
OPT2023: 15th Annual Workshop on Optimization for Machine Learning
The Sharp Power Law of Local Search on Expanders

Simina Brânzei SIMINA.BRANZEI@GMAIL.COM
Purdue University

Davin Choo DAVIN@U.NUS.EDU
National University of Singapore

Nicholas Recker NRECKER@PURDUE.EDU

Purdue University

Abstract

Local search is a powerful heuristic in optimization and computer science, the complexity of which has been
studied in the white box and black box models. In the black box model, we are given a graph G = (V,E)
and oracle access to a function f : V → R. The local search problem is to find a vertex v that is a local
minimum, i.e. with f(v) ≤ f(u) for all (u, v) ∈ E, using as few queries to the oracle as possible. The query
complexity is well understood on the grid and the hypercube, but much less is known beyond.

We show that the query complexity of local search on d-regular expanders with constant degree is Ω
( √

n
log n

)
,

where n is the number of vertices of the graph. This matches within a logarithmic factor the upper bound of
O(
√
n) for constant degree graphs from [2], implying that steepest descent with a warm start is essentially

an optimal algorithm for expanders.

We obtain this result by considering a broader framework of graph features such as vertex congestion and
separation number. We show that for each graph, the randomized query complexity of local search is
Ω
(

n1.5

g

)
, where g is the vertex congestion of the graph; and Ω

(
4
√

s
∆

)
, where s is the separation num-

ber and ∆ is the maximum degree. For separation number the previous bound was Ω
(

8
√

s
∆/ log n

)
, given

by [17] for quantum and randomized algorithms. To prove these results, we design a variant of the rela-
tional adversary method from [1]. Our variant is asymptotically at least as strong as the version in [1] for all
randomized algorithms, as well as strictly stronger on some problems and easier to apply in our setting.
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1. Introduction

Local search is a powerful heuristic for solving hard optimization problems, which works by starting with
an initial solution to a problem and then iteratively improving it. Its simplicity and ability to handle large
and complex search spaces make it a useful tool in a wide range of fields, including computer science,
engineering, optimization, economics, and finance.

The complexity of local search has been extensively studied in both the white box model (see, e.g., [14])
and the black box model (see, e.g., [2]). The latter type of complexity, also known as query complexity, is
well understood when the neighbourhood structure of the underlying graph is the Boolean hypercube or the
d-dimensional grid, but much less is known for general graphs.

Many optimization techniques rely on gradient-based methods. The speed at which gradient methods find
a stationary point of a function can be estimated by analyzing the complexity of local search on the cor-
responding discretized space. Constructions for analyzing the hardness of computing stationary points are
often similar to those for local search, modulo handling the smoothness of the function (see, e.g., [20]).
Meanwhile, the difficulty of local search itself is strongly related to the neighbourhood structure of the un-
derlying graph. At one extreme, local search on a line graph on n nodes is easy and can be solved via binary
search in O(log n) queries. At the other extreme, local search on a clique on n nodes takes Ω(n) queries,
thus requiring brute force.

In this paper, we consider the following high level question: How does the geometry of the graph influence
the complexity of local search? In general, the neighbourhood graph search structure in optimization settings
may correspond to more general graphs beyond the well-studied Boolean hypercubes and d-dimensional
grids. For example, when the data in low rank matrix estimation is subjected to adversarial corruptions,
it is helpful to consider the function on a Riemannian manifold rather than Euclidean space. That is, the
discretization of an optimization search space may not necessarily always correspond to some d-dimensional
grid. Multiple works consider optimization in non-Euclidean spaces, such as that of [6], which adapts
stochastic gradient descent to work on Riemannian manifolds. See [4] and [7] for more discussion.

Our paper tackles the challenge of understanding local search on general graphs and obtains several new
results by considering a broader framework of graph features such as vertex congestion and separation
number. A corollary is a lower bound of the right order for expanders with constant degree.

2. Model

Let G = (V,E) be a connected undirected graph and f : V → R a function defined on the vertices. A
vertex v ∈ V is a local minimum if f(v) ≤ f(u) for all {u, v} ∈ E. We will write V = [n] = {1, . . . , n}.

Given as input a graphG and oracle access to function f , the local search problem is to find a local minimum
of f on G using as few queries as possible. Each query is of the form: “Given a vertex v, what is f(v)?”.

Query complexity. The deterministic query complexity of a task is the total number of queries necessary
and sufficient for a correct deterministic algorithm to find a solution. The randomized query complexity
is the expected number of queries required to find a solution with probability at least 9/10 for each input,
where the expectation is taken over the coin tosses of the protocol.

Congestion. Let P = {P u,v}u,v∈V be an all-pairs set of paths in G, where P u,v is a path from u to v.
For convenience, we assume P u,u = (u) for all u ∈ V ; our results will hold even if P u,u = ∅. For a path
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Q = (v1, . . . , vs) in G, let cQv be the number of times a vertex v ∈ V appears in Q and cQe the number of
times an edge e ∈ E appears in Q. The vertex congestion of the set of paths P is maxv∈V

∑
Q∈P c

Q
v , while

the edge congestion of P is maxe∈E
∑

Q∈P c
Q
e .

The vertex congestion of G is the smallest integer g for which the graph has an all-pairs set of paths P with
vertex congestion g. Clearly, g ≥ n since each vertex belongs to at least n paths in P and g ≤ n2 since each
vertex appears at most once on each path and there are n2 paths in P . The edge congestion ge is similarly
defined, but with respect to the edge congestion of a set of paths P .

Separation number. For each subset of vertices A ⊆ V , let δ(A) ⊆ V \ A be the set of vertices outside
A and adjacent to vertices in A. The separation number s of G is 1: s = max

H⊆V
min
A⊆H:

|H|/4 ≤ |A| ≤ 3|H|/4

|δ(A)| .

See, e.g., [10] for a survey of graph features.

d-regular expanders. For each set of vertices S ⊆ V , the edges with one endpoint in S and another in
V \ S are called cut edges and denoted E(S, V \ S) = {(u, v) ∈ E | u ∈ S, v 6∈ S}. The graph is a
β-expander if |E(S, V \ S)| ≥ β · |S|, for all S ⊆ V with 0 < |S| ≤ n/2 (see, e.g. [3]). The graph is
d-regular if each vertex has degree d.

Distance. For each u, v ∈ V , let dist(u, v) be the length of the shortest path from u to v.

3. Our contributions

Guided by the high level question of understanding how graph geometry influences hardness of local search,
we obtain the following results.

3.1. Our variant of the relational adversary method

Our first contribution is to design a new variant of the relational adversary method of [1]. While [1] relates
the query complexity to the progress made on pairs of inputs, we relate the query complexity to progress
made on subsets of inputs via a different expression.

Theorem 1 Consider finite sets A and B, a set X ⊆ BA of functions 2, and a mapH : X → {0, 1} which
assigns a label to each function in X . Additionally, we get oracle access to an unknown function F ∗ ∈ X .
The problem is to computeH(F ∗) using as few queries to F ∗ as possible.3

Let r : X × X → R≥0 be a non-zero symmetric function of our choice with r(F1, F2) = 0 whenever
H(F1) = H(F2). For each Z ⊆ X , define

M(Z) =
∑
F1∈Z

∑
F2∈X

r(F1, F2) ; and q(Z) = max
a∈A

∑
F1∈Z

∑
F2∈Z

r(F1, F2) · 1{F1(a)6=F2(a)} . (1)

If there is a subset Z ⊆ X with q(Z) > 0, then the randomized query complexity of the problem is at least

min
Z⊆X :q(Z)>0

M(Z)

100 · q(Z)
. (2)

1. For example, the separation number of a barbell graph (i.e., two cliques of size n/2 connected by a single edge) is n/8.
2. Each function F ∈ X has the form F : A → B.
3. In other words, we have free access to H and the only queries counted are the ones to F ∗, which will be of the form: “What is

F ∗(a)?”, for some a ∈ A. The oracle will return F ∗(a) in one computational step.
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The proof is included in the full version of the paper, where we also show an example on which our variant
is strictly stronger, giving a tight lower bound for the query complexity of a simple “matrix game”. Then we
prove our variant is asymptotically at least as strong in general, for randomized algorithms.

Proposition 1 Consider any problem and let T be the expected number of queries required in the worst
case by the best randomized algorithm to succeed with probability 9/10. If the relational adversary method
from [1] gives a lower bound of T ≥ Λ for some Λ > 0, then Theorem 1 gives a lower bound of T ≥ Λ/40.

3.2. Lower bounds for local search via congestion

Next we give the first known lower bound for local search as a function of (vertex) congestion.

Theorem 2 Let G = (V,E) be a connected undirected graph with n vertices. Then the randomized query
complexity of local search on G is Ω

(
n1.5

g

)
, where g is the vertex congestion of the graph.

Since g ∈ [n, n2], Theorem 2 cannot be used to show a lower bound stronger than Ω(
√
n) queries, matching

a general upper bound of O(
√
n) for graphs with bounded degree ([2]). Theorem 2 gives meaningful results

precisely when one can construct an all-pairs set of paths with vertex congestion g = o(n1.5).

Theorem 2 also implies a lower bound of Ω
(
n1.5

ge·∆

)
on any graph G, where ge is the edge congestion and ∆

the maximum degree of G.

3.3. Lower bounds for local search via separation number

We also give an improved lower bound for local search with respect to the graph separation number s.
Our construction is heavily inspired by the one in [17] , which gave a lower bound of Ω

(
8
√

s
∆/ log n

)
, for

both the quantum and classical randomized algorithms. Adapting this construction within the framework of
Theorem 1 is non-trivial however.

Theorem 3 Let G = (V,E) be a connected undirected graph with n vertices, maximum degree ∆, and
separation number s. Then the randomized query complexity of local search on G is Ω

(
4
√

s
∆

)
.

The best known upper bound with respect to graph separation number is O((s + ∆) · log n) due to [17],
which was obtained via a refinement of the divide-and-conquer procedure of [16]. It is an interesting open
question whether the current upper and lower bounds can be improved.

3.4. Corollary for expanders

Since d-regular β-expanders with constant d and β admit an all-pairs set of paths with congestionO(n·log n)
(e.g., see [9]), we get the next lower bound for constant degree expanders.

Corollary 1 Let G = (V,E) be an undirected d-regular β-expander with n vertices, where d and β are
constant. Then the randomized query complexity of local search on G is Ω

( √
n

logn

)
.

The lower bound of Corollary 1 is tight within a logarithmic factor. A simple algorithm known as steepest
descent with warm start ([2]) can be used to see this:

First query t vertices x1, . . . , xt selected uniformly at random and pick the vertex x∗ that mini-
mizes the function among these4. Then run steepest descent from x∗ and stop when no further

4. That is, the vertex x∗ is defined as: x∗ = xj , where j = argmint
i=1f(xi).
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improvement can be made, returning the final vertex reached. When t =
√
n∆, where ∆ is the

maximum degree of the graph, the algorithm issues O(
√
n∆) queries in expectation.

Thus steepest descent with a warm start has expected query complexity O(
√
n) on constant degree ex-

panders. Our lower bound implies this algorithm is essentially optimal on such graphs.

We also get a lower bound as a function of the expansion and maximum degree of the graph G.

Corollary 2 Let G = (V,E) be an undirected β-expander with n vertices and maximum degree ∆. Then
the randomized query complexity of local search on G is Ω

(
β
√
n

∆ log2 n

)
.

4. Related work

The query complexity of local search was first studied experimentally by [19]. The first breakthrough in
the theoretical analysis of local search was obtained in the work of Aldous [2], which stated the algorithm
based on steepest descent with a warm start and showed the first nontrivial lower bound of Ω(2n/2−o(n))
on the query complexity for the Boolean hypercube {0, 1}n. This almost matches the query complexity of
steepest descent with a warm start, which was also analyzed in [2] and shown to take O(

√
n · 2n/2) queries

in expectation on the hypercube. The steepest descent with a warm start algorithm applies to generic graphs
too, resulting in O(

√
n ·∆) queries overall for any graph with maximum degree ∆.

Aldous’ lower bound for the hypercube was later improved in [1], which showed a bound of Ω(2n/2/n2)
via a variant of the relational adversary method from quantum computing. [21] improved the randomized
lower bound to a tight bound of Θ(2n/2 ·

√
n) via a “clock”-based random walk construction, which avoids

self-intersections. Meanwhile, [16] developed a deterministic divide-and-conquer approach to solving local
search that is theoretically optimal over all graphs in the deterministic context. On the hypercube, their
method yields a lower bound of Ω(2n/

√
n) and an upper bound of O(2n log(n)/

√
n).

Another commonly studied graph for local search is the d-dimensional grid [n]d. [1] used his relational
adversary method there to show a randomized lower bound of Ω(nd/2−1/ log n) for every constant d ≥ 3.
[21] proved a randomized lower bound of Ω(nd/2) for every constant d ≥ 4; this is tight as shown by
Aldous’ generic upper bound. Zhang also showed improved bounds of Ω(n2/3) and Ω(n3/2/

√
log n) for

d = 2 and d = 3 respectively, as well as some quantum results. The work of [18] closed further gaps in the
quantum setting as well as the randomized d = 2 case. The problem of local search on the grid was also
studied under the context of multiple limited rounds of adaptive interactions by [8].

More general results are few and far between. On many graphs, the simple bound from [2] of Ω(∆)
queries is the best known lower bound: hiding the local minimum in one of the ∆ leaves of a star sub-
graph requires checking about half the leaves in expectation to find it. [17] gave a quantum lower bound of
Ω
(

8
√

s
∆/ log(n)

)
, where s is the separation number of the graph. This implies the same lower bound in a

randomized context, using the spectral method. Meanwhile, the best known upper bound isO((s+∆)·log n)
due to [17], which was obtained via a refinement of the divide-and-conquer procedure of [16]. [5] studied
the communication complexity of local search. This captures distributed settings, where data is stored in the
cloud, on different computers.

There is a rich literature analyzing the congestion of graphs. E.g., the notion of edge congestion is important
in routing problems, where systems of paths with low edge congestion can enable traffic with minimum
delays (see, e.g., [9, 11, 15]). This problem is sometimes called multicommodity flow or edge disjoint paths
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with congestion. Others study routing with the goal of maximizing the number of demand pairs routed using
node disjoint paths; this is the same as requiring vertex congestion equal to 1 (see, e.g., [12, 13]).

Local search is strongly related to the problem of local optimization where one is interested in finding an
approximate local minimum of a function on Rd. A common way to solve local optimization problems is
to employ gradient-based methods, which find approximate stationary points. To show lower bounds for
finding stationary points, one can similarly define a function that selects a walk in the underlying space and
hide a stationary point at the end of the walk. Handling the requirement that the function is smooth and
ensuring there is a unique stationary point are additional challenges.

Works like [6] study stochastic gradient descent, which is one method of finding approximate local minima.
Moreover, they do this on Riemann manifolds, which are a very broad class of spaces. This motivates the
need to study local search not only on hypercubes and grids, but also on other, broader classes of graphs.
For a more extensive survey, see, e.g., [4].
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