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Abstract

As the use of machine learning models in real world high-stakes decision settings
continues to grow, it is highly important that we are able to audit and control
for any potential fairness violations these models may exhibit towards certain
groups. To do so, one naturally requires access to sensitive attributes, such as
demographics, biological sex, or other potentially sensitive features that determine
group membership. Unfortunately, in many settings, this information is often
unavailable. In this work we study the well known equalized odds (EOD) definition
of fairness. In a setting without sensitive attributes, we first provide tight and
computable upper bounds for the EOD violation of a predictor. These bounds
precisely reflect the worst possible EOD violation. Second, we demonstrate how
one can provably control the worst-case EOD by a new post-processing correction
method. Our results characterize when directly controlling for EOD with respect
to the predicted sensitive attributes is – and when is not – optimal when it comes to
controlling worst-case EOD. Our results hold under assumptions that are milder
than previous works, and we illustrate these results with experiments on synthetic
and real datasets.

1 Introduction

Machine learning (ML) algorithms are increasingly used in high stakes prediction applications
that can significantly impact society. For example, ML models have been used to detect breast
cancer in mammograms [37], inform parole and sentencing decisions [14], and aid in loan approval
decisions [41]. While these algorithms often demonstrate excellent overall performance, they
can be dangerously unfair and negatively impact under-represented groups [38]. Some of these
unforeseen negative consequences can even be fatal, e.g. deep learning models for chest x-ray disease
classification exhibit under diagnosis bias towards certain sensitive groups [36]. Recommendations
to ensure that ML systems do not exacerbate societal biases have been raised by several groups,
including the White House, which in 2016, released a report on big data, algorithms, and civil rights
[31]. It is thus critical to understand how to rigorously evaluate the fairness of ML algorithms and
control for unfairness during model development.

These needs have prompted considerable research in the area of Fair ML. While there exist many
definitions of algorithmic fairness [7], common notions of group fairness consider different error rates
of a predictor across different groups: males and females, white and non-white, etc. For example, the
equal opportunity criterion requires the true positive rate (TPR) be equal across both groups, while
equalized odds requires both TPR and false positive rate (FPR) to be the same across groups [21].
Obtaining predictors that are fair therefore requires enforcing these constraints on error rates across
groups during model development, which can be posed as a constrained (or regularized) optimization
problem [35, 42, 2, 13, 16]. Alternatively, one can devise post-processing strategies to modify a
certain predictor to correct for differences in TPR and FPR [21, 18, 12, 1], or even include data

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



pre-processing steps that ensure that unfair models could not be obtained from such data to begin
with [39, 8].

Naturally, all these techniques for estimating or enforcing fairness require access to a dataset with
features, X , responses, Y , and sensitive attributes, A. However, in many settings this is difficult
or impossible, as datasets often do not include samples that have all these variables. This could be
because the sensitive attribute data was withheld due to privacy concerns, which is very common with
medical data due to HIPAA federal law requirements, or simply because it was deemed unnecessary
to record [40, 43]. A real-world example of this is in the recent Kaggle-hosted RSNA Chest X-Ray
Pneumonia Detection Challenge [33]. Even though this dataset of chest x-rays was painstakingly
annotated for pneumonia disease by dozens of radiologists, it did not include sensitive attributes
(e.g., age, sex, and race), precluding the evaluation of fairness of the models developed as part of the
challenge. In settings like this, where there is limited or no information on the sensitive attribute of
interest, it is still important to be able to accurately estimate the violation of fairness constraints by a
ML classifier and to be able to alleviate these violations before deploying it in a sensitive application

This leads to the natural question:

How can one assess and control the fairness of a classifier without having access to sensitive
attribute data?

In other words, how can we measure and potentially control the fairness violations of a classifier for
Y with respect to a sensitive attribute A, when we have no data that jointly observes A and Y ?

1.1 Related Work

Estimating unfairness and, more importantly, developing fair predictors where there is no – or only
partial – information about the sensitive attribute has only recently received increasing attention. The
recent work by Zhao et al. [44] explores the perspective of employing features that are correlated
with the sensitive attribute, and shows that enforcing low correlation with such “fairness related
features” can lead to models with lower bias. Although these techniques are promising, they require
domain expertise to determine which features are highly correlated with the sensitive attribute. An
appealing alternative that has been studied is the use proxy sensitive attributes that are created by
a second predictor trained on a different data set that contains only sensitive attribute information
[20, 25, 10, 5]. This strategy has been widely adopted in many domains such as healthcare [17],
finance [6], and politics [23]. While using sensitive attribute predictors has proven to be an effective
and practical solution, it must be done with care, as this opens new problems for estimating and
controlling for fairness. The work by Prost et al. [34] considers the estimation of fairness in a setting
where one develops a predictor for an unobserved covariate, but it does not contemplate predicting
the sensitive attribute itself. On the other hand Chen et al. [10] study the sources of error in the
estimation of fairness via predicted proxies computed using threshold functions, which are prone to
over-estimation.

The closest to our work are the recent results by Kallus et al. [25], and Awasthi et al. [5, 4]. Kallus
et al. [25] study the identifiability of fairness violations under general assumptions on the distribution
and classifiers. They show that, in the absence of the sensitive attribute, the fairness violation of
predictions, Ŷ , is unidentifiable unless strict assumptions 1 are made or if there is some common
observed data over A and Y . Nonetheless, they show not all hope is lost and provide closed form
upper and lower bounds of the fairness violations of Ŷ under the assumption that one has two
datasets: one that is drawn from the marginal over (X,A) and the other drawn from the marginal
over (X,Y, Ŷ ). Their analysis, however, does not consider predictors Ŷ = f(X) or Â = h(X), and
instead their bounds depend explicitly on the conditional probabilities, P(A | X) and P(Ŷ , Y | X),
along with the distribution over the features, P(X). Unfortunately, with this formulation, it is unclear
how the bounds would change if the estimation of the conditional probabilities was inaccurate (as
is the case when developing predictors Â in the real world). Furthermore, in settings where X is
high dimensional (as for image data), calculating such bounds would become intractable. Since the
fairness violation cannot be directly modified, they then study when these bounds can be reduced and
improved. However, they do so in settings that impose smoothness assumptions over (X,A, Y, Ŷ ),

1Kallus et al. [25] show that if, Ŷ , Y ⊥⊥ A | X , then the fairness violations are identifiable.
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which clearly are not-verifiable without data over the complete joint distribution. As a result, their
results do not provide any actionable method that could improve the bounds.

Awasthi et al. [5], on the other hand, make progress in understanding properties of the sensitive
attribute predictor, Â, that are desirable for easy and accurate fairness violation estimation and control
of a classifier Ŷ . Assuming that Ŷ ⊥⊥ Â | (A, Y ), they demonstrate that the true fairness violation is
in fact proportional to the estimated fairness violation (the fairness violation using Â in lieu of A).
This relationships yields the counter-intuitive result that given a fixed error budget for the sensitive
attribute predictor, the optimal attribute predictor for the estimation of the true fairness violation is one
with the most unequal distribution of errors across the subgroups of the sensitive attribute. However,
one is still unable to actually calculate the true fairness violation – as it is unidentifiable. Nonetheless,
the relationship does demonstrates that if one can maintain the assumption above while controlling for
fairness with respect to Â, then doing so will provably reduce the true fairness violation with respect
to A. Unfortunately, while these rather strict assumptions can be met in some limited scenarios (as
in [4]), these are not applicable in general – and cannot even be tested without access to data over
(A, Y ).

Overall, while progress has been made in understanding how to estimate and control fairness violations
in the presence of incomplete sensitive attribute information, these previous results highlight that this
can only be done in simple settings (e.g., having access to some data from the entire distribution, or
by making strong assumptions of conditional independence). Moreover, it remains unclear whether
tight bounds can be obtained that explicitly depend on the properties of the predictor Ŷ , allowing for
actionable bounds that can provably mitigate for its fairness violation without having an observable
sensitive attribute or making stringent assumptions.

1.2 Contributions

The contributions of our work can be summarized as follows:

• We study the well known equalized odds (EOD) definition of fairness in a setting where the
sensitive attributes, A, are not observed with the features X and labels Y . We provide tight and
computable bounds on the EOD violation of a classifier, Ŷ = f(X). These bounds represent the
worst-case EOD violation of f and employ a predictor for the sensitive attributes, Â = h(X),
obtained from a sample over the distribution (X,A).

• We provide a precise characterization of the classifiers that achieve minimal worst-case EOD
violations with respect to unobserved sensitive attributes. Through this characterization, we
demonstrate when simply correcting for fairness with respect to the proxy sensitive attributes will
yield minimal worst-case EOD violations, and when instead it proves to be sub-optimal.

• We provide a simple and practical post-processing technique that provably yields classifiers that
maximize prediction power while achieving minimal worst-case EOD violations with respect to
unobserved sensitive attributes.

• We illustrate our results on a series of simulated and real data of increasing complexity.

2 Problem Setting

We work within a binary classification setting and consider a distribution Q over (X ×A×Y) where
X ⊆ Rn is the feature space, Y = {0, 1} the label space, and A = {0, 1} the sensitive attribute
space. Furthermore, and adopting the setting of [5], we consider 2 datasets, D1 and D2. The former
is drawn from the marginal over (X ,A) of Q while D2 is drawn from the marginal (X ,Y) of Q. In
this way, D1 and D2 contain the same set of features, D1 contains sensitive attribute information
and D2 contains label information. The drawn samples in D1 and D2 are i.i.d over their respective
marginals and different from one another.

Similar to previous work [10, 34, 5], we place ourselves in a demographically scarce regime where
there is designer who has access to D1 to train a sensitive attribute predictor h : X → A and a
developer, who has access to D2, the sensitive attribute classifier h, and all computable probabilites
P(h(X), A) that the designer of h can extract from D1. In this setting, the goal of the developer is to
learn a classifier f : X → Y (from D2) that is fair with respect to A utilizing Â. The central idea is
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to augment every sample in D2, (xi, yi), by (xi, yi, âi), where âi = h(xi). Intuitively, if the error of
the sensitive attribute predictor, denoted herein by U = P(h(X) ̸= A), is low, we could hope that
fairness with respect to the real (albeit unobserved) sensitive attribute can be faithfully estimated. Our
goal is to thus estimate the error incurred in measuring and enforcing fairness constraints by means
of Â = h(X), and potentially alleviate or control for it.

Throughout the remainder of this work we focus on equalized odds (EOD) as our fairness metric
[21] of interest as it is one of the most popular notions of fairness. Thus moving forward, the term
fairness refers specifically to EOD. We denote Ŷ = f(X) for simplicity, and for i, j ∈ {0, 1} define
the group conditional probabilities

αi,j = P(Ŷ = 1 | A = i, Y = j). (1)
These probabilities quantify the TPR (when j = 1) and FPR (when j = 0), for either protected group
(i = 0 or i = 1). We assume that the base rates, ri,j = P(A = i, Y = j) > 0 so that these quantities
are not undefined. With these conditionals probabilities, we define the true fairness violation of f ,
with the two quantities

∆TPR(f) = α1,1 − α0,1 and ∆FPR(f) = α1,0 − α0,0 (2)
which respectively quantify the absolute difference in TPR and FPRs among the two protected groups.

We also need to characterize the performance of the sensitive attribute classifier, h. The miss-
classification error of h can be decomposed as, U = U0 + U1 where Ui = P(Â = i, A ̸= i), for
i ∈ {0, 1}. We define the difference in errors to be

∆U = U0 − U1. (3)
In a demographically scarce regime, the rates ri,j , and more importantly the quantities of interest,
∆TPR(f) and ∆FPR(f), cannot be computed because samples from A and Y are not jointly observed.
However, using the sensitive attribute classifier h, we can predict Â on D2 and compute

r̂i,j = P(Â = i, Y = j) and α̂i,j = P(Ŷ = 1 | Â = i, Y = j),

which serve as the estimates for the true base rates and group TPRs and FPRs.

3 Theoretical Results

With the setting defined, we will now present our results. The first result provides computable bounds
on the true fairness violation of f with respect to the true, but unobserved, sensitive attribute A. The
bounds precisely characterize the worst-case fairness violation of f . Importantly, as we will explain
later, this first result will provide insight into what properties f must satisfy so that its worst-case
fairness violation is minimal. In turn, these results will lead to a simple post-processing method
that can correct a pretrained classifier f into another one, f̄ , that has minimal worst-case fairness
violations. Before presenting our findings, we first describe the key underlying assumption we make
about the pair of classifiers, h and f , so that the subsequent results are true.

Assumption 1. For i, j ∈ {0, 1}, the classifiers Ŷ = f(X) and Â = h(X) satisfy
Ui

r̂i,j
≤ α̂i,j ≤ 1− Ui

r̂i,j
. (4)

To parse this assumption, it is easy to show that this is met when a) h is accurate enough for the setting,
namely that P(Â = i, A ̸= i) ≤ 1

2P(Â = i, Y = j), and b) the predictive power of h is better than the
ability of f to predict the labels, Y – or more precisely, P(Â = i, A ̸= i) ≤ P(Ŷ = j, Â = i, Y ̸= j).
We refer the reader to Appendix A for a thorough explanation for why this is true. While this
assumption may seem limiting, this is milder than those in existing results: First, accurate predictors
h can be developed [6, 17, 23, 19], thus satisfying the assumption (our numerical results will highlight
this fact as well). Second, other works [5, 9], require assumptions on Â and Ŷ that are unverifiable in
a demographically scarce regime. Our assumption, on the other hand, can always be easily verified
because all the quantities are computable. Furthermore, this assumption can be also be relaxed if one
desires partial guarantees. More specifically, if the above is true for i ∈ {0, 1} and only for j = 1,
then all subsequent results for ∆TPR hold. Similarly, if it only holds for j = 0, the results for ∆FPR
hold. Therefore, if one only cares about the equal opportunity definition of fairness, as an example,
then this only needs to hold for i ∈ {0, 1} and j = 1.
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3.1 Bounding Fairness Violations with Proxy Sensitive Attributes

With Assumption 1 in place, we present our main result.

Theorem 1 (Bounds on ∆TPR(f) and ∆FPR(f)). Under Assumption 1, we have that

|∆TPR(f)| ≤ BTPR(f)
∆
= max{|B1 + C0,1|, |B1 − C1,1|}

|∆FPR(f)| ≤ BFPR(f)
∆
= max{|B0 + C0,0|, |B0 − C1,0|}

(5)

where

Bj =
r̂1,j

r̂1,j +∆U
α̂1,j −

r̂0,j
r̂0,j −∆U

α̂0,j and Ci,j = Ui

(
1

r̂1,j +∆U
+

1

r̂0,j −∆U

)
.

Furthermore, the upper bounds for |∆TPR(f)| and |∆FPR(f)| are tight.

The proof, along with all others in this work, are included in Appendix A. We now make a few
remarks on this result. First, the bound is tight in that there exists settings (albeit unlikely) with
particular marginal distributions such that the bounds hold with equality. Second, even though
|∆TPR(f)| and |∆FPR(f)| cannot be calculated, a developer can still calculate the worst-case fairness
violations, BTPR(f) and BFPR(f), because these depend on quantities that are all computable in
practice. Thus, if BTPR(f) and BFPR(f) are low, then the developer can proceed having a guarantee
on the maximal fairness violation of f , even while not observing |∆TPR(f)| and |∆FPR(f)|. On
the other hand, if these bounds are large, this implies a potentially large fairness violation over the
protected group A by f and the developer should not proceed in deploying f and instead seek to
learn another classifier with smaller bounds. Third, the obtained bounds are linear in the parameters
α̂i,j , which the developer can adjust as they are properties of f : this will become useful shortly.

3.2 Optimal Worst-Case Fairness Violations

Given the result above, what properties should classifiers f satisfy such that BTPR(f) and BFPR(f)

are minimal? Moreover, are the classifiers f that are fair with respect to Â, the ones that have smallest
BTPR(f) and BFPR(f)? We now answer these questions in the following theorem.

Theorem 2 (Minimizers of BTPR(f) and BFPR(f)). Let Â = h(X) be a fixed sensitive attribute
classifier with errors U0 and U1 that produces rates r̂i,j = P(Â = i, Y = j). Let F be the set of
all predictors of Y , parameterized by rates α̂i,j , that, paired with h, satisfy Assumption 1. Then,
∃Y ∈ F with group conditional probabilities, α̂i,j = P(Y = 1 | Â = i, Y = j) that satisfies the
following condition,

r̂0,j
r̂0,j −∆U

α̂0,j −
r̂1,j

r̂1,j +∆U
α̂1,j =

∆U

2

(
1

r̂1,j +∆U
+

1

r̂0,j −∆U

)
. (6)

Furthermore, any such Y has minimal maximal fairness violation, i.e. ∀Ŷ ∈ F ,

|∆TPR(Y )| ≤ BTPR(Y ) ≤ BTPR(Ŷ ) and |∆FPR(Y )| ≤ BFPR(Y ) ≤ BFPR(Ŷ ). (7)

This result provides a precise characterization of the conditions that lead to minimal worst-case
fairness violations. Observe that if ∆U ̸= 0, the classifier with minimal BTPR(f) and BFPR(f)

involves α̂i,j such that α̂1,j ̸= α̂0,j , i.e. it is not fair with respect to Â. On the other hand, if the errors
of h are balanced (∆U = 0), then minimal bounds are achieved by being fair with respect to Â.

3.3 Controlling Fairness Violations with Proxy Sensitive Attributes

Now that we understand what conditions f must satisfy so that it’s worst case fairness violations
are minimal, what remains is a method to obtain such a classifier. We take inspiration from the
post-processing method proposed by Hardt et al. [21], which derives a classifier Y = f̄(X) from
Ŷ = f(X) that satisfies equalized odds with respect to a sensitive attribute A while minimizing an
expected missclassification loss – only applicable if one has access to A, which is not true in our
setting. Nonetheless, since our method will generalize this idea, we first briefly comment on this
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approach. The method they propose works as follows: given a sample with initial prediction Ŷ = ŷ
and sensitive attribute A = a, the derived predictor f̄ , with group conditional probabilities αi,j =

P(Y = 1 | A = i, Y = j), predicts Y = 1 with probability pa,ŷ = P(Y = 1 | A = a, Ŷ = ŷ). The
four probabilities p0,0, p0,1, p1,0, p1,1 can be then calculated so that Y satisfies equalized odds and
the expected loss between Y and labels Y , i.e. E[L(Y , Y )], is minimized. The fairness constraint,
along with the objective to minimize the expected loss, give rise to the linear program:

Equalized Odds Post-Processing (Hardt et al. [21])
min

pa,ŷ∈[0,1]
E[L(Y , Y )] subject to α0,j = α1,j for j ∈ {0, 1}. (8)

Returning to our setting where we do not have access to A but only proxy variables Â = h(X), we
seek classifiers f that are fair with respect to the sensitive attribute A. Since these attributes are
not available, (thus rendering the fairness violation to be unidentifiable [25]), a natural alternative
is to minimize the worst-case fair violation with respect to A, which can be computed as shown in
Theorem 1. Of course, such an approach will only minimize the worst case fairness and one cannot
certify that the true fairness violation will decrease because – as explained above – it is unidentifiable.
Nonetheless, since we know what properties optimal classifiers must satisfy (as per Theorem 2), we
can now modify the above problem to construct a corrected classifier, f̄ , as follows. First, we must
employ Â in place of A, which amounts to employing α̂i,j in lieu of αi,j . To this end, denote the
(corrected) group conditional probabilities of Y to be α̂i,j . Second, the equalized odds constraint is
replaced with the constraint in Theorem 2. Lastly, we also enforce the additional constraints detailed
in Assumption 1 on the α̂i,j . With these modifications in place, we present the following generalized
linear program:

Worst-case Fairness Violation Reduction
min

pâ,ŷ∈[0,1]
E[L(Y , Y )]

subject to
r̂0,j

r̂0,j +∆U
α̂0,j −

r̂1,j
r̂1,j −∆U

α̂1,j =
∆U

2

(
1

r̂1,j +∆U
+

1

r̂0,j −∆U

)
Ui

r̂i,j
≤ α̂i,j ≤ 1− Ui

r̂i,j
for i, j ∈ {0, 1}.

(9)

The solution to this linear program will yield a classifier f̄ that satisfies Assumption 1, has minimal
BTPR(f̄) and BFPR(f̄), and has minimal expected loss. Note, that if ∆U = 0, then the coefficients
of α̂0,j and α̂1,j will equal one, and so the first set of constraints simply reduces to α̂0,j = α̂1,j for
j ∈ {0, 1} and the linear program above is precisely the post-processing method of [21] with Â in
place of A (while enforcing Assumption 1).

Let us briefly recap the findings of this section: We have shown that in a demographically scarce
regime, one can provide an upper bound on the true fairness violation of a classifier (Theorem 1).
Second, we have presented a precise characterization of the classifiers with minimal worst-case
fairness violations. Lastly, we have provided a simple and practical post-processing method (a linear
program) that utilizes a sensitive attribute predictor to construct classifiers with minimal worst-case
fairness violations with respect to the true, unknown, sensitive attribute.

4 Experimental Results

We now illustrate our theoretical results on synthetic and real world datasets. The code and data
necessary to reproduce these experiments are available at https://github.com/Sulam-Group/
EOD-with-Proxies.

4.1 Synthetic Data

We begin with a synthetic example that allows us to showcase different aspects of our results. The
data consists of 3 features, X1, X2, X3 ∈ R, sensitive attribute A ∈ {0, 1}, and response Y ∈ {0, 1}.
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Figure 1: Synthetic data (∆U = 0): true fairness violations, worst-case fairness violations, and
expected loss for f , ff̂air, and fopt

The features are sampled from (X1, X2, X3) ∼ N (µ,Σ), with

µ =

[
1

−1
0

]
and Σ =

[
1 0.05 0

0.05 1 0
0 0 0.05

]
.

The sensitive attribute, A, response Y , and classifier f , are modeled as

A = I[(X3 + 0.1) ≥ 0]

Y | X,A ∼ Bernoulli(S(X1 +X2 +X3 + ϵ0(1−A) + ϵ1A))

f(X; c1, c2) = I(S(c1X1 + c2X2 + c3X3) ≥ 0.5)

where I(·) is the indicator function, S(·) is the sigmoid function and c1, c2, c3 ∼ N (1, 0.01). Fur-
thermore, ϵ0 ∼ N (0, 1), ϵ1 ∼ N (0, 0.5) are independent noise variables placed on the samples
belonging to the groups A = 0 and A = 1 to ensure there is a non trivial fairness violation. Specif-
ically, Var(ϵ0) > Var(ϵ1) makes f(X; c1, c2, c3) unfair with respect to A = 0. Lastly, to measure
the predictive capabilities of f , we use the loss function, L(Ŷ ̸= y, Y = y) = P(Y ̸= y), as this
maximizes the well known Youden’s Index2.

4.1.1 Equal Errors (∆U = 0)

We model the sensitive attribute predictor as

h(X; δ) = I((X3 + 0.1 + δ) ≥ 0)

where δ ∼ N (0, σ2). We choose σ2 so that h(X) has a total error U ≈ 0.04 distributed so that
∆U ≈ 0 with U0 ≈ U1 ≈ 0.02. We generate 1000 classifiers f and for each one, calculate
∆TPR, ∆FPR, BTPR, BFPR, and E[L(f, Y )]. Then, on each f , we run the (naïve) equalized odds post
processing algorithm to correct for fairness with respect Â to yield a classifier ff̂air, and we also run
our post-processing algorithm to yield an optimal classifier fopt. For both sets of classifiers we again
calculate the same quantities.

The results in Fig. 1 present the true fairness violations, worst-case fairness violations, and expected
loss for the 3 sets of different classifiers. Observe that both BTPR and BFPR are significantly lower
for ff̂air and fopt and that these values for both sets of classifiers are approximately the same. This is
expected as U0 ≈ U1 and so performing the fairness correction algorithm and our proposed algorithm
amount to solving nearly identical linear programs. We also show the true fairness violations, ∆TPR
and ∆FPR for all the classifiers to portray the gap between the bounds and the true values. As
mentioned before, these true values cannot be calculated in a real demographically scarce regime.
Nonetheless, the developer of f now knows, post correction, that |∆TPR|, |∆FPR| ≲ 0.15. Lastly,
observe that the expected loss for ff̂air and fopt are naturally higher compared to that of f , however
the increase in loss is minimal.

4.1.2 Unequal Errors (∆U ̸= 0)

We model the sensitive attribute predictor in the same way as in the previous experiment except
with δ = c, for a constant c so that the sensitive attribute classifier still has the same total error of

2One can show that E[L(f, Y )] = P(Y = 1)P(Y = 0)(1− Yf ) where Yf is the Youden’s Index of f .
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Figure 2: Synthetic data (∆U ̸= 0): true fairness violations, worst-case fairness violations, and
expected loss for f , ff̂air and fopt

U ≈ 0.04 but distributed unevenly so that ∆U = −0.04 with U0 = 0 and U1 ≈ 0.04. As in the
previous experiment we generate classifiers f , and perform the same correction algorithms to yield
ff̂air and fopt and present the same metrics as before.

The results in Fig. 2 depict the worst-case fairness violations and expected loss for the 3 sets
of different classifiers. Observe that our correction algorithm yields classifiers, fopt, that have
significantly lower BTPR and BFPR. Furthermore, observe that the ff̂air that results from performing
the naïve fairness correction algorithm in fact have higher BFPR the original classifier f ! Even though
the total error U has remained the same, its imbalance showcases the optimality of our correction
method. Lastly, observe that there is a trade-off, albeit slight, in performing our correction algorithm.
The expected loss for fopt is higher than that of ff̂air and f .

4.2 Real World Data

We will now showcase our results on various real world datasets and prediction tasks. We provide a
brief description of each task below and further experimental details are included in Appendix B.

FIFA 2020 (Awasthi et al. [5]): The task is to learn a classifier f , using FIFA 2020 player data [29],
that determines if a soccer players wage is above (Y = 1) or below (Y = 0) the median wage based
on the player’s age and their overall attribute. The sensitive attribute A is player nationality and the
player’s name is used to learn the sensitive attribute predictor h. We consider two scenarios, when
A ∈ {English, Argentine} (English = 0) and A ∈ {French, Spanish} (French = 0).

ACSPublicCoverage (Ding et al. [15]): The task is to learn a classifier f , using the 2018 state census
data, that determines if a low-income individual, not eligible for Medicare, has coverage from public
health insurance (Y = 1) or does not (Y = 0). The sensitive attribute A is sex (Female = 0) and
with a separate dataset (containing the same features used to learn f (disregarding sex)), we learn
the sensitive attribute predictor h. We work with the 2018 California census data.

CheXpert (Irvin et al. [24]): CheXpert is a large public dataset for chest radiograph interpretation,
consisting of 224,316 chest radio graphs of 65,240 patients, with labeled annotations for 14 observa-
tions (positive, negative, or unlabeled) including cardiomegaly, atelectasis,consolidation,
and several others. The task is to learn a classifier f to determine if an X-ray contains an annotation
for any abnormal condition (Y = 1) or does not (Y = 0). The sensitive attribute A is sex (Female
= 0) and with a separate set of X-rays (different from those used to learn f ) we learn the sensitive
attribute predictor h.

4.2.1 Verification of Assumption 1

In Appendix C we provide Table 1, which demonstrates that Assumption 1 holds for the settings
described above. The Actual Value column of Table 1 lists the rates α̂i,j and the left and right columns
list Ui

r̂i,j
and 1 − Ui

r̂i,j
respectively. From Table 1, it is clear that the α̂i,j lie in between Ui

r̂i,j
and

1− Ui

r̂i,j
as required by Assumption 1. Notice, we only list the estimated group TPRs, α̂i,1 for the

ACSPublicCoverage 2018 California dataset. This is because Assumption 1, for j = 0, does not hold
for this state: even though Â is a very accurate predictor for A, the label classifier f has very low
estimated group FPRs, α̂i,0. As a result, our theoretical results for ∆FPR cannot be used.
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Figure 3: CheXpert data: true fairness violations, worst-case fairness violations, and expected loss
for f , ff̂air and fopt

4.2.2 Results on CheXpert

The task is to measure and correct for any fairness violations that f may exhibit towards the sex
attribute assuming we do not have the true sex attribute and instead have a sensitive attribute predictor,
h. On a test dataset, we generate our predictions Ŷ = f and Â = h to yield a dataset over (Â, Y, Ŷ ),
for which the sex predictor, h, achieves an error of U = 0.023 with U0 ≈ 0.008 and U1 ≈ 0.015. We
utilize the bootstrap method to generate 1000 samples of this dataset and for each sample, perform
the same correction algorithms as before to yield ff̂air and fopt and calculate the same metrics as done
in the previous experiments.

The results in Fig. 3 show that our proposed correction method performs the best in reducing BTPR
and BFPR. Even though U is very small, since U1 ≈ 2U0, simply correcting for fairness with respect
to Â is suboptimal in reducing the worst-case fairness violations. In particular, the results in Fig. 3
a are noteworthy as they depict how our proposed correction method and bounds allow the user to
certify that the obtained classifier has a fairness violation in TPRs of no more than 0.06 without
having access to the true sensitive attributes. Moreover, the improvement is significant, since before
the correction one had |∆TPR| ≲ 0.10. In a high-stakes decision setting, such as this one where the
model f could be used to aid in diagnosis, this knowledge could be vital. Naturally, the expected
loss is highest for fopt but that the increase is minimal. We make no claim as to whether this (small)
increase in loss is reasonable for this particular problem setting, and the precise trade-offs must be
defined in the context of a broader discussion involving policy makers, domain experts and other
stakeholders.

5 Limitations and Broader Impacts

While our results are novel and informative, they come with limitations. First, our results are limited
to EOD (and its relaxations) as definitions of fairness. Fairness is highly context-specific and in
many scenarios one may be interested in utilizing other definitions of fairness. One can easily extend
our results to other associative definitions of fairness, such as demographic parity, predictive parity,
and others. However, extending our results to counter-factual notions of fairness [28, 11, 32] is non
trivial and matter of future work. We recommend thoroughly assessing the problem and context
in question prior to selecting a definition. It is crucial to ensure that the rationale behind choosing
a definition is based on reasoning from both philosophical and political theory, as each definition
implicitly make a distinct set of moral assumptions. For example, with EOD, we implicitly assert that
all individuals with the same true label have the same effort-based utility [22]. More generally, other
statistical definitions of fairness such as demographic parity and equality of accuracy can be thought
of as special instances of Rawlsian equality of opportunity and predictive parity, the other hand, can
be thought of as an instance of egalitarian equality of opportunity [22, 30, 3]. We refer the reader to
[22] to understand the relationship between definitions of fairness in machine learning and models of
Equality of opportunity (EOP) – an extensively studied ideal of fairness in political philosophy.

A second limitation of our results is Assumption 1. This assumption is relatively mild, as it is met for
accurate proxy sensitive attributes (as illustrated in the chest X-rays study). Yet, we conjecture that
one can do away with this assumption and consider less accurate proxy sensitive attributes with the
caveat that the worst case fairness violations will no longer be linear in the TPRs and FPRs. Thus, the
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characterization of the classifiers with minimal worst-case bounds would be more involved and the
method to minimize these violations will likely be more difficult. Furthermore, while we proposed
a simple post-processing correction method, it would be of interest to understand how one could
train a classifier – from scratch – to have minimal violations. Lastly, in our setting we assume the
sensitive attribute predictor and label classifier are trained on marginal distributions from the same
joint distribution. As a next step, it would be important to understand how these results extend to
settings where these marginal distributions come from (slightly) different joint distributions. All of
this constitutes matter of future work.

Finally, we would like to remark the positive and potentially negative societal impacts of this work.
Our contribution is focused on a solution to a technical problem – estimating and correcting for
fairness violations when the sensitive attribute and responses are not jointly observed. However, we
understand that fairness is a complex and multifaceted issue that extends beyond technical solutions
and, more importantly, that there can be disconnect between algorithmic fairness and fairness in a
broader socio-technical context. Nonetheless, we believe that technical contributions such as ours can
contribute to the fair deployment of machine learning tools. In regards to the technical contribution
itself, our results rely on predicting missing sensitive attributes. While such a strategy could be
seen as controversial – e.g. because it could involve potential negative consequences such as the
perpetuation of discrimination or violation of privacy – this is necessary to build classifiers with
minimal worst-case fairness violations in a demographically scarce regime. On the one hand, not
allowing for such predictions could be seen as one form of “fairness through unawareness”, which
has been proven to be an incorrect and misleading strategy in fairness [21, 10]. Moreover, our post-
processing algorithm, similar to that of Hardt et al. [21], admits implementations in a differentially
private manner as well, since it only requires aggregate information about the data. As a result, our
method, which uses an analogous formulation with different constraints, can also be carried out in a
manner that preserves privacy. Lastly, note that if one does not follow our approach of correcting
for the worst-case fairness by predicting the sensitive attributes, other models trained on this data
can inadvertently learn this sensitive attribute indirectly and base decisions of it with negative and
potentially grave consequences. Our methodology prevents this from happening by appropriately
correcting models to have minimal worst-case fairness violations.

6 Conclusion

In this paper we address the problem of estimating and controlling potential EOD violations towards
an unobserved sensitive attribute by means of predicted proxies. We have shown that under mild
assumptions (easily satisfied in practice, as demonstrated) the worst-case fairness violations, BTPR
and BFPR, have simple closed form solutions that are linear in the estimated group conditional
probabilities α̂i,j . Furthermore, we give an exact characterization of the properties that a classifier
must satisfy so that BTPR and BFPR are indeed minimal. Our results demonstrate that, even when the
proxy sensitive attributes are highly accurate, simply correcting for fairness with respect to these
proxy attributes might be suboptimal in regards to minimizing the worst-case fairness violations. To
this end, we present a simple post-processing method that can correct a pre-trained classifier f to
yield an optimally corrected classifier, f̄ , i.e. one with with minimal worst-case fairness violations.

Our experiments on both synthetic and real data illustrate our theoretical findings. We show how,
even if the proxy sensitive attributes are highly accurate, the smallest imbalance in U0 and U1 renders
the naïve correction for fairness with respect to the proxy attributes suboptimal. More importantly,
our experiments highlight our method’s ability to effectively control the worst-case fairness violation
of a classifier with minimal decrease in the classifier’s overall predictive power. On a final observation
on our empirical results, the reader might be tempted to believe that the classifier ff̂air (referring to,
e.g., Fig. 3) is better because it provides a lower “true” fairness than that of fopt. Unfortunately, these
true fairness violations are not identifiable in practice, and all one can compute are the provided
upper bounds, which fopt minimizes. In conclusion, our contribution aims to provide better and more
rigorous control over potential negative societal impacts that arise from unfair machine learning
algorithms in settings of unobserved data.
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A Proofs

A.1 Explanation of Assumption 1

Assumption 1: For i, j ∈ {0, 1}, the classifiers Ŷ = f(X) and Â = h(X) satisfy

Ui

r̂i,j
≤ α̂i,j ≤ 1− Ui

r̂i,j
.

We now expand on the implications of this assumptions. Recall that Ui = P(Â = i, A ̸= i),
r̂i,j = P(Â = i, Y = j), and α̂i,j = P(Ŷ = 1 | Â = i, Y = j). Thus Assumption 1 states,

P(Â = i, A ̸= i) ≤ P(Ŷ = 1, Â = i, Y = j) ≤ P(Â = i, Y = j)− P(Â = i, A ̸= i). (10)

Immediately, it is clear that Eq. (10) implies

P(Â = i, A ̸= i) ≤ P(Â = i, Y = j)− P(Â = i, A ̸= i) (11)

=⇒ P(Â = i, A ̸= i) ≤ 1

2
P(Â = i, Y = j) (12)

Now, the left inequality of Eq. (10) states

P(Â = i, A ̸= i) ≤ P(Ŷ = 1, Â = i, Y = j) (13)

and the right inequality of Eq. (10) states

P(Ŷ = 1, Â = i, Y = j) ≤ P(Â = i, Y = j)− P(Â = i, A ̸= i)

which implies

P(Â = i, A ̸= i) ≤ P(Â = i, Y = j)− P(Ŷ = 1, Â = i, Y = j) (14)

= P(Ŷ = 0, Â = i, Y = j) (15)

If j = 1, then this implies

P(Â = i, A ̸= i) ≤ P(Ŷ = 1, Â = i, Y = 1) (16)

P(Â = i, A ̸= i) ≤ P(Ŷ = 0, Â = i, Y = 1) (17)

and if j = 0,

P(Â = i, A ̸= i) ≤ P(Ŷ = 1, Â = i, Y = 0) (18)

P(Â = i, A ̸= i) ≤ P(Ŷ = 0, Â = i, Y = 0) (19)

Any reasonable classifier Ŷ would have the properties

P(Ŷ = 0, Â = i, Y = 1) ≤ P(Ŷ = 1, Â = i, Y = 1) (20)

P(Ŷ = 1, Â = i, Y = 0) ≤ P(Ŷ = 0, Â = i, Y = 0) (21)

Thus, Assumption 1 is met when

P(Â = i, A ̸= i) ≤ P(Ŷ = j, Â = i, Y ̸= j) (22)
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A.2 Proof of Theorem 1

We only prove the result for |∆TPR(f)| as the proof for |∆FPR(f)| is completely analogous.

Proof. The rules of conditional probability and the law of total probability allow us to decompose
α1,1 and α0,1 in the following manner,

α1,1 = P(Ŷ = 1 | A = 1, Y = 1) (23)

=
P(Ŷ = 1, A = 1, Y = 1)

P(A = 1, Y = 1)
(24)

=

∑
i∈{0,1} P(Ŷ = 1, A = 1, Y = 1, Â = i)∑

j∈{0,1}
∑

i∈{0,1} P(Ŷ = j, A = 1, Y = 1, Â = i)
(25)

=

∑
i∈{0,1} P(Ŷ = 1, A = 1, Y = 1 | Â = i) · P(Â = i)∑

j∈{0,1}
∑

i∈{0,1} P(Ŷ = j, A = 1, Y = 1 | Â = i) · P(Â = i)
(26)

and

α0,1 = P(Ŷ = 1 | A = 0, Y = 1) (27)

=
P(Ŷ = 1, A = 0, Y = 1)

P(A = 0, Y = 1)
(28)

=
P(Ŷ = 1, Y = 1)− P(Ŷ = 1, A = 1, Y = 1)

P(Y = 1)− P(A = 1, Y = 1)
(29)

=
P(Ŷ = 1, Y = 1)−

[∑
i∈{0,1} P(Ŷ = 1, A = 1, Y = 1 | Â = i) · P(Â = i)

]
P(Y = 1)−

[∑
j∈{0,1}

∑
i∈{0,1} P(Ŷ = j, A = 1, Y = 1 | Â = i) · P(Â = i)

] (30)

Therefore, ∆TPR(f) = α1,1 − α0,1 is a function of the four probabilities given by

P(Ŷ = j, A = 1, Y = 1 | Â = i) (31)

which are unidentifiable in a demographically scarce regime and therefore not computable.

The Fréchet inequalities tell us that for i, j ∈ {0, 1}

P(Ŷ = j, A = 1, Y = 1 | Â = i) ≥ max{P(Ŷ = j, Y = 1 | Â = i)− P(A = 0 | Â = i), 0}
(32)

P(Ŷ = j, A = 1, Y = 1 | Â = i) ≤ min{P(Ŷ = j, Y = 1 | Â = i),P(A = 1 | Â = i)}. (33)

Observe that, ∆TPR(f) is an increasing function with respect to the two probabilities

P(Ŷ = 1, A = 1, Y = 1 | Â = i) (34)

and a decreasing one with respect to the two probabilities,

P(Ŷ = 0, A = 1, Y = 1 | Â = i). (35)

As a result, ∆TPR(f) is maximal when P(Ŷ = 1, A = 1, Y = 1 | Â = i) achieve their maximum
values and P(Ŷ = 0, A = 1, Y = 1 | Â = i) achieve their minimum values. On the other hand,
∆TPR(f) is minimal when P(Ŷ = 1, A = 1, Y = 1 | Â = i) achieve their minimum values and
P(Ŷ = 0, A = 1, Y = 1, | Â = i) achieve their maximum values. With these facts, we now provide
the upper bound. Recall from Appendix A.1 that Assumption 1 implies

P(Â = i, A ̸= i) ≤ 1

2
P(Â = i, Y = j) (36)

P(Â = i, A ̸= i) ≤ P(Ŷ = j, Â = i, Y ̸= j) ≤ P(Ŷ = j, Â = i, Y = j) (37)
(38)
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With Assumption 1 we first provide the values of min [P(Ŷ = 0, A = 1, Y = 1, | Â = i)]. First,

P(Ŷ = 0, Y = 1, | Â = 1)− P(A = 0 | Â = 1) =
P(Ŷ = 0, Â = 1, Y = 1)

P (Â = 1)
− U1

P(Â = 1)
(39)

≥ 0 (40)

because P(Ŷ = 0, Â = 1, Y = 1)− U1 ≥ 0. Second,

P(Ŷ = 0, Y = 1, | Â = 0)− P(A = 0 | Â = 0) =
P(Ŷ = 0, Â = 0, Y = 1)

P (Â = 0)
− P(A = 0, Â = 0)

P(Â = 0)
(41)

=
P(Ŷ = 0, Â = 0, Y = 1)

P (Â = 0)
− P(Â = 0)− U0

P(Â = 0)
(42)

=
P(Ŷ = 0, Â = 0, Y = 1)

P (Â = 0)
− P(Â = 0)− U0

P(Â = 0)
(43)

=
P(Ŷ = 0, Â = 0, Y = 1)

P (Â = 0)
+

U0

P(Â = 0)
− 1

(44)
Now note that,

P(Ŷ = 0, Â = 0, Y = 1) = P(Â = 0, Y = 1)− P(Ŷ = 1, Â = 0, Y = 1) (45)

≤ P(Â = 0, Y = 1)− U0 (46)
where the second equality is due to Assumption 1. As a result

P(Ŷ = 0, Â = 0, Y = 1)

P (Â = 0)
+

U0

P(Â = 0)
− 1 ≤ P(Â = 0, Y = 1)− U0

P (Â = 0)
+

U0

P(Â = 0)
− 1 (47)

=
P(Â = 0, Y = 1)

P (Â = 0)
− 1 ≤ 0 (48)

Therefore,
min [P(Ŷ = 0, A = 1, Y = 1 | Â = 1)] = P(Ŷ = 0, Y = 1, | Â = 1)− P(A = 0 | Â = 1) (49)

min [P(Ŷ = 0, A = 1, Y = 1 | Â = 0)] = 0 (50)

Now we provide the values of max [P(Ŷ = 1, A = 1, Y = 1, | Â = i)]. First,

P(A = 1 | Â = 1) =
P(A = 1, Â = 1)

P(Â = 1)
(51)

=
P(Â = 1)− U1

P(Â = 1)
(52)

≥ P(Â = 1, Y = 1)− U1

P(Â = 1)
(53)

≥ P(Â = 1, Y = 1)− P(Ŷ = 0, Â = 1, Y = 1)

P(Â = 1)
(54)

=
P(Ŷ = 1, Â = 1, Y = 1)

P(Â = 1)
= P(Ŷ = 1, Y = 1 | Â = 1) (55)

Second,

P(A = 1 | Â = 0) =
P(A = 1, Â = 0)

P(Â = 0)
(56)

≤ P(Ŷ = 1, Â = 0, Y = 1)

P(Â = 0)
= P(Ŷ = 1, Y = 1 | Â = 0) (57)
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Therefore,

max [P(Ŷ = 1, A = 1, Y = 1 | Â = 1)] = P(Ŷ = 1, Y = 1 | Â = 1) (58)

max [P(Ŷ = 1, A = 1, Y = 1 | Â = 0)] = P(A = 1 | Â = 0) (59)

Plugging these 4 values into ∆TPR will yield the upper bound,

B1 + C0,1 =
r̂1,1

r̂1,1 +∆U
α̂1,1 −

r̂0,1
r̂0,1 −∆U

α̂0,1 + U0

(
1

r̂1,1 +∆U
+

1

r̂0,1 −∆U

)
(60)

One can similarly use the assumptions to derive the lower bound,

B1 − C1,1 =
r̂1,1

r̂1,1 +∆U
α̂1,1 −

r̂0,1
r̂0,1 −∆U

α̂0,1 − U1

(
1

r̂1,1 +∆U
+

1

r̂0,1 −∆U

)
(61)

and thus |∆TPR| ≤ max{|B1 +C0,1|, |B1 −C1,1|}. One can use same arguments to derive the upper
bound for |∆FPR|.

A.3 Proof of Theorem 2

We prove the result for |∆TPR(f)|. We first start by proving the existence portion of the theorem.

Let Â = h(X) be a sensitive attribute classifier with errors U0 and U1 that produces rates r̂i,j =

P(Â = i, Y = j). Let F be the set of classifiers for Y such that ∀f ∈ F , f and h satisfy
Assumption 1. Consider any f ∈ F with group conditional probabilities, α̂i,j = P(Ŷ = 1 | Â =
i, Y = j). Since we are only proving the result for |∆TPR(f)|, set j = 1. Consider the xy plane, with
the x-axis being α̂0,1 and the y-axis being α̂1,1. We know,

Ui

r̂i,1
≤ α̂i,1 ≤ 1− Ui

r̂i,1
=⇒ Ui

r̂i,1
≤ 1

2
. (62)

The two equations above define a rectangular region in the xy plane with a center ( 12 ,
1
2 ), meaning

any classifier f ∈ F , has α̂i,j that are in this region.

Now, denote F̄ to be a the set of classifiers for Y , with group conditional probabilities α̂i,1, that
satisfy the condition,

r̂0,1
r̂0,1 −∆U

α̂0,1 −
r̂1,1

r̂1,1 +∆U
α̂1,1 =

∆U

2

(
1

r̂1,1 +∆U
+

1

r̂0,1 −∆U

)
. (63)

This condition defines a line in the xy plane meaning any classifier in F̄ has α̂i,1 that are on this line.
Now observe that the classifier f̄ ∈ F̄ with α̂i,1 = 1

2 , satisfy the above condition because,

r̂0,1
r̂0,1 −∆U

(
1

2

)
− r̂1,1

r̂1,1 +∆U

(
1

2

)
=

1

2

(
r̂0,1

r̂0,1 −∆U
− r̂1,1

r̂1,1 +∆U

)
(64)

=
1

2

(
r̂0,1 −∆U +∆U

r̂0,1 −∆U
− r̂1,1 +∆U −∆U

r̂1,1 +∆U

)
(65)

=
1

2

(
1 +

∆U

r̂0,1 −∆U
− 1 +

∆U

r̂1,1 +∆U

)
(66)

=
∆U

2

(
1

r̂1,1 +∆U
+

1

r̂0,1 −∆U

)
(67)

This implies that the line defined by Eq. (63) intersects the rectangular region that Assumption 1
defines. As a result, F ∩ F̄ is not empty, meaning there exists a classifier f̄ ∈ F with group
conditional probabilities α̂i,1 that also satisfies the condition,

r̂0,1
r̂0,1 −∆U

α̂0,1 −
r̂1,1

r̂1,1 +∆U
α̂1,1 =

∆U

2

(
1

r̂1,1 +∆U
+

1

r̂0,1 −∆U

)
. (68)
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Now we prove that such a classifier has minimal bounds. Theorem 1 tells us that for f ∈ F

|∆TPR(f)| ≤ BTPR(f)
∆
= max{|B1 + C0,1|, |B1 − C1,1|}

Note that B1 is linear in α̂1,1 and α̂0,1 and that C0,1 and C1,1 are constants such that B1 + C0,1 ≥
B1−C1,1 simply because B1+C0,1 is the upper bound for ∆TPR and B1−C0,1 is the lower bound.
Since these bounds are affine functions shifted by a constant, then minmax{|B1+C0,1|, |B1−C1,1|}
necessarily occurs when

B1 + C0,1 = −B1 − C1,1 (69)

meaning

2B1 = −(C1,1 + C0,1) (70)

have minimal upper bounds on |∆TPR|. After rearranging terms, this condition is precisely

r̂0,1
r̂0,1 −∆U

α̂0,1 −
r̂1,1

r̂1,1 +∆U
α̂1,1 =

∆U

2

(
1

r̂1,1 +∆U
+

1

r̂0,1 −∆U

)
. (71)

B Experimental Details

FIFA 2020 (Awasthi et al. [5]): The task is to learn a classifier f , using FIFA 2020 player data
[29], that determines if a soccer players wage is above (Y = 1) or below (Y = 0) the median wage
based on the player’s age and their overall attribute. The sensitive attribute A is player nationality
and the player’s name is used to learn the sensitive attribute predictor h. We consider two scenarios,
when A ∈ {English, Argentine} (English = 0) and A ∈ {French, Spanish} (French = 0).
To learn the sensitive attribute predictor h, we train a Bidirectional Encoder Representations from
Transformers (BERT) model [26] using an Adam optimizer [27] for 5 epochs. To learn the label
classifier f , we train a Random Forest classifier. On a test dataset, we generate our predictions
Ŷ = f(X) and Â = h(X) to yield a dataset over (Â, Y, Ŷ ). We utilize the bootstrap method to
generate 1,000 samples of this dataset and, for each sample, perform the same correction algorithms as
before to yield ff̂air and fopt and calculate the same metrics as done in the synthetic data experiments.
For A ∈ {English, English} the nationality predictor, h, achieves an error of U = 0.033 with
U0 ≈ 0.008 and U1 ≈ 0.015. For A ∈ {French, Spanish} the nationality predictor, h, achieves an
error of U = 0.053 with U0 ≈ 0.025 and U1 ≈ 0.028. The results for both experiments are displayed
in Fig. C.1 and Fig. C.2. In addition, we include Fig. C.1d, Fig. C.1e, Fig. C.2d, and Fig. C.2e, which
display the difference between BTPR(ff̂air) and BTPR(fopt) and between BFPR(ff̂air) and BFPR(fopt).
These figures depict that the bounds of fopt are smaller than the bounds of ff̂air because the histograms
of BTPR(ff̂air)−BTPR(fopt) and BFPR(ff̂air)−BFPR(fopt) are strictly to the right of the dashed green
vertical line at 0, indicating that both differences are greater than or equal to 0.

ACSPublicCoverage (Ding et al. [15]): The task is to learn a classifier f , using the 2018 state census
data, that determines if a low-income individual, not eligible for Medicare, has coverage from public
health insurance (Y = 1) or does not (Y = 0). The sensitive attribute A is sex (Female = 0) and
with a separate dataset (containing the same features used to learn f (disregarding sex)), we learn the
sensitive attribute predictor h. We work with the 2018 California census data. To learn the sensitive
attribute predictor h and label classifier f , we train two Random Forest classifiers. On a test dataset,
we generate our predictions Ŷ = f(X) and Â = h(X) to yield a dataset over (Â, Y, Ŷ ). We utilize
the bootstrap method to generate 1,000 samples of this dataset and, for each sample, perform the
same correction algorithms as before to yield ff̂air and fopt and calculate the same metrics as done in
the previous experiments. The sex predictor, h, achieves an error of U = 0.07 with U0 ≈ 0.05 and
U1 ≈ 0.02. The results for this experiment are in Fig. C.3. In addition, we include Fig. C.3b, which
displays the difference between BTPR(ff̂air) and BTPR(fopt). This figures depict that the TPR bounds
of fopt are smaller than the TPR bounds of ff̂air because the histogram of BTPR(ff̂air)−BTPR(fopt) is
strictly to the right of the dashed green vertical line at 0, indicating that this difference is greater than
0.

CheXpert (Irvin et al. [24]): CheXpert is a large public dataset for chest radiograph interpretation,
consisting of 224,316 chest radio graphs of 65,240 patients, with labeled annotations for 14 observa-
tions (positive, negative, or unlabeled) including cardiomegaly, atelectasis,consolidation,
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and several others. The task is to learn a classifier f to determine if an X-ray contains an annotation
for any abnormal condition (Y = 1) or does not (Y = 0). The sensitive attribute A is sex (Female
= 0) and with a separate set of X-rays (different from those used to learn f ) we learn the sensitive
attribute predictor h. To learn both f and h we use a DenseNet121 convolutional neural network
architecture. Images are fed into the network with size 320 × 320 pixels. We use the Adam optimizer
[27] with default β-parameters of β1 = 0.9, β2 = 0.999 and a fixed learning rate of 1 × 10−4.
Batches are sampled using a fixed batch size of 16 images and we train for 5 epochs. On a test
dataset, we generate our predictions Ŷ = f and Â = h to yield a dataset over (Â, Y, Ŷ ). We utilize
the bootstrap method to generate 1,000 samples of this dataset, and for each sample, perform the
same correction algorithms as before to yield ff̂air and fopt and calculate the same metrics as done in
the previous experiments. The sex predictor, h, achieves an error of U = 0.023 with U0 ≈ 0.008 and
U1 ≈ 0.015. The results for this experiment are in Fig. 3.

C Additional Figures & Results

Table 1: Verification of Assumption 1
Dataset α̂i,j

Ui

r̂i,j
Actual Value 1− Ui

r̂i,j

CheXpert

α̂1,1 0.03 0.80 0.97
α̂0,1 0.02 0.78 0.98
α̂1,0 0.17 0.22 0.83
α̂0,0 0.11 0.19 0.89

FIFA 2020
(English &
Argentina)

α̂1,1 0.07 0.93 0.94
α̂0,1 0.05 0.67 0.95
α̂1,0 0.13 0.26 0.87
α̂0,0 0.03 0.05 0.97

FIFA 2020 (French
& Spanish)

α̂1,1 0.08 0.86 0.92
α̂0,1 0.13 0.83 0.87
α̂1,0 0.11 0.13 0.89
α̂0,0 0.10 0.10 0.95

ACSPublicCoverage
(California)

α̂1,1 0.13 0.39 0.87
α̂0,1 0.24 0.33 0.76
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Figure C.1: Results for FIFA 2020 dataset with A ∈ {English, Argentine}.
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Figure C.2: Results for FIFA 2020 dataset with A ∈ {French, Spanish}.
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Figure C.3: Results for ACSPublicCoverage 2018 California census data
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