonstrate a significant
improvement in sample efficiency by incorporating fixed LLM priors into RL frameworks in both
online and offline settings. This work focuses solely on text-based games with finite action spaces. In
future work, we will explore scenarios with free-form and infinite action spaces, and try to incorporate
prompt-based approaches to further enhance the quality of LLM prior action proposals.
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search: A review of recent modifications and applications. Artificial Intelligence Review, 56(3):
2497–2562, 2023.

Weihao Tan, Wentao Zhang, Shanqi Liu, Longtao Zheng, Xinrun Wang, and Bo An. True knowl-
edge comes from practice: Aligning large language models with embodied environments via
reinforcement learning. In The Twelfth International Conference on Learning Representations,
2024.

Mycal Tucker and Greta Tuckute. Increasing brain-llm alignment via information-theoretic compres-
sion. In UniReps: the First Workshop on Unifying Representations in Neural Models, 2023.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Audrey Dudzik, Junyoung
Chung, Arthur J Tashman, David Horgan, Peter Kroiss, Max Powell, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426–9439, 2024a.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large language
models are latent variable models: Explaining and finding good demonstrations for in-context
learning. Advances in Neural Information Processing Systems, 36, 2024b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

13

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Muning Wen, Cheng Deng, Jun Wang, Weinan Zhang, and Ying Wen. Entropy-regularized token-level
policy optimization for large language models. arXiv preprint arXiv:2402.06700, 2024.

Xue Yan, Yan Song, Xinyu Cui, Filippos Christianos, Haifeng Zhang, David Henry Mguni, and Jun
Wang. Ask more, know better: Reinforce-learned prompt questions for decision making with large
language models. arXiv preprint arXiv:2310.18127, 2023.

Xue Yan, Jiaxian Guo, Xingzhou Lou, Jun Wang, Haifeng Zhang, and Yali Du. An efficient end-
to-end training approach for zero-shot human-ai coordination. Advances in Neural Information
Processing Systems, 36, 2024.

Kevin Yang and Dan Klein. Fudge: Controlled text generation with future discriminators. arXiv
preprint arXiv:2104.05218, 2021.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Naimeng Ye, Hanming Yang, Andrew Siah, and Hongseok Namkoong. Pre-training and in-context
learning is bayesian inference a la de finetti. arXiv preprint arXiv:2408.03307, 2024.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montserrat Gonzalez
Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to
rewards for robotic skill synthesis. In Conference on Robot Learning, pp. 374–404. PMLR, 2023.

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, et al. Proagent: Building proactive cooperative ai with large
language models. arXiv preprint arXiv:2308.11339, 2023.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction. arXiv preprint arXiv:2408.15240,
2024a.

Shenao Zhang, Sirui Zheng, Shuqi Ke, Zhihan Liu, Wanxin Jin, Jianbo Yuan, Yingxiang Yang,
Hongxia Yang, and Zhaoran Wang. How can llm guide rl? a value-based approach. arXiv preprint
arXiv:2402.16181, 2024b.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm
agents are experiential learners. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 19632–19642, 2024a.

Stephen Zhao, Rob Brekelmans, Alireza Makhzani, and Roger Grosse. Probabilistic inference in
language models via twisted sequential monte carlo. arXiv preprint arXiv:2404.17546, 2024b.

Runlong Zhou, Simon S Du, and Beibin Li. Reflect-rl: Two-player online rl fine-tuning for lms.
arXiv preprint arXiv:2402.12621, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

7 DESCRIPTION OF CLASSIC Q-LEARNING ALGORITHM

We introduce the classic Q-learning algorithm in both offline and online settings.

Q-learning Q-learning is a classic value-based RL algorithm, which iteratively applies the
Bellman optimal operator to train the Q-function, formally written as B∗Q(s, a) = r(s, a) +
γEs′∼P (·|s,a) [max′a Q(s′, a′)]. After the optimal Q-function Q∗ learned, then the optimal action pol-
icy respect to the Q∗ is given as: π∗(·|s) = argmaxa Q

∗(s, a). DQN (Mnih, 2013) is a well-known
Q-learning algorithm, which can process various classes of the state information such as image and
language, which learns a deep neural network Qθ(s, a) ≈ Q∗(s, a) to approximate Q∗(s, a) and uses
TD-learning to iteratively update the Q network, the loss function for the i-the iteration is given as:

Li(θ) = E(s,a,s′)∼D
[
(Qθi(s, a)− yi)

2
]
, (9)

where D is the reply buffer, yi = B∗Qθi−1(s, a) = r(s, a) + γmaxa′∈A Qθi−1(s′, a′). θi−1 is the
learned parameters of the last iteration and is frozen during the gradient descent for optimizing the
loss function Li.

Conservative Q-learning CQL (Kumar et al., 2020) framework is designed for offline reinforce-
ment learning, where only offline data is available, but no further online exploration is accessible.
Different from traditional Q-learning, CQL introduces an additional regularization term on top of the
standard DQN framework or actor-critic framework(such as SAC (Haarnoja et al., 2018)), ensuring
that the learned Q-function lower-bounds the actual value. The lower-bounded Q-values help mitigate
the overestimation problem commonly encountered with out-of-distribution (OOD) state-action pairs.
The CQL loss on the top of value-based DQN is given as:

Li(θ) = βE(s,a)∼D

[
log

∑
a′∈A

exp(Qθi(s, a′))−Qθi(s, a)

]
+

1

2
E(s,a,s′)∼D

[
(Qθi(s, a)− yi)

2
]
,

(10)
where yi = r(s, a) + γmaxa′ Qθi−1(s′, a′) and β is a hyper-parameter.

8 PROOFS

8.1 PROBABILISTIC INFERENCE DERIVATION

In this section, we derive the detailed formulation for probabilistic inference for using LLM as a
prior. This includes the policy-based method where we learn a parametrized policy function and the
value-based method where we directly perform posterior inference.

Variational Inference Assume that we have the optimality variable O indicating the quality of
a trajectory τ = {s0, a0, r0, s1, ..., sn}, p(τ) = p(s0)

∏
t p(at|st)p(st+1|st, at). The likelihood

function with temperature parameter α can be written as:

p(O = 1|τ) = exp

(∑
t

γtrt/α

)
(11)

Our goal is to maximize the optimal marginal distribution formulated as follows:

p(O = 1) =

∫
p(O = 1, τ)dτ

=

∫
q(τ)

p(O = 1|τ)p(τ)
q(τ)

dτ

(12)

where q(τ) is a parametrized variational distribution. Then, our variational inference objective can be
written as:

log p(O = 1) ≥
∫

q(τ) log

[
p(O = 1|τ)p(τ)

q(τ)

]
dτ

= Eq(τ) [log p(O = 1|τ)]−KL [q(τ)|p(τ)]
= ELBO

(13)
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In the context of language models, we define prior p(τ) as trajectory distribution generated through a
fixed LLM denoted as:

pLLM (τ) = p(s0)
∏
t

pLLM (at|st)p(st+1|st, at) (14)

where pLLM (at|st) is the probability likelihood of the generated output at given input text st. The
variational distribution q(τ) can also be decomposed in the same way as:

q(τ) = p(s0)
∏
t

πθ(at|st)p(st+1|st, at) (15)

where the parametrized policy function πθ can be a learnable language model with parameter θ.
Substituting these factorizations back to ELBO we have the step-wise objective function written as:

−L =
∑
t

Eπθ

[
γtrt

]
− αKL [πθ(at|st)∥pLLM (at|st)] (16)

π∗ = argmin
θ
L (17)

Direct Posterior Inference Instead of learning a parametrized policy which might involve fine-
tuning a language model, we can also try directly sampling from the posterior distribution formulated
as:

p(τ |O = 1) =
p(O = 1|τ)p(τ)

p(O = 1)

∝ p(O = 1|τ)p(τ)

=
∏
t

p(Ot = 1|st, at)pLLM (at|st)p(st+1|st, at)

(18)

in which we define p(τ) as in Equation 14. According to Control-as-Inference framework proposed
by Levine (2018), we can formulate posterior inference as Soft Q-Learning where Q-values are
updated using a modified soft Bellman equation:

Qπ(st, at) = r(st, at) + γEst+1∼p(·|st,at) [V (st+1)]

V (st) = log

∫
exp(Q(st, at)/α)dat

(19)

and the policy can be defined as a softmax function over the Q-values: π(a|s) =

exp(Qπ(s, a)/α)/
∫
a′ exp(Qπ(s, a

′
)/α)da

′
, ensuring that actions with higher Q-values are more

likely to be chosen. In our paper, however, due to the enormously large space of (textual) state-action
pair, we also apply sampling approximation methods. Specifically, we leverage similar ideas from
Fourati et al. (2024) which sample a random subset of actions from the complete action space and
seek the optimal within this subset. In our case, we rely on a fixed LLM to provide such action
subspace and can further narrow down the space through repeated sampling (Brown et al. (2024)):

π(a|s) =
1a∈pLLM (·|s) · exp (Qπ(s, a)/α)∫

a′ 1a∈pLLM (·|s) · exp (Qπ(s, a′)/α) da′

≈ 1a∈{ai} ·
1

N

exp(Qπ(s, ai)/α)∑
i exp(Q

π(s, ai)/α)
, ai ∼ pLLM (a|s)

(20)

This means we restrict the Bellman backup to a specific action subspace that can potentially provide
a refined set of actions based on context, largely reducing computational complexity and focusing on
more relevant actions.

8.2 PROOF OF PROPOSITION 1

Proposition 1. The above action inference strategy—selecting an action from the action priors
reweighted based on Q-values—can be described as following a distribution q. As k →∞, we have:

lim
k→∞

q(a|st) = pLLM(a|st)exp(Qθ(s, a)/α)/Eaj∼pLLM(·|s) exp(Q
θ(s, aj)/α) (4)
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The limiting policy corresponds to the policy that optimizes the Q-values with a KL regularizer:

lim
k→∞

q(·|st) = argmax
π

Eπ(a|st)[Q
θ(st, a)]− αKL (π(·|st)∥pLLM(·|st)) (5)

Then, the posterior sampling strategy is highly related to the solution of variational inference as
shown in Eq. 2. Proof. Please see the appendix 8.2.

Proof. The proof mainly follows the (Li et al., 2024). Denote the above sampling strategy indeed
follows a distribution q, and for each action a, the probability of a is sampled from the distribution q
is given by:

q(a|st) = E{a1,··· ,ak}∼pLLM(·|s)

[
k∑

i=1

I(ai = a)
exp(Qθ(st, ai)/α)∑k
j=1 exp(Q

θ(st, aj)/α)

]

= E{a1,··· ,ak}∼pLLM(·|s)

[ ∑k
i=1 I(ai = a)∑k

j=1 exp(Q
θ(st, aj)/α)

]
exp(Qθ(st, a)/α)

= E{a1,··· ,ak}∼pLLM(·|st)

[
1
k

∑k
i=1 I(ai = a)

1
k

∑k
j=1 exp(Q

θ(st, aj)/α)

]
exp(Qθ(st, a)/α)

(21)

According to the Law of Large Numbers, when k →∞, we have:

lim
k→∞

q(a|st) = lim
k→∞

E{a1,··· ,ak}∼pLLM(·|st)

[
1
k

∑k
i=1 I(ai = a)

1
k

∑k
j=1 exp(Q

θ(st, aj)/α)

]
exp(Qθ(st, a)/α)

= lim
k→∞

E{a1,··· ,ak}∼pLLM(·|st)

[
pLLM(a|st)

Eaj∼pLLM(·|st) exp(Q
θ(st, aj)/α)

]
exp(Qθ(st, a)/α)

= pLLM(a|st)
exp(Qθ(s, a)/α)

Eaj∼pLLM(·|s) exp(Qθ(s, aj)/α)
(22)

Following the proof process from the Appendix A.1. in Rafailov et al. (2023), we have:

argmax
π

Eπ(a|st)[Q
θ(st, a)]−αKL (π(·|st)∥pLLM(·|st)) = pLLM(a|st)

exp(Qθ(s, a)/α)

Eaj∼pLLM(·|s) exp(Qθ(s, aj)/α)
(23)

Additionally, as shown in Sec. 2, the variational inference approach learns the optimal policy π by
maximising:

argmax
π

∑
t

Eπ

[
γtrt

]
− αKL(π(a|st)∥pLLM(a|st)). (24)

Introducing the occupancy measure ρ, ρ(s) = 1
1−γ

∑∞
t=0[γ

tP(st = s|a ∼ π)], we have the following
form objective respected to the Q-function

argmax
π

Eρ(s)[Ea∼π[Q
π(s, a)]− αKL(π(a|st)∥pLLM(a|st))] (25)

Combining Equations 23 and 25, we find that the variational inference approach and the direct
posterior sampling yield similar solutions.

9 ADDITIONAL EXPERIMENT DETAILS

9.1 ENVIRONMENTS

We consider three environments: ALFWorld, Overcooked and Frozen Lake.
ALFWorld We consider two classes of ALFWorld tasks: ALFWorld(pick) and ALFWorld(examine).
For ALFWorld (Pick), we evaluate the online training baselines on 28 tasks, such as "put the cellphone
on the armchair," and test the generalization ability on 26 unseen tasks. For ALFWorld (Examine),
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ALFWorld(Pick) ALFWolrd(Examine) Cook(Tomato) Cook(Salad) Frozen Lake
Horizon 60 60 30 50 20

Table 3: Maximize horizon of environments.

we use 11 tasks, such as "examine the laptop with the desk lamp." There are no auxiliary rewards,
except for a reward of 1.0 for reaching the final goal.

Examples of observations and admissible action descriptions for three environments are shown below:

For ALFWorld(Pick)

Observation: Current observation:You are in the middle of a room. Looking quickly around
you, you see a armchair 1, a bed 1, a diningtable 1, a drawer 2, a drawer 1, a garbagecan 1, a
sidetable 2, and a sidetable 1.
Your task is to: put some cellphone on armchair..
Admissible actions You are allowed to take the following actions: go to armchair 1, go to
bed 1, go to diningtable 1, go to drawer 1, go to drawer 2, go to garbagecan 1, go to sidetable
1, go to sidetable 2, inventory, look.

For Overcooked(Tomato)

Observation: Your task is to serve the dish of a bowl only containing chopped tomato. There
is a fixed cutting board in the room. You notice a tomato on the table. Currently you don’t
have anything in hand.
Admissible actions You are allowed to take the following actions: pick up the tomato, take
the bowl, walk to the cutting board, serve nothing, chop nothing.

For Frozen Lake

Observation: You are in a 4x4 grid where each cell is either a frozen cell (F) indicating a
safe position, You must avoid to reach a hole (H), and the goal (G) that we aim to reach.
Input: Currently the agent is at position (0, 0), which direction need to take?
Admissible actions: Go Left leads to position (0, 0), start position. Go Right leads to position
(0, 1), a frozen cell (F). Go Up leads to position (0, 0), start position. Go Down leads to
position (1, 0), a frozen cell (F).
Admissible actions You are allowed to take the following actions: Go Left, Go Right, Go
Up, Go Down.

9.2 LLM PRIOR IMPLEMENTATION

There are two ways to sample an action a from the LLM prior pLLM(·|st). First, since the state and
action can be described as text, and assuming the action a consists of k tokens, the probability of the
LLM generating action a is given by p(a|st) =

∏k
i=1 pLLM(ai|st, a<i). Based on this probability, the

first type of LLM prior computes a distribution over actions, denoted as pdist
LLM(a|st) = exp p(a|st)∑

a′ exp p(a′|st) .
In contrast, the second approach involves sampling a free-form output from the LLM, which is then
mapped to an executable action via a simple rule-based projectionP . We denote this LLM prior, which
relies on mapping the LLM’s output, as pmap

LLM, where a ∼ pmap
LLM(·|st)↔ o ∼ LLM(·|st), a = P(o).

We observed a performance gap between these two types of LLM action priors. For instance, in
the ALFWorld pick & place task, pmap

LLM achieved a winning rate of 19%, while pdist
LLM failed, with a

winning rate of 0%, both using the LLM Qwen1.5-7B. Therefore, in this work, we implement pmap
LLM

as the LLM prior for thoughtfully exploiting the power of the LLM in SDM tasks, which we denote
as pLLM for simplicity. An Example of LLM’s output is given as:
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For ALFWorld(Pick) from Qwen-1.5 7B

Input: Current observation:You are in the middle of a room. Looking quickly around you,
you see a armchair 1, a bed 1, a diningtable 1, a drawer 2, a drawer 1, a garbagecan 1, a
sidetable 2, and a sidetable 1.
Your task is to: put some cellphone on armchair.. You are allowed to take the following
actions: go to armchair 1, go to bed 1, go to diningtable 1, go to drawer 1, go to drawer 2, go
to garbagecan 1, go to sidetable 1, go to sidetable 2, inventory, look. Please select an action
from the admissible actions.
LLM Output to Action: 1: take cd 2 from sidetable 2 , ——> take cd 2 from sidetable 2
2: Open drawer 2 Result: You open door, ——> Open drawer 2
3: look Description: You look around the room., ——> look
4: look > Current observation:You arrive at loc, ——> look
5: open drawer 2 Loc 8: You open drawer 2 Loc 8 ——> open drawer 2 Loc 8
We map the LLM’s output to an executable action using a simple rule-based method, extracting
the executable actions directly from the LLM’s output.

9.3 HYPER-PARAMETERS

Our algorithms are trained on one machine with 2 40G A100. based on Pytorch-GPU 2.1 and
cuda12.4. Table 6,7,8,9,10 reports the main hyper-parameters of our algorithms. For all CQL-based
algorithms, we set the hyperparameter β for regulating the Q-values, as shown in Eq. 7, as 5.0.

Offline Datasets The composition of offline datasets is shown in Table 11, which reports the
number of (s, a, s′) examples.

Table 4: The hyperparameters on ALFWorld(Pick)
Baselines Learning Rate Epochs Batch Size Update Frequency LLM α

DQN-Prior 5e-4 4 128 5 / 0.01
CQL-Prior 5e-4 4 128 5 / 0.01
GFlan-Prior 1e-4 16 64 16 Flan-T5 Small 0.01

Table 5: The hyperparameters on ALFWorld(Examine)
Baselines Learning Rate Epochs Batch Size Update Frequency LLM α

DQN-Prior 5e-4 4 128 10 / 0.01
CQL-Prior 5e-4 4 128 10 / 0.01
GFlan-Prior 1e-4 16 64 16 Flan-T5 Small 0.01

Table 6: The hyperparameters on Overcooked(Tomato )
Baselines Learning Rate Batch Size Update Frequency LLM α

DQN-Prior 5e-4 128 5 / 0.1
CQL-Prior 5e-4 128 5 / 0.1

GFlan-Prior 1e-4 64 16 Flan-T5 Small 0.1

Table 7: The hyperparameters on Overcooked(Salad)
Baselines Learning Rate Batch Size Update Frequency LLM α

DQN-Prior 5e-4 128 5 / 0.1
CQL-Prior 5e-4 128 5 / 0.1

GFlan-Prior 1e-4 64 16 Flan-T5 Small 0.1
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Table 8: The hyperparameters on Frozen Lake
Baselines Learning Rate Batch Size Update Frequency LLM α

DQN-Prior 5e-4 128 5 / 0.1

Table 9: The hyperparameters on ALFWorld(Pick)
Baselines Learning Rate Batch Size Update Frequency LLM α

DQN-Prior 5e-4 128 10 / 0.01
CQL-Prior 5e-4 128 10 / 0.01
GFlan-Prior 1e-4 64 16 Flan-T5 Small 0.01

Table 10: The hyperparameters on ALFWorld(Examine)
Baselines Learning Rate Batch Size Update Frequency LLM α

DQN-Prior 5e-4 128 10 / 0.01
CQL-Prior 5e-4 128 10 / 0.01
GFlan-Prior 1e-4 64 16 Flan-T5 Small 0.01

Dataset Total Examples Good Examples Bad Examples
ALFWorld(Pick) 6572 6572 0

Salad(1000) 1186 574 612
Salad(4000) 3892 2209 1683
Salad(8000) 7571 4224 3347

Salad(12000) 11939 4004 7935
Salad(24000) 23869 7191 16678

Table 11: The composition of the offline dataset
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Figure 5: The ablation of the number of action proposals k used for approximating KL divergence
between the required action policy and the LLM prior action distribution.

9.4 ADDITIONAL RESULTS

Additional ablation on k for GFLan-Prior As shown in Figure 5, when we sample k = 5 action
proposals from the LLM to approximate the KL divergence, it performs better than when using k = 1.
This is because, with more proposals, the optimal action is more likely to be included in the subset,
thus better guiding the action policy.

Additional Ablation Study on the Caching Technique for Time Efficiency Most studies on
RL fine-tuning for LLMs Tan et al. (2024); Christianos et al. (2023); Wen et al. (2024) face the
challenge of querying the LLM for each step. They use large LLMs (up to 7B parameters) as the
action policy, and require querying the LLM at each step to collect data for online training. Since
the LLM prior is fixed, we can resort to the caching technique within our framework to alleviate
the need for querying the LLM at every step. We introduce a variant of the DQN-Prior algorithm,
called DQN-Prior (Cache), which uses cached action candidates for previously seen observations
and queries the LLM prior, storing its outputs only for new observations. We present the time and
computational costs of our DQN-Prior(query LLM each time) and DQN-Prior (Cache), as well as the
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Figure 6: Comparison of DQN-Prior(Cache), DQN-Prior(query LLM per step) and TWOSOME on
Overcooked (Tomato).
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Figure 7: The comparison of policy-based algorithms on BabyAI.

RLFT baseline, TWOSOME Tan et al. (2024), for learning to converge on Overcooked (Tomato) in
Table 12. Results of baselines are shown in Figure 6. TWOSOME fine-tunes the LLM (Qwen-1.5 7B
for a fair comparison) using the LoRA technique Hu et al. (2021) and the PPO algorithm. The time-
consuming of our DQN-Prior(Cache) is significantly lower than the TWOSOME, while maintaining
comparable performance. The caching technique is well-suited to our framework, as the 7B LLM
is capable of providing a reliable sub-action space. DQN-Prior (Cache) significantly reduces query
time costs but also achieves superior performance compared to DQN-Prior (query LLM per step), as
frequent queries introduce more uncertainty.

Table 12: The training costs of DQN-Prior (Cache), DQN-Prior (query LLM per step), and TWO-
SOME on Overcooked (Tomato) are reported for one training seed.

Baselines Training Time(min) GPU Usage Query LLM(Qwen-1.5 7B) Times
DQN-Prior(per step) 31.1 28298 MB 2933
DQN-Prior(Cache) 13.8 28340 MB 434

TWOSOME 60.4 25014 MB 5000

Additional Experiment on BabyAI We compare our policy-based algorithm, GFlan-Prior, with
GFlan in the text-based BabyAI environment Carta et al. (2023), which features partial observability
and random map initialization for each episode. We focus on the BabyAI task ‘Go to the red ball’ and
set the maximum horizon at 30. The comparison results are presented in Figure 7. Our GFlan-Prior,
which integrates both LLM prior knowledge and environmental interaction experience, successfully
accommodates the partially observed BabyAI and outperforms both GFlan and the LLM-prior.

Ablation Study on Using a Large LLM for the Q-Network We conducted an experiment on
Overcooked(Tomato) to compare the effects of using an LLM as the action prior versus using it to
encode state-action pairs. We evaluated three baselines:
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Figure 8: An ablation to verify the effectiveness of using the LLM to provide prior actions versus to
encode state-action pairs.

• DQN-Prior: Uses Qwen-1.5 7B to generate a sub-action space and BERT to encode (s, a)
pairs for Q-value estimation.

• DQN (BERT): Uses BERT to encode (s, a) pairs and performs DQN across the full action
space.

• DQN (Qwen-1.5 7B): Uses Qwen-1.5 7B to encode (s, a) pairs and performs DQN across
the full action space.

To reduce the overhead of querying the LLM for every state, we store its outputs: For DQN-Prior, we
store action proposals. For DQN (Qwen-1.5 7B), we store (s, a) embeddings.

As shown in the Figure 8 and Table 13, DQN-Prior outperforms both DQN (Qwen-1.5 7B) and DQN
(BERT). By leveraging the LLM’s high-level reasoning, DQN-Prior narrows the exploration space to
a reliable action sub-space, improving sample efficiency. While DQN (Qwen-1.5 7B) benefits from
the 7B LLM’s superior semantic understanding and outperforms DQN (BERT), (s,a) embeddings
cannot be directly used for action selection. Instead, a mapping from embeddings to Q-values must be
learned from scratch to correctly rank the entire action space, thereby increasing sample complexity.

In addition, DQN-Prior requires less time and CPU memory compared to DQN (Qwen-1.5 7B).
The higher memory and time consumption of DQN (Qwen-1.5 7B) are primarily due to its large
embedding size (4096 dimensions), which significantly increases the cost of training a mapping
(MLP adaptor) from state-action embeddings to Q-values, as well as the memory required to store
these embeddings.

Table 13: The training costs of DQN-based baselines: DQN-Prior, DQN(BERT), DQN(Qwen1.5-7B).
Both DQN (BERT) and DQN (Qwen-1.5 7B) involve the use of the 7B LLM. To minimize the
overhead of querying the LLM for every state, we pre-store its outputs: for DQN-Prior, we store
action proposals, while for DQN (Qwen-1.5 7B), we store (s, a) embeddings.

Baselines Training Time(min) GPU Usage CPU usage Embedding Dimension
DQN-Prior 13.8 28340 MB 18KB 768

DQN(BERT) 16.2 17864MB / 768
DQN(Qwen-1.5 7B) 74.8 22662MB 22724MB 4096

10 ADDITIONAL RELATED WORKS

Value-based Inference of LLM Not limited to the pre-training phase, it has been recently investi-
gated how scaling law applies at inference time for LLM. This is often referred to as searching over
an enormously large output space with guidance from value estimation. For example, the naive case
is beam search (citation) which selects the top K possible sequence based on cumulative probabilities
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as opposed to greedy search. The value estimate here is the likelihood of the sentence as predicted by
the language model. (Wang et al., 2022) propose CoT-SC, which searches over reasoning paths and
selects the most frequent answer. Tree-of-Thought (ToT, (Yao et al., 2023)) adopts depth/breadth-first
search. (Hao et al., 2023) introduce Reasoning-via-Planning (RAP) which uses Monte-Carlo Tree
Search and value estimate from prompting LLM. TS-LLM designed by (Feng et al., 2023) guides
MCTS with a learned value function conditioned on state and a learned Outcome-supervised Reward
Model (ORM). (Li et al., 2024) proposes Q-probing to adapt a pre-trained language model to also
maximize a tasks-specific reward function in code generation tasks. Furthermore, recent works
investigate Process-supervised Reward Model (PRM, (Lightman et al., 2023)) and apply it in LLM
inference, (McAleese et al., 2024) searches over a step-wise critic model in code reviewing tasks.
(Wang et al., 2024a) learn a PRM in math reasoning and use it for LLM fine-tuning. (Snell et al.,
2024) provides a detailed benchmark of different inference methods. (Zhang et al., 2024a) represents
the score as the probability of a single text token (e.g. ‘Yes’ or ‘No’) under the context and the prompt.
Even though our proposed method can be seen as an example of value-based inference, we focus on
a different perspective where we investigate how LLM helps conventional value-based reinforcement
learning algorithms in complex environments.

LLM-based Reward Function for RL Beyond serving as high-level planners for SDM tasks,
LLMs are also utilized for generating reward signals, which are subsequently used for RL training.
For example, (Kwon et al., 2023) leverages LLMs to directly generate reward signals prompted with
historical interaction information. Motif (Klissarov et al., 2023) employs LLMs to annotate pairwise
preference datasets, which are then used to train a reward function. Given the challenges LLMs face
in directly generating low-level actions for robotics tasks with continuous representations, several
studies (Yu et al., 2023; Ma et al., 2024) have instead utilized the coding capabilities of GPT-4 to
generate human-level reward code. These reward codes are then employed to facilitate RL training.

More discussion can be found in Section 2.
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