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ABSTRACT

Operator learning methods are too often constrained by a fixed sampling of both
the input and output functions. We propose a novel method to allow current op-
erator learning methods to learn on any sampling. We show that our method can
perform inference on unseen samplings, and that it allows returning outputs as
continuous functions.

1 INTRODUCTION

An operator is a mapping between two function spaces, an example of operator is the mapping
between the initial condition of a Partial Differential Equation (PDE), and the solution of the PDE
at a later time. PDEs are ubiquitous in physics, where they model complex systems in many fields
(fluid dynamics, electrodynamics...). They can be analytically intractable and require the use of very
computationally-expensive numerical solvers. Recently, Deep Learning has emerged as a potential
technique for helping to solve PDEs faster.

Recently, two operator learning approaches have been proposed: FNO (Li et al., 2021) and Deep-
ONet (Lu et al., 2021), which have been followed by many applications. However, they come with
some limitations over the structure of the input data: DeepONet requires the same sampling across
all its input functions, while FNO requires the functions to be sampled on regular grids to be able to
perform the Fast Fourier Transform. Such sampling is not always obtainable in real-life, for example
in the case of drifting buoys to measure ocean currents. Implicit Neural Representations (INRs) are
neural networks that take coordinates as inputs. They allow the representation of different types of
signals such as images, 3D shapes via a continuous neural network by using sinusoidal activation
functions (Tancik et al. (2020), Sitzmann et al. (2020)), while capturing the high-frequency details
of the signal. They have exhibited interesting properties for data compression (Chen et al., 2022),
video generation(Yu et al., 2022), and physics-learning(Yin et al., 2023).

In this work, we extend current operator learning algorithms by augmenting the available data to
fit the algorithm requirements, using INRs. We show that our approach outperforms conventional
interpolation methods.

2 METHODOLOGY

Problem Setting We aim to learn an operator F : f 7→ g, where f and g are two functions defined
on spatial domains D and D′. In practice, we only have access to the values of these functions where
they are measured. Thus, our dataset is composed of couples of functions (fi, gi)i=1..n, evaluated
at the respective sets of locations Xi = (xj

i )j=1..pi
and Yi = (yji )j=1..qi , where xj

i ∈ D and
yji ∈ D′. We can rewrite it as learning a mapping between the sets (fi|Xi

)i and (gi|Yi
)i. We note

that the number and positions of the sampled points can vary across each considered couple (fi, gi).
Additionally, note that even if the domains D and D′ are the same, the sensor locations of the input
functions and of the output functions can be different.
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Figure 1: Three-step training architecture

Architecture Our method consists of three steps, which are depicted in Fig. 1. • First, we approx-
imate the unknown input and output functions fi and gi using Implicit Neural Representations: for
each fi function, we train an INR INRin

i to fit fi at the locations of Xi. As in Dupont et al. (2022),
we use modulated INRs: the networks share common parameters, which are then modulated differ-
ently for each INR, so that each INR also benefits from the common information in the data. The
same process is done for the output functions gi. • In a second time, we use these functions INRin

i
and INRout

i , respectively approximating fi and gi, to provide values on regular grids Xgrid and
Ygrid by querying these INRs on the corresponding grids. • Finally, we train our operator learning
algorithm on the surrogate regular-grid data: (INRin

i (Xgrid), INRout
i (Ygrid))i.

3 EXPERIMENTS

We demonstrate our method on 2 different datasets: the Shallow-water equation, and the Navier-
Stokes equation. We want to learn the operator F which maps an initial condition u0(x) = u(x, t =
0) to its state at a later time: u1(x) = u(x, t = 1). We use FNO as the operator learning algorithm,
but our method is applicable to other methods that are constrained by the sampling of its input data.

The input data is measured at different randomly-sampled sensor locations for each initial condition.
The sampling rate s is the ratio of the available sensors, compared to a regular grid of reference. We
compare our method for handling unstructured data with more traditional interpolation methods:
linear and cubic interpolations. We show in Table 1 that our augmentation with INRs outperforms
other unbiased interpolation methods.

Table 1: Test relative MSE (↓) on datasets sampled with rates s from 0.05 to 0.9.

Shallow-water Navier-Stokes

s = 0.05 0.15 0.5 0.9 0.05 0.15 0.5 0.9

Linear 2.58e-3 1.41e-3 5.62e-4 1.89e-4 1.47e-2 5.58e-3 1.44e-3 8.74e-4
Cubic 2.40e-3 1.13e-3 4.54e-4 1.63e-4 1.00e-2 2.30e-3 1.08e-3 9.45e-4
Ours 3.09e-4 2.40e-4 1.57e-4 1.27e-4 1.17e-3 1.28e-3 9.81e-4 1.26e-3

4 CONCLUSION

We show that our approach can extend operating learning methods for unstructured data using INRs,
and shows clear advantages with respect to standard data augmentation techniques.
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A RELATED WORK

Implicit neural representations (INRs) are neural networks which are used to represent signals
continuously, as opposed to traditional discrete methods. They learn a mapping between coordinate
x and the value Φ(x) of the signal at the specified coordinate x. By using sinusoidal activation
functions instead of more traditional activations, Fourier features (Tancik et al., 2020) and SIREN
(Sitzmann et al., 2020) have shown to be able to represent high-frequency signals. The SIREN
architecture is as follows :

Φ (x) = Wn (ϕn−1 ◦ ϕn−2 ◦ . . . ◦ ϕ0) (x) + bn, xi 7→ ϕi (xi) = sin (Wixi + bi) . (1)

While a SIREN network can only represent one signal at a time, modulated INRs (Dupont et al.,
2022) allow for representing a whole dataset of signals: while sharing a common core INR, they
modulate each of this core INR’s layer i differently for each signal j, as in equation 2. The modula-
tions γj and βj are obtained via linear transformations from a learned embedding zj .

ϕj
i : xi 7→ ϕi (xi) = sin (γj ∗Wixi + bi + βj) . (2)

B RESULTS VISUALIZATION

We use the incompressible 2D Navier-Stokes equation dataset from Li et al. (2021), and the 2D
Shallow-water dataset from Takamoto et al. (2022). Results from the Shallow-water dataset are
shown in figure 2.

C IMPLEMENTATION DETAILS

The model was implemented using PyTorch (Paszke et al., 2019), as well as the Hydra (Yadan
(2019)) and einops (Rogozhnikov, 2022) libraries. The operator learning algorithm was imple-
mented using the FNO algorithm (Li et al., 2021).

In our case, the embbeddings zj used to obtain the INR modulations are learned via meta-learning,
as in Serrano et al. (2023).
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Ground truthCubicSubsampled input Ours

Figure 2: Shallow water comparison with s =0.05. The subsampled input is u0(x)|Xi . The second
and third images show predictions of the target function u1(x) obtained via cubic interpolation, and
our method. We can see that our method provides much better results, and is very close to the
groundtruth function.
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