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Abstract001

Research on LLM technologies is rapidly002
emerging, with most of them employ a ’fast003
thinking’ approach to inference. Most LLMs004
generate the final result based solely on a sin-005
gle query and LLM’s reasoning capabilities.006
However, with the advent of OpenAI-o1, ’slow007
thinking’ techniques have garnered increasing008
attention because its process is closer to the009
human thought process. Inspired by the human010
ability to constantly associate and replenish011
knowledge during thinking, we developed the012
novel Chain-of-Associated-Thoughts (CoAT)013
framework, which introduces an innovative syn-014
ergy between the Monte Carlo Tree Search015
(MCTS) algorithm and a dynamic mechanism016
for integrating new key information, termed017
‘associative memory’. By combining the struc-018
tured exploration capabilities of MCTS with019
the adaptive learning capacity of associative020
memory, CoAT significantly expands the LLM021
search space, enabling our framework to ex-022
plore diverse reasoning pathways and dynam-023
ically update its knowledge base in real-time.024
This allows the framework to not only revisit025
and refine earlier inferences but also adaptively026
incorporate evolving information, ensuring that027
the final output is both accurate and compre-028
hensive. To validate the effectiveness of our029
framework, we conducted extensive experi-030
ments across a range of generative and reason-031
ing tasks. These experiments demonstrated that032
CoAT outperforms conventional inference pro-033
cesses on accuracy, coherence, and diversity.034

1 Introduction035

Large Language Models (LLMs) have rapidly be-036

come a cornerstone in natural language processing,037

powering applications ranging from conversational038

agents to complex decision-making systems. Cen-039

tral to their operation is the process of inference,040

where LLMs generate contents based on learned041

patterns from massive datasets by auto-regressive042

Figure 1: Left: Human thinking chain; Right: Associ-
ated thoughts path. This figure illustrates how our CoAT
framework is inspired to continually supplement extra
information during reasoning by simulating human as-
sociative mechanisms.

learning algorithm in the pre-training stage. Most 043

LLMs (GPTs (Achiam et al., 2023), Llamas (Dubey 044

et al., 2024), and Qwens (Yang et al., 2024) et 045

al.) employ a ‘fast thinking’ approach to inference 046

which relies heavily on the pre-trained reasoning 047

capabilities of LLM models. These approaches 048

process a single query to produce the final result. 049

Although effective for many tasks, they often strug- 050

gle with problems that require nuanced, iterative 051

reasoning, or adaptation to new information. 052

Recent advances (Li et al., 2022; Brown et al., 053

2024; Wu et al., 2025) have begun to explore alter- 054

natives to ‘fast thinking’, introducing ‘slow think- 055

ing’ methodologies (Jiang et al., 2024; Min et al., 056

2024; Gan et al., 2025) that align more closely with 057

human thinking processes. This idea emphasize 058

deliberate, iterative reasoning, and the integration 059

of historical contents or external knowledge during 060

inference. OpenAI-o1 (Jaech et al., 2024), a no- 061

table project, has sparked significant interest in this 062

domain, showcasing the potential of ‘slow think- 063

ing’ frameworks to improve reasoning capabilities. 064

Some studies (Zhang et al., 2023; Liu et al., 2023; 065

Choi et al., 2023; Chen et al., 2024a; Tian et al., 066

2024; Zhang et al., 2024; Wan et al., 2024) have 067
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employed MCTS-inspired methods to enhance the068

multi-step reasoning capabilities of LLMs. How-069

ever, The above mentioned methods merely subdi-070

vide the reasoning process into smaller steps and071

involve rethinking what has already been generated.072

Throughout the process, reliance is still placed on073

the initial input information and the logical reason-074

ing abilities of the LLM itself.075

Inspired by the human ability to constantly asso-076

ciate and replenish knowledge during thinking, we077

propose the Chain-of-Associated-Thoughts (CoAT)078

framework. To our knowledge, associative mem-079

ory mechanisms were first applied to simulate hu-080

man thought in LLM processes. The associative081

memory mechanism empowers CoAT to dynami-082

cally incorporate new key information during in-083

ference, mimicking the human ability to associate084

and update knowledge iteratively. Furthermore, we085

optimize the routing strategy in the MCTS algo-086

rithm to ensure that each addition of associative087

memory will provide additional key information088

for subsequent content generation. This synergy089

between structured search and adaptive learning090

enables CoAT to expand its reasoning scope while091

maintaining contextual coherence, overcoming lim-092

itations of conventional LLMs.093

The effectiveness of our framework is validated094

through extensive experiments. The results demon-095

strate that our framework significantly outperforms096

traditional models in terms of accuracy, coherence,097

and diversity. In summary, the main contributions098

of our work are as follows:099

• We proposed the CoAT framework to enhance100

LLM reasoning. Our framework expands the101

LLM reasoning search space for a better solu-102

tion using the optimized MCTS algorithm.103

• We endowed the LLM reasoning process104

with human-like associative and adaptive self-105

refinement capabilities to effectively address106

complex reasoning tasks.107

• We optimized the routing strategy in CoAT108

to identify the best generation trajectory. The109

qualitative and quantitative experimental re-110

sults demonstrate its superior performance111

compared to other methods.112

2 Related Work113

The development of Large Language Models114

(LLMs) has witnessed significant advances in re-115

cent years, with a particular focus on improving116

reasoning capabilities. This section reviews key re- 117

search on LLM inference strategies, the integration 118

of iterative reasoning frameworks, and associative 119

memory mechanisms, all of which inform the de- 120

sign of our Chain-of-Associated-Thoughts (CoAT). 121

LLM Inference Strategies Traditional LLMs, 122

including BERT (Devlin, 2018), GPT-3 (Brown 123

et al., 2020) and its successors (like GPT-4 (Achiam 124

et al., 2023)) rely on a single-shot or few-shot in- 125

ference paradigm. These methods emphasize the 126

model’s ability to provide accurate responses using 127

fixed prompts, often resulting in outputs that lack 128

robustness in scenarios that require deeper reason- 129

ing. To address these limitations, researchers have 130

explored chain-of-thought (CoT) prompting (Wei 131

et al., 2022) and interleaving retrieval with chain- 132

of-thought (IRCoT) (Trivedi et al., 2022a), which 133

enable LLMs to decompose complex problems into 134

smaller sequential steps. Although this improves 135

reasoning quality, it remains inherently static as the 136

model cannot revisit or refine previous inferences 137

during the reasoning process. 138

More recently, the variants of CoT, such as 139

self-consistency chain-of-thought (CoT-SC) (Wang 140

et al., 2022) have introduced diversity in reason- 141

ing by sampling multiple outputs and selecting 142

the most consistent solution, Graph-of-thought 143

(GoT) (Besta et al., 2024) has been improved with 144

search algorithms that can search solution paths 145

more effectively, and Tree-of-thought (ToT) (Yao 146

et al., 2024) prompting uses DFS or BFS search 147

guided by LLMs. However, these methods do not 148

fundamentally alter the underlying inference mech- 149

anism, leaving room for further exploration of dy- 150

namic and iterative reasoning processes. 151

The concept of ‘slow thinking’ (de Winter et al., 152

2024) has gained traction as an alternative to tra- 153

ditional inference paradigms, inspired by the hu- 154

man ability to deliberate and refine thoughts over 155

time. OpenAI-o1 (Jaech et al., 2024) has been a 156

pioneering framework in this space, demonstrat- 157

ing the benefits of iterative reasoning for tasks 158

involving complex problem solving and decision 159

making. By allowing LLMs to reassess previous 160

steps and integrate new information, slow thinking 161

frameworks improve adaptability and output qual- 162

ity. These advancements highlight the potential 163

of moving beyond static reasoning toward more 164

dynamic, context-aware methodologies. 165

Monte Carlo Tree Search in Inference 166

MCTS has a long history of success in domains 167
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Figure 2: Overview of CoAT framework. The Associative Memory (AM) will be added into each node during
reasoning. The “External Brain (EB)” is an optional measure to further improve the quality of reasoning results.

requiring decision making under uncertainty,168

such as game playing (Silver et al., 2016) and169

planning (Coulom, 2006). Its ability to balance170

exploration and exploitation makes it a compelling171

candidate for enhancing LLM reasoning. Existing172

works, like LLM-MCTS (Zhao et al., 2024), LLM173

agent tree search (LATS) (Zhou et al., 2023)174

and reasoning via planning (RAP) (Hao et al.,175

2023) have integrated MCTS into specific AI176

systems to improve search space exploration, but177

its application in LLMs remains limited. Our178

CoAT extends this approach by leveraging MCTS179

not only for structured exploration but also as a180

means to iteratively refine reasoning pathways by181

inserting associative memory during inference.182

External Knowledge Augmented Mechanisms183

Augmented knowledge, an external information184

retrieval process that enables humans to form and185

retrieve connections between related concepts186

when thinking, has inspired various machine187

learning models. Memory-augmented neural188

networks (Santoro et al., 2016) and recurrent189

memory-based architectures (Zaremba, 2014)190

have demonstrated their effectiveness in tasks191

requiring long-term context retention. However,192

these systems often lack the flexibility to adapt to193

evolving information during LLM inference.194

Recent advancements (Gao et al., 2023; Yu et al.,195

2023; Shao et al., 2023; Chen et al., 2024b; Fan196

et al., 2024), such as native Retrieval Augmented197

Generation (NativeRAG) (Lewis et al., 2020),198

Knowledge Augmented Generation (KAG) (Liang199

et al., 2024) and hippocampal indexing RAG (Hip-200

poRAG) (Gutiérrez et al., 2024), have addressed201

this by incorporating external knowledge from vec-202

tor database or knowledge graph at input stage.203

CoAT framework builds upon this foundation by204

introducing a dynamic associative memory mech-205

anism that not only retrieves relevant information206

but also updates and integrates new knowledge in 207

real time during the reasoning stage without re- 208

quiring post-training. Similarly, Search-R1 (Jin 209

et al., 2025), which is conceptually aligned with 210

CoAT, introduces adaptive retrieval capabilities via 211

the reinforcement learning process, which leads to 212

increased computational costs. 213

Although existing research has made substan- 214

tial strides in enhancing the reasoning capabili- 215

ties and adaptability of LLMs, some challenges 216

remain. Static inference strategies and the limited 217

integration of iterative mechanisms continue to con- 218

strain the capacity of LLMs to effectively address 219

increasingly complex and dynamic reasoning tasks. 220

To address these challenges, our proposed CoAT 221

framework synergistically integrates the structured 222

exploration offered by MCTS and the adaptive ca- 223

pabilities of associative memory. 224

3 Methodology 225

Inspired by the human ability to form associa- 226

tions during cognitive processes and the demon- 227

strated effectiveness of MCTS algorithm in en- 228

hancing the reasoning capability of LLMs, we pro- 229

pose the CoAT reasoning framework, as illustrated 230

in Figure 2. The framework leverages the asso- 231

ciation mechanism to enable LLMs to perform 232

real-time retrieval of relevant information and self- 233

augmentation during the reasoning process. The 234

realization of this functionality is underpinned by 235

our optimized MCTS algorithm, which systemati- 236

cally integrates associative content and generated 237

content through tree node search. By assigning 238

precise values to each node based on our prede- 239

fined rules, the algorithm facilitates the automatic 240

association process, thereby completing the reason- 241

ing task. To further enhance the reasoning qual- 242

ity of CoAT framework, we have designed a flex- 243

ible mechanism for sourcing associative content. 244

3



Figure 3: The detailed reasoning process of the CoAT framework. The number of candidate nodes was set to 3.

This mechanism allows the model to either perform245

self-association or retrieve associative information246

through external knowledge sources, referred to247

as an “External Brain (EB).” The external brain248

encompasses commonly used resources such as249

knowledge graph, vector database, LLM agents,250

and web search engines. A detailed search pro-251

cess of the CoAT framework when query “How252

should we view the role of artificial intelligence in253

contemporary interna-tional competition? Which254

countries hold the leading advantages in this field?”255

is shown in Figure 3.256

3.1 Associative Memory Mechanism257

We introduce associative memory mechanism in258

the CoAT framework, can be regarded as a novel ex-259

ternal knowledge augmentation mechanism, which260

enables the reasoning process of LLMs to dynami-261

cally update and integrate newly retrieved informa-262

tion in real time according to the generated content263

of each node. Existing methods primarily focus264

on incorporating extended knowledge into the rea-265

soning process at its initial stage. However, this266

approach may lead to incorporation of overly broad267

knowledge, which introduces two significant draw-268

backs: (a) an excess of irrelevant information that269

compromises inference efficiency, and (b) insuf-270

ficient inclusion of critical content, ultimately de-271

grading inference quality. In contrast, our proposed272

real-time association mechanism, integrated into273

the inference process, effectively addresses these274

issues by dynamically aligning relevant knowledge275

with the ongoing inference.276

The associative memory mechanism generates277

content that is beneficial for reasoning and has not278

been previously mentioned in historical contents. 279

The associative content should exhibit minimal 280

redundancy with existing generated contents and 281

should be concise enough to avoid interfering with 282

the reasoning process. Furthermore, the subject 283

of associative content must maintain a strong rele- 284

vance to the overall reasoning framework. If these 285

conditions are not satisfied, the associative content 286

for the node can be left empty. The above principle 287

will be applied in evaluation stage for evaluating 288

the quality of associative memory. 289

When generating the associative memory of a 290

node ni, the “External Brain” can serve as an alter- 291

native approach to enhance the quality of inference 292

results. However, this approach may reduce the 293

efficiency of the inference. This process can be 294

summarized as follows: 295

AM(ni) = EB 7→ LLM(Q | G(ni)). (1) 296

where G(ni) denotes the content generated from 297

node ni and EB is the External Brain. 298

Then, a node can reference both the historical 299

content and the associative memories derived from 300

all of its ancestral nodes. Their historical content 301

and associative content together constitute the com- 302

prehensive thinking process of the target LLM. The 303

generation process of each node ni+1 is formulated 304

as follows: 305

G(ni+1) = LLM(Q | G(ni) | AM(n1:i)). (2) 306

where Q is the input query and AM(n1:i) denotes 307

the associative memories of nodes n1 ∼ ni in the 308

reasoning trajectory. 309

3.2 Optimized MCTS 310
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Figure 4: The optimized
MCTS process in CoAT.

The standard process311

of the MCTS algo-312

rithm consists of four313

stages: Selection, Ex-314

pansion, Simulation,315

and Backpropagation.316

In the selection stage,317

MCTS applies the318

UCT algorithm (Up-319

per Confidence bounds applied to Trees) (Kocsis320

and Szepesvári, 2006) to choose the best node and321

then adds it to the trajectory. The UCT of a node n322

is calculated as follows:323

UCT (n) = V (n) + w

√
lnN(p)

N(n)
. (3)324

where N(n) is the number of visits to node n, V (n)325

is the score value, and p is the parent node of node326

n. w is the exploration weight and is set to 1.0 dur-327

ing CoAT reasoning. When the end of an episode is328

reached, a back-propagation is carried out to update329

the value of node n and its parent nodes.330

The traditional MCTS algorithm has demon-331

strated significant success in various decision-332

making domains. Recently, with advancements333

in LLM, numerous novel variants of MCTS have334

been proposed to enable a more effective integra-335

tion with LLMs. The work of LATS (Zhou et al.,336

2023) introduces an Evaluation stage after Expan-337

sion and a Reflection stage at the end of the process.338

The evaluation stage assesses the quality of the con-339

tent generated during the expansion stage, while340

the reflection stage determines whether the output341

correctly addresses the inputs. Building on these342

improvements, we propose an Association stage343

to simulate the human associative mechanism be-344

tween the expansion and evaluation stages. The345

optimized MCTS process is shown in Figure 4.346

Consequently, the quality of the associative con-347

tent is also assessed during the evaluation stage.348

The evaluation criteria encompass both the quality349

of the associative content and its correlation with350

the content generated during the expansion stage,351

with the goal of preventing excessive associations352

and mitigating hallucinations. Now, the evaluation353

value of each node n has two components: the354

generated content value and the associative content355

value. And the node value is calculated as follows:356

V (n) = Fg(Q,G(n)) + β ∗ Fa(G(n),AM(n)). (4)357

where G(n), AM(n) denotes the generated con-358

tent and the associative content at node n, respec-359

tively. F is the evaluation function for generation 360

and association. β is a weighting coefficient used 361

to control the influence of the associative content, 362

and is set to 0.1 in subsequent experiments. 363

In the backpropagation stage, we update the visit 364

counts and quality evaluations for every node along 365

the trajectory based on the outcomes of the simu- 366

lation stage from the leaf node to the root node. 367

The calculation of visit counts is formalized as 368

C(ni+1) = C(ni) + 1. And the quality evaluation 369

value of a parent node np will be updated with its 370

children nodes ni
c as follows: 371

V (np)
∗ =

V (np) ∗ C(np) +
∑K

i V (ni
c)

C(np) +K
. (5) 372

where K is the number of candidate nodes of each 373

parent node, C(np) is the original visit counts of 374

np. The updated node value V (np)
∗ is used in the 375

UCT algorithm (Eq. 3) to choose the node of the 376

trajectory in the next selection stage. 377

To more precisely determine when to terminate 378

the MCTS search process, we applied a specialized 379

Reward Model (RM) to evaluate the content gener- 380

ated at the leaf node of the search trajectory. In cer- 381

tain extreme cases, the search process may enter an 382

ambiguous state, leading to inefficiencies. To miti- 383

gate this issue, we introduce a hyper-parameter (D) 384

to constrain the maximum depth of the tree search. 385

When the search depth surpasses D, the process 386

halts, and the best inference result obtained up to 387

that point is returned. Notably, setting D = −1 re- 388

moves any depth limitation, allowing the search to 389

continue until the optimal result is identified. The 390

flow of the above algorithm can be summarized as 391

Algorithm 1 list at Appendix A.1. 392

4 Experiments 393

The implementation of our CoAT framework is 394

built upon the LangChain project. To evaluate 395

the effectiveness of CoAT framework, we designed 396

two types of validation experiments: (a) assessing 397

the qualitative performance of our CoAT frame- 398

work in conjunction with LLM, via comparative 399

evaluations against baseline models; (b) quanti- 400

tatively evaluating the CoAT framework against 401

other state-of-the-art reasoning models on both 402

publicly available open-source datasets and custom- 403

constructed complex reasoning benchmarks. 404

4.1 Qualitative Performance Evaluation 405

To assess the effectiveness of our CoAT framework 406

in handling real-world reasoning challenges, we 407
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Framework Model HotpotQA 2WikiMultiHopQA MuSiQue

EM F1 EM F1 EM F1

NativeRAG ChatGPT-3.5 43.4 57.7 33.4 43.3 15.5 26.4
HippoRAG ChatGPT-3.5 41.8 55.0 46.6 59.2 19.2 29.8

IRCoT+NativeRAG ChatGPT-3.5 45.5 58.4 35.4 45.1 19.1 30.5
IRCoT+HippoRAG ChatGPT-3.5 45.7 59.2 47.7 62.7 21.9 33.3

IRCoT+HippoRAG DeepSeek-V2 (236B) 51.0 63.7 48.0 57.1 26.2 36.5
KAG DeepSeek-V2 (236B) 62.5 76.2 67.8 76.2 36.7 48.7

KAG Qwen2.5-32B-Instruction 56.6 72.1 65.9 75.5 21.3 31.4
CoAT(Ours) Qwen2.5-32B-Instruction 69.6 74.2 73.1 78.8 34.7 39.8

Table 1: The end-to-end generation performance of different RAG models on three multi-hop Q&A datasets. The
values in bold and underline are the best and second best indicators respectively.

designed a series of complex reasoning questions.408

A case is illustrated in Figure 7 in Appendix A.2.409

This question requires multidimensional knowl-410

edge integration across domains such as economics,411

ethics. The CoAT-enhanced model (Qwen2.5-32B)412

outperforms both the baseline Qwen2.5-32B/72B413

and ChatGPT models, offering more structured414

and comprehensive responses. Unlike the base-415

line outputs, which focus on three to four broad416

categories, the CoAT model organizes its analy-417

sis into five clearly defined dimensions: Economic418

Impact, Military and Security, Technological Lead-419

ership, Ethical and Regulatory Frameworks, and420

Diplomatic and Soft Power. The additional inclu-421

sion of the dimension of “Ethical and Regulatory422

Frameworks” covering AI ethics, privacy regula-423

tions, and global governance adds crucial depth and424

relevance, supported by illustrative examples such425

as Project Maven and the European AI Alliance.426

Moreover, the CoAT demonstrates superior per-427

formance in geopolitical reasoning. While baseline428

models tend to list countries with limited elabora-429

tion, CoAT’s output delivers a detailed, evidence-430

based comparison across six items. Each is an-431

alyzed in terms of strengths, strategic priorities,432

and challenges. For instance, the model highlights433

India’s AI initiatives for agriculture and urban de-434

velopment, Japan’s robotic-centered AI focus, and435

Russia’s emphasis on military AI within a con-436

strained geopolitical environment. This granular437

and policy-relevant analysis underscores CoAT’s438

strength in supporting nuanced, multi-perspective439

reasoning, particularly in domains demanding so-440

phisticated geopolitical insight.441

4.2 Quantitative Performance Evaluation442

In this section, we will verify the validity of our443

CoAT framework in two aspects. (a) We compare444

the base models’ reasoning capacity through the 445

CoAT framework with other retrieval-augmented 446

methods on multi-hop datasets. (b) We compare 447

the results of base models through the CoAT frame- 448

work with other well-known models on a self-built 449

complex comprehensive reasoning dataset. 450

Performance on Multi-hop Datasets We en- 451

hance the quality of content generated by the as- 452

sociative mechanism through the integration of ex- 453

tended knowledge, and demonstrate that improv- 454

ing the quality of associative content leads to en- 455

hanced reasoning ability in our framework. To 456

validate the effectiveness of CoAT framework for 457

the knowledge-intensive question-answering task, 458

we conduct comparative experiments based on 459

retrieval-augmented generation. 460

The compared methods are NativeRAG (Lewis 461

et al., 2020), IRCoT (Trivedi et al., 2022a), Hip- 462

poRAG (Gutiérrez et al., 2024), and KAG (Liang 463

et al., 2024). And three widely-used multi-hop 464

QA datasets are HotpotQA (Groeneveld et al., 465

2020), 2WikiMultiHopQA (Ho et al., 2020), and 466

MuSiQue (Trivedi et al., 2022b). 467

Settings. For a fair comparison, we follow IR- 468

CoT, HippoRAG and KAG utilizing a subset of 469

1,000 questions from each validation set and con- 470

structing a retrieval corpus related to selected ques- 471

tions. To evaluate QA performance, we adopt two 472

widely used metrics: Exact Match (EM), and F1 473

scores. Furthermore, associative memory is influ- 474

enced not only by the inherent capabilities of the 475

LLM but also by the quality of retrieval results 476

from external knowledge sources. So we apply the 477

results of KAG’s retrieval module as the associative 478

memory during CoAT framework evaluation. 479

Analysis. The multi-hop Q&A performance is 480

presented in Table 1, the results of NativeRAG, 481

HippoRAG and IRCoT using ChatGPT-3.5 and 482
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Figure 5: The heatmap of pairwise win rate and the average win rate of all models (Zoom in for best view).

DeepSeek-V2 as the backbone models are ex-483

cerpts from the official KAG documentation for484

comparison. However, since the API service for485

DeepSeek-V2 has been shut down and its local de-486

ployment is also costly, we selected the Qwen2.5-487

32B-Instruction model as an alternative with com-488

parable capabilities. Our proposed framework,489

CoAT, demonstrates significant performance im-490

provements compared to KAG using the same491

backbone model, with EM gains of 13.0%, 7.2%,492

and 13.4% on HotpotQA, 2WikiMultiHopQA, and493

MuSiQue respectively, and F1 improvements of494

2.1%, 3.3%, and 8.4%. In particular, the perfor-495

mance of our CoAT with Qwen2.5-32B-Instruction496

is also better than KAG with DeepSeek-V2, with an497

increase in EM of 7. 1% and 5. 3% on HotpotQA,498

2WikiMultiHopQA datasets.499

The observed performance improvements can500

be largely attributed to the more comprehensive501

exploration of semantically related entities during502

the reasoning process in our framework. Lever-503

aging the previous retrieved passages, we employ504

the association mechanism to identify and expand505

upon salient entities that are essential for multi-hop506

reasoning. The retrieval results are further refined507

in the subsequent content generation stage to en-508

hance response accuracy. However, the association509

mechanism will lead the model to generate explana-510

tory contents when a direct answer is unavailable,511

which can reduce response precision and conse-512

quently lower the overall F1 score.513

Performance on CRB Dataset514

To better demonstrate the effectiveness of CoAT515

framework in associative reasoning tasks, we con-516

structed a high-quality reasoning dataset, referred517

to as the Comprehensive Reasoning Benchmark518

(CRB). This dataset encompasses various disci-519

plines, including politics, scientific and technolog- 520

ical domains, international relations, economics, 521

law, and history, among others. The tasks in this 522

dataset require advanced analytical skills, case- 523

based evidence, and rigorous logical reasoning. 524

Dataset. The CRB dataset contains 205 profes- 525

sionally reviewed questions, each accompanied by 526

its corresponding evaluation rules and total score, 527

which together constitute the final evaluation en- 528

tries. More details are provided in Appendix A.3. 529

Settings. Based on the CRB dataset, we de- 530

signed two series of experiments. First, we se- 531

lected multiple state-of-the-art generative mod- 532

els (MiniMax/abab6.5-chat, Doubao-pro-256k, 533

OpenAI/GPT-4o, Qwen2.5-32B-Instruct, Qwen2.5- 534

72B-Instruct), reasoning models (DeepSeek-R1, 535

OpenAI/o1, OpenAI/o1-mini, OpenAI/o3-mini) 536

and our CoAT framework with two base models 537

(Qwen2.5-32B-Instruct, Qwen2.5-72B-Instruct) to 538

generate answers for the questions in the dataset. 539

The answers are then evaluated according to the 540

Judge Rules, and scores were assigned accord- 541

ingly. The final average score for each model was 542

computed using a standardized formula: SM = 543
1
N

∑N
i ( si

sT
), where si and sT are the evaluated 544

score and the maximum score, respectively. The 545

experimental results are presented in Table 2. 546

Second, we conducted pairwise comparisons of 547

the responses generated by the above models to 548

assess which model’s response with greater com- 549

prehensiveness and depth of detail. Based on these 550

comparisons, we derived the win rate heatmap and 551

the average win rate for each model. The results of 552

this experiment are illustrated in Figure 5. 553

Analysis. The results presented in Table 2 sup- 554

port the following conclusions. First, our CoAT 555

framework significantly improves the performance 556
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of the base models, Qwen2.5-32B-Instruction and557

Qwen2.5-72B-Instruction, with relative gains of558

22% and 18% in the evaluated scores, respectively.559

This performance gain can be attributed to two key560

components: the entity association enabled by the561

association mechanism, and the progressive explo-562

ration strategy of MCTS, which together enhance563

both the comprehensiveness and accuracy of the564

generated answers. Second, by leveraging APIs of565

smaller-scale language models within our CoAT566

framework, enhanced reasoning performance can567

be achieved without the need for additional model568

training or fine-tuning. Finally, reasoning mod-569

els tend to outperform generative models in CRB570

datasets, highlighting the advantages of structured571

reasoning in complex benchmarks.572

Models Average Scores

Qwen2.5-32B-Instruct 0.55
OpenAI/GPT-4o 0.59

Doubao-pro-256k 0.61
Qwen2.5-72B-Instruct 0.62
MiniMax/abab6.5-chat 0.66

OpenAI/o3-mini 0.64
OpenAI/o1-mini 0.71

OpenAI/o1 0.73
DeepSeek-R1 0.75

CoAT (Qwen2.5-32B) 0.77
CoAT (Qwen2.5-72B) 0.80

Table 2: The results of all comparison models on CRB.

As illustrated in Figure 5, the Qwen2.5-72B-573

Instruct model integrated with our CoAT reasoning574

framework outperforms other models in pairwise575

evaluations. Specifically, the Qwen series achieves576

a 50% relative improvement in the average win577

rate when using CoAT, indicating the effectiveness578

of our proposed framework. Moreover, generative579

models augmented with the CoAT framework can580

achieve performance comparable to that of dedi-581

cated reasoning models.582

4.3 Ablation Experiment583

Effectiveness of AM. To separately verify the584

effectiveness of the associative memory mechanism585

(Sec. 3.1) and the optimized value computation586

for MCTS nodes (Sec. 3.2), we performed two587

experiments using the CRB dataset, and calculated588

the resulting scores and win rates for both settings:589

1) We applied the CoAT framework to generate590

results either with AM integrated into each node591

or without it; 2) We incorporated only the content592

of AM and without considering its quality.593

Settings. 1) w/o AM: We disabled the genera- 594

tion of AM at each node as defined in Eq. 1 and 595

set its value to empty in Eq. 2. Subsequently, we 596

omitted the contribution of AM in Eq. 4. 2) w/ 597

AM&β=0: In Eq. 4, β is set to 0.0, while all other 598

components are identical to those in the complete 599

CoAT. The visual results of the above settings are 600

shown in Table 3 and Figure 6. The results of pair- 601

wise comparisons between the above settings and 602

all base models are provided in Appendix A.4. 603

Models Versions Scores

CoAT (Qwen2.5-32B)
w/o AM 0.67

w/ AM & β=0 0.75
Complete 0.77

CoAT (Qwen2.5-72B)
w/o AM 0.71

w/ AM & β=0 0.77
Complete 0.80

Table 3: The results of the above settings on CRB.

Figure 6: The pairwise win rates.

Analysis. 604

The results 605

in Table 3 606

show that 607

incorporating 608

the whole 609

AM mech- 610

anism led to 611

an approxi- 612

mately 10% 613

improvement 614

in average 615

score compared to the baseline without AM. 616

Moreover, the comparison results in Figure 6 617

further validate the performance improvements 618

achieved through the integration of AM. 619

5 Conclusion 620

In this paper, we proposed the CoAT reasoning 621

framework, which advances LLM reasoning by 622

integrating an optimized MCTS algorithm and a 623

dynamic associative memory mechanism. These 624

innovations enable structured exploration of rea- 625

soning pathways and adaptive knowledge updating, 626

addressing limitations of generative LLMs. The 627

experimental results demonstrated that CoAT out- 628

performs other models in accuracy, coherence, and 629

diversity. Our work highlights the potential of com- 630

bining structured search and adaptive associative 631

memory in LLMs, offering a new exploration for 632

future research on integrating external real-time 633

knowledge for real-world applications. 634
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Limitations635

Although our framework outperforms baseline636

models, there is still room for improvement. Due to637

the expansion of the search space and the incorpo-638

ration of novel associative memory, our framework639

achieves more comprehensive content generation640

than the baseline models. However, such improve-641

ment comes at the cost of increased reasoning time.642

Additionally, despite the considerable manual ef-643

forts invested in curating the self-constructed CRB644

dataset, there is still room for further quality refine-645

ment.646

Ethics Statement647

Our research focuses on enhancing the reasoning648

capacity of LLMs. There are no specific ethical649

concerns directly associated with this work. How-650

ever, we recognize and emphasize the ethical mind-651

fulness throughout our research. In particular, dur-652

ing the construction of the CRB dataset, no ethical653

guidelines were violated, and careful attention was654

paid to data quality and integrity. The broader im-655

pact of our work lies in advancing the performance656

of baseline models, thereby contributing to the im-657

provement of the quality and reliability of content658

generated by LLMs. All the datasets and models659

used in this work are publicly available with per-660

missible licenses.661
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A Appendix879

A.1 CoAT Reasoning Algorithm880

The flow of our CoAT reasoning algorithm is summarized in Algorithm 1. The details of the CoAT881

algorithm are described in Section 3.2.882

Algorithm 1 CoAT Reasoning Algorithm
Require: Input query (Q), Evaluate function (F), Reward Model (RM), Number of candidate nodes
(K), Search Depth (D), Exploration weight (w), AM impact factor (β)

1: Initialize: Root node n← (G,AM), d← 1
2: Judge: RM(G) is completed for Q.
3: while Uncompleted and d < D do
4: Selection: choose the best trajectory by UCT.
5: for Child Node i← 1, ...,K do
6: Generation (G∗): ni ← LLM(Q|G|AM).
7: Association (AM∗): ni ← LLM(Q|G∗).
8: Evaluation (V ): ni ← F(Q,G∗) + βF(G∗,AM∗).
9: end for

10: Judge: RM(G∗) of the best child is completed for Q.
11: if Completed then
12: return G∗.
13: else
14: Backpropagation: value of np ← Equation 5.
15: Update: visit (V ∗) of np ← C(np) +K.
16: Update: d← d+ 1.
17: end if
18: end while
19: return Ĝ of the best trajectory.
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A.2 Qualitative Performance Exhibition 883

Figure 7: The qualitative results of Qwen2.5-32B-Instruct, ChatGPT (APP) and Qwen2.5-72B-Instruct in a complex
reasoning query which need rich associative knowledge.

The input of all LLMs and CoAT are only the query questions with no extra instruction prompts 884

and system prompts. The responses of three comparison models for a query (How should we view 885

the role of artificial intelligence in contemporary international competition? Which countries hold the 886

leading advantages in this field?) are shown in Figure 7. And the corresponding response of CoAT 887

(Qwen2.5-32B-Instruct) is shown as follows: 888
889

Role of AI in International Competition 890
1. ** Economic Impact ** 891

- ** Productivity and Efficiency **: AI can significantly boost productivity and 892
↪→efficiency in various industries. For instance , in manufacturing , AI can 893
↪→optimize supply chains and reduce waste. In healthcare , AI-powered 894
↪→diagnostic tools can improve patient outcomes and reduce costs. 895

- ** Innovation and New Markets **: AI-driven innovations such as autonomous 896
↪→vehicles (e.g., Waymo by Google) and smart cities (e.g., Singapore 's Smart 897
↪→ Nation initiative) are creating new markets and business opportunities. 898

- **Job Creation and Displacement **: While AI can create new jobs in technology 899
↪→and data science , it can also displace traditional jobs. According to a 900
↪→report by the World Economic Forum , by 2025, AI and automation could 901
↪→create 96 million new jobs globally while displacing 85 million jobs. 902

903
2. ** Military and Security ** 904

- ** Defense and Cybersecurity **: AI is used in developing advanced defense 905
↪→systems. For example , the U.S. Department of Defense has projects like 906
↪→Project Maven , which uses AI for image recognition in drone footage. China 907
↪→ has also invested in AI for military applications , including autonomous 908
↪→drones and cyber defense systems. 909

- ** Intelligence and Surveillance **: AI can improve intelligence gathering and 910
↪→surveillance. The U.S. uses AI for analyzing satellite imagery and 911
↪→detecting potential threats. China has deployed AI in surveillance systems 912
↪→, such as facial recognition technology in public spaces. 913

- ** Strategic Decision -Making **: AI can assist in strategic decision -making. For 914
↪→ example , the U.S. military uses AI to analyze data and provide predictive 915
↪→ insights for military operations. 916
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917
3. ** Technological Leadership **918

- ** Research and Development **: Leading countries invest heavily in AI R&D. For919
↪→example , the U.S. has a robust AI research ecosystem with significant920
↪→funding from both the government and private sector. China has a national921
↪→AI development plan with substantial government support.922

- ** Patent Filings and Publications **: Leading countries often have a high923
↪→number of AI-related patent filings and academic publications. According924
↪→to the World Intellectual Property Organization (WIPO), China and the U.S.925
↪→ are the top two countries in AI patent filings.926

- ** Talent Attraction and Retention **: Attracting and retaining top AI talent is927
↪→ crucial. Countries like the U.S. and Canada offer attractive research928
↪→environments and job opportunities. For example , Canada 's Vector Institute929
↪→ is a leading AI research center that attracts top talent from around the930
↪→world.931

932
4. ** Ethical and Regulatory Frameworks **933

- ** Ethical AI**: Countries that develop and adopt ethical AI guidelines can934
↪→gain a reputation for responsible innovation. For example , the EU has935
↪→developed ethical guidelines for AI, emphasizing issues like transparency ,936
↪→ fairness , and accountability.937

- ** Regulatory Environment **: A supportive regulatory environment can encourage938
↪→AI development. The EU's General Data Protection Regulation (GDPR) sets939
↪→standards for data privacy and security , promoting trust in AI940
↪→technologies.941

942
5. ** Diplomatic and Soft Power**943

- ** Global Standards and Norms **: Leading countries can influence the944
↪→development of global standards and norms for AI. The EU, for instance , is945
↪→ working on shaping international AI regulations through initiatives like946
↪→the European AI Alliance.947

- **AI Diplomacy **: Countries can use AI to enhance their diplomatic efforts.948
↪→For example , Japan is using AI to improve communication and data -driven949
↪→decision -making in international negotiations.950

951
Leading Countries in the AI Field952
**1. United States **953

- ** Strengths **: Home to major tech companies like Google , Amazon , and Microsoft954
↪→, and leading research institutions like MIT and Stanford.955

- ** Strategies **: Heavy investment in AI R&D, establishment of AI labs , and956
↪→strong private -public partnerships. For example , the U.S. has established957
↪→AI institutes like the National Artificial Intelligence Research958
↪→Institutes.959

- ** Challenges **: Balancing AI innovation with ethical considerations and960
↪→ensuring a skilled workforce. The U.S. faces challenges in maintaining a961
↪→competitive edge in AI talent and addressing ethical concerns.962

963
**2. China**964

- ** Strengths **: Large data pools , strong government support , and a rapidly965
↪→growing AI industry. China has a national AI development plan with966
↪→significant government investment.967

- ** Strategies **: National AI development plan , significant investment in AI968
↪→infrastructure , and fostering a large AI talent pool. For example , China969
↪→has invested in AI research centers like the Beijing Academy of Artificial970
↪→ Intelligence.971

- ** Challenges **: Ensuring data privacy and ethical use of AI, and addressing972
↪→international concerns about surveillance and human rights. China faces973
↪→scrutiny over its use of AI for social control and surveillance.974

975
**3. European Union**976

- ** Strengths **: Strong emphasis on ethical AI and data protection , and a977
↪→collaborative approach among member states. The EU has developed ethical978
↪→guidelines for AI and promotes data privacy through regulations like GDPR.979

- ** Strategies **: Development of the General Data Protection Regulation (GDPR)980
↪→and the European AI Alliance. For example , the EU has launched the981
↪→European AI Alliance to promote ethical AI development.982

- ** Challenges **: Harmonizing AI policies across member states and competing983
↪→with the US and China in terms of investment and innovation. The EU faces984
↪→challenges in coordinating AI policies among its diverse member states.985

986
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**4. Russia ** 987
- ** Strengths **: Strong mathematical and engineering traditions , and a focus on 988

↪→AI in military applications. Russia has a strong research base in 989
↪→mathematics and computer science. 990

- ** Strategies **: Government investment in AI for defense and security , and 991
↪→development of AI in critical sectors like energy and space. For example , 992
↪→Russia has established AI research centers like the Skolkovo Institute of 993
↪→Science and Technology. 994

- ** Challenges **: Limited private sector involvement and international sanctions 995
↪→ that can restrict access to advanced technologies. Russia faces 996
↪→challenges in fostering a vibrant AI ecosystem and accessing cutting -edge 997
↪→technologies. 998

999
**5. Japan** 1000

- ** Strengths **: Advanced robotics and a strong manufacturing sector. Japan is a 1001
↪→ leader in robotics and has a strong manufacturing base. 1002

- ** Strategies **: Integration of AI in robotics and manufacturing , and 1003
↪→investment in AI for healthcare and elderly care. For example , Japan has 1004
↪→initiatives like the Robot Revolution Initiative to promote AI and 1005
↪→robotics in various sectors. 1006

- ** Challenges **: Aging population and the need for more AI talent. Japan faces 1007
↪→challenges in addressing the needs of its aging population and attracting 1008
↪→a sufficient number of AI professionals. 1009

1010
**6. India** 1011

- ** Strengths **: Large pool of skilled IT professionals and a growing tech 1012
↪→ecosystem. India has a strong IT industry and a large number of skilled 1013
↪→professionals. 1014

- ** Strategies **: National AI strategy focusing on healthcare , agriculture , 1015
↪→education , and smart cities. For example , India has launched initiatives 1016
↪→like the National Artificial Intelligence Program to promote AI 1017
↪→development. 1018

- ** Challenges **: Infrastructure gaps and the need for significant investment in 1019
↪→ AI research and development. India faces challenges in building a robust 1020
↪→AI infrastructure and attracting investment. 1021

1022
1023

Conclusion 1024
The role of AI in contemporary international competition is multifaceted , 1025

↪→impacting economic growth , military capabilities , technological leadership 1026
↪→, and global influence. Leading countries such as the United States and 1027
↪→China are at the forefront , with significant investments in AI R&D, strong 1028
↪→ private -public partnerships , and robust talent ecosystems. Other nations 1029
↪→like the EU, Russia , India , and Japan are also making significant strides 1030
↪→in the AI field , each with their unique strengths and challenges. The 1031
↪→strategic positioning of these countries in the AI landscape is crucial 1032
↪→for shaping the future of global competition and innovation. 10331034

The detailed introduction and analysis of the results are described in Section 4.1. 1035

A.3 Introduction of CRB Dataset 1036

The data entry in the CRB is structured referring to the design principles of subjective questions in 1037

the Chinese Gaokao examination. Specifically, each entry consists of three components: the Question, 1038

the Judge Rules, and the Score. The Judge Rules outline a series of fundamental key points that must 1039

be addressed to provide an adequate response. Each key point corresponds to a specific score, and the 1040

inclusion of these key points in an answer results in the allocation of the corresponding score. Additionally, 1041

the Judge Rules incorporate higher-level criteria as bonus points. The Score assigned to each data entry 1042

represents the maximum attainable score for that entry. Ultimately, we selected 205 professionally 1043

reviewed entries as the final test dataset. An example entry from the CRB dataset is shown below: 1044
1045

{ 1046
"question": "What are the key challenges in achieving global carbon neutrality 1047

↪→by 2050? Which countries are making the most progress?", 1048
"judge_rules": "Evaluation Criteria :\n1. (This section is worth 10 points) 1049

↪→Discuss the main challenges of carbon neutrality , including technological 1050
↪→bottlenecks , economic burden , policy coordination , energy transition , and 1051
↪→social acceptance. One point is awarded for addressing each aspect. An 1052
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↪→additional point can be earned for each aspect if it includes at least one1053
↪→ real -world example .\n2. (This section is worth 10 points) Discuss global1054
↪→leading countries in carbon neutrality efforts , including the European1055
↪→Union , China , the United States , Japan , and India. One point is awarded1056
↪→for each country discussed .\n a. An additional point can be earned for1057
↪→each country if the discussion covers advantages , disadvantages , and1058
↪→strategies .\n b. Another point can be earned if the discussion of each1059
↪→country includes at least one real -world example .\n3. (This section is1060
↪→worth 3 points) One point will be awarded for each of the following:1061
↪→fluent language , detailed discussion , and factual accuracy.",1062

"total_score": 231063
}10641065

Each entry in the CRB dataset consists of three components: Question, Judge Rules and Total Score.1066

The language of the Question and the Judge Rules is either English or Chinese. The key scoring points of1067

the sample shown above are illustrated in Figure 8. For experiments with the CRB dataset, please refer to1068

Section 4.2.1069

Figure 8: This figure presents the key scoring points identified in the sample question from the Comprehensive
Reasoning Benchmark (CRB) dataset.

In Figure 8, we provide a detailed breakdown of all the scoring points specified in the judge rules for1070

the question. Each judge rule in the CRB dataset has undergone a professional manual review to assess1071

the reasonableness of the scoring points and the accuracy of the total score. However, there may still be1072

room for further improvement.1073

A.4 Comparison Results of CoAT with Different Settings1074

The results of the pairwise comparison of the CoAT framework with different settings among all models1075

are shown in Figure 9. The description of this experiment refers to Section 4.3.1076
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Figure 9: This figure presents the pairwise comparison results among all models. (Zoom in for best view)
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