
Sequence Modeling with Spectral Mean Flows

Jinwoo Kim
KAIST

Max Beier
TU Munich

Petar Bevanda
TU Munich

Nayun Kim
KAIST

Seunghoon Hong
KAIST

Abstract

A key question in sequence modeling with neural networks is how to represent and
learn highly nonlinear and probabilistic state dynamics. Operator theory views such
dynamics as linear maps on Hilbert spaces containing mean embedding vectors
of distributions, offering an appealing but currently overlooked perspective. We
propose a new approach to sequence modeling based on an operator-theoretic view
of a hidden Markov model (HMM). Instead of materializing stochastic recurrence,
we embed the full sequence distribution as a tensor in the product Hilbert space. A
generative process is then defined as maximum mean discrepancy (MMD) gradient
flow in the space of sequences. To overcome challenges with large tensors and
slow sampling convergence, we introduce spectral mean flows, a novel tractable
algorithm integrating two core concepts. First, we propose a new neural architecture
by leveraging spectral decomposition of linear operators to derive a scalable tensor
network decomposition of sequence mean embeddings. Second, we extend MMD
gradient flows to time-dependent Hilbert spaces and connect them to flow matching
via the continuity equation, enabling simulation-free learning and faster sampling.
We demonstrate competitive results on a range of time-series modeling datasets.1

1 Introduction

A fundamental question in sequence modeling with neural networks is how to represent and learn
highly nonlinear and probabilistic state dynamics throughout a sequence. A popular method is to
model each step with a stochastic nonlinear network [5, 23, 47, 62, 98]. Since this requires serializa-
tion over steps at test time, there has been recent interest in linear recurrence [36, 37, 77] that offers
more parallelizability. Yet, their underlying theory often only covers deterministic linear dynamics,
requiring probabilistic dynamics to be handled in a post hoc manner via autoregression [36, 37] or
stepwise variational inference [82, 104, 72]. This leaves room for a new method that computationally
uses linear recurrence while natively handling the nonlinear and probabilistic nature of state dynamics.

Operator theory suggests an appealing approach in this context: embedding probability distributions
in Hilbert spaces in which nonlinear dynamics become linear [68]. Specifically, consider Markovian
dynamics (Zn)n∈N on a state space Z . The theory states that, with a proper choice of Hilbert space G,
the distribution of each state Zn can be uniquely embedded as a vector µZn in G. Furthermore, the
state dynamics P[Zn+1|Zn] can be represented as a linear operator U : G → G such that:

µZn+1 = UµZn . (1.1)

This enables the use of standard linear algebraic tools, such as spectral decomposition of linear
operators, to implicitly but correctly represent and learn nonlinear probabilistic dynamics. This
approach has been extensively explored in kernel algorithms for learning dynamical systems [51, 55].
However, its application in neural sequence modeling has been limited.

In this work, we propose a new approach to neural sequence modeling that leverages this perspective.
We begin with the classical notion of a hidden Markov model (HMM), which is a probabilistic model

1Code is available at https://github.com/jw9730/spectral-mean-flow.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/jw9730/spectral-mean-flow

for sequences X1:N = (X1, ..., XN) based on hidden states Z1:N = (Z1, ..., ZN) under Markovian
dynamics P[Zn+1|Zn] and local observation model P[Xn|Zn]. While HMMs offer a structured and
universal way to model sequences, directly modeling their nonlinear stochastic recurrence can be
challenging. This motivates the aforementioned operator-theoretic perspective.

Specifically, our first step is to embed the distribution of the entire sequence X1:N as an element in
a tensor product Hilbert space. This provides a basic setup for sequence modeling in the operator-
theoretic context, allowing us to exploit linearity (1.1). The setup also allows us to define a generative
process as a maximum mean discrepancy (MMD) gradient flow [4] in the space of sequences. Then,
to overcome practical challenges associated with high-dimensional tensors and slow convergence of
standard MMD flows, we introduce spectral mean flows, a novel method with two core contributions:

• We propose a new neural architecture that utilizes spectral decomposition of the linear operator
underlying an HMM. This leads to a scalable tensor network decomposition of the sequence
distribution embedding, making computations tractable.

• We propose an extension of MMD gradient flows to time-dependent Hilbert spaces, which may
be of independent interest. This connects to flow matching [60] via the continuity equation,
enabling end-to-end, simulation-free learning and faster sampling convergence.

We test spectral mean flows on a range of time-series datasets, demonstrating competitive results.

The remainder of this paper is organized as follows. In Section 2, we introduce necessary background.
Section 3 introduces spectral mean flows. Section 4 discusses related work, and Section 5 presents
experiments on synthetic data and time-series modeling datasets. Section 6 draws conclusions. All
theoretical arguments are formally stated and proven in the appendix.

2 Background

In this section, we introduce key mathematical tools that enable us to work with probability distribu-
tions using linear algebraic methods. More details can be found in Appendix A.

Reproducing kernel Hilbert spaces (RKHSs) offer a framework for treating functions as vectors
in Hilbert spaces [83]. Consider a domain X ⊂ Rd, and let H be an RKHS induced by a kernel
k : X × X → R. The space H contains functions f : X → R and is equipped with an inner
product ⟨·, ·⟩H and a corresponding norm ∥ · ∥H. Its canonical feature map ϕ : X → H is defined by
ϕ(x) := k(·,x), and satisfies the reproducing property: f(x) = ⟨ϕ(x), f⟩H for any f ∈ H.

To handle dependencies between variables, we also consider a second domain Z ⊂ Rm with its own
RKHS G induced by a kernel l : Z × Z → R with canonical feature map φ : Z → G.

Mean embeddings provide a way to represent probability distributions as vectors in RKHS [70]. For
a random variable X with distribution π on X , the mean embedding is defined as:

µπ := E[ϕ(X)] ∈ H. (2.1)
We write µX = µπ when the distribution is clear from context. For a characteristic RKHS [91], the
map π 7→ µπ is injective, meaning each distribution has a unique embedding. This property underlies
the maximum mean discrepancy (MMD) distance of distributions, MMD(ν, π) = ∥µν − µπ∥H [34].

Conditional mean embeddings extend the above to conditional distributions [70]. Consider a random
variable Z on Z , defining P[X|Z]. Under standard assumptions [68, 74], the mean embedding of X
given Z = z can be expressed with the conditional mean embedding (CME) operator UX|Z : G → H:

µX|Z=z := E[ϕ(X) | Z = z] = UX|Z φ(z) ∈ H. (2.2)
Notably, UX|Z is a linear operator. The linearity allows the use of spectral methods, and also yields
useful properties such as µX = UX|Z µZ (1.1) via the law of total expectation.

MMD gradient flows enable sampling from distributions specified by mean embeddings [4]. Given a
target distribution π with embedding µπ , the flow is driven by a time-dependent vector field (vt)t≥0:

vt(x) = −∇x(µpt
− µπ)(x) = −∇x⟨ϕ(x), µpt

− µπ⟩H, (2.3)
where (pt)t≥0 is a probability path induced by the continuity equation ∂tpt+div(ptvt) = 0. Starting
at any initial distribution p0, the path converges towards the target distribution: pt → π as t → ∞. In
practice, one can generate samples x ∼ π by starting at an initial sample x0 ∼ p0 and numerically
integrating the ordinary differential equation (ODE) dxt = vt(xt) dt to obtain xt ∼ pt.

2

3 Spectral Mean Flows

Problem setup We formulate sequence modeling in an operator-theoretic context using hidden
Markov models (HMM). We consider a sequence distribution X1:N ∼ ρ, where Xn ∈ X , and model
it as an HMM with hidden states Z1:N where Zn ∈ Z . The hidden states evolve under time-invariant
Markovian dynamics P[Zn+1|Zn], and determine X1:N via a local observation model P[Xn|Zn].
The HMM can express any sequence distribution if the hidden Markov chain is sufficiently expressive.

Our approach begins by embedding the entire sequence distribution X1:N ∼ ρ in an appropriate
Hilbert space, such that an MMD flow can be defined on the space of sequences XN . We leverage
the fact that tensor product H⊗N := H⊗ · · · ⊗H of a characteristic RKHS H remains characteristic
under mild assumptions (Lemma B.1). The canonical feature map of this tensor product space is
x1:N 7→ ϕ(x1)⊗ · · · ⊗ ϕ(xN), which naturally leads to the sequence mean embedding µρ = µX1:N :

µρ := E[ϕ(X1)⊗ · · · ⊗ ϕ(XN)] ∈ H⊗N . (3.1)

With the above concepts in hand, we can extend the MMD flow (2.3) to operate on entire sequences.
Specifically, we define a time-dependent vector field (vt)t≥0 that induces a probability path (pt)t≥0

of sequences X1:N
t ∼ pt, converging towards the target distribution X1:N ∼ ρ over time t:2

vt(x
1:N) = −∇x1:N ⟨ϕ(x1)⊗ · · · ⊗ ϕ(xN), µpt − µρ⟩H⊗N . (3.2)

Samples x1:N
t ∼ pt can then be generated by solving the ODE dx1:N

t = vt(x
1:N
t) dt from x1:N

0 ∼ p0.

While theoretically sound, the idea in its naïve form faces practical challenges. The mean embedding
µρ (3.1) is a higher-order tensor whose size grows exponentially with the sequence length N , making
training and sampling intractable. In addition, sampling with MMD flow is typically slow, because
its convergence pt → ρ is only guaranteed asymptotically as t → ∞ [4].

To overcome the challenges, we propose spectral mean flows, a novel approach that is tractable,
easy to train, and converges fast at sampling. In Section 3.1, we derive a scalable tensor network
decomposition of mean embeddings (3.1) using spectral decomposition of linear operators underlying
the HMM. In Section 3.2 we present an extension of MMD flow (3.2) to time-dependent RKHS that
connects to flow matching and converges within a finite time t = 1. Section 3.3 integrates these ideas
into a neural sequence architecture and learning algorithm, and discusses implementation.

3.1 Tractability with Spectral Decomposition

To make the MMD flows (3.2) with sequence mean embeddings (3.1) computationally tractable, we
exploit the linear operator structure underlying the HMM by applying spectral decomposition.

Linear operators underlying HMMs For the conditional distributions P[Zn+1|Zn] and P[Xn|Zn]
underlying our HMM for sequences X1:N , we can define the respective transition and observation
CME operators U : G → G and O : G → H as follows (see Section 2 and Appendix A.3):

Uφ(z) = E[φ(Zn+1) | Zn = z] ∈ G, (3.3)
Oφ(z) = E[ϕ(Xn) | Zn = z] ∈ H. (3.4)

For the MMD flow generative process (X1:N
t)t≥0 (3.2), we make a modeling choice that the hidden

dynamics P[Zn+1|Zn] remain fixed over time t, and only the observation model P[Xn
t |Zn] evolves

over t. Then we obtain a time-dependent observation CME operator (St)t≥0 where St : G → H:

Stφ(z) = E[ϕ(Xn
t) | Zn = z] ∈ H. (3.5)

Mean embedding decomposition To make MMD flow (3.2) tractable, our key idea is to decompose
mean embeddings µρ and µpt into tractable forms by leveraging linearity of CME operators U,O, St.

As a first step, we decompose the mean embeddings µρ and µpt
into their respective observation

operators O and St, along with the mean embedding µZ1:N of the hidden Markov chain defined as:

µZ1:N := E[φ(Z1)⊗ · · · ⊗ φ(ZN)] ∈ G⊗N . (3.6)

2We have two different notions of time: n = 1...N over sequence length, and t ≥ 0 over generative process.

3

Ob(x1) i2 Ow(x2) i3 Ow(x3) i4 Ow(x4) i5 Ou(x5)

λ λ λ λ

Figure 1: A tensor diagram [11, 2] of the inner product ⟨ϕ(x1)⊗ · · · ⊗ϕ(xN), µρ⟩ (3.10) for N = 5,
showing how its evaluation involving a tensor µρ decomposes into matrix and vector multiplications.

Defining the N -fold tensor product operator by O⊗N := O ⊗ · · · ⊗O : G⊗N → H⊗N , we obtain:

µρ := E[ϕ(X1)⊗ · · · ⊗ ϕ(XN)] (mean embedding (3.1))

= E
[
E[ϕ(X1) | Z1]⊗ · · · ⊗ E[ϕ(XN) | ZN]

]
(HMM structure)

= E[(Oφ(Z1))⊗ · · · ⊗ (Oφ(ZN))] (CME operator (3.4))

= O⊗NE[φ(Z1)⊗ · · · ⊗ φ(ZN)] (linearity)

= O⊗NµZ1:N . (3.7)

Similarly, we have µpt
= S⊗N

t µZ1:N with S⊗N
t : G⊗N → H⊗N . Formal proof is in Proposition B.2.

The remaining challenge is decomposing the hidden chain embedding µZ1:N . We use the fact that the
linearity of the transition operator U : G → G enables a decomposition of the following form:

U =
∑
i∈N

λihi ⊗ gi. (3.8)

In practice, we use rank-r decomposition by restricting to i ∈ [r], where r controls expressiveness.

A possible choice of (3.8) is singular value decomposition (SVD) with singular values λi ∈ R and
left/right singular functions gi, hi : Z → R. Or, assuming U is normal with a discrete spectrum, we
can use eigenvalue decomposition (EVD) with eigenvalues λi ∈ C and eigenfunctions gi, hi : Z → C.
While both are valid, we use EVD that efficiently encodes long-range interactions via oscillations [12].

Then, to decompose µZ1:N ∈ G⊗N , we draw inspiration from a result in Koopman operator theory
that eigenfunctions are closed under pointwise multiplication, i.e., they form a multiplicative algebra,
with products yielding new eigenfunctions whose eigenvalues multiply [66, 12, 10]. As we show,
encoding this closure in finite-rank representations makes instantiating G⊗N redundant, as nonlinear
or higher-order interactions are already encoded in the algebra generated by the span of eigenfunctions.

Specifically, we make a technical assumption that the RKHS G is closed under pointwise multi-
plication, f, g ∈ G =⇒ f · g ∈ G. This holds for Sobolev spaces Hs(Rd) of order s > d/2 [1],
which are characteristic and thus suitable for our framework. Under this assumption and leveraging a
decomposition of U (3.8) with gi, hi ∈ G, we derive the following novel decomposition of µZ1:N :

µZ1:N =
∑

i2,...,iN

bi2 ⊗ λi2wi2,i3 ⊗ · · · ⊗ λiN−1
wiN−1,iN ⊗ λiNhiN , (3.9)

where bi, wi,j are fixed elements in G determined by gi, hi and the initial state distribution µZ1 .
Complete details and proof are given in Proposition B.6.

Tractability With the decompositions in (3.7) and (3.9), we can convert the intractable compu-
tations in MMD flow (3.2) into a tractable form. Specifically, in (3.2), the inner product between
feature of sequence data x1:N and mean embedding µρ dramatically simplify (Corollary B.7):

⟨ϕ(x1)⊗ · · · ⊗ ϕ(xN), µρ⟩ = ⟨ϕ(x1)⊗ · · · ⊗ ϕ(xN), O⊗NµZ1:N ⟩

=
∑

i2,...,iN

Obi2(x
1) · λi2 ·Owi2,i3(x

2) · · ·λiN ·OhiN (xN), (3.10)

where we use the shorthand ⟨·, ·⟩ = ⟨·, ·⟩H⊗N . For µpt
, it is only required to substitute O with St.

4

Importantly, the reformulation in (3.10) eliminates the requirement to materialize exponentially
large tensors in H⊗N when computing (3.2). Instead, the computation reduces to a standard tensor
network contraction (illustrated in Figure 1), achieving linear complexity in sequence length N and
polynomial complexity in rank r. This makes the approach tractable for realistic sequence lengths.

3.2 Faster Convergence with Time-dependent RKHS and Flow Matching

Having established tractable mean embeddings, we now address the remaining challenge of slow
sampling convergence in standard MMD flows.

Time-dependent RKHS Recall MMD gradient flow (pt)t≥0 for a target distribution π on X within
an RKHS H (Section 2). The flow follows the steepest direction of the MMD between the current
distribution pt and target π measured in H [4]. Since the RKHS H determines the geometric structure
underlying the gradient flow via MMD, convergence behavior is essentially tied to the fixed H.

To improve the convergence of MMD flow, a natural way is to use time-dependent RKHS Ht [30].
This creates a time-evolving geometry where the steepest direction of the MMD changes over time,
allowing more flexibility of the flow. Let (Ht)t≥0 be a time-dependent family of characteristic RKHS,
with canonical feature map (ϕt)t≥0 where ϕt : X → Ht. The mean embedding of a distribution π is:

µπ,t := E[ϕt(X)] ∈ Ht. (3.11)

The MMD distance in Ht is accordingly given as MMDt(ν, π) = ∥µν,t − µπ,t∥Ht .

Then, MMD flow with time-dependent RKHS Ht can be obtained from standard construction [27].
The flow defines a probability path (pt)t≥0 driven by a vector field (vt)t≥0 via the continuity equation
∂tpt +div(ptvt) = 0 that, at each time t, follows the steepest direction of the MMD measured in Ht:

vt(x) = −∇x⟨ϕt(x), µpt,t − µπ,t⟩Ht
, (3.12)

and samples xt ∼ pt can be obtained via the ODE dxt = vt(xt) dt. More details are in Appendix B.3.

Connection to flow matching With time-dependent RKHS, [30] used discriminator learning of ϕt

to empirically improve the convergence of MMD flow. Instead, by connecting to flow matching [60],
we propose a way to achieve convergence at finite time t = 1 rather than asymptotically as t → ∞.

We hinge on the fact that we can often find an analytic probability path qt and a vector field ut defined
in t ∈ [0, 1] that satisfy the continuity equation ∂tqt + div(qtut) = 0 and also q1 ≈ π.3 This is the
idea of flow matching (FM) [60], which allows us to borrow established pairs of (qt, ut).

That is, for a choice of (qt, ut), we aim to identify the components of the MMD flow (3.12) such
that its vector field vt regresses ut. If we have vt = ut and p0 = q0, it follows from the continuity
equation that pt = qt and the MMD flow converges closely to the target p1 = q1 ≈ π at t = 1.

Here, an important caveat is that our vector field vt is always a gradient field with zero curl. For the
target equality vt = ut to be well-specified, the target ut must also be a gradient field. While this is
not always true, we fortunately find that many commonly used vector fields in FM are gradient fields.
This includes the optimal transport (OT) field and the diffusion-types, as we prove in Appendix B.4.

Sequence instantiation We now apply the aforementioned ideas to HMM for sequences X1:N ∼ ρ
based on hidden states Z1:N . We consider time-dependent RKHS (Ht)t∈[0,1]. By extending (3.12),
the vector field vt of the corresponding MMD flow X1:N

t ∼ pt can be written as follows:

vt(x
1:N) = −∇x1:N ⟨ϕt(x

1)⊗ · · · ⊗ ϕt(x
N), µpt,t − µρ,t⟩H⊗N

t
. (3.13)

Then, assuming that the transition operator U : G → G for P[Zn+1|Zn] does not depend on time t,
we extend the observation operators Ot, St : G → Ht for P[Xn|Zn] and P[Xn

t |Zn], respectively, as:

Otφ(z) = E[ϕt(X
n) | Zn = z] ∈ Ht, (3.14)

Stφ(z) = E[ϕt(X
n
t) | Zn = z] ∈ Ht. (3.15)

3For example, q1 is a smoothing of π with a Gaussian filter with a sufficiently small standard deviation.

5

With this, by extending the decomposition in (3.7), we obtain:

µρ,t = O⊗N
t µZ1:N , µpt,t = S⊗N

t µZ1:N . (3.16)

And by extending the decomposition in (3.10), we obtain:

⟨ϕt(x
1)⊗ · · · ⊗ ϕt(x

N), µρ,t⟩ =
∑

i2...iN

Otbi2(x
1) · λi2Otwi2,i3(x

2) · · ·λiNOthiN (xN) (3.17)

where we use the shorthand ⟨·, ·⟩ = ⟨·, ·⟩H⊗N
t

. For µpt,t, it is only required to substitute Ot by St.
This retains the tensor network structure, and hence the tractability of the MMD flow as in Section 3.1.

3.3 Neural Parameterization and Learning

Having established spectral mean flows in RKHSs, we now develop a neural sequence architecture
and learning algorithm. In (3.13) and (3.17), we can see that the operators Ot, St : G → Ht, together
with the (Sobolev) RKHS elements bi, wij , hi ∈ G and λi for i, j ∈ [r], determine the MMD flow vt.
We describe how to parameterize and learn these components as neural networks to pursue vt = ut.

Neural parameterization To develop a neural parameterization, we adopt neural tangent kernel
(NTK) theory [42] as a theoretical footing that connects neural networks and Sobolev spaces, e.g., G.
Specifically, the function space defined by a multi-layer perceptron (MLP) in the infinite-width limit
is norm-equivalent to the RKHS of a Sobolev kernel [8]. In addition, any function in a Sobolev space
can be approximated to arbitrary precision with a finite-width MLP, where the theoretical scaling law
predicts decreasing approximation error as the network size increases [86, Theorems 1 and 3].

These results justify, e.g., parameterizing each bi, wij , hi ∈ G as a scalar-valued MLP. Yet, instead of
separating Ot, St : G → Ht, we use an end-to-end parameterization [39] of each Otbi, Stbi, ... ∈ Ht

as a t-conditioned scalar-valued MLP on X . While this t-conditioning is inspired by [30], a difference
is that we directly parameterize elements of Ht without using linear kernel approximation.

Learning and sampling Under the aforementioned neural parameterization, the MMD flow (3.13)
becomes a neural gradient field vt(·; θ) with learnable components θ := (Otbi, Stbi, Otwij , ..., λi).

Then, using a known pair (qt, ut)t∈[0,1] of probability path qt and vector field ut satisfying q1 ≈ ρ,
we can use flow matching (FM) objective [60] to achieve the equality vt(·; θ) = ut(·) (Section 3.2):

θ∗ = argmin
θ

Et∼U [0,1],qt(x1:N)

[
∥vt(x1:N ; θ)− ut(x

1:N)∥22
]
, (3.18)

While (3.18) is intractable, thanks to compatibility with FM (Section 3.2), we can use an equivalent
tractable objective named conditional FM [60] using conditional counterparts qt(·|x1:N

1), ut(·|x1:N
1):

θ∗ = argmin
θ

Et∼U [0,1],ρ(x1:N
1),qt(x1:N |x1:N

1)

[
∥vt(x1:N ; θ)− ut(x

1:N |x1:N
1)∥22

]
. (3.19)

This leaves us with a tractable learning algorithm for the neural MMD flow vt(·; θ). The algorithm is
simulation-free, i.e., no ODE solving with vt(·; θ) is necessary during training, and uses double back-
propagation, i.e., vt(·; θ) internally invokes backpropagation during forward pass. In our experiments,
we use the OT flow path and field (qt, ut) for training (Proposition B.11) due to their simplicity.

After training, we can sample x1:N
1 ∼ q1 ≈ ρ via the ODE dx1:N

t = vt(x
1:N
t ; θ∗),x1:N

0 ∼ q0.

Implementation We discuss implementation of spectral mean flow used in our experiments. More
details are in Appendix C.1. First of all, we use rank-r EVD as discussed in Section 3.1, requiring
complex eigenvalues λi ∈ C and complex-valued MLPs that parameterize Otbi, Stbi, ... : X → C.

To parameterize Otbi, Otwij , Othi for i, j ∈ [r], we employ a shared feature extractor MLPO(·, t) :
X → Cdf with feature dimension df and combine it with readout heads B,L,R,H ∈ Cdf×r:

Otbi(x) ≈ [hB]i Otwij(x) ≈ [Ldiag(h)R]ij Othi(x) ≈ [hH]i h := MLPO(x, t). (3.20)

We note that similar approaches are found in operator-theoretic learning of dynamical systems [57].
To parameterize Stbi, Stwij , Sthi, we only change the feature extractor, denoted as MLPS(·, t) :
X → Cdf . We design the two MLPs to share most of their parameters through a switching scheme:

MLPO(·, t) := MLP(·,o, t), MLPS(·, t) := MLP(·, s, t), (3.21)

6

where MLP(·, ·, t) : X × Rdh → Cdf is shared and o, s ∈ Rdh are trainable switching parameters.

The design of readout heads in (3.20) offers a computational benefit. With the linearity of the tensor
network (3.17), we can rearrange matrix multiplications to avoid materializing r × r matrix states
Ldiag(h)R. With this, we achieve O(Nr + r2) space complexity of (3.17), avoiding the Nr2 term.

To parameterize and initialize the complex-valued parameters (λ,B,L,R,H), we take inspiration
from the universal spectrum argument of [7, Proposition 3], which proposes to take eigenvalues from
the uniform distribution on the complex unit disk. We employ the exponential parameterization of
[75, Lemma 3.2] for this, which has an additional benefit of stabilizing the training.

We lastly discuss the design of MLP(·, ·, t). Since MMD flow (3.13) uses its gradient with respect
to input, non-differentiable components such as ReLU can cause discontinuities [26]. We design
MLP(·, ·, t) to be fully differentiable with squared ReLU activation [87] and root mean square (RMS)
normalization [103]. For t-conditioning, we use sinusoidal embedding [96]. We find these design
choices to work robustly while being simpler over alternatives such as SwiGLU [85] and adaLN [79].

4 Related Work

Operator theory Operator theory lifts the idea of vector spaces from points to functions [80]. The
framework was initially developed for solving equations of infinitely many variables. This point
of view is particularly advantageous in high-dimensional spaces, as maps of functions describe the
map of every points simultaneously instead of each individual point. [52, 54] used the theory of
linear operators to describe physical evolution equations [24] of probability measures and their dual
observable functions. In a modern context, linear operator theory for evolution equations is often used
to find practical linear algebra techniques to minimize, typically unsupervised, learning objectives.
Following [40], we can categorize them into four goals: revealing underlying structure [20, 28, 51, 55],
learning representations [64, 57, 81], modeling data distributions for prediction [43, 68, 7], and lastly,
generating points from a distribution over sequential data. To the best of our knowledge, the fourth
task of generating new points from a distribution over sequences has not been approached yet.

Mean embeddings Hilbert space embeddings of statistical quantities are a long-term staple in
statistical learning [6]. In particular, RKHS mean embeddings have proven to be powerful tools [70].
Regressing the embedding of conditional expectations is studied with conditional mean embed-
dings [89, 35, 94]. This framework generalizes linear regression in RKHS from the space of vectors
to the space of distributions, naturally giving rise to so-called conditional expectation operators that
map distributions to their expectations of a function. They appear in the kernel Bayes rule [29] and
are used in filtering [65], where a recursive application of conditional expectation operators over
sequences first appeared in [88]. Recently, conditional expectation operators were connected to the
MMD [68], the transfer operators of Markov models [43, 88, 9, 55], and have been integrated with the
linear operator theory for evolution equations [55, 41]. Again, none of the methods studies generation
with transfer operators, especially generating an entire coherent sequence, which is of our interest.

Generating samples from mean embeddings A key underlying idea of our work is generating
samples from a distribution specified as a mean embedding. A classical approach for this is matching
a mean embedding against those of a parametric family of distributions and recovering the minimizing
distribution [90]. Another approach is to estimate the solution to an inverse problem from data to
obtain operators that directly recover densities from mean embeddings [84]. Our work is more closely
related to approaches that evolve an empirical distribution to match the mean embedding, which
includes kernel herding [14, 58], and particularly MMD gradient flows [4] that form the basis of our
work. A downside is that fast convergence is only guaranteed for a small class of kernels [4, 30, 38],
which we improve by connecting to flow matching [60] via the continuity equation.

5 Experiments

We demonstrate spectral mean flows on two synthetic setups and generative modeling on a range of
time-series datasets. Details of the experiments and supplementary results are in Appendix C.

7

w/o tensor network decomposition
w/ tensor network decomposition

Figure 2: Peak GPU memory of
inner product ⟨x1⊗· · ·⊗xN , µ⟩
depending on the use of tensor
network decomposition (3.17).

Spectral Mean Flow (Ours)

MMD Gradient Flow w/ time-dependent RBF kernel

MMD Gradient Flow w/ RBF kernel

MMD Flow w/ time-dependent RBF
Spectral Mean Flow (Ours)

tTime t

Figure 3: 2D checkerboard experiment. Left: Intermediate distribu-
tions over sampling timesteps (zoom in for a better view). Right:
MMD between the intermediate and target distributions over sam-
pling timesteps, measured with an RBF kernel of bandwidth 1.

5.1 Synthetic Experiments

We first verify our claims on tractability (Section 3.1), focusing on how the tensor network decompo-
sition in equation (3.17) and Figure 1 contributes to tractability and scalability under the hood. We
run a numerical experiment of evaluating the inner product ⟨x1 ⊗ · · · ⊗ xN , µ⟩ between a rank-one
tensor product x1⊗· · ·⊗xN of vectors xn ∈ Rd and a higher-order tensor µ ∈ RdN

for d = 32. We
measure the peak GPU memory usage across sequence lengths N , depending on the availability of
tensor network decomposition in the form of (3.17). The results are in Figure 2, showing that without
the tensor network decomposition, it is almost impossible to evaluate the inner product for N > 4.

Then, we verify our claims on faster convergence than MMD gradient flows (Section 3.2). For ease
of visualization, we use a 2D checkerboard dataset with scale [−4.5,+4.5]. We compare against
MMD flows based on radial basis function (RBF) kernel k(x,x′) = exp(−0.5∥x− x′∥2/σ2) with
bandwidth σ = 1, and time-dependent RBF kernel (kt)t∈[0,1] [30] with σ(t) = (1− t) + 0.1t. For
MMD flows, we use 10,000 particles and 100 sampling steps with step size 1. For spectral mean flow,
we treat each data as a sequence of length N = 2 and use 100 sampling steps with a midpoint ODE
solver. The results are in Figure 3. MMD flows explicitly minimize MMD measured by RBF kernels,
and their samples move rapidly towards the target near t = 0. However, after some steps they face
stagnation, suggesting much longer sampling is required. In contrast, spectral mean flow accurately
converges to the target at t = 1. This supports our claims in Section 3.2 that spectral mean flow can
converge arbitrarily close to the target at fixed time t = 1, faster than naïve MMD flow that requires
t → ∞. We note that, in the context of generative modeling, convergence at t = 1 is sufficient and
we need not worry about near t = 0 where spectral mean flow slightly increases MMD initially.

5.2 Time-Series Modeling

We demonstrate spectral mean flow on unconditional generation of time-series data. The baselines
include autoregressive models [33, 15], generative adversarial networks (GANs) [67, 25, 100, 99],
variational autoencoders (VAEs) [21, 104, 72], and diffusion models [53, 16, 101, 71].

Regular time series For the first experiment, we follow [100, 101] and use four real-world datasets
Stocks, ETTh, Energy, fMRI and two simulated datasets Sines, MuJoCo of length-24 time series. We
use four existing metrics to measure the quality of generated sequences. Context-Fréchet distance
(context-FID) score [44] measures the discrepancy between the distributions of features of the real
and generated data encoded by a pre-trained TSVec model [102]. Correlational score [59] measures
the absolute error between cross-correlation matrices of the real and generated data. Discriminative
score [101] trains a GRU classifier to distinguish between the real and generated data, and measures
how close its accuracy is to the chance level 50%. Predictive score [101] trains a GRU next-step
predictor on the generated data, and measures the mean absolute error (MAE) on the real data.

The main results are in Table 1. Spectral mean flow achieves the best metric in 18 out of 24 cases,
showing that it is competitive with the state-of-the-art Diffusion-TS [101]. The gain in the quality
metric is often significant, e.g., our approach improves previous best context-FID, correlational score,

8

Table 1: Time-series generative modeling.

Metric Methods Sines Stocks ETTh MuJoCo Energy fMRI

Context-FID
Score ↓

Ours 0.004±.001 0.008±.003 0.058±.007 0.018±.002 0.051±.009 0.116±.004
Diffusion-TS 0.013±.001 0.169±.021 0.126±.007 0.015±.001 0.113±.011 0.118±.007

DiffTime 0.006±.001 0.236±.074 0.299±.044 0.188±.028 0.279±.045 0.340±.015
Diffwave 0.014±.002 0.232±.032 0.873±.061 0.393±.041 1.031±.131 0.244±.018

TimeGAN 0.101±.014 0.103±.013 0.300±.013 0.563±.052 0.767±.103 1.292±.218
TimeVAE 0.307±.060 0.215±.035 0.805±.186 0.251±.015 1.631±.142 14.449±.969
Cot-GAN 1.337±.068 0.408±.086 0.980±.071 1.094±.079 1.039±.028 7.813±.550

Correlational
Score ↓

Ours 0.027±.012 0.010±.007 0.040±.015 0.173±.016 0.732±.107 0.737±.021
Diffusion-TS 0.016±.005 0.010±.009 0.049±.013 0.188±.035 0.788±.075 1.252±.070

DiffTime 0.017±.004 0.006±.002 0.067±.005 0.218±.031 1.158±.095 1.501±.048
Diffwave 0.022±.005 0.030±.020 0.175±.006 0.579±.018 5.001±.154 3.927±.049

TimeGAN 0.045±.010 0.063±.005 0.210±.006 0.886±.039 4.010±.104 23.502±.039
TimeVAE 0.131±.010 0.095±.008 0.111±020 0.388±.041 1.688±.226 17.296±.526
Cot-GAN 0.049±.010 0.087±.004 0.249±.009 1.042±.007 3.164±.061 26.824±.449

Discriminative
Score ↓

Ours 0.006±.006 0.022±.013 0.027±.010 0.005±.004 0.161±.021 0.136±.207
Diffusion-TS 0.030±.006 0.085±.026 0.075±.007 0.012±.006 0.154±.012 0.158±.020

DiffTime 0.013±.006 0.097±.016 0.100±.007 0.154±.045 0.445±.004 0.245±.051
Diffwave 0.017±.008 0.232±.061 0.190±.008 0.203±.096 0.493±.004 0.402±.029

TimeGAN 0.011±.008 0.102±.021 0.114±.055 0.238±.068 0.236±.012 0.484±.042
TimeVAE 0.041±.044 0.145±.120 0.209±.058 0.230±.102 0.499±.000 0.476±.044
Cot-GAN 0.254±.137 0.230±.016 0.325±.099 0.426±.022 0.498±.002 0.492±.018
RNN-AR 0.495±.001 0.226±.035 - - 0.483±.004 -

Predictive
Score ↓

Ours 0.093±.000 0.037±.000 0.123±.005 0.008±.001 0.251±.000 0.100±.000
Diffusion-TS 0.095±.000 0.037±.000 0.121±.002 0.007±.001 0.251±.000 0.100±.000

DiffTime 0.093±.000 0.038±.001 0.121±.004 0.010±.001 0.252±.000 0.100±.000
Diffwave 0.093±.000 0.047±.000 0.130±.001 0.013±.000 0.251±.000 0.101±.000

TimeGAN 0.093±.019 0.038±.001 0.124±.001 0.025±.003 0.273±.004 0.126±.002
TimeVAE 0.093±.000 0.039±.000 0.126±.004 0.012±.002 0.292±.000 0.113±.003
Cot-GAN 0.100±.000 0.047±.001 0.129±.000 0.068±.009 0.259±.000 0.185±.003
RNN-AR 0.150±.022 0.038±.001 - - 0.315±.005 -

Original 0.094±.001 0.036±.001 0.121±.005 0.007±.001 0.250±.003 0.090±.001

Table 2: Time-series modeling in larger model regime.

Metric Methods Sines Stocks MuJoCo

Context-FID
Score ↓

Ours 0.002±.000 0.004±.001 0.013±.001
SDFormer-AR 0.008±.001 0.006±.001 0.008±.000
SDFormer-M 0.010±.002 0.034±.008 0.030±.003
ImagenTime 0.009±.001 0.011±.002 0.017±.002

Discriminative
Score ↓

Ours 0.007±.008 0.012±.013 0.009±.009
SDFormer-AR 0.016±.010 0.006±.006 0.009±.006
SDFormer-M 0.008±.004 0.020±.011 0.025±.007
ImagenTime 0.016±.010 0.010±.007 0.011±.005

Predictive
Score ↓

Ours 0.093±.000 0.037±.000 0.008±.001
SDFormer-AR 0.093±.000 0.037±.000 0.008±.002
SDFormer-M 0.093±.000 0.037±.000 0.007±.001
ImagenTime 0.095±.000 0.037±.000 0.033±.002

Table 3: Long time-series modeling.

Metric Methods FRED-MD NN5 Daily

Marginal
Score ↓

Ours 0.019±n.a. 0.006±n.a.
ImagenTime 0.022±n.a. 0.009±n.a.

LS4 0.022±n.a. 0.007±n.a.
SaShiMi-AR 0.048±n.a. 0.020±n.a.

Classification
Score ↑

Ours 1.338±.753 0.950±.257
ImagenTime 0.755±.343 0.560±.174

LS4 0.544±n.a. 0.636±n.a.
SaShiMi-AR 0.001±n.a. 0.045±n.a.

Predictive
Score ↓

Ours 0.030±.006 0.539±.196
ImagenTime 0.034±.020 0.584±.188

LS4 0.037±n.a. 0.241±n.a.
SaShiMi-AR 0.232±n.a. 0.849±n.a.

and discriminative score in ETTh by around 50% on average, while predictive score does not lag
much behind Diffusion-TS. The results are notable considering that previous methods often make use
of carefully designed auxiliary losses specialized for time-series, e.g., Diffusion-TS uses a Fourier
domain loss to improve the handling of periodicity. In contrast, our models only use standard flow
matching loss (3.19) for training, which illustrates the advantages of principled architecture design.
Specifically, spectral expansion induces the use of complex-valued parameters, and tensor network
decomposition induces a multiplicative parameter sharing in the length direction (Section 3.1),
offering a natural inductive bias to handle periodicity without specialized loss or components.

To provide further comparisons in a larger parameter regime, we conduct an additional experiment
following [15, 71], comparing against larger models than ones in Table 1. We use Sines, Stocks, and
MuJoCo considering resource constraints. The results are in Table 2. Spectral mean flow achieves
the best in 6 out of 9 cases, showing that it is competitive with the state-of-the-art SDFormer-AR [15]
and generally outperforms SDFormer-M [15] and ImagenTime [71]. Similarly as in Table 1, we note
that SDFormer-AR uses a sophisticated two-stage training of a vector-quantized codebook and then
an autoregressive model on top of it, while our models are end-to-end trained with flow matching.

9

Table 4: Irregular time-series modeling based on Stocks dataset,
evaluated with discriminative score ↓.

Task Methods 0% Drop 30% Drop 50% Drop 70% Drop

Irregular
→ Regular

Ours 0.009±.008 0.020±.011 0.019±.008 0.015±.007
Koopman VAE 0.021±.022 0.109±.051 0.067±.038 0.049±.052

GT-GAN 0.077±.031 0.251±.097 0.265±.073 0.230±.053
TimeGAN 0.102±.021 0.411±.040 0.477±.021 0.485±.022
RCGAN 0.196±.027 0.436±.064 0.478±.049 0.381±.086

C-RNN-GAN 0.399±.028 0.500±.000 0.500±.000 0.500±.000
RNN-AR 0.226±.035 0.305±.002 0.308±.010 0.317±.019

Irregular
→ Irregular

Ours 0.009±.008 0.049±.017 0.044±.017 0.138±.137
Koopman VAE 0.021±.022 0.227±.096 0.211±.078 0.187±.075

Table 5: Physics-informed model-
ing of a nonlinear pendulum.

Methods Corr. Score ↓
Ours w/ stability loss 0.0005±.0004
KoVAE w/ stability loss 0.0030±.0004

Ours w/o stability loss 0.0029±.0008
KoVAE w/o stability loss 0.0040±.0005

Long time series For additional demonstrations of modeling longer time series than in Table 1, we
use FRED-MD and NN5 Daily from the Monash repository [32], containing time series of lengths 728
and 791, respectively. Our models are designed as in Section 3, equipped with time-delay observables
used in operator-theoretic methods for dynamical systems [49]. We use three metrics following [71].
Marginal score [59] measures the absolute error between the empirical probability densities of the
real and generated data. Classification score [104] trains an S4 [37] classifier to distinguish between
the real and generated data, and measures its loss on the generated data. Predictive score [104] trains
an S4 10-step predictor on the generated data, and measures the prediction error on the real data. The
results are in Table 3. Spectral mean flow shows a strong result, achieving the best metric in 5 out of
6 cases and generally outperforming the previous best methods ImagenTime [71] and LS4 [104].

Irregular time series For further demonstrations of generality, we run experiments on irregularly
sampled time series. We obtain 3 irregularly sampled datasets from Stocks by randomly dropping
30%, 50%, and 70% of the observations, following [45, 72]. We consider two tasks, irregular →
regular: generating the full time series including the missing timesteps, and irregular → irregular:
generating only the irregularly sampled time series. The former is standard in literature [45, 72], and
the latter provides a proxy task of modeling informatively sampled time series where sampling can be
determined by the system state. Baselines include Koopman VAE [72], state-of-the-art operator-based
method for irregular time series. The results are in Table 4. Spectral mean flow achieves the best
discriminative metric, supporting its generality to handle irregular time series in both settings.

Physics-informed modeling Lastly, we demonstrate a benefit of being an operator method: incor-
poration of physics-based prior knowledge. While interpreting eigenfunctions is not direct due to our
end-to-end design, this can be done via explicit spectral regularization thanks to linearity of the tensor
network. We test this using a problem from [72], where we consider a nonlinear pendulum governed
by an ODE of angular displacement θ from an equilibrium, θ̈ + 9.8 sin θ = 0, θ̇(0) = 0. As the pen-
dulum is stable and conservative, the physical knowledge is that eigenvalues of underlying operator
have non-positive real part and some have zero real. In Koopman VAE [72], this stability constraint
is built-in using a loss on matrix A for hidden states zt+1 = Azt, specifically |s1 − 1|2 + |s2 − 1|2
where (s1, s2) are the largest eigenvalues of A. As our model is governed by products of matrix
hidden states Otw(x

n), Stw(x
n) (3.10), (3.20), we incorporate this in an end-to-end manner via the

same spectral loss on the matrix states. The results are in Table 5. With stability loss, we see a clear
improvement over Koopman VAE that uses the same constraint. This implies incorporating physical
knowledge into our model is possible, leading to a better match with the true data-generating process.

6 Conclusion

We proposed a new algorithm for sequence modeling based on operator-theoretic interpretation of
a hidden Markov model. Instead of implementing its stochastic recurrence directly, we considered
embedded distributions in Hilbert spaces, which enabled us to use powerful linear-algebraic tools
including spectral decomposition to derive a tensor-network based neural architecture, as well as a
sampling procedure based on a time-dependent MMD gradient flow paired with flow matching. On
synthetic setups and time-series modeling datasets, we verified our theoretical claims and observed
performances competitive with the state-of-the-art.

10

Acknowledgments This work was in part supported by the National Research Foundation of
Korea (RS-2024-00351212 and RS-2024-00436165) and the Institute of Information & Commu-
nications Technology Planning & Evaluation (IITP) (RS-2024-00509279, RS-2022-II220926, and
RS-2022-II220959) funded by the Korean government (MSIT). Max Beier is supported by the DAAD
programme Konrad Zuse Schools of Excellence in Artificial Intelligence, sponsored by the German
Federal Ministry of Education.

References
[1] R. A. Adams and J. J. Fournier. Sobolev spaces, volume 140. Elsevier, 2003. (pages 4, 22)

[2] T. D. Ahle. The tensor cookbook, 2024. Version: September, 2024. (page 4)

[3] Y. Aït-Sahalia, L. P. Hansen, and J. A. Scheinkman. Operator methods for continuous-time markov
processes. Handbook of financial econometrics: tools and techniques, pages 1–66, 2010. (page 37)

[4] M. Arbel, A. Korba, A. Salim, and A. Gretton. Maximum mean discrepancy gradient flow. In NeurIPS,
2019. (pages 2, 3, 5, 7, 22, 23, 27)

[5] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic language model. Journal of
machine learning research, 3(Feb):1137–1155, 2003. (page 1)

[6] A. Berlinet and C. Thomas-Agnan. Reproducing kernel Hilbert spaces in probability and statistics.
Springer Science & Business Media, 2011. (page 7)

[7] P. Bevanda, M. Beier, A. Lederer, S. Sosnowski, E. Hüllermeier, and S. Hirche. Koopman kernel
regression. In NeurIPS, 2023. (pages 7, 27, 37)

[8] A. Bietti and F. R. Bach. Deep equals shallow for relu networks in kernel regimes. In ICLR, 2021. (pages
6, 22)

[9] B. Boots, G. J. Gordon, and A. Gretton. Hilbert space embeddings of predictive state representations. In
UAI, 2013. (page 7)

[10] N. Boullé and M. J. Colbrook. Multiplicative dynamic mode decomposition. SIAM Journal on Applied
Dynamical Systems, 24(2):1945–1968, 2025. (page 4)

[11] J. C. Bridgeman and C. T. Chubb. Hand-waving and interpretive dance: an introductory course on tensor
networks. Journal of physics A: Mathematical and theoretical, 50(22):223001, 2017. (page 4)

[12] S. L. Brunton, M. Budišić, E. Kaiser, and J. N. Kutz. Modern koopman theory for dynamical systems.
arXiv, 2021. (pages 4, 27)

[13] C. Carmeli, E. De Vito, A. Toigo, and V. Umanitá. Vector valued reproducing kernel hilbert spaces and
universality. Analysis and Applications, 8(01):19–61, 2010. (page 23)

[14] Y. Chen, M. Welling, and A. J. Smola. Super-samples from kernel herding. In UAI, 2010. (page 7)

[15] Z. Chen, F. SHIBO, Z. Zhang, X. Xiao, X. Gao, and P. Zhao. Sdformer: Similarity-driven discrete
transformer for time series generation. In NeurIPS, 2024. (pages 8, 9, 32)

[16] A. Coletta, S. Gopalakrishnan, D. Borrajo, and S. Vyetrenko. On the constrained time-series generation
problem. In NeurIPS, 2023. (page 8)

[17] G. Daniel, J. Gray, et al. Opt_einsum-a python package for optimizing contraction order for einsum-like
expressions. Journal of Open Source Software, 3(26):753, 2018. (page 30)

[18] S. Das and D. Giannakis. On harmonic Hilbert spaces on compact abelian groups. Journal of Fourier
Analysis and Applications, 29(1):12, 2023. (page 22)

[19] S. Das, D. Giannakis, and M. Montgomery. Correction to: On harmonic Hilbert spaces on compact
abelian groups. Journal of Fourier Analysis and Applications, 29(6):67, 2023. (page 22)

[20] M. Dellnitz and O. Junge. On the approximation of complicated dynamical behavior. SIAM Journal on
Numerical Analysis, 36(2):491–515, 1999. (page 7)

[21] A. Desai, C. Freeman, Z. Wang, and I. Beaver. Timevae: A variational auto-encoder for multivariate time
series generation. arXiv, 2021. (page 8)

[22] K. Diederik and B. Jimmy. Adam: A method for stochastic optimization. arXiv, 2014. (pages 31, 32)

[23] J. L. Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990. (page 1)

[24] K.-J. Engel and R. Nagel. One-Parameter Semigroups for Linear Evolution Equations, volume 194 of
Graduate Texts in Mathematics. Springer-Verlag, New York, 2000. (page 7)

[25] C. Esteban, S. L. Hyland, and G. Rätsch. Real-valued (medical) time series generation with recurrent
conditional gans. arXiv, 2017. (page 8)

11

[26] C. Etmann. A closer look at double backpropagation. arXiv, 2019. (page 7)

[27] L. C. Ferreira and J. C. Valencia-Guevara. Gradient flows of time-dependent functionals in metric spaces
and applications to pdes. Monatshefte für Mathematik, 185:231–268, 2018. (pages 5, 27)

[28] G. Froyland, O. Junge, and P. Koltai. Estimating long-term behavior of flows without trajectory integration:
The infinitesimal generator approach. SIAM Journal on Numerical Analysis, 51(1):223–247, 2013. (page
7)

[29] K. Fukumizu, L. Song, and A. Gretton. Kernel bayes’ rule. arXiv, 2011. (pages 7, 23, 37)

[30] A. Galashov, V. D. Bortoli, and A. Gretton. Deep MMD gradient flow without adversarial training. arXiv,
2024. (pages 5, 6, 7, 8)

[31] A. H. Galib, P.-N. Tan, and L. Luo. Fide: Frequency-inflated conditional diffusion model for extreme-
aware time series generation. In NeurIPS, 2024.

[32] R. Godahewa, C. Bergmeir, G. I. Webb, R. J. Hyndman, and P. Montero-Manso. Monash time series
forecasting archive. arXiv, 2021. (pages 10, 32)

[33] K. Goel, A. Gu, C. Donahue, and C. Ré. It’s raw! audio generation with state-space models. In
International conference on machine learning, pages 7616–7633. PMLR, 2022. (page 8)

[34] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. J. Smola. A kernel two-sample test. J.
Mach. Learn. Res., 13:723–773, 2012. (pages 2, 23)

[35] S. Grünewälder, G. Lever, L. Baldassarre, S. Patterson, A. Gretton, and M. Pontil. Conditional mean
embeddings as regressors. In ICML, 2012. (page 7)

[36] A. Gu and T. Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv, 2023.
(page 1)

[37] A. Gu, K. Goel, and C. Ré. Efficiently modeling long sequences with structured state spaces. In ICLR,
2022. (pages 1, 10)

[38] J. Hertrich, C. Wald, F. Altekrüger, and P. Hagemann. Generative sliced MMD flows with riesz kernels.
In ICLR, 2024. (page 7)

[39] D. Z. Huang, N. H. Nelsen, and M. Trautner. An operator learning perspective on parameter-to-observable
maps. Foundations of Data Science, 7(1):163–225, Mar. 2025. Publisher: Foundations of Data Science.
(page 6)

[40] A. Hyvärinen, I. Khemakhem, and H. Morioka. Nonlinear independent component analysis for principled
disentanglement in unsupervised deep learning. Patterns, 4(10), 2023. (page 7)

[41] P. Inzerilli, V. Kostic, K. Lounici, P. Novelli, and M. Pontil. Consistent Long-Term Forecasting of Ergodic
Dynamical Systems. arXiv, 2023. (page 7)

[42] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural
networks. In NeurIPS, 2018. (page 6)

[43] H. Jaeger. Observable operator models for discrete stochastic time series. Neural Computation, 12:1371–
1398, 2000. (page 7)

[44] P. Jeha, M. Bohlke-Schneider, P. Mercado, R.-S. Nirwan, S. Kapoor, V. Flunkert, J. Gasthaus, and
T. Januschowski. Psa-gan: Progressive self attention gans for synthetic time series. arXiv, 2021. (page 8)

[45] J. Jeon, J. Kim, H. Song, S. Cho, and N. Park. Gt-gan: General purpose time series synthesis with
generative adversarial networks. In NeurIPS, 2022. (pages 10, 33)

[46] K. Jordan, Y. Jin, V. Boza, Y. Jiacheng, F. Cesista, L. Newhouse, and J. Bernstein. Muon: An optimizer
for hidden layers in neural networks, 2024. (page 33)

[47] M. I. Jordan. Attractor dynamics and parallelism in a connectionist sequential machine. In Proceedings
of the Annual Meeting of the Cognitive Science Society, volume 8, 1986. (page 1)

[48] O. Kallenberg. Foundations of Modern Probability, volume 99 of Probability Theory and Stochastic
Modelling. Springer International Publishing, Cham, 2021. (page 23)

[49] M. Kamb, E. Kaiser, S. L. Brunton, and J. N. Kutz. Time-delay observables for koopman: Theory and
applications. SIAM Journal on Applied Dynamical Systems, 19(2):886–917, 2020. (pages 10, 33)

[50] T. Karras, M. Aittala, J. Lehtinen, J. Hellsten, T. Aila, and S. Laine. Analyzing and improving the training
dynamics of diffusion models. In CVPR, 2024. (pages 31, 32)

[51] S. Klus, I. Schuster, and K. Muandet. Eigendecompositions of transfer operators in reproducing kernel
hilbert spaces. J. Nonlinear Sci., 30(1):283–315, 2020. (pages 1, 7)

[52] A. Kolmogoroff. Über die analytischen methoden in der wahrscheinlichkeitsrechnung. Mathematische
Annalen, 104:415–458, 1931. (page 7)

12

[53] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro. Diffwave: A versatile diffusion model for audio
synthesis. arXiv, 2020. (page 8)

[54] B. O. Koopman. Hamiltonian systems and transformation in hilbert space. Proceedings of the National
Academy of Sciences, 17(5):315–318, 1931. (page 7)

[55] V. Kostic, P. Novelli, A. Maurer, C. Ciliberto, L. Rosasco, and M. Pontil. Learning dynamical systems via
koopman operator regression in reproducing kernel hilbert spaces. In NeurIPS, 2022. (pages 1, 7)

[56] V. R. Kostic, K. Lounici, H. Halconruy, T. Devergne, P. Novelli, and M. Pontil. Laplace transform based
low-complexity learning of continuous markov semigroups. arXiv, 2024. (page 37)

[57] V. R. Kostic, P. Novelli, R. Grazzi, K. Lounici, and M. Pontil. Learning invariant representations of
time-homogeneous stochastic dynamical systems. In ICLR, 2023. (pages 6, 7)

[58] S. Lacoste-Julien, F. Lindsten, and F. R. Bach. Sequential kernel herding: Frank-wolfe optimization for
particle filtering. In AISTATS, 2015. (page 7)

[59] S. Liao, H. Ni, L. Szpruch, M. Wiese, M. Sabate-Vidales, and B. Xiao. Conditional sig-wasserstein gans
for time series generation. arXiv, 2023. (pages 8, 10)

[60] Y. Lipman, R. T. Q. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow matching for generative modeling.
In ICLR, 2023. (pages 2, 5, 6, 7, 27, 28, 29)

[61] Y. Lipman, M. Havasi, P. Holderrieth, N. Shaul, M. Le, B. Karrer, R. T. Chen, D. Lopez-Paz, H. Ben-Hamu,
and I. Gat. Flow matching guide and code. arXiv, 2024. (page 30)

[62] P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and N. Shazeer. Generating wikipedia by
summarizing long sequences. arXiv, 2018. (page 1)

[63] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv, 2017. (page 32)

[64] A. Mardt, L. Pasquali, H. Wu, and F. Noé. Vampnets for deep learning of molecular kinetics. Nature
communications, 9(1):5, 2018. (page 7)

[65] L. McCalman, S. T. O’Callaghan, and F. Ramos. Multi-modal estimation with kernel embeddings for
learning motion models. In IEEE International Conference on Robotics and Automation, 2013. (page 7)

[66] I. Mezić. Applied koopmanism. Nonlinear Dynamics, 41(1):533–546, 2013. (page 4)

[67] O. Mogren. C-rnn-gan: Continuous recurrent neural networks with adversarial training. arXiv, 2016.
(page 8)

[68] M. Mollenhauer and P. Koltai. Nonparametric approximation of conditional expectation operators. arXiv,
2020. (pages 1, 2, 7, 22, 23, 24, 25, 27)

[69] M. Montgomery and D. Giannakis. An algebra structure for reproducing kernel Hilbert spaces. Banach
Journal of Mathematical Analysis, 19(1):11, 2025. (page 22)

[70] K. Muandet, K. Fukumizu, B. Sriperumbudur, B. Schölkopf, et al. Kernel mean embedding of distributions:
A review and beyond. Foundations and Trends® in Machine Learning, 10(1-2):1–141, 2017. (pages 2, 7,
23)

[71] I. Naiman, N. Berman, I. Pemper, I. Arbiv, G. Fadlon, and O. Azencot. Utilizing image transforms and
diffusion models for generative modeling of short and long time series. In NeurIPS, 2024. (pages 8, 9, 10,
32, 33)

[72] I. Naiman, N. B. Erichson, P. Ren, M. W. Mahoney, and O. Azencot. Generative modeling of regular and
irregular time series data via koopman vaes. arXiv, 2024. (pages 1, 8, 10, 33)

[73] Y. Nishiyama, A. Afsharinejad, S. Naruse, B. Boots, and L. Song. The nonparametric kernel bayes
smoother. In Artificial Intelligence and Statistics, pages 547–555. PMLR, 2016. (page 37)

[74] P. Novelli, M. Pratticò, M. Pontil, and C. Ciliberto. Operator world models for reinforcement learning.
arXiv, 2024. (pages 2, 23)

[75] A. Orvieto, S. L. Smith, A. Gu, A. Fernando, Ç. Gülçehre, R. Pascanu, and S. De. Resurrecting recurrent
neural networks for long sequences. In ICML, 2023. (pages 7, 27, 31)

[76] J. Park and K. Muandet. A measure-theoretic approach to kernel conditional mean embeddings. In
NeurIPS, 2020. (page 23)

[77] R. N. Parnichkun, S. Massaroli, A. Moro, J. T. H. Smith, R. M. Hasani, M. Lechner, Q. An, C. Ré,
H. Asama, S. Ermon, T. Suzuki, M. Poli, and A. Yamashita. State-free inference of state-space models:
The transfer function approach. In ICML, 2024. (page 1)

[78] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep learning library.
arXiv, 2019. (page 30)

13

[79] W. Peebles and S. Xie. Scalable diffusion models with transformers. In ICCV, 2023. (page 7)

[80] W. Rudin. Functional analysis. International series in pure and applied mathematics. McGraw-Hill, New
York, 2nd ed edition, 1991. (pages 7, 27)

[81] J. J. Ryu, X. Xu, H. S. M. Erol, Y. Bu, L. Zheng, and G. W. Wornell. Operator svd with neural networks
via nested low-rank approximation. In ICML, June 2024. (page 7)

[82] F. Schmidt and T. Hofmann. Deep state space models for unconditional word generation. In NeurIPS,
2018. (page 1)

[83] B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines, regularization, optimiza-
tion, and beyond. MIT press, 2002. (page 2)

[84] I. Schuster, M. Mollenhauer, S. Klus, and K. Muandet. Kernel conditional density operators. In AISTATS,
2020. (page 7)

[85] N. Shazeer. Glu variants improve transformer. arXiv, 2020. (page 7)

[86] J. W. Siegel. Optimal approximation rates for deep relu neural networks on sobolev and besov spaces.
Journal of Machine Learning Research, 24(357):1–52, 2023. (pages 6, 22)

[87] D. R. So, W. Mańke, H. Liu, Z. Dai, N. Shazeer, and Q. V. Le. Primer: Searching for efficient transformers
for language modeling. arXiv, 2022. (pages 7, 30)

[88] L. Song, B. Boots, S. M. Siddiqi, G. J. Gordon, and A. J. Smola. Hilbert space embeddings of hidden
markov models. In ICML, 2010. (page 7)

[89] L. Song, J. Huang, A. Smola, and K. Fukumizu. Hilbert space embeddings of conditional distributions
with applications to dynamical systems. In ICML, 2009. (pages 7, 23)

[90] L. Song, X. Zhang, A. J. Smola, A. Gretton, and B. Schölkopf. Tailoring density estimation via
reproducing kernel moment matching. In ICML, 2008. (page 7)

[91] B. K. Sriperumbudur, K. Fukumizu, and G. R. G. Lanckriet. Universality, characteristic kernels and
RKHS embedding of measures. J. Mach. Learn. Res., 12:2389–2410, 2011. (pages 2, 23)

[92] I. Sutskever, J. Martens, and G. Hinton. Generating text with recurrent neural networks. In ICML, 2011.
(page 33)

[93] Z. Szabó and B. K. Sriperumbudur. Characteristic and universal tensor product kernels. J. Mach. Learn.
Res., 18:233:1–233:29, 2017. (page 24)

[94] Z. Szabó, B. K. Sriperumbudur, B. Póczos, and A. Gretton. Learning theory for distribution regression.
Journal of Machine Learning Research, 17(152):1–40, 2016. (page 7)

[95] F. Takens. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick
1980: proceedings of a symposium held at the University of Warwick 1979/80, pages 366–381. Springer,
2006. (page 33)

[96] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. In NeurIPS, 2017. (pages 7, 30)

[97] C. Villani et al. Optimal transport: old and new, volume 338. Springer, 2008. (page 27)

[98] R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent neural networks.
Neural computation, 1(2):270–280, 1989. (page 1)

[99] T. Xu, L. K. Wenliang, M. Munn, and B. Acciaio. Cot-gan: Generating sequential data via causal optimal
transport. In NeurIPS, 2020. (page 8)

[100] J. Yoon, D. Jarrett, and M. van der Schaar. Time-series generative adversarial networks. In NeurIPS,
2019. (pages 8, 32)

[101] X. Yuan and Y. Qiao. Diffusion-ts: Interpretable diffusion for general time series generation. arXiv, 2024.
(pages 8, 31, 32)

[102] Z. Yue, Y. Wang, J. Duan, T. Yang, C. Huang, Y. Tong, and B. Xu. Ts2vec: Towards universal
representation of time series. In AAAI, 2021. (page 8)

[103] B. Zhang and R. Sennrich. Root mean square layer normalization. arXiv, 2019. (pages 7, 30)

[104] L. Zhou, M. Poli, W. Xu, S. Massaroli, and S. Ermon. Deep latent state space models for time-series
generation. In ICML, 2023. (pages 1, 8, 10)

[105] W. Zucchini and I. MacDonald. Eruptions of the old faithful geyser, 2009. (page 33)

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction summarizes the contributions and the scope of the
work, including both theoretical and empirical aspects.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contri-
butions made in the paper and important assumptions and limitations. A No or NA answer
to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are discussed in Appendix D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]

15

Justification: While we state the theoretical results informally in the main text for presentation,
the full set of assumptions, formalization of the results, and complete proofs are provided in the
appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We included the implementation details and descriptions of the experiments in the
main text. More details are provided in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good way
to accomplish this, but reproducibility can also be provided via detailed instructions for
how to replicate the results, access to a hosted model (e.g., in the case of a large language
model), releasing of a model checkpoint, or other means that are appropriate to the research
performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

5. Open access to data and code

16

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide open access to data and code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparame-
ters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The details of the experiments are provided in the main text and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars from repeated tests in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to
a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: The resources are described in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform with the NeurIPS code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [No]

Justification: The work mainly contains theoretical results along with time-series generation
experiments, and immediate societal impacts are not expected.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: We cited the original sources of all datasets, evaluation setups, and models.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets

19

paperswithcode.com/datasets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Details will be provided within the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]

20

Justification: The core method development does not involve LLMs as any important, original,
or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

The appendix is organized as follows. In Appendix A, we introduce the mathematical background.
In Appendix B, we formally state and prove theoretical results in the main text. In Appendix C, we
provide details of experiments. In Appendix D, we discuss limitations and future work.

A Mathematical Background

We provide an overview of the necessary mathematical background, and refer the reader to Mollen-
hauer & Koltai (2020) [68] and Arbel et al. (2019) [4] for more details.

A.1 Problem Setup

For a Polish space S , we define P(S) as the set of probability distributions on S . For any π ∈ P(S),
we define L2(π) as the set of real-valued Lebesgue square integrable functions on S with respect
to π. Any closed subset X ⊂ Rd, and its product XN for a finite N ∈ N, are Polish spaces.

For closed X ⊂ Rd and Z ⊂ Rm, we consider a sequence of random variables X1:N = (X1, ..., XN)
on X and model it as a hidden Markov model (HMM) with hidden states Z1:N = (Z1, ..., ZN) on Z .
The joint distribution of hidden states Z1:N is determined by a time-invariant state transition model
P[Zn+1|Zn], and determines X1:N through a time-invariant local observation model P[Xn|Zn].

Formally, the conditional distributions P[Zn+1|Zn] and P[Xn|Zn] are specified by the respective
Markov kernels u and o that define u(z, ·) ∈ P(Z) and o(z, ·) ∈ P(X) for every z ∈ Z , such that:

P[Zn+1 ∈ A | Zn = z] =

∫
A
u(z, dz′) = u(z,A), (A.1)

P[Xn ∈ B | Zn = z] =

∫
B
o(z, dx) = o(z,B), (A.2)

for all measurable sets A ⊆ Z and B ⊆ X .

A.2 Reproducing Kernel Hilbert Space (RKHS)

Let H be an RKHS induced by a positive semi-definite kernel function k : X × X → R. The space
H is a vector space consisting of functions f : X → R, equipped with an inner product ⟨·, ·⟩H and a
corresponding norm ∥ · ∥H given by ∥f∥2H = ⟨f, f⟩H. The canonical feature map ϕ : X → H of the
RKHS is defined by ϕ(x) := k(·,x). The reproducing property of H states that f(x) = ⟨ϕ(x), f⟩H
for any f ∈ H. We denote the space of Hilbert-Schmidt operators from H to H as S2(H).

To handle conditional dependencies within an HMM, we also consider a second RKHS G induced by
a kernel l : Z ×Z → R with the corresponding canonical feature map φ : Z → G. We denote the
space of Hilbert-Schmidt operators from G to H as S2(G,H).

We use some assumptions on the RKHS H (or G) and the corresponding kernel k (or l). The first five
assumptions allow universal approximation of conditional distributions via linear operators on H [68,
Section 4.5]. The sixth one allows decomposing an HMM embedded in H into a tensor network.

(A) (Separability). The RKHS H is separable. This holds if X is Polish and k is continuous.
(B) (Measurability). The canonical feature map ϕ : X → H is measurable. This holds if k(x, ·) is

measurable for all x ∈ X .
(C) (Existence of second moments). It holds that Ex∼π[∥ϕ(x)∥2H] < ∞ for all π ∈ P(X). This is

satisfied if supx∈X k(x,x) < ∞.
(D) (C0-kernel). H ∈ C0(X), where C0(X) is the space of continuous real functions on X vanishing

at infinity. This holds if x 7→ k(x,x) is bounded on X and k(x, ·) ∈ C0(X) for all x ∈ X .
(E) (L2-universal kernel). H is dense in L2(π) for all probability measures π ∈ P(X).
(F) (Forming an algebra). H is closed under pointwise multiplication, f, g ∈ H =⇒ f · g ∈ H, with

the multiplication map (f, g) 7→ f · g bounded.

An example RKHS satisfying all the assumptions is Sobolev space Hs(Ω ⊂ Rd) of order s > d/2 [1,
Theorem 4.39], motivating a natural connection to neural tangent kernels [8, 86]. Generally, a class of
RKHSs satisfying (F) is known as reproducing kernel Hilbert algebras (RKHAs) [69, Definition 2.1].
Recent results have shown that (F) may hold under more abstract regularity conditions [18, 19, 69].

22

A.3 Mean Embeddings of (Conditional) Distributions

Under Assumptions (A) to (C), for any X ∼ π ∈ P(X), the following expectation yields an element
µπ in H which is called the mean embedding of π [70]:

µX :=

∫
X
ϕ(X) dπ(x) = E[ϕ(X)] ∈ H. (A.3)

We write µX = µπ when the distribution is clear from context. We call the RKHS H characteristic if
the mean embedding map π 7→ µπ is injective, that is, each mean embedding uniquely encodes a
distribution. The Assumptions (D) and (E) imply that H is characteristic [13, 91].

With a characteristic H, we can define a distance metric between distributions in P(X) called the
maximum mean discrepancy (MMD), defined as follows [34]:

MMD(ν, π) := sup
f∈H,∥f∥H≤1

∣∣∣∣∫ f(x) dν(x)−
∫

f(x) dπ(x)

∣∣∣∣ = ∥µν − µπ∥H, (A.4)

which we can interpret as measuring differences between mean embeddings.

To handle distributions in P(Z), we analogously define mean embeddings and MMD for RKHS G.

We can extend the concept of mean embeddings to the conditional distributions P[Zn+1|Zn] and
P[Xn|Zn] of an HMM. This is formalized by conditional mean embeddings [70, 89, 76], defined as:

µZn+1|Zn=z :=

∫
Z
φ(z′)u(z, dz′) = E[φ(Zn+1) | Zn = z], (A.5)

µXn|Zn=z :=

∫
X
ϕ(x) o(z, dx) = E[ϕ(Xn) | Zn = z]. (A.6)

In kernel-based inference, an approximation of the above is often achieved using linear operators
U : G → G and O : G → H called the conditional mean embedding (CME) operators [89, 29, 68]:

Uφ(z) ≈ E[φ(Zn+1) | Zn = z], (A.7)
Oφ(z) ≈ E[ϕ(Xn) | Zn = z]. (A.8)

For (A.7), if the RKHS H satisfies Assumptions (A) to (E), it is known that the approximation in (A.7)
can be made arbitrarily precise for a choice of the operator norm [68, Theorem 3.3]. Furthermore, for
well-specified cases where the map z 7→ µZn+1|Zn=z is identified as an element of S2(G), a choice
of U ∈ S2(G) exists which achieves zero error Uφ(z) = E[φ(Zn+1) | Zn = z] [68, Corollary 5.5].

For (A.8), we need an extension of [68, Corollary 5.5] to different domains X and Z [74]. This is
possible, since the result applies as long as there is a Markov kernel connecting the underlying measure
spaces, which requires mild regularity conditions [48, Chapter 8, Theorem 8.5 and preliminaries].
Under these conditions, and if H and G satisfy Assumptions (A) to (E), we can consider well-specified
cases where a choice of O ∈ S2(G,H) exists such that Oφ(z) = E[ϕ(Xn) | Zn = z].
Remark A.1. Assuming well-specified CME operators is a standard choice in kernel-based statistical
learning [68, 74]. Even if the assumption is not exactly met, close approximations can still be achieved,
e.g., representation learning can yield a feature space that is well-specified for the problem at hand.

A.4 MMD Gradient Flow

Let P2(X) be the set of distributions on X with finite second moment equipped with the 2-Wasserstein
metric. Under Assumptions (A) to (E), the MMD (A.4) provides a natural process for generating
samples x ∼ π ∈ P2(X) from an embedded distribution µπ (A.3).

Specifically, the gradient flow of the MMD defines a continuous probability path (pt)t≥0 which starts
at any initial distribution p0 and converges towards the target pt → π as t → ∞. Let us fix π, and
define F(pt) :=

1
2MMD2(pt, π), which measures distance between pt and π. It is known that the

time-dependent vector field (vt)t≥0 corresponding to the gradient flow of F(pt) is given by [4]:
vt(x) = −∇x(µpt

− µπ)(x) = −∇x⟨ϕ(x), µpt
− µπ⟩H, (A.9)

which generates the path (pt)t≥0 via the continuity equation ∂tpt+div(ptvt) = 0. If k is continuously
differentiable on X with Lipschitz gradient, for any initial distribution p0 ∈ P2(X), there exists a
unique process (Xt)t≥0 from X0 ∼ p0 satisfying dXt = vt(Xt)dt, where the distribution pt of Xt is
the unique solution of the continuity equation and F(pt) decreases in time [4, Proposition 1, 2]. With
further regularity conditions, it can be shown that pt → π asymptotically as t → ∞ [4, Section 3].

23

B Theoretical Results

We formally state and prove all theoretical arguments in the main text.

B.1 Tensor Product Mean Embedding (Section 3)

In Section 3, we embedded the joint distribution X1:N in the tensor product H⊗N = H⊗· · ·⊗H of a
characteristic RKHS H. To establish that H⊗N is itself a characteristic RKHS, we use the following:
Lemma B.1. Let Assumptions (D) and (E) be satisfied for H. Then H⊗N is characteristic.

Proof. From [68, Remark 4.7], Assumption (D) implies: H is L2-universal ⇐⇒ H is C0-universal,
i.e., H is dense in C0(X) with respect to the supremum norm. By Assumption (E), we have that H is
L2-universal, and hence C0-universal. Then, from [93, Section 4], we have that H is C0-universal
⇐⇒ H⊗N is characteristic. Therefore, under Assumptions (D) and (E), H⊗N is characteristic.

B.2 Mean Embedding Decomposition (Section 3.1)

In Section 3.1, we derived tensor network decompositions of the sequence mean embeddings µρ and
µpt through (3.7) and (3.9). We provide the respective proofs in Proposition B.2 and Proposition B.6.
Proposition B.2. Let Assumptions (A) to (E) be satisfied for G and H. Assume that for P[Xn|Zn]
and P[Xn

t |Zn]∀t ≥ 0, well-specified CME operators O : G → H and St : G → H exist, that is:

Oφ(z) = E[ϕ(Xn) | Zn = z] ∈ H, (B.1)
Stφ(z) = E[ϕ(Xn

t) | Zn = z] ∈ H, (B.2)

for all z ∈ Z . Then the following holds:

µρ = O⊗NµZ1:N , (B.3)

µpt
= S⊗N

t µZ1:N . (B.4)

Proof. The proof for (B.3) is as follows. We use two properties of HMMs: conditional independence
of observations Xi ⊥⊥ Xj | Z1:N for i ̸= j and locality of observation P[Xn|Z1:N] = P[Xn|Zn].

µρ := E[ϕ(X1)⊗ · · · ⊗ ϕ(XN)] (by definition)

= E
[
E[ϕ(X1)⊗ · · · ⊗ ϕ(XN) | Z1:N]

]
(law of total expectation)

= E
[
E[ϕ(X1)|Z1:N]⊗ · · · ⊗ E[ϕ(XN)|Z1:N]

]
(conditional independence)

= E
[
E[ϕ(X1)|Z1]⊗ · · · ⊗ E[ϕ(XN)|ZN]

]
(locality)

= E
[
[Oφ(Z1)]⊗ · · · ⊗ [Oφ(ZN)]

]
(CME operator (B.1))

= E
[
O⊗N [φ(Z1)⊗ · · · ⊗ φ(ZN)]

]
(tensor product of linear operators)

= O⊗N E[φ(Z1)⊗ · · · ⊗ φ(ZN)] (linearity)

= O⊗NµZ1:N . (by definition)

The proof for (B.4) is identical, by substituting O with St.

We now prove tensor network decomposition of µZ1:N (3.9). We show some useful lemmas:
Lemma B.3. Let G be an RKHS on a set Z with norm ∥ · ∥G. Suppose Assumption (F) holds, so
there exists a constant C ≥ 0 such that

∥f · g∥G ≤ C ∥f∥G ∥g∥G for all f, g ∈ G.

Then the bilinear map (f, g) 7→ f · g extends to a bounded linear operator

T ∗ : G⊗G −→ G, T ∗(f ⊗ g) = f · g,
with ∥T ∗∥ ≤ C. Consequently its adjoint

T = (T ∗)∗ : G −→ G⊗G
exists and satisfies ∥T∥ = ∥T ∗∥ ≤ C.

24

Proof. Define B : G×G → G by B(f, g) = f · g. By assumption

∥B(f, g)∥G = ∥f · g∥G ≤ C ∥f∥G ∥g∥G,

so B is a bounded bilinear map. By the universal property of the Hilbert-space tensor product, B
extends uniquely to a bounded linear operator

T ∗ : G⊗G −→ G, T ∗(f ⊗ g) = f · g,

with ∥T ∗∥ ≤ C.

Since T ∗ is bounded between Hilbert spaces, its adjoint T = (T ∗)∗ exists and ∥T∥ = ∥T ∗∥ ≤ C.

Corollary B.4. Under the setup of Lemma B.3, we have Tφ(z) = φ(z)⊗ φ(z) for all z ∈ Z .

Proof. This immediately follows from the definition of T ∗ and the reproducing property:

⟨Tφ(z), f ⊗ g⟩G⊗G = ⟨φ(z), T ∗(f ⊗ g)⟩G = ⟨φ(z), f · g⟩G = (f · g)(z) = f(z)g(z)

= ⟨φ(z)⊗ φ(z), f ⊗ g⟩G⊗G for all f, g ∈ G and z ∈ Z. (B.5)

Since the collection of elementary tensors {f ⊗ g : f, g ∈ G} spans the tensor product space G⊗G,
it follows that φ(z)⊗ φ(z) = Tφ(z) for all z.

Lemma B.5. Let Assumptions (A) to (F) be satisfied for G. Assume that for P[Zn+1|Zn], a well-
specified CME operator U : G → G exists, i.e., it satisfies the following for all z ∈ Z:

Uφ(z) = E[φ(Zn+1) | Zn = z] ∈ G. (B.6)

Then, there exists a bounded linear operator T : G → G⊗G that satisfies the below for all z ∈ Z:

TUφ(z) = E[φ(Zn+1)⊗ φ(Zn+1) | Zn = z] ∈ G⊗G. (B.7)

Proof. Let T be the bounded linear operator from Lemma B.3. Then:

E[φ(Zn+1)⊗ φ(Zn+1) | Zn = ·] = E[Tφ(Zn+1) | Zn = ·] (Corollary B.4)

= TE[φ(Zn+1) | Zn = ·] (linearity)
= TUφ. (CME operator (B.6))

This completes the proof.

We are now ready to prove the main result (3.9).
Proposition B.6. Under the setup of Lemma B.5 and a choice of decomposition of the CME operator
U =

∑
i λihi ⊗ gi with hi, gi ∈ G, the following holds:

µZ1:N =
∑

i2,...,iN

bi2 ⊗ λi2wi2,i3 ⊗ · · · ⊗ λiN−1
wiN−1,iN ⊗ λiNhiN , (B.8)

where bi = [TµZ1]gi ∈ G and wi,j = [Thi]gj ∈ G.

Proof. We start with the fact that a singular value decomposition (SVD) of U (B.6) always exists and
is written as U =

∑
i∈N λihi ⊗ gi [68, Section 4.1] where λi ∈ R are singular values and hi, gi ∈ G

are left and right singular functions, respectively. We proceed with SVD, which is sufficient for the
proof, and discuss eigenvalue decomposition (EVD) at the end of this section.

Define bi := [TµZ1]gi and wi,j := [Thi]gj , which are elements of G from the standard identification
of tensors as Hilbert-Schmidt operators G⊗G ≃ S2(G) [68, Section 4.1]. The following holds:

E[φ(ZN) | ZN−1] =
∑
iN

λiN giN (ZN−1)hiN , (B.9)

E[φ(Zn)gin+1
(Zn) | Zn−1] =

∑
in

λingin(Z
n−1)win,in+1

, (B.10)

E[φ(Z1)gi2(Z
1)] = bi2 . (B.11)

25

To avoid clutter, we only write out the derivation of (B.10):

E[φ(Zn)gin+1(Z
n) | Zn−1] = E[(φ(Zn)⊗ φ(Zn))gin+1 | Zn−1] (reproducing property)

= E[φ(Zn)⊗ φ(Zn) | Zn−1]gin+1 (linearity)

= [TUφ(Zn−1)]gin+1
(Lemma B.5)

= [T
∑
in

λingin(Z
n−1)hin]gin+1

(SVD)

=
∑
in

λingin(Z
n−1)[Thin]gin+1

. (linearity)

We now construct a recurrent decomposition of µZ1:N using the Markov property of Z1:N .

The following reduction rule is useful. Let Kn := E[φ(Zn)gin+1
(Zn) | Zn−1] for n ≥ 2, then:

E[φ(Zn−1)⊗Kn | Zn−2] = E[φ(Zn−1)⊗
∑
in

λingin(Z
n−1)win,in+1

| Zn−2] (by (B.10))

=
∑
in

E[φ(Zn−1)gin(Z
n−1) | Zn−2]⊗ λinwin,in+1

(linearity)

=
∑
in

Kn−1 ⊗ λinwin,in+1
. (by definition)

The full decomposition is then given as follows:

µZ1:N = E[φ(Z1)⊗ · · · ⊗ φ(ZN)] (by definition)

= E[φ(Z1)⊗ E[φ(Z2)⊗ E[· · ·E[φ(ZN−1)⊗ E[φ(ZN)|ZN−1]︸ ︷︷ ︸
(B.9)

|ZN−2] · · · |Z2]|Z1]]

(Markov property)

= E[φ(Z1)⊗ · · ·E[φ(ZN−1)⊗
∑
iN

λiN giN (ZN−1)hiN |ZN−2] · · ·]

= E[φ(Z1)⊗ · · ·
∑
iN

E[φ(ZN−1)giN (ZN−1)|ZN−2]︸ ︷︷ ︸
KN−1

⊗λiNhiN · · ·] (linearity)

= E[φ(Z1)⊗ · · ·E[φ(ZN−2)⊗
∑
iN

KN−1 ⊗ λiNhiN |ZN−3] · · ·]

= E[φ(Z1)⊗ · · ·
∑
iN

E[φ(ZN−2)⊗KN−1|ZN−3]︸ ︷︷ ︸
reduction rule

⊗λiNhiN · · ·] (linearity)

= E[φ(Z1)⊗ · · ·
∑

iN−1,iN

KN−2 ⊗ λiN−1
wiN−1,iN ⊗ λiNhiN · · ·]

= E[φ(Z1)⊗ · · ·
∑

iN−1,iN

E[φ(ZN−3)⊗KN−2|ZN−4]︸ ︷︷ ︸
reduction rule

⊗λiN−1
wiN−1,iN ⊗ λiNhiN · · ·]

(linearity)

= · · · =
∑

i3,...,iN

E[φ(Z1)⊗ K2︸︷︷︸
(B.10)

]⊗ λi3wi3,i4 ⊗ · · · ⊗ λiNhiN (recurrent reduction)

=
∑

i2,...,iN

E[φ(Z1)gi2(Z
1)]︸ ︷︷ ︸

(B.11)

⊗λi2wi2,i3 ⊗ λi3wi3,i4 ⊗ · · · ⊗ λiNhiN

=
∑

i2,...,iN

bi2 ⊗ λi2wi2,i3 ⊗ λi3wi3,i4 ⊗ · · · ⊗ λiNhiN .

This completes the proof.

With Propositions B.2 and B.6, the following is obtained from linearity and reproducing property:

26

Corollary B.7. Let Assumptions (A) to (E) be satisfied for G and H, and let Assumption (F) be
satisfied for G. With well-specified CME operators in Propositions B.2 and B.6, the inner product
between the feature of a data x1:N ∈ XN and the mean embedding µρ is given as follows:

⟨ϕ(x1)⊗ · · · ⊗ ϕ(xN), µρ⟩H⊗N = ⟨ϕ(x1)⊗ · · · ⊗ ϕ(xN), O⊗NµZ1:N ⟩H⊗N

=
∑

i2,...,iN

Obi2(x
1) · λi2 ·Owi2,i3(x

2) · · ·λiN ·OuiN (xN).

(B.12)

For µpt
, one only needs to replace O by St.

We conclude the section with a discussion on eigenvalue decomposition (EVD), which we adopt in
practice. Assuming the CME operator U (B.6) is a normal operator with discrete spectrum, we can
invoke spectral theorem to obtain an eigendecomposition U =

∑
i λihi⊗ gi with eigenvalues λi ∈ C

and eigenfunctions gi, hi : X → C. While SVD already suffices for Proposition B.6, EVD provides
a practical benefit as it efficiently captures long-range dependencies via oscillations [75, 7, 12].

Remark B.8. While U operates on real functions, for EVD we include complex-valued eigenfunctions
to ensure sufficient expressiveness. This is standard in the analysis of dynamical systems, as operators
on a Hilbert space (e.g., Sobolev spaces Hs(Ω ⊂ Rn)) with real spectra are self-adjoint and thus
can only capture time-reversal invariant dynamics. Normal or bounded operators require complex
spectra and eigenfunctions to construct spectral expansions, [80, Definition 12.17 and following].

Remark B.9. As the spectral expansion is only used to parameterize the operators, the results in
Mollenhauer & Koltai (2020) [68] and Arbel et al. (2019) [4] underlying our work are only affected
in the sense that, as an additional assumption, a spectral expansion has to exist. A complete extension
of the results therein to complex-valued RKHS is out of the scope of this paper.

B.3 MMD Flows with Time-dependent RKHS (Section 3.2)

In Section 3.2, we introduced an extension of MMD gradient flows using time-dependent RKHS. The
derivation is a direct application of existing work on gradient flows of time-dependent functionals [27].

We use the fact that, for a fixed π in P2(Rd), the time-dependent functional Ft(ν) :=
1
2MMD2

t (ν, π)
in a time interval t ∈ [0, 1] admits the following free-energy expression [4]:

Ft(ν) =

∫
Vt(x) dν(x) +

1

2

∫
Wt(x,y) dν(x) dν(y) + Ct, (B.13)

where Vt,Wt, Ct are time-dependent confinement potential, interaction potential, and constant:

Vt(x) = −
∫

kt(x,x
′) dπ(x′), Wt(x,x

′) = kt(x,x
′), Ct =

1

2

∫
kt(x,x

′) dπ(x) dπ(x′).

(B.14)

Let us assume regularity conditions for Vt,Wt as in [27, Theorem 6.4, Theorem 6.6 and Remark 6.7].
Then, it follows from the results that there is a continuous path (pt)t∈[0,1] in P2(Rd) from a given p0
associated to a time-dependent vector field (vt)t∈[0,1] via the continuity equation ∂tpt+div(vtpt) = 0.
The vector field is obtained as vt(x) = −∇x(Vt +Wt ⋆ pt)(x) [27, Theorem 6.4 and Remark 6.7]
where ⋆ is classical convolution, which yields vt(x) = −∇(µpt,t − µπ,t)(x) as in [4, Section 2.1].
This provides a minimal derivation of the flow which is sufficient in our problem context, and we
leave in-depth investigation of the regularity conditions as future work.

B.4 Gradient Fields in Flow Matching (Section 3.3)

In Section 3.3, we used vector fields developed in flow matching [60] to define our training objectives,
under the premise that they are gradient fields. We provide formal proofs for all vector fields in [60].

Consider converting an initial distribution q0 to a target distribution π, by following a continuous
path (qt)t∈[0,1] in P2(X) with boundary condition q1 = π. Such a path can be identified by a time-
dependent vector field (ut)t∈[0,1] which satisfies the continuity equation ∂tut + div(qtut) = 0 [97].

27

In flow matching, the probability path qt and vector field ut are defined as marginalization of the
conditional counterparts qt(·|x1) and ut(·|x1) [60, Eq. (6), (8)], under the assumption that qt(x) > 0:

qt(x) =

∫
qt(x|x1)π(x1) dx1, (B.15)

ut(x) =

∫
ut(x|x1)

qt(x|x1)π(x1)

qt(x)
dx1. (B.16)

Known choices include optimal transport (OT), variance-exploding (VE), and variance-preserving
(VP) conditional vector fields [60, Section 4; Examples 1 and 2]. We show that their marginal vector
fields are gradient fields. To ensure the existence of all integrals, we assume that π(x) is decreasing
to zero at a sufficient speed as ∥x∥ → ∞ and vt is bounded. From now on, we denote ∇x by ∇.

We first show a useful lemma:

Lemma B.10. If qt is a marginal probability path, qt(·|x1) is the corresponding conditional proba-
bility path, and π(x1) is the distribution of x1, then the following holds:

1 =

∫
qt(x|x1)π(x1)

qt(x)
dx1. (B.17)

∇ log qt(x) =

∫
∇ log qt(x|x1)

qt(x|x1)π(x1)

qt(x)
dx1, (B.18)

Proof. (B.17) directly follows from (B.15).

For (B.18), by noting that π(x1) is independent of x in (B.15), we have:

∇qt(x) =

∫
∇qt(x|x1)π(x1) dx1. (B.19)

Then, from ∇qt(x|x1) = ∇ log qt(x|x1) · qt(x|x1), we have:

∇ log qt(x) =
∇qt(x)

qt(x)
=

∫
∇ log qt(x|x1)

qt(x|x1)π(x1)

qt(x)
dx1. (B.20)

This completes the proof.

We now show the main results:

Proposition B.11. Consider the optimal transport (OT) conditional probability path and vector field
from [60, Section 4; Example 2 and Theorem 3]:

qt(x|x1) = N (x|µt(x1), σ
2
t (x1)I) = N (x|tx1, (1− (1− σmin)t)

2I), (B.21)

ut(x|x1) =
x1 − (1− σmin)x

1− (1− σmin)t
. (B.22)

Then the marginal vector field ut(x) is a gradient field.

Proof. By the definition of the Gaussian distribution,

qt(x|x1) = N (x|tx1, (1− (1− σmin)t)
2I) = exp

(
− ∥x− tx1∥22
(1− (1− σmin)t)2

)
/Z, (B.23)

where Z is a normalizing constant that does not depend on x.

We separate ut(x) into two gradient fields: the score function of qt(x|x1) and a linear map.

Let us write σt := 1− (1− σmin)t. The score function of qt(x|x1) is

∇ log qt(x|x1) = − x− tx1

(1− (1− σmin)t)2
= −x− tx1

σ2
t

. (B.24)

28

Next, remember that σt = 1− (1− σmin)t is independent of x,x1 and note that

ut(x|x1) =
x1 − (1− σmin)x

1− (1− σmin)t
=

x1 − (1−σt)
t x

σt
=

tx1 − (1− σt)x

tσt

=
x

t
− x− tx1

tσt
=

x

t
− σt

t
· x− tx1

σ2
t

=
x

t
+

σt

t
· ∇ log qt(x|x1). (B.25)

Let a :=
σt

t
. Then a is independent of x,x1 and ut(x|x1) =

x
t + a∇ log qt(x|x1).

By the definition of marginal vector field, we get

ut(x) =

∫
ut(x|x1)

qt(x|x1)π(x1)

qt(x)
dx1

=

∫ (x
t
+ a∇ log qt(x|x1)

)qt(x|x1)π(x1)

qt(x)
dx1

=
x

t

∫
qt(x|x1)π(x1)

qt(x)
dx1 + a

∫
∇ log qt(x|x1)

qt(x|x1)π(x1)

qt(x)
dx1

=
x

t
+ a∇ log qt(x), (B.26)

where the last equality holds by Lemma B.10.

Here, x 7→ x
t is a linear map on x so it is a gradient field, and x 7→ a∇ log qt(x) is by definition a

gradient field. Since ut(x) is an addition of two gradient fields, it is clearly a gradient field. This
completes the proof.

Proposition B.12. The marginal vector fields of the variance-exploding (VE) and variance-preserving
(VP) diffusion probability paths in [60, Section 4; Example 1] are gradient fields.

Proof. The proof is based on a stochastic differential equations (SDE) formulation [60, Appendix D].
Consider an SDE of the standard form, defined in an interval t ∈ [0, 1]:

dy = ftdt+ gtdw, (B.27)

with drift ht, diffusion coefficient gt, and standard Wiener process dw.

The corresponding marginal vector field is given as follows [60, Appendix D]:

ũt(x) = ft(x)−
1

2
g2t∇x log qt(x). (B.28)

First, it is known that the SDE for the VE path is

dy =

√
d

dt
σ2
t dw, (B.29)

where σ0 = 0 and σt → ∞ as t → 1. This SDE moves from data at t = 0 to noise at t = 1.

Thus the SDE coefficients are ft(x) = 0, gt(x) =
√

d
dtσ

2
t , and the following vector field ṽt(x)is

ũt(x) = −1

2

d

dt
σ2
t∇ log qt(x), (B.30)

and the vector field from noise at t = 0 to data at t = 1 is

ut(x) = −1

2

d

dt
σ2
1−t∇ log q1−t(x). (B.31)

Since σ1−t is independent of x, ut(x) is clearly a gradient field.

Next, it is known that the SDE for the VP path is

dy = −T ′(t)

2
y +

√
T ′(t)dw, (B.32)

29

where T (t) =
∫ t

0
β(s)ds and β is noise scale. This SDE moves from data at t = 0 to noise at t = 1.

Thus the SDE coefficients are ft(x) = −T ′(t)
2 x, gt(x) =

√
T ′(t), and the vector field ũt(x) is

ũt(x) = −T ′(t)

2
x− 1

2
T ′(t)∇ log qt(x), (B.33)

and the vector field from noise at t = 0 to data at t = 1 is

ut(x) = −T ′(1− t)

2
x− 1

2
T ′(1− t)∇ log q1−t(x). (B.34)

Here, x 7→ −T ′(1−t)
2 x is linear map on x so it is gradient field, and − 1

2T
′(1− t) is independent of

x so x 7→ − 1
2T

′(1− t)∇ log q1−t(x) is a gradient field. Since ut(x) is an addition of two gradient
fields, it is clearly a gradient field. This completes the proof.

C Experiment Details

For all experiments, we implement spectral mean flows as in Section 3.3 in PyTorch [78]. We use 32
bit-precision and use opt_einsum package [17] to optimize the tensor network contractions. For flow
matching training, we use the OT flow and path (Proposition B.11) with σmin = 1e− 5. Sampling is
done with a midpoint ODE solver from flow_matching package [61]. Each experiment is done
with a single NVIDIA RTX A6000 GPU with 48GB and Intel Xeon Gold 6330 CPU @ 2.00GHz.

C.1 Implementation Details (Sections 3.3 and 5)

We provide the implementation details. Recall that our model is parameterized by a shared feature
extractor MLP(·, ·, t) : X × Rdh → Cdf and parameters o, s ∈ Rdh , λ ∈ Cr, B,L,R,H ∈ Cdf×r.

We denote trainable linear layer from X to Y by LinX→Y , and denote LinX := LinX→X . We denote
squared ReLU activation x 7→ ReLU(x)2 [87] by ReLU2, RMS normalization [103] by RMSNorm,
L2 normalization by L2Norm, and d-dimensional sinusoidal positional encoding [96] by PERd .

For given number of layers L and hidden dimensions dh, d
′
h, the feature extractor MLP(·, ·, t) :

X × Rdh → Cdf is designed as follows. We obtain conditioning feature of t using sinusoidal PE:

ct = LinRdh ◦ ReLU2 ◦ LinRdh ◦ ReLU2 ◦ LinR256→Rdh ◦ PER256(t). (C.1)

Then, the full feature extraction process for a given input x ∈ X is written as follows:

z(0) = LinX→Rdh (x) + q+ ct, (C.2)

z(l) = z(l−1) + LinRd′
h→Rdh

◦ ReLU2 ◦ LinRdh→Rd′
h
◦ RMSNorm(z(l−1)), (C.3)

h(l) = L2Norm ◦ ReLU2 ◦ LinRdh→Cdh ◦ ReLU2(z(l)), (C.4)

MLP(x,q, t) = concat(h(1), ...,h(L)), q ∈ {o, s}. (C.5)

In (C.4), we apply ReLU2 to complex features by separately operating on real and imaginary parts.
As shown in (C.5), instead of using only the output of the last layer, the MLP concatenates features
from all layers to construct the output, i.e., df = Ldh.

Then, to parameterize B,L,R,H ∈ Cdf×r, we set r = Ldr for some dr and, to prevent O(L2dhdl)
parameter complexity, impose the following block-diagonal structure on each of D ∈ {B,L,R,H}:

D = d1 ⊕ · · · ⊕ dL =

d1

. . .
dL

 ∈ C(Ldh)×(Ldr), dl ∈ Cdh×dr . (C.6)

In addition to reducing the parameter count by a factor of L, this allows space-efficient, layerwise
evaluation of tensor network contraction based on (r1⊕· · ·⊕rL)(l1⊕· · ·⊕lL) = (r1l1⊕· · ·⊕rLlL).
In practice, we simply set dr = dh/2 unless stated otherwise.

30

Table 6: Hyperparameters for Table 1.
Hyperparameter Sines Stocks ETTh MuJoCo Energy fMRI

Hidden dimension dh, d
′
h 64 64 64 96 96 96

Layers L 10 10 10 16 14 16
Batch size 256 128 256 256 128 256
Training steps 12000 10000 18000 28000 25000 15000
Sampling steps 500 500 500 1000 1000 1000

Table 7: Wall-clock training times for Table 1.
Method Sines Stocks ETTh MuJoCo Energy fMRI

Ours 18min 15min 27min 60min 44min 35min
Diffusion-TS 16min 15min 30min 25min 60min 48min

Table 8: Wall-clock sampling times per 1,000 samples for Table 1.
Method Sines Stocks ETTh MuJoCo Energy fMRI

Ours 30sec 30sec 29sec 109sec 95sec 109sec
Diffusion-TS 66sec 66sec 67sec 133sec 202sec 262sec

Table 9: Parameter counts for Table 1, extending [101, Table 7].
Method Sines Stocks Energy

Ours 356,736 356,800 1,086,432
Diffusion-TS 232,177 291,318 1,135,144

Diffwave 533,592 599,448 1,337,752
Cot-GAN 40,133 52,675 601,539
TimeGAN 34,026 48,775 1,043,179
TimeVAE 97,525 104,412 677,418

The eigenvalues λ and nonzero blocks of B,L,R,H use exponential parameterization of [75], which
initializes each entry z uniformly between rings of radius rmin and rmax on the complex plane:

z = exp(−ν + iθ) ν = −1

2
log(u1(r

2
max − r2min) + r2min) θ = 2πu2 u1, u2 ∼ U [0, 1] (C.7)

When initializing z on the complex unit disk, we find it necessary to set rmin = ϵ and rmax = 1− ϵ
for a small constant ϵ = 10−12, to avoid numerical issues related to logarithm.

After initializing λ,B,L,R,H, we apply proper scaling to prevent the activations from exploding or
vanishing. We find that scaling λ by

√
2 and the rest by

√
2d

−1/4
r provides the desired stability.

C.2 Synthetic Experiments (Section 5.1)

We provide details of the 2D checkerboard experiment. We use MLP(·, ·, t) : R1 × Rh → CLdh

with L = 4 layers and hidden dimensions dh = d′h = 128. For training, we use Adam optimizer [22]
with hyperparameters (β1, β2) = (0.9, 0.999). The model is trained for 20k iterations with learning
rate 1e-3 and batch size 10,000, with 1k steps of linear learning rate warmup, and gradient norm
clipping at 1.0. For sampling, we keep track of exponential moving average (EMA) of the model
parameters during training [50], updating every 10 iterations with decay rate 0.995.

C.3 Time-Series Modeling (Section 5.2)

We provide details of unconditional time-series generation experiments in Section 5.2.

Regular time series We first detail the datasets in Table 1. Sines has 10,000 5-channel sequences
where each channel is a sinusoidal signal x(n) = sin(2πωn + θ) with independently determined

31

Table 10: Parameter counts for Table 2.
Method Sines Stocks MuJoCo

Ours 32,161k 32,161k 32,165k
SDFormer-AR 44,971k 44,971k 44,971k
ImagenTime 57,560k 57,562k 14,430k

Table 11: Parameter counts for Table 3.
Method FRED-MD NN5 Daily

Ours 100,603k 100,569k
ImagenTime 151,720k 151,720k

Table 12: Parameter counts for Tables 4 and 5.
Method Stocks, 0% Drop Stocks, 30–70% Drop Pendulum

Ours 157,888 157,888 45,544
Koopman VAE 42,270 33,410 37,978

frequency ω ∼ U [0, 1] and phase θ ∼ U [−π, π]. Stocks contains 3,773 6-channel sequences from
daily Google stock price data from 2004 to 2019. The channels are volume and high, low, opening,
closing, and adjusted closing prices. ETTh contains 17,420 7-channel sequences from electricity
transformers recorded every 15 minutes from 2016 to 2018, including load and oil temperature.
MuJoCo has 10,000 14-channel sequences from DeepMind dm_control physics simulation. Energy
contains 19,711 28-channel sequences from appliances energy use in a building recorded at a noisy
10-minutes interval, including house temperature and humidity. fMRI contains 10,000 50-channel
sequences from a realistic simulation of blood oxygen level dependent signal in functional MRI.

We closely follow the protocol of [101] for hyperparameter selection and training. Detailed hyper-
parameters are in Table 6. The ranges considered for MLP(·, ·, t) : Rd × Rdh → CLdh are batch
size {128, 256}, layers L ∈ {10, 14, 16}, and hidden dimension dh = d′h ∈ {64, 96}. Other choices
mostly follow [101]: For training, we use Adam optimizer [22] with (β1, β2) = (0.9, 0.96). The
model is trained for the same iterations per dataset as in [101] with learning rate 8e-4 and gradient
clipping at 1.0, with 500 steps of linear warmup and then decaying by 0.5 on plateau with patience
2,000. An exception is MuJoCo, where longer training is necessary for convergence. For sampling,
we use EMA of model parameters [50] following [101], updating every 10 iterations with decay rate
0.995. We use a midpoint ODE solver with the same sampling steps as in [101]. In Table 1, we adopt
baseline scores from [100, 101] except for Diffusion-TS reproduced with the official implementation.

We provide supplementary results of Table 1. From Figure 4 to 9, we visualize real and generated
data from our model in Table 1, showing that generations are visually realistic. We further perform
detailed complexity analysis by measuring wall-clock training and sampling times as well as parameter
counts. The results are in Tables 7, 8, and 9, showing that our models for Table 1 have reasonable
computational complexity, and their generation is faster than the state-of-the-art Diffusion-TS.

We now provide the details of additional comparisons in Table 2. For this setup, we consider two
recent state-of-the-art methods SDFormer [15] and ImagenTime [71] that operate in a larger parameter
regime, roughly using 11–43× the parameters of the largest model Diffwave in Table 1. We use Sines,
Stocks, and MuJoCo datasets, considering both resource constraints and reproducible datasets in the
codebases of [15, 71]. We test larger spectral mean flows with comparable number of parameters to the
baselines without other architectural changes. Specifically, we use MLP(·, ·, t) : Rd × Rdh → CLdh

with L = 12 layers and dimensions dh = 512, d′h = 1024. The parameter counts are in Table 10.
Other hyperparameters are chosen as follows. Following [15], we train our models using AdamW
optimizer [63] with (β1, β2) = (0.5, 0.9) and weight decay 1e-6 for 100k iterations and measure the
discriminative score with respect to the training dataset every 2,500 iterations for validation. Without
hyperparameter tuning, we use batch size 512, learning rate 1e-4, and gradient clipping at 1.0. For
sampling, we use EMA of model parameters, updating every 10 iterations with decay rate 0.995. We
use a midpoint ODE solver with 100 sampling steps for validation and 500 steps for testing. In
Table 2, we reproduce SDFormer-AR and ImagenTime using the official implementations.

Long time series We provide details of long time-series modeling in Table 3. We use two datasets
from the Monash repository [32]. FRED-MD has 107 time series of length 728 from macro-economic
indicators from the Federal Reserve Bank. NN5 Daily contains 111 time series of length 728 from
daily cash withdrawals from ATMs in UK. We choose these datasets as their moderate sizes allow
experimentation within resource constraint. Following [71], we normalize each trajectory to adhere
to a zero-centered normal distribution, and use 80% of the data for training and 20% for testing.

32

We design our architectures as in Appendix C.1, and equip them with time-delay observables used in
operator-theoretic methods for dynamical systems [49, 95] which we found to help stabilizing training.
Specifically, for time series x1:N we define a new observable x̄1:N ′

as x̄i := concat(xai, ...,xai+b)
for delay a and dimension b. When a ≤ b, there is no loss of information and the map x 7→ x̄ is
invertible. Hence, we model x̄ using spectral mean flow and convert the result to x using the inverse
map. We use a = 16 and b = 64 for FRED-MD, and a = 20 and b = 20 for NN5 Daily.

We include state-of-the-art ImagenTime [71] for comparison, and test spectral mean flow with a
comparable number of parameters. Specifically, we use MLP(·, ·, t) : Rd × Rdh → CLdh with
L = 12 layers and hidden dimensions dh = 768, d′h = 3072. The parameter counts are in Table 11.
Other hyperparameters are chosen as follows. Following [71], we train our models for 1k epochs with
batch size 32 and weight decay 1e-5, measure the marginal score every 100 iterations for validation,
and for sampling use EMA of model parameters with 100 warmup steps and decay rate 0.9999. We
use AdamW optimizer with (β1, β2) = (0.9, 0.95) and learning rate 3e-4 for all parameters except
for (λ,B,L,R,H). For these spectral parameters, we use Muon optimizer [46] with learning rate
1e-3, which slightly improved the performances. While we leave a deeper investigation as future
work, we conjecture this is because Muon is a second-order optimizer, which are expected to improve
the learning of multiplicative matrix states in general [92, Section 3.3]. We use gradient clipping at
1.0. For sampling, we use a midpoint ODE solver with 100 sampling steps. In Table 3, we adopt the
baseline scores from [71] except for ImagenTime reproduced using the official implementation.

Irregular time series We provide details of irregular time-series modeling in Table 4. We recall that
we consider two tasks, (1) irregular → regular: generating the full time series including the missing
timesteps, and (2) irregular → irregular: generating only the irregularly sampled time series. We
apply spectral mean flow to the tasks as follows. For (1), we handle missing timesteps during training
by simply interpolating the observations, which we find to work well in practice. For (2), based on
the HMM formulation we use a classical approach [105] of treating the sampling interval itself as
a part of data. That is, we consider hidden states Z1:N under dynamics P[Zn+1|Zn], and a local
observation model P[Xn,∆τn|Zn] that jointly determines the observation Xn and sampling interval
∆τn between Xn−1 and Xn. If expressive enough, this HMM can express any joint distribution
P[(X1,∆τ1), ..., (XN ,∆τN)], i.e., general time series under irregular or informative sampling. The
only change in implementation is using sampling intervals ∆τn as an additional data dimension.

Detailed hyperparameters are as follows. We use MLP(·, ·, t) : Rd×Rdh → CLdh with L = 4 layers
and hidden dimension dh = d′h = 64. This leads to a smaller model than the previous experiments,
although larger than Koopman VAE (Table 12). For other hyperparameters, we closely follow [72]
and train all models using Adam optimizer with learning rate 7e-4 for 600 epochs with batch size 64.
For sampling, we use EMA of model parameters, updating every 10 iterations with decay rate 0.995,
and use a midpoint ODE solver with 100 sampling steps. In Table 4, the baseline scores are from
[45, 72] except for Koopman VAE tested using the official implementation. To run Koopman VAE on
task (2), we adopt the hyperparameters provided in the official implementation for task (1).

Physics-informed modeling Lastly, we provide details of physics-informed modeling in Table 5.
As discussed, we consider a nonlinear pendulum governed by θ̈ + 9.8 sin θ = 0, θ̇(0) = 0. To obtain
a dataset, we simulate 2,000 independent trajectories with initial condition θ(0) ∼ Unif[0.5, 2.7] over
the time interval [0, 10] and sampling interval 0.25, treating the pair (θ(t), θ̇(t)) as the observation.
Following [72], we add Gaussian noise with standard deviation 0.08 to simulate real-world noise and
standardize each trajectory to the range [0, 1]. We consider Koopman VAE [72] for comparison, as it
is a state-of-the-art operator-based method for time series. We use correlational score for evaluation.

To focus on the impact of spectral regularization on the matrix states described in Section 5.2, in the
feature extractor we only use the last layer feature h(L) (C.5), leading to MLP(·, ·, t) : Rd × Rdh →
Cdh , λ ∈ Cdr , and B,L,R,H ∈ Cdh×dr without block-diagonal structure. We use L = 8 layers
and dimension dh = d′h = 32. Following [72], we fix the spectral dimension as r = dr = 4, as well
as the latent dimension of Koopman VAE as 4. This leads to similarly sized models (Table 12) with
spectral regularization on 4× 4 matrices (if used). We train all models with Adam optimizer, learning
rate 7e-4 for 600 epochs, with batch size 64. For sampling of our model, we use EMA of parameters
updating every 10 steps with decay 0.995, and use a midpoint ODE solver with 100 sampling steps.

33

0 5 10 15 20

0.6

0.8

1.0
real

0 5 10 15 20

0.6

0.8

1.0
generated

0 5 10 15 20

0.6

0.8

1.0

0 5 10 15 20

0.6

0.8

1.0

0 5 10 15 20

0.6

0.8

1.0

0 5 10 15 20

0.6

0.8

1.0

0 5 10 15 20

0.6

0.8

1.0

0 5 10 15 20

0.6

0.8

1.0

0 5 10 15 20

0.6

0.8

1.0

0 5 10 15 20

0.6

0.8

1.0

Figure 4: Examples of real and generated data for the Sines dataset.

0 5 10 15 20

0.1

0.2
real

0 5 10 15 20

0.1
0.2
0.3

generated

0 5 10 15 20

0.1
0.2
0.3

0 5 10 15 20

0.25

0.50

0 5 10 15 20

0.2

0.4

0 5 10 15 20

0.1
0.2
0.3

0 5 10 15 20

0.1

0.2

0 5 10 15 20

0.1

0.2

0 5 10 15 20

0.1

0.2

0 5 10 15 20
0.0

0.5

Figure 5: Examples of real and generated data for the Stocks dataset.

34

0 5 10 15 20
0.25

0.50

0.75
real

0 5 10 15 20

0.25

0.50

0.75
generated

0 5 10 15 20
0.25

0.50

0.75

0 5 10 15 20
0.25

0.50

0.75

0 5 10 15 20

0.25

0.50

0.75

0 5 10 15 20
0.25

0.50

0.75

0 5 10 15 20

0.25

0.50

0.75

0 5 10 15 20

0.25

0.50

0.75

0 5 10 15 20

0.25

0.50

0.75

0 5 10 15 20

0.4

0.6

0.8

Figure 6: Examples of real and generated data for the ETTh dataset.

0 5 10 15 20

0.5

1.0
real

0 5 10 15 20

0.25
0.50
0.75

generated

0 5 10 15 20
0.0

0.5

0 5 10 15 20

0.25

0.50

0.75

0 5 10 15 20

0.25
0.50
0.75

0 5 10 15 20
0.25

0.50

0.75

0 5 10 15 20

0.25

0.50

0.75

0 5 10 15 20

0.25

0.50

0.75

0 5 10 15 20

0.5

1.0

0 5 10 15 20

0.5

1.0

Figure 7: Examples of real and generated data for the MuJoCo dataset.

35

0 5 10 15 20
0.0

0.5

real

0 5 10 15 20
0.0

0.5

1.0
generated

0 5 10 15 20
0.0

0.5

1.0

0 5 10 15 20
0.0

0.5

1.0

0 5 10 15 20
0.0

0.5

1.0

0 5 10 15 20
0.0

0.5

1.0

0 5 10 15 20
0.0

0.5

1.0

0 5 10 15 20
0.0

0.5

0 5 10 15 20

0.5

1.0

0 5 10 15 20
0.0

0.5

1.0

Figure 8: Examples of real and generated data for the Energy dataset.

0 5 10 15 20

0.25
0.50
0.75

real

0 5 10 15 20

0.5

1.0
generated

0 5 10 15 20
0.0

0.5

0 5 10 15 20

0.25

0.50

0.75

0 5 10 15 20

0.25
0.50
0.75

0 5 10 15 20

0.25
0.50
0.75

0 5 10 15 20

0.5

1.0

0 5 10 15 20

0.5

1.0

0 5 10 15 20

0.25
0.50
0.75

0 5 10 15 20

0.25
0.50
0.75

Figure 9: Examples of real and generated data for the fMRI dataset.

36

D Limitations and Future Work

Our current main limitation is the question of how to condition the generative process on partial
observations in a principled manner. We believe studying kernel Bayesian inference [29] and Laplace
transform of CME operators [56] in our problem context could be fruitful. The reasoning is as follows.
Suppose we have a partial observation x1:n and want to generate xn+1:N ∼ P[Xn+1:N |X1:n = x1:n].
This can be done with MMD flow if we have conditional mean embedding µXn+1:N |X1:n=x1:n . In
kernel methods for HMMs, this is precisely estimated via kernel Bayesian inference [29, 73]. As an
alternative, a type of Laplace transform of Koopman operator has been recently used for kernel-based
forecasting x1:n 7→ xn+1:N of deterministic nonlinear dynamics [7]. Given the proximity between
the two operators, we conjecture its extension to our setup may enable principled conditioning.

In addition, while in Section 5.2 we showed one possible approach to perform physics-informed
modeling using our method via spectral regularization, a more direct approach of identifying the
operator eigenfunctions from the learned model would strengthen the interpretability of our method.

Also, while we adopted simple strategies to handle irregularly or informatively sampled dynamical
systems in Section 5.2, another possibly valid approach is using the continuous-time CME operator
U∆τφ(z) = E[φ(Zτ+∆τ)|Zτ = z] and its spectral decomposition U =

∑
i exp(si∆τ)hi ⊗ gi with

continuous-time eigenvalues si [3]. We leave further investigation of this direction as future work.

Lastly, room for future work lies in engineering aspect of the method, including better architectural
components and stabilization strategies for long sequences, choices of vector fields for flow matching
training, as well as empirical investigations of scaling laws.

While the above directions are exciting, we believe their proper investigation warrants separate work.
Thus, we focused our effort on laying the foundations of a neural method based on operator theory.

37

	Introduction
	Background
	Spectral Mean Flows
	Tractability with Spectral Decomposition
	Faster Convergence with Time-dependent RKHS and Flow Matching
	Neural Parameterization and Learning

	Related Work
	Experiments
	Synthetic Experiments
	Time-Series Modeling

	Conclusion
	Mathematical Background
	Problem Setup
	Reproducing Kernel Hilbert Space (RKHS)
	Mean Embeddings of (Conditional) Distributions
	MMD Gradient Flow

	Theoretical Results
	Tensor Product Mean Embedding (Section 3)
	Mean Embedding Decomposition (Section 3.1)
	MMD Flows with Time-dependent RKHS (Section 3.2)
	Gradient Fields in Flow Matching (Section 3.3)

	Experiment Details
	Implementation Details (Sections 3.3 and 5)
	Synthetic Experiments (Section 5.1)
	Time-Series Modeling (Section 5.2)

	Limitations and Future Work

