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Abstract

Time series anomaly detection (TSAD) has be-001
come increasing important across diverse do-002
mains. In TSAD task, while Large Language003
Models (LLMs) have demonstrated remark-004
able generalization, few-shot reasoning capa-005
bilities in time series tasks, they still fail to006
match the performance of task-specific meth-007
ods due to the inherent numerical insensitivity008
of LLMs’ textual tokenizers. With the advance-009
ment of LLMs, Multimodal Large Language010
Models (MLLMs) have emerged as promis-011
ing candidates for addressing TSAD. Lever-012
aging their exceptional visual reasoning capa-013
bilities, MLLMs might analyze time series data014
by interpreting it in a visual modality, such015
as plotted graphs, mimicking the way humans016
perceive and understand visualized informa-017
tion. In this paper, we introduce TAMA, a018
novel framework that pioneers the integration019
of MLLMs’ image-modality reasoning capabil-020
ities into TSAD. Experimental results demon-021
strate that TAMA’s design significantly ehances022
MLLMs in TSAD task, achieving state-of-the-023
art performance. Additionally, we contribute024
one of the first open-source datasets featuring025
both anomaly classification labels and contex-026
tual descriptions, thereby facilitating broader027
exploration and advancement in this critical028
field. Our code1 and dataset2 have been anony-029
mously open-sourced.030

1 Introduction031

Time series data has been rapidly proliferating032

across diverse domains such as finance (Yu et al.,033

2023), manufacture (Scholz et al., 2024), and in-034

dustrial monitoring (Feng et al., 2019). Anoma-035

lies (defined as unexpected deviations from typi-036

cal patterns) can signal critical events such as de-037

vice malfunctions and system failures(Chen et al.,038

1https://anonymous.4open.science/r/TAMA-74E1/
2https://drive.google.com/drive/folders/

1G6a9RxJ-Fwn9pXuZSKdD3KO3yvN7qyGM
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Figure 1: Comparison of AUC-PR and F1 scores with
point-adjusted evaluation on the UCR dataset. The
models include traditional ML methods (IF, LOF), DL
approaches (TranAD, MAD-GAN, MTAD-GAT), and
MLLMs (GPT-4o, Gemini-1.5-pro), enhanced with our
proposed TAMA framework.

2024a; Nam et al., 2024), which underscored the 039

critical need for robust time series anomaly detec- 040

tion (TSAD) techniques. 041

The emergence of Large Language Models 042

(LLMs) has introduced a transformative paradigm 043

shift in TSAD, transitioning the focus from conven- 044

tional task-specific methods to the exploration and 045

application of LLMs for addressing TSAD chal- 046

lenges. Traditional machine learning (ML) meth- 047

ods often rely on strong assumptions (such as data 048

stationarity), or require handcrafted features (Liu 049

et al., 2008; Feng et al., 2019; Ramaswamy et al., 050

2000; Yairi et al., 2001; Chen and Guestrin, 2016; 051

Huang et al., 2013). Alternatively, mainstream 052

deep learning (DL) techniques (Liu et al., 2023; 053

Chalapathy and Chawla, 2019; Pang et al., 2022) 054

have limited generalizing ability and explainability 055

(Jacob et al., 2021) due to their reliance on exten- 056

sive parameter tuning, anomaly-free training data, 057

and black-box detection methods. Consequently, 058

the remarkable task generalization and few-shot 059

learning capabilities of LLMs (Brown et al., 2020a; 060

Gruver et al., 2024; Naveed et al., 2023; Min et al., 061

2023) have garnered significant attention from re- 062
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searchers, prompting their application to TSAD063

and other time series tasks by encoding time series064

data as textual input for LLMs (Jin et al., 2023;065

Su et al., 2024; Gruver et al., 2024; Liu et al.,066

2024). However, empirical studies have revealed067

that without further adaptation, LLMs often fall068

short of achieving performance levels comparable069

to those of task-specific methods in time series070

applications, particularly in the domain of TSAD071

(Elhafsi et al., 2023; Alnegheimish et al., 2024;072

Merrill et al., 2024).073

The limitations of LLMs in TSAD primarily074

stem from the insensitivity of their textual tok-075

enizers to numerical values (Qian et al., 2022; Ye076

et al., 2024), which significantly restricts their abil-077

ity to detect anomalies involving subtle amplitude078

changes (Choi et al., 2021). This observation sug-079

gests that textual input may not be the optimal for-080

mat for processing time series data. In response, re-081

cent advancements in Multi-modal Large Language082

Models (MLLMs) (Team et al., 2024; OpenAI et al.,083

2024), offer promising alternatives. These state-of-084

the-art models exhibit human-like capabilities in085

interpreting visual data, including plots and charts,086

thereby demonstrating advanced proficiency in data087

analysis tasks (Wang et al., 2024a; Zhang et al.,088

2024a,b). Notably, just as humans naturally rely089

on visual graphs rather than raw numerical data to090

analyze time series, MLLMs can potentially lever-091

age their vision encoders to better interpret plotted092

time series.093

Building on these insights, we propose the cen-094

tral research question: Can MLLMs be effectively095

applied to TSAD? If so, what is the appropriate096

approach to utilize them for this purpose?097

To address this, we present the Time-series098

Anomaly Multimodal Analyzer (TAMA), a novel099

framework designed to bridge the gap between100

TSAD and the capabilities of MLLMs. TAMA101

leverages MLLMs’ multimodal strengths by trans-102

forming time series into visual representations103

(“see it”), leveraging a unique three-stage multi-104

modal reasoning mechanism (“think it”), and pro-105

viding accurate anomaly classification alongside106

contextual explanations and preliminary root cause107

analysis (“sorted”). This structured approach en-108

ables TAMA to effectively harness MLLMs’ capa-109

bilities for robust, interpretable, and generalizable110

anomaly detection.111

Our main contributions are threefold. (1) A112

novel MLLM-based framework for TSAD: TAMA113

effectively harnesses the full potential of MLLMs114

for TSAD, overcoming the direct application limi- 115

tations of LLMs and existing TSAD methods. (2) 116

An open-sourced dataset: we have constructed one 117

of the first multimodal datasets, providing anomaly 118

detection labels, classification labels, and contex- 119

tual descriptions associated with time series data, 120

enabling systematic evaluation of our approach. 121

(3) Performance and interpretability improvements: 122

as preliminarily illustrated in Figure 1, extensive 123

experiments show that TAMA outperforms state- 124

of-the-art methods across various TSAD datasets. 125

Furthermore, it enables anomaly classification, de- 126

tailed descriptions, and preliminary root cause anal- 127

ysis, which collectively highlight its practical utility 128

in TSAD. 129

2 Related Work 130

2.1 Time Series Anomaly Detection. 131

Many surveys (Chalapathy and Chawla, 2019; Pang 132

et al., 2022; Blázquez-García et al., 2021; Choi 133

et al., 2021) are available in the field of TSAD. 134

Classical methods (Ramaswamy et al., 2000; Yairi 135

et al., 2001; Chen and Guestrin, 2016), have estab- 136

lished strong baselines in TSAD and continue to 137

be widely used in industry (Wu and Keogh, 2021; 138

Rewicki et al., 2023; Usmani et al., 2022). Deep 139

learning methods (Li et al., 2019; Audibert et al., 140

2020; Zhang et al., 2018; Su et al., 2019; Zhao et al., 141

2020; Tuli et al., 2022; Deng and Hooi, 2021; Chen 142

et al., 2024a) focus on learning a comprehensive 143

representation of the entire time series by recon- 144

structing the original input or forecasting through 145

latent variables. 146

While traditional ML methods require extensive 147

feature engineering (Chalapathy and Chawla, 2019) 148

and DL approaches struggle with generalization 149

and subtle anomalies (Lee et al., 2023), our pro- 150

posed method addresses these limitations by lever- 151

aging image conversion and MLLMs’ generaliza- 152

tion capabilities. 153

2.2 LLMs for time series. 154

Recent work has explored LLMs for time series 155

tasks (Jin et al., 2023; Su et al., 2024; Li et al., 156

2024; Elhafsi et al., 2023), including innovative 157

approaches like time series tokenization (Gruver 158

et al., 2024), and many other strategies attempting 159

to transfer LLMs’ knowledge into time series tasks 160

(Jin et al., 2023; Liu et al., 2024; Alnegheimish 161

et al., 2024). However, these methods are limited 162

by LLMs’ inherent constraints with numerical data 163
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• Abnormal_index: '[(180, 210), 4, shapelet]’
• Abnormal_description: In this case, the normal 

shapelet is a smooth and regular oscillation 
with consistent peaks and troughs. The 
abnormal section, however, shows a series of 
rapid and sharp fluctuations that deviate from 
this smooth pattern.
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Figure 2: Our framework converts time series into images for visual interpretation (“See it”). Then, MLLMs are
employed to analyze the visualized time series through Multimodal Reference Learning, Multimodal Analyzing,
and Multi-scaled Self-reflection, ensuring self-consistency and stability in the analysis ("Think it"). Finally, the
detected anomalous intervals are processed into the output format required for TSAD, providing descriptions and
possible reasons for each anomaly ("Sorted").

(Qian et al., 2022; Ye et al., 2024).164

MLLMs show promise in multimodal reasoning165

(Wang et al., 2024a; Zhang et al., 2024c), and con-166

temporaneous work has discovered that MLLMs167

can perform TSAD better with input in the visual168

modality (Wimmer and Rekabsaz, 2023; Daswani169

et al., 2024; Lin et al., 2024). To the best of out170

knowledge, we are the first to purpose a system-171

atical MLLM-based framework that surpasses ex-172

isting TSAD methods. Moreover, our framework173

innovatively provides comprehensive classification174

and description to detected anomalies, establishing175

a new TSAD paradigm. Due to space limitations,176

please refer to A.1 for a more detailed discussion177

of related work.178

3 Methodology179

3.1 Preliminary180

Problem Formulation. Consider a time series181

data x = (x1, x2, . . . , xT ) ∈ RT , where xt repre-182

sents the sampled value at timestamp t, T refers to183

the number of timestamps. Throughout the paper,184

we assume all time-series data to be univariate by185

default, with multivariate data being transformed186

into multiple univariate series as needed.187

The goal of TSAD is to identify anomalous188

points or intervals within the time series x. Specif-189

ically, an model outputs a sequence of anomaly190

scores s = (st)
T
t=1 = (s1, s2, . . . , sT ) ∈ RT ,191

where st indicates the anomaly score correspond-192

ing to the data point xt. By setting a threshold, the193

anomaly score s is converted into a set of predicted194

anomalous intervals AP = {(ts, te)iP}
mP
i=1, where195

(ts, te)
i represents the ith out of mp anomaly in-196

tervals, and ts, te indicate the starting and ending 197

indices of each anomaly intervals. 198

The anomaly classification is a multi-class clas- 199

sification task designed to categorize identified 200

anomalous points into specific types. The output of 201

classification is a set of types Yk = {yi}mk
i=1, where 202

yi corresponds to the anomaly classification result 203

for the interval (ts, te)i. 204

Preprocessing. We preprocess the time series 205

using mean-variance normalization, resulting in 206

normalized data x = (x1, . . . , xT ), where xt = 207
xt−µ(x)
σ(x) , with µ(·) and σ(·) denoting the mean 208

and standard deviation, respectively. Then we 209

utilize overlapped sliding windows to segment 210

the normalized data into a collection of sequence 211

segmentations P = {x̂1, . . . , x̂l}, where x̂k = 212

(xk·Ls , . . . , xk·Ls+Lw−1). Ls and Lw are hyperpa- 213

rameters representing the step size and width of the 214

sliding window, respectively. We set overlap ratio 215

ro = Ls/Lw < 1 to allow the same segment of 216

the sequence to be considered across multiple win- 217

dows. To input time-series data into MLLMs, we 218

plot each sliding window using Matplotlib. Further 219

details can be found in Appendix A.3.2. 220

Post-processing. Point adjustment (PA) is a 221

widely used post-processing method in TSAD tasks 222

(Kim et al., 2021; Blázquez-García et al., 2021). 223

The PA works as follows: if at least one moment 224

in a contiguous anomaly segment is detected as 225

an anomaly, the entire segment is then considered 226

to be correctly predicted as anomaly. However, 227

this adjustment tends to overestimate model per- 228

formance. Therefore, to evaluate models more ac- 229
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curately, we adopt a threshold-based PA method230

instead. The PA with threshold α is defined as:231

APA(α) = AP ∪ {t|t ∈ (ts, te)
i
T,

|(ts, te)iT ∩ (ts, te)
j
P| > α · L((ts, te)iT)},

(1)232

where α refers to the point-adjustment thresh-233

old (PAT) from 0 to 1, where 0 equals PA APA234

and 1 represents original prediction AP, and the235

L((ts, te)
i
T) refers to the length of (ts, te)iT.236

3.2 Time Series Anomaly Analyzer (TAMA)237

The proposed TAMA framework is illustrated in238

Figure 2. TAMA comprises three sections: Multi-239

modal Reference Learning, Multimodal Analyzing,240

and Multi-scaled Self-reflection. The prompts are241

all available in Appendix A.3.4.242

Multimodal Reference Learning. The wide va-243

riety of anomaly patterns in time series datasets244

poses a significant challenge for model adapta-245

tion. To address this challenge, we leverage the246

in-context learning (ICL) capability of MLLMs,247

which allows them to analyze contextual informa-248

tion and adapt more effectively to different data249

distributions (Brown et al., 2020b). Specifically,250

we provide the MLLMs with a set of normal im-251

ages I = {Ii | i ∈ {1, . . . , nr}}, where nr de-252

notes the number of reference images. These refer-253

ence images represent normal sequences without254

anomalies, and will be used in subsequent sections,255

enhancing the analysis of TAMA.256

Multimodal Analyzing. In practical TSAD sce-257

narios, providing more interpretable information258

alongside the detection results is crucial to effec-259

tively guide the process of addressing detected260

anomalies. To this end, we propose a multimodal261

analysis mechanism within our framework, which262

complements each anomaly detection result with263

analyzing, including classification and descriptive264

contextual information. For the kth window, the265

MLLM processes image input with correspond-266

ing prompts to generate a set of anomaly inter-267

vals Ak = {(ts, te)i}mk
i=1 and their classification268

Yk = {yi}mk
i=1, where yi, where yi denotes the clas-269

sification for interval (ts, te)i. Guided by prompts,270

the MLLM also generates anomaly descriptions271

Tk = {Ei}mk
i=1 and confidence scores Ck = {ci}mk

i=1.272

As illustrated in Figure 2, the complete model out-273

put across all N sliding windows is represented274

as: Zraw = {(Ak,Yk, Ck, Tk)}Nk=1, where N is the275

total number of sliding windows.276

Multi-scaled Self-reflection. Due to the con- 277

straints on the maximum image size that MLLMs 278

can process, plotted images of longer time series 279

intervals inherently contain richer semantic infor- 280

mation and can significantly make entire system 281

more efficient. However, this comes at the cost of 282

temporal compression, making it more challenging 283

to preserve the precise shape of the signal. At a 284

coarser temporal scale, a critical issue arises where 285

periodic peaks may appear abnormally sharp, po- 286

tentially resembling point anomalies and leading 287

to frequent false positive detections. 288

To address this challenge, we designed TAMA 289

to incorporate a self-reflection mechanism aimed 290

at improving detection accuracy. This mechanism 291

allows MLLMs to re-evaluate anomalous intervals 292

by viewing them at a higher temporal resolution, 293

enabling better differentiation between true anoma- 294

lies and artifacts caused by temporal compression. 295

When an anomaly is identified within a segment 296

x̂i, the segment is further processed using a slid- 297

ing window approach to generate K overlapping 298

finer-grained segments, denoted as {x̂k
i }Kk=1. Each 299

finer segment, x̂k
i , represents a locally zoomed-in 300

version of the original input segment x̂i, providing 301

a more detailed representation of the data. This 302

mechanism enables TAMA to reassess its detection 303

decision at a finer scale, allowing for more precise 304

and reliable anomaly identification. 305

Results Aggregation. The aggregation process 306

begins by mapping local interval indices to a global 307

index space and then aggregates predicted confi- 308

dence scores across all intervals, where points ap- 309

pearing in multiple intervals receive a summed con- 310

fidence score. This aggregation produces a confi- 311

dence sequence c̃ = (c̃1, . . . , c̃T ) that matches the 312

original sequence length. Similarly, a point-wise 313

anomaly classification sequence ỹ = (ỹ1, . . . , ỹT ) 314

is constructed through majority voting across over- 315

lapping intervals. The final anomaly set R = 316

{i | 1 ≤ i ≤ T, c̃i ≥ c0} is determined by ap- 317

plying a confidence threshold c0. 318

4 Experiments 319

In this section, we seek to answer the question: Can 320

MLLMs be effectively apllied to TSAD? by conduct- 321

ing experiments, including Anomaly Detection and 322

Classification. Additionally, we also provide a case 323

study to present the capacity of TAMA. 324
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Table 1: Quantitative results across six datasets use metrics point-adjusted F1%, AUC-PR%, and AUC-ROC%. Best
and second-best results are in bold and underlined, respectively.

Dataset UCR NASA-SMAP NASA-MSL

Metric F1% AUC-PR% AUC-ROC% F1% AUC-PR% AUC-ROC% F1% AUC-PR% AUC-ROC%

IF 24.7 77.3 37.7 44.6 24.4 25.3 54.2 94.2 58.9 77.1 65.0 87.7 47.6 88.6 53.6 80.4 68.7 88.7
LOF 42.8 100 35.6 50.0 92.8 99.9 62.2 100 43.4 61.4 60.1 99.9 36.4 66.8 44.5 66.0 58.6 99.8
GDN 71.4 80.6 33.4 59.0 87.1 99.9 76.4 100 40.8 66.2 86.1 100 85.1 100 38.7 56.7 93.8 100

TranAD 38.2 93.7 30.9 51.0 77.0 99.9 59.0 99.6 36.8 73.9 74.4 100 64.6 99.1 49.2 79.6 82.5 99.9
AnomalyTransformer 54.2 54.2 42.8 42.8 97.3 97.3 90.0 90.0 93.5 93.5 99.2 99.2 83.6 83.6 93.3 93.3 99.2 99.2

TimesNet 32.8 45.8 15.4 23.5 98.4 99.4 97.7 100 51.4 90.3 99.8 100 97.4 100 52.9 79.7 99.8 100
SIGLLM (GPT-4o) 23.1 44.6 7.40 15.5 93.5 96.5 69.0 97.8 29.1 49.2 95.5 99.8 70.7 97.9 72.4 100 90.0 100

GPT4TS 58.0 58.0 56.4 56.4 88.2 88.2 92.1 92.1 82.1 82.1 94.1 94.1 92.6 92.6 88.6 88.6 96.2 96.2

TAMA 92.5 97.6 93.0 97.7 99.8 99.9 94.5 100 95.5 100 98.4 100 97.5 100 99.4 100 99.8 100

Dataset SMD ECG Dodgers

Metric F1% AUC-PR% AUC-ROC% F1% AUC-PR% AUC-ROC% F1% AUC-PR% AUC-ROC%

IF 83.9 100 73.8 97.0 99.5 100 80.8 99.0 73.4 92.2 97.2 100 48.4 48.4 52.2 52.2 89.4 89.4
LOF 27.8 75.2 39.9 64.6 52.9 59.3 21.8 39.8 41.4 60.7 56.3 84.2 45.3 45.3 40.8 40.8 63.0 63.0
GDN 76.9 99.7 55.0 88.6 77.0 100 75.2 96.2 76.6 97.4 96.9 99.9 37.0 37.0 31.3 31.3 74.2 74.2

TranAD 77.0 99.6 70.9 91.0 96.8 100 69.1 98.9 74.7 97.7 94.9 100 38.2 38.2 33.9 33.9 74.6 74.6
AnomalyTransformer 32.8 32.8 61.5 61.5 64.7 64.7 31.4 31.4 26.7 26.7 76.8 76.8 37.2 37.2 64.2 64.2 83.8 83.8

TimesNet 82.8 100 57.3 99.9 95.4 100 92.4 96.6 90.0 97.6 99.4 100 48.1 48.1 73.0 73.0 83.7 83.7
SIGLLM (GPT-4o) 42.9 59.8 30.4 53.1 68.8 77.8 19.2 50.4 71.0 87.6 94.2 96.9 48.1 48.1 60.7 60.7 83.2 83.2

GPT4TS 76.1 76.1 81.3 81.3 83.4 83.4 16.1 16.1 59.4 59.4 53.6 53.6 10.2 10.2 50.4 50.4 51.8 51.8

TAMA 77.8 100 87.9 100 98.9 100 81.3 87.5 84.5 90.0 95.4 99.4 65.6 65.6 74.0 74.0 85.2 85.2

Experimental Settings. We select GPT-4o (Ope-325

nAI et al., 2024) as TAMA’s default model, and the326

specific version we used is "gpt-4o-2024-05-13".327

To ensure the stability of TAMA and the repro-328

ducibility of the results, the temperature is set to329

0.1 and the top_p is set to 0.3. Besides, the JSON330

mode of GPT-4o is used to facilitate subsequent331

result analysis. The detailed settings and the usage332

of tokens are presented in Appendix A.3.333

Datasets. We use a diverse set of real-world334

datasets across multiple domains for both anomaly335

detection and anomaly classification tasks. These336

domains include web service: SMD (Su et al.,337

2019), industry: UCR (Wu and Keogh, 2021) and338

NormA (Boniol et al., 2021), scientific measure-339

ment: NASA-SMAP (Hundman et al., 2018) and340

NASA-MSL (Hundman et al., 2018), health care:341

ECG (Paparrizos et al., 2022), and transportation:342

Dodgers (Hutchins, 2006). All datasets are uni-343

variate except for SMD. The detailed statistical344

information of the dataset can be found in Table 9345

in the Appendix. We convert SMD into an uni-346

variate dataset by splitting it channel-wise for our347

anomaly detection experiment.348

Due to the limited availability of datasets349

with anomaly classification labels, we created an350

anomaly classification dataset by combining four351

real-world datasets (UCR, NASA-SMAP, NASA-352

MSL, and NormA) with manually labeled anomaly353

types, along with a synthetic dataset generated354

using GutenTAG (Wenig et al., 2022). The355

datasets cover diverse application scenarios, includ-356

ing healthcare, scientific measurements, and indus- 357

trial records, providing a challenging benchmark 358

for evaluating model generalization. Anomaly type 359

annotations are refined by domain experts. Addi- 360

tionally, the synthetic dataset, derived from Lai et 361

al. (Lai et al., 2021), consists of 7200 samples with 362

three anomaly types: point, trend, and frequency. 363

The visualization of each typical anomaly type is 364

included in Appendix 7. 365

4.1 Anomaly Detection 366

Baselines. The baseline models used in our ex- 367

periments include both MLs (IF (Liu et al., 2008), 368

LOF (Huang et al., 2013)) and DL (AnomalyTrans- 369

former (Xu et al., 2021), TranAD (Tuli et al., 2022), 370

GDN (Deng and Hooi, 2021), TimesNet (Wu et al., 371

2023)) methods. For more DL baselines including 372

MAD_GAN (Li et al., 2019), MSCRED (Zhang 373

et al., 2018), MTAD_GAT (Zhao et al., 2020), 374

OminiAnomaly (Su et al., 2019), and USAD (Au- 375

dibert et al., 2020), please refer to Table 10 in Ap- 376

pendix A.4.1. Besides, the GPT4TS (Zhou et al., 377

2023) and SIGLLM (Alnegheimish et al., 2024) 378

are two LLM-based baselines, where SIGLLM is 379

reproduced with GPT-4o. All baseline models has 380

been run with the default configurations. For those 381

datasets without default configurations, we man- 382

aged to optimize the performance by searching the 383

best parameters. 384

Metrics. Following the mainstream of TSAD, we 385

evaluated TAMA and other baselines by the point- 386

adjusted F1, AUC-PR, AUC-ROC. Additionally, as 387
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Figure 3: The AUC-PR of all models at various point-adjustment threshold α (PAT, defined in Section 3.1).

mentioned in Section 3.1, using PA greatly overes-388

timates the models’ performance. To address this,389

we re-evaluate all models using PA with a threshold390

α (PAT, defined in Section 3.1).391

Main Results. The experimental results are pre-392

sented in Table 1. The mean represents the average393

performance across all sub-series, while the max-394

ima reflects the best performance achieved among395

all sub-series. In terms of the maxima value, our396

proposed method, TAMA, achieves results compa-397

rable to or even exceeding those of baseline models398

on certain datasets. More importantly, TAMA con-399

sistently outperforms nearly all baselines in the400

mean metric, demonstrating a particularly strong401

advantage on industry and transportation datasets.402

To assess the impact of PA, we evaluate model’s403

performance under varying PATs using the AUC-404

PR metric. As shown in Figure 3 (full results in405

Appendix A.4.2), performance declines for all mod-406

els as PAT increases, indicating that full PA (α=0)407

has overestimated the model performance. Nev-408

ertheless, TAMA consistently outperforms base-409

line methods across all PAT settings, demonstrating410

TAMA’s strong robustness and stability.411

In summary, results demonstrates that MLLMs412

can be effectively applied to TSAD tasks through413

TAMA, our proposed framework. Moreover, these414

findings confirm that TAMA not only achieves com-415

petitive performance but also delivers reliable and416

stable results, making it a more dependable and417

promising solution for TSAD.418

4.2 Anomaly Classification419

In practical applications, it is preferable not only420

to detect anomaly intervals but also to provide a421

classification indicating their causes. Thus, we422

conduct the anomaly classification task.423

The overall results presented in Table 2 indi-424

cate that TAMA, guided by the provided prompts,425

Table 2: Classification is detailed for each anomaly type,
with ‘total’ representing the overall performance.

Type Point Shapelet Seasonal Trend Total

Accuracy% 81.0 99.2 29.0 74.5 78.5
Support 100 246 100 94 567

demonstrates a reliable understanding of each type 426

of anomaly and can accurately classify most anoma- 427

lies, with the exception of seasonal anomalies. 428

TAMA performs exceptionally well in classifying 429

shapelet anomalies, suggesting that it effectively 430

captures the shape of the input sequences. How- 431

ever, it is evident that the framework struggles with 432

seasonal anomalies. It may be caused by a lack 433

of relevant materials in the MLLM’s pre-training 434

stage, which results in a weak understanding of 435

concepts such as "seasonality" or "frequency". 436

4.3 Case Study 437

There is a case study in Figure 4 (More case stud- 438

ies are available in Appendix A.4.5). As the figure 439

shown, TAMA can output the anomaly range and 440

its type, while offering an explanation of it. Accord- 441

ing to the explanation, we can find that TAMA can 442

successfully identify the anomaly by comparing 443

the normal pattern. Moreover, with the background 444

information, TAMA can try to seek the reason of 445

this anomaly. 446

5 Discussion 447

As the result shown in Table 1, TAMA outperforms 448

most baselines, demonstrating that MLLMs can be 449

applied to TSAD. In this section, based on TAMA, 450

we seek to answer the question: What is the appro- 451

priate way of applying LLMs or MLLMs to TSAD? 452

The visual modality proves more effective 453

than the textual modality for MLLMs in TSAD. 454

As shown in Table 3, we conduct an experiment 455

to compare the visual modality and text modality, 456

while keeping the prompts and procedures as the 457
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Detection : 
• Anomaly range: (180, 210)
• Anomaly type: shapelet

Anomaly Description: 
The abnormality observed between indices 180 and 210 is best classified as 

a 'shapelet' outlier. Shapelet outliers refer to subsequences with dissimilar basic 
shapelets compared to the normal shapelet. In this case, the normal shapelet is a 
smooth and regular oscillation with consistent peaks and troughs. The abnormal 
section, however, shows a series of rapid and sharp fluctuations that deviate from 
this smooth pattern.

The abnormality in the time series data, characterized by rapid oscillations 
and fluctuations, could potentially be indicative of an internal bleeding event. In 
medical monitoring, such irregular patterns might reflect sudden changes in 
physiological parameters, such as blood pressure or heart rate, which can occur 
during episodes of internal bleeding. The disruption in the otherwise stable 
pattern suggests an acute event that requires further investigation to confirm the 
presence and cause of internal bleeding.

Figure 4: The case study in UCR dataset.
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Figure 5: Results (without PA) of reference number
ablation experiments.

same. Compared to methods using textual modality,458

TAMA (Image), has made significant improvement,459

with a 37.9% increase on NASA-MSL and a 36.9%460

increase on NASA-SMAP. This result indicates461

that for anomaly detection tasks, adopting visual462

modality is more beneficial. The further discussion463

about this phenomenon is in Appendix A.2.1.464

The incorporation of high-quality reference465

data is crucial for enhancing MLLMs’ perfor-466

mance. To investigate the effectiveness of Mul-467

timodal Reference Learning, we conduct exper-468

iments in two aspects: (1) the number of refer-469

ences. (2) the information in references. Experi-470

ments are conducted on UCR and NASA-SMAP471

datasets. Additionally, to avoid interference from472

other modules, self-reflection is not added.473

In the first experiment, as shown in the Figure 5,474

results reveal that introducing references can signif-475

icantly improve TAMA’s performance. However,476

when the number of reference increases, the perfor-477

mance seems to have not obviously improvement.478

In the second experiment, we replace the nor-479

Table 3: Performance comparison of image and text
modalities, average PA F1% as the metric. TAMA (Im-
age) and TAMA (Text) are based on TAMA but using
image-modality and text-modality respectively.

Modality NASA-MSL NASA-SMAP

TAMA (Image) 97.5 94.5
TAMA (Text) 70.7 69.0

SIGLLM (Text) 42.9 43.1

Table 4: The performance comparison in different refer-
ence images. Metric is AUC-PR% without PA.

Dataset normal abnormal

UCR 83.0 46.8 (-36.2)
NASA-SMAP 72.9 48.5 (-24.4)

mal data with abnormal data. The normal refers to 480

using the normal data as the reference data, while 481

abnormal indicates using abnormal data. As the re- 482

sults presented in Table 4, we can find that normal 483

performs better than abnormal on both UCR and 484

NASA-SMAP datasets, showing that the informa- 485

tion of references can notably impact the model’s 486

performance, which suggests the MLLM can truly 487

learn normal patterns from the reference data. 488

In summary, the two experiments show that it 489

is significant to offer some valuable references for 490

MLLMs. With the valuable references, MLLMs 491

can outperforms most tradditional methods. 492

Multi-scaled Self-reflection can enhance the 493

performance and stability. Experiments are con- 494

ducted on SMD, NASA-SMAP and NASA-MSL 495

to investigate the impact of the self-reflection. 496

TAMA* represents TAMA without self-reflection. 497

The results shown in Table 5 demonstrate that self- 498

reflection enhances the performance of TAMA. As 499

the complexity of the data increases, the perfor- 500

mance improvement becomes more pronounced, 501

validating the effect of self-reflection. 502

The TAMA framework demonstrates univer- 503

sal effectiveness in improving MLLMs’ anomaly 504

detection performance, regardless of the selec- 505

tion of MLLMs. The experiment is conducted on 506

the UCR dataset. For each MLLM, we conduct ex- 507

periments both with (+TAMA) and without (Naive) 508

TAMA framework. The experimental results are 509

presented in the Table 6. We use the original AUC- 510

PR without point-adjustment as the metric. The 511

findings reveal that all MLLMs exhibit a substantial 512

enhancement in performance on the UCR dataset 513

following their integration into TAMA. This not 514
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Table 5: The performance of TAMA and TAMA*, using
the AUC-PR% without PA as the metric.

Dataset SMD NASA-SMAP NASA-MSL

TAMA 87.9 95.5 99.4
TAMA* 78.6 (-9.3) 89.2 (-6.3) 97.7 (-1.7)

Table 6: Comparison of different pre-trained LMMs
using the average AUC-PR% without PA as the metric.
We compare results with (+TAMA) and without our
framework (Naive).

LMM Naive +TAMA

GPT-4o 41.8 80.2 (+38.4)
GPT-4o-mini 11.8 51.1 (+39.3)

Gemini-1.5-pro 25.4 87.8 (+62.4)
Gemini-1.5-flash 17.9 36.4 (+18.5)

qwen-vl-max-0809 61.7 80.5 (+18.8)

only validates that TAMA improves the MLLMs’515

abilities in anomaly detection but also confirms the516

generalizability of TAMA’s framework.517

6 Scalability Study518

While TAMA demonstrates superior performance519

compared to most baselines, its MLLM-based ap-520

proach shows the limitation in scalability compared521

to some specialized methods. To address this prob-522

lem, we introduce Principal Component Analysis523

(PCA) and down-sampling to reduce the scalability.524

High-dimensional Data. In TAMA, an input im-525

age only contains an univariate time series, which526

leads to multiple images when dealing with multi-527

variate time series. To address this scalability prob-528

lem, we employ PCA to reduce the dimensionality529

of the SMD dataset from 38 to 2 dimensions (the vi-530

sualization is in Appendix A.4.7). The experimen-531

tal results presented in Table 7 demonstrate that532

although there is a slight performance degradation533

on the reduced SMD dataset, the model preserves534

90% of its original performance while achieving a535

95% reduction in computation.536

High sampling rate Data. High-frequency sam-537

pled data often contains redundant information, re-538

sulting in excessive length and low information539

density. Down-sampling is a widely used tech-540

nique to deal with this issue. We evaluate TAMA541

on both down-sampled ECG and NormA datasets,542

where the input is down-sampled and the output543

is up-sampled by interpolation, preventing the al-544

tering of ground-truth. As shown in Table 8,545

Table 7: Comparison of TAMA’s performance on SMD
before and after (denoted as SMD-R) PCA

Dataset F1% AUC-PR% AUC-ROC%

SMD 93.0 97.2 99.7
SMD-R 85.7 93.1 99.3

Table 8: Results of TAMA over various down-sampling
rates on down-sampled ECG and NormA datasets.
F1relative = (F1 − F1original)/F1original, where
F1orginal is the F1 score without down-sampling.

Dataset Rate F1% AUC-PR% AUC-ROC% F1relative %

ECG
1/2 81.2 93.1 97.8 -0.1
1/3 79.9 84.3 91.3 -1.7
1/5 69.9 65.6 82.5 -14.0

NormA
1/2 78.5 83.0 97.9 -2.7
1/3 78.3 75.5 91.8 -2.9
1/5 65.4 70.9 93.6 -18.9

TAMA’s performance on both datasets decreases 546

as the down-sampling rate increases, indicating 547

that down-sampling disrupts the original pattern 548

of the data. Quantitatively, a down-sampling rate 549

at 1
2 or 1

3 brings a drop less than 3% in terms of 550

F1 and AUC-ROC, while reducing the scale by 551

66.6%. Down-sampling can effectively reduce the 552

overall data length with manageable performance 553

trade-off. 554

7 Conclusion 555

In this paper, we propose a novel framework named 556

TAMA and conduct comprehensive experiments to 557

prove that the MLLM can be effective applied to 558

TSAD task under TAMA. Our analysis of TAMA’s 559

design reveals two key insights: (1) the visual 560

modality is more effetive than texutal modality 561

more effective for MLLMs in TSAD; (2) harness- 562

ing MLLMs’ few-shot capacity, references and self- 563

reflection can enhance performance and stability. 564

These findings pave the way for applying MLLMs 565

to TSAD or time series analysis. 566

Limitations 567

Some limitations should be noted. (1) TAMA pri- 568

marily relies on pre-trained MLLMs without fine- 569

tuning. (2) While TAMA primarily focuses on 570

univariate time series, this creates scalability chal- 571

lenges. Although we have discussed it in Section 6, 572

significant improvement in scalability is still an 573

important direction for future research. (3) Al- 574

though TAMA can infer the underlying causes of 575

anomalies, it is restricted to univariate time series 576

analysis. 577
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A.1 Detailed Related Work1573

A.1.1 Time Series Anomaly Detection.1574

Classical methods (Ramaswamy et al., 2000; Yairi1575

et al., 2001; Chen and Guestrin, 2016), especially1576

unsupervised methods such as Isolation Forest (IF)1577

(Liu et al., 2008; Bandaragoda et al., 2014), and Lo-1578

cal Outlier Factor (LoF) (Huang et al., 2013) are in-1579

troduced into TSAD in early stages. There are also1580

variants of these classical ML algorithms like Deep1581

Isolation Forest (DIF) (Xu et al., 2023), which en-1582

hances IF by introducing non-linear partitioning.1583

ML methods methods perform exceptionally well1584

on many TASD datasets (Wu and Keogh, 2021;1585

Rewicki et al., 2023), have been applied widely in1586

industry (Usmani et al., 2022), and serve as strong1587

baselines in recent researches.1588

Among all reconstructing-based models, MAD-1589

GAN (Li et al., 2019) is an LSTM-based network1590

enhanced by adversarial training. Similarly, USAD1591

(Audibert et al., 2020) is an autoencoder-based1592

framework that also utilizes adversarial training.1593

MSCRED (Zhang et al., 2018) is designed to cap-1594

ture complex inter-modal correlations and temporal1595

information within multivariate time series. How-1596

ever, its effectiveness can be constrained by limited1597

training data. OmniAnomaly (Su et al., 2019) ad-1598

dresses multivariate time series by using stochastic1599

recurrent neural networks to model normal pat-1600

terns, providing robustness against variability in1601

the data. MTAD-GAT (Zhao et al., 2020) em-1602

ploys a graph-attention network based on GRU1603

to model both feature and temporal correlations.1604

TranAD (Tuli et al., 2022), a transformer-based1605

model, utilizes an encoder-decoder architecture1606

that facilitates rapid training and high detection1607

performance. Except reconstructing-based method,1608

GDN (Deng and Hooi, 2021) is a forecasting-based1609

model that utilizes attention-based forecasting and1610

deviation scoring to output anomaly scores. Ad- 1611

ditionally, LARA (Chen et al., 2024a), is a light- 1612

weight approach based on deep variational auto- 1613

encoders.The novel ruminate block and retraining 1614

process makes LARA exceptionally suitable for 1615

online applications like web services monitoring. 1616

The aforementioned approaches have their 1617

strengths and weaknesses, with every model ex- 1618

celling in specific types of datasets while also ex- 1619

hibiting limitations. For instance, the ML tech- 1620

niques have been foundational, but they often re- 1621

quire extensive feature engineering and struggle 1622

with complex datasets (Chalapathy and Chawla, 1623

2019). For DL approaches, reconstruction or 1624

forecasting-based models rely on reconstruction 1625

error to identify anomalies, they are more sensitive 1626

to large amplitude anomalies and may fail to de- 1627

tect subtle pattern differences or anomalies with 1628

small amplitude (Lee et al., 2023). In contrast, our 1629

proposed method can effectively capture anomalies 1630

with slight fluctuations by converting time series 1631

into images, and archive accurate few-shot detec- 1632

tion result exploiting MLLMs’ splendid generaliza- 1633

tion ability. 1634

A.1.2 Time Series Anomaly Analysis. 1635

Through a review of existing literature, we found 1636

that there is a lack of analysis on anomalies in 1637

current research. Common methods for analyzing 1638

anomalies identified by models involve visualizing 1639

the learned anomaly scores or parameters in rela- 1640

tion to the ground truth (Dai and Chen, 2022; Lee 1641

et al., 2023), as well as taxonomy of the anomalies 1642

(Blázquez-García et al., 2021; Choi et al., 2021; 1643

Fahim and Sillitti, 2019). Yet, limited research 1644

has investigated the efficacy of proposed models 1645

in classifying different types of anomalies. For 1646

instance, (León-López et al., 2022) introduced a 1647

framework based on Hidden Markov Models for 1648

anomaly detection, supplemented by an additional 1649

supervised classifier to identify potential anomaly 1650

types. GIN (Wang and Liu, 2024) employs a two- 1651

stage algorithm that first detects anomalies using 1652

an informer-based framework enhanced with graph 1653

attention embedding, followed by classification of 1654

the detected anomalies through prototypical net- 1655

works. Both aforementioned models rely on su- 1656

pervised training for their anomaly classification 1657

processes; consequently, the corresponding exper- 1658

iments conducted in these studies are limited to 1659

single classification datasets. In contrast, leverag- 1660

ing the capabilities of LLMs allows for not only the 1661
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identification of anomalous data points but also the1662

provision of specific classifications and potential1663

underlying causes for these anomalies, articulated1664

in natural language and achieved in an unsuper-1665

vised manner.1666

A.1.3 LLMs for time series.1667

Being pre-trained on enormous amounts of data,1668

LLMs hold general knowledge that can be ap-1669

plied to numerous downstream tasks (Naveed et al.,1670

2023; Min et al., 2023; Chang et al., 2024). Many1671

researchers attempted to leverage the powerful gen-1672

eralization capabilities of LLMs to address chal-1673

lenges in time series tasks (Jin et al., 2023; Su1674

et al., 2024; Li et al., 2024; Elhafsi et al., 2023).1675

For instance, Gruver et al. (Gruver et al., 2024)1676

developed a time series pre-processing scheme de-1677

signed to align more effectively with the tokenizer1678

used by LLMs. This approach can be illustrated as1679

follows:1680

0.123, 1.23, 12.3, 123.0 → "1 2 , 1 2 3 , 1 2 3 0 , 1 2 3 0 0"1681

Additionally, LSTPrompt (Liu et al., 2024) cus-1682

tomizes prompts specifically for short-term and1683

long-term forecasting tasks. Meanwhile, Time-1684

LLM (Jin et al., 2023) reprograms input time se-1685

ries data using text prototypes and introduces the1686

Prompt-as-Prefix (PaP) technique to further en-1687

hance the integration of textual and numerical infor-1688

mation. Similarly, SIGLLM (Alnegheimish et al.,1689

2024) is an LLM-based framework for anomaly1690

detection with a moudle to convert time series data1691

into language modality. Most of these efforts fo-1692

cus primarily on forecasting tasks and are largely1693

confined to textual modalities.1694

Existing works remain constrained by the lim-1695

ited availability of sequential samples in the train-1696

ing datasets of LLMs (Merrill et al., 2024) and the1697

models’ inherent insensitivity to numerical data1698

(Qian et al., 2022; Ye et al., 2024). Consequently,1699

LLMs struggle to capture subtle changes in time1700

series, making it difficult to produce reliable results1701

(Merrill et al., 2024). While we recognize that natu-1702

ral language is a modality in which LLMs excel, it1703

may not be the most effective format for processing1704

time series data.1705

With the emergence of MLLMs (Zhang et al.,1706

2024a), there is potential for enhanced reasoning1707

capabilities that can accommodate a broader range1708

of tasks beyond single-modal textual inputs (Wang1709

et al., 2024a; Zhang et al., 2024c). Some research1710

has indicated that these models possess analyti- 1711

cal abilities for interpreting charts (Zhang et al., 1712

2024b); however, no studies have yet applied them 1713

to the domain of anomaly detection in time series 1714

data. This gap highlights the need for further explo- 1715

ration into how MLLMs can be effectively utilized 1716

to detect and analyze anomalies based on visual- 1717

ized time series data. 1718

A.2 Detailed Analysis 1719

A.2.1 More on Large Multimodal Models 1720

In this section, we attempt to explain the phe- 1721

nomenon of why the image modality in multimodal 1722

models appears to outperform the text modality for 1723

TSAD. 1724

Feasibility: First, we emphasize the feasibility 1725

of the approach. The number of MLLMs is rapidly 1726

increasing (Yin et al., 2024), with open-source op- 1727

tions such as Qwen-VL, LLaVA, and InternVL, as 1728

well as proprietary models like GPT-4o, Gemini, 1729

and Claude 3.5. These provide diverse and accessi- 1730

ble choices for practitioners. 1731

Intuitive Reasoning: Humans naturally per- 1732

ceive and interpret time series data through visual 1733

representations, such as plots, rather than by read- 1734

ing raw numerical values. Visualizations like line 1735

plots allow for immediate recognition of patterns, 1736

trends, and anomalies. Interestingly, certain charac- 1737

teristics of natural images align closely with time 1738

series data, such as smooth changes across most 1739

regions with abrupt transitions at edges (Chen et al., 1740

2024b). This similarity reinforces the suitability 1741

of image-based approaches for representing and 1742

analyzing time series. 1743

Theoretical Justification: Most MLLMs are 1744

pretrained on datasets that include tasks related to 1745

plot understanding, such as single-class and multi- 1746

class line plots (Methani et al., 2020; Masry et al., 1747

2022). Since the visualizations of univariate time 1748

series essentially correspond to single-class line 1749

plots, these pretrained capabilities directly support 1750

the understanding of time series data (Wang et al., 1751

2024b). Moreover, recent evidence highlights that 1752

specialized chart-related training data significantly 1753

enhances a model’s ability to understand plots and 1754

charts (He et al., 2024). 1755

Practical Insights: To further validate this, we 1756

analyzed the pretraining and post-training data 1757

(e.g., instruction tuning) of several MLLMs, includ- 1758

ing GPT-4o, Qwen-VL, and Gemini. These mod- 1759

els incorporate datasets related to charts and plots, 1760
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such as ChartQA and academic articles or technical1761

documents extracted from Common Crawl PDFs1762

and HTML files3. This exposure provides them1763

with robust chart/plot understanding capabilities.1764

To contrast, we experimented with open-source1765

MLLMs such as LLaVA on TSAD tasks but ob-1766

served significantly poorer performance. Upon in-1767

vestigation, we found that LLaVA’s pretraining data1768

lacked datasets related to plots or charts, which1769

aligns with its weaker capabilities in handling time1770

series visualizations.These findings collectively jus-1771

tify the use of MLLMs for TSAD tasks, as their1772

pretrained knowledge on plots and charts directly1773

aligns with the needs of analyzing time series data1774

in visualized formats.1775

Instruction Tuning: Instruction tuning has the1776

potential to enhance a model’s adaptability. How-1777

ever, the primary focus of this work is to demon-1778

strate that existing MLLMs, when integrated with1779

our proposed TAMA framework, can effectively1780

address TSAD tasks with robust interpretability.1781

Due to constraints in time and computational re-1782

sources, we did not pursue large-scale instruction1783

tuning. Nonetheless, we believe this is a promis-1784

ing direction for future research, particularly when1785

combined with efforts to enhance MLLMs’ capa-1786

bilities in understanding visual charts. We plan to1787

explore this avenue further in subsequent work.1788

A.3 More on Experimental Setup1789

A.3.1 Dataset Details1790

Table 9: Details of all datasets. Datasets with clas-
sification labels include real-world datasets (+) and a
synthetic dataset (∗) generated using GutenTAG (Wenig
et al., 2022).

Dataset #Train (K) #Test (K) Anomaly%
(labeled) Point Shapelet Seasonal Trend Total

UCR+ 1.2-3.0 4.5-6.3 0.04 1.05 - - 1.10
SMAP+ 0.3-2.9 4.5-8.6 - 7.0 0.2 0.1 7.3
MSL+ 0.4-4.3 1.1-6.1 1.3 6.2 - 3.0 10.5

NormA+ - 104.0-196.0 - 18.6 4.1 1.2 24.0
Synthetic∗ 3.6 3.6 0.3 0 3.4 1.4 5.1

SMD 23.7-28.7 23.7-28.7 - - - - 4.2
Dodgers - 50.4 - - - - 11.1

ECG 227.9-267.2 227.9-267.2 - - - - 7.9

A.3.2 Some Suggestions about TAMA1791

In this paper, we propose a framework named1792

TAMA to utilize the MLLM to analyze time series1793

images. However, we have tried multiple versions1794

and gained valuable practical experience during1795

3https://digitalcorpora.org/corpora/
file-corpora/cc-main-2021-31-pdf-untruncated/

the development process. Based on our practical 1796

experience, we provide some suggestions. 1797

• To better parse the output results, choosing the 1798

MLLM which supports JSON mode output 1799

or structured output can be very convenient. 1800

If the MLLM does not support these output 1801

format, we can use GPT-4o, which supports 1802

structured output, to format the output text. 1803

• Assume the period of series data is T , it is 1804

recommended to set the sliding window length 1805

to at least 3T . 1806

• The MLLM marks the interval with anomaly 1807

based on the scale of the plot. Therefore, the 1808

scale of axis should be clear enough. However, 1809

the rotation of scale does not matter. 1810

• Grid-like auxiliary lines can be added to en- 1811

hance the accuracy of the anomaly intervals 1812

output by the MLLM. 1813

• According to the documentation of OpenAI, in 1814

order to use high revolution mode, the figure 1815

size should not larger than 2000x768 pixels. 1816

All images in TAMA will be limited to this 1817

size. 1818

A.3.3 The Usage of Tokens 1819

Since the proposed framework, TAMA, utilizes 1820

MLLMs through the API calling, it is more mean- 1821

ingful to report the usage of API tokens rather than 1822

the model size. According to OpenAI’s documen- 1823

tation 4, images are restricted to dimensions of 1824

pixels, with each image consuming up to 765 to- 1825

kens. In TAMA, we will provide three reference 1826

images, one target image and two multi-scaled im- 1827

ages if there is an anomaly detected in last stage. 1828

Therefore, the consumption of a normal case is 1829

5 × 765 = 3825 tokens, the consumption of an 1830

abnormal case is 7× 765 = 5355 tokens. In total, 1831

TAMA requires approximatly 7,000-8,000 tokens 1832

for comprehensive anlaysis of a single sample. 1833

A.3.4 Prompts 1834

The design of prompts is based on the documenta- 1835

tion of OpenAI5. Writing the steps out explicitly 1836

can make it easier for the model to follow them. In 1837

our task, we separate the whole task into three spe- 1838

cific tasks: Multimodal Reference Learning (see 1839

4https://platform.openai.com/docs/guides/
5https://platform.openai.com/docs/guides/prompt-

engineering/strategy-write-clear-instructions
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Prompt 1), multimodal Analyzing (see Prompt 3)1840

and Multi-scaled Self-reflection (see Prompt 2).1841

Besides, we also provide some background infor-1842

mation, such as siliding windows and additional in-1843

formation of images. With the JSON mode output1844

of GPT-4o, it is very convenient for us to process1845

the output results, requiring a detailed description1846

of the output format in prompts. Based on our prac-1847

tical experience, we find that clear descriptions and1848

a structured format significantly are very helpful1849

for MLLM to understand.1850

A.4 Complete Experimental Results and1851

Visualization1852

A.4.1 Full Results of Anomaly Detection1853

across All Datasets1854

In this section, we present the full results of all1855

datasets in Table 10. Due to the limitation of the1856

space, we only present some of them in the main1857

body. Meanwhile, we also present the variance1858

in this table. Most of datasets contain more than1859

one sub-sequence, to fully present and compare1860

the performance, we evaluate all metrics in all sub-1861

sequence and calculate three values: mean, vari-1862

ance and maxima. In this table, mean and variance1863

are formated as "mean ± variance".1864

A.4.2 Full Results of the PAT Experiment1865

In Section 4.1, in order to study the impact of point-1866

adjustment, we re-evaluate the results using the1867

point-adjustment with a threshold α. Due to the1868

limitation of the space, we only present results of1869

some datasets in the main body. The full results are1870

presented in Figure 6. As the figure presented, our1871

framework achieves outstanding AUC-PR across1872

all datasets at various α, showing that our framwork1873

has better robustness and stability.1874

A.4.3 Full results of Anomaly Classification1875

Table 11 presents the type-specific anomaly detec-1876

tion performance. To maintain readability, only the1877

F1-score without point adjustment is reported. The1878

results highlight TAMA’s outstanding performance1879

in identifying pattern anomalies, including shapelet,1880

seasonal, and trend types, while most baseline mod-1881

els struggle in this aspect without point adjustment.1882

For instance, on the UCR-shapelet dataset, TAMA1883

outperformed the second-best detector (GDN) by a1884

substantial margin of 293% in terms of the mean1885

F1-score. This superiority stems from TAMA’s in-1886

herent ability to detect anomalous intervals. How-1887

ever, this characteristic may lead to lower F1-scores1888

in the detection of point anomalies. In the synthetic 1889

dataset we generated, labels for point anomalies 1890

were strictly defined. While TAMA’s interval detec- 1891

tion always encompassed the ground-truth anoma- 1892

lies, it also produced a significant number of false 1893

positives. 1894

A.4.4 Visualization of anomaly classification 1895

In Section 4.2, we make a new dataset for anomaly 1896

classification by labeling some real-world datasets 1897

and generating sequence. We also provide some vi- 1898

sualization of these anomalies to better understand 1899

the different types of anomalies. The visualization 1900

of anomaly classification is shown in Figure 7. The 1901

dataset contain four classification: Point, Shapelet, 1902

Seasonal and Trend, which are referenced from the 1903

work (Lai et al., 2021). 1904

A.4.5 Case Studies of Abnormal Descriptions 1905

In this section, we represent some case studies 1906

to show the interpretability of TAMA. The inter- 1907

pretability of TAMA refers to the ability to classify 1908

the anomaly type, describe the anomaly in detail 1909

and analyze possible causes based on the back- 1910

ground information. We select four examples from 1911

UCR, ECG, SMD and Dodgers datasets, which are 1912

from different domains. The result of case stud- 1913

ies is shown in Figure 8. In each case, the ground 1914

truth is markded in red and the detections of TAMA 1915

are marked in green. The detection results include 1916

the anomaly interval, the anomaly type and the 1917

anomaly description. 1918

1. UCR datasets: The data we selected is named 1919

internal bleeding in UCR. The result is shown in 1920

(a) of Figure 8. In the anomaly description section, 1921

the interval (180, 200) is detected as a shapelet 1922

anomaly because TAMA finds this interval con- 1923

tains a series of rapid and sharp fluctuations that 1924

deviate from this smooth pattern. Based on the 1925

internal bleeding information background informa- 1926

tion, TAMA thinks this irregular patterns might be 1927

caused by some sudden changes in physilogical 1928

parameters, such as blood pressure or heart rate. 1929

2. ECG dataset: This data records the elec- 1930

trocardiogram (ECG) data of ICU patients. The 1931

detection result on ECG dataset is shown in (b) of 1932

Figure 8. TAMA initially analyzes the frequency 1933

patterns in normal data and identifies that the in- 1934

terval between peaks occurring at indices 670 and 1935

720 is substantially shorter than the expected peri- 1936

odicity, indicating a frequency anomaly. This devi- 1937

ation disrupts the regular periodic pattern typically 1938
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Table 10: Quantitative results across seven datasets use metrics point-adjusted F1, AUC-PR, and AUC-ROC. Best
and second-best results are in bold and underlined, respectively. TAMA represents our framework, and TAMA*
represents our framework without self-reflection. Each unit in the table contains two value: mean and maxima of all
series. The number following the mean represents the standard deviation (std) computed over all sequences.

Dataset UCR NASA-SMAP NASA-MSL

Metric F1% AUC-PR% AUC-ROC% F1% AUC-PR% AUC-ROC% F1% AUC-PR% AUC-ROC%

IF 24.7 ± 31.6 77.3 37.7 ± 15.0 44.6 24.4 ± 9.80 25.3 54.2 ± 36.4 94.2 58.9 ± 18.9 77.1 65.0 ± 6.10 87.7 47.6 ± 8.00 88.6 53.6 ± 4.80 80.4 68.7 ± 9.40 88.7
LOF 42.8 ± 1.10 100 35.6 ± 1.00 50.0 92.8 ± 19.2 99.9 62.2 ± 12.1 100 43.4 ± 12.9 61.4 60.1 ± 19.9 99.9 36.4 ± 25.3 66.8 44.5 ± 9.90 66.0 58.6 ± 0.50 99.8

TranAD 38.2 ± 40.7 93.7 30.9 ± 6.40 51.0 77.0 ± 26.8 99.9 59.0 ± 39.9 99.6 36.8 ± 19.1 73.9 74.4 ± 27.7 100 64.6 ± 38.6 99.1 49.2 ± 20.4 79.6 82.5 ± 18.3 99.9
GDN 71.4 ± 43.1 80.6 33.4 ± 0.40 59.0 87.1 ± 24.1 99.9 76.4 ± 38.5 100 40.8 ± 19.1 66.2 86.1 ± 27.7 100 85.1 ± 26.1 100 38.7 ± 9.90 56.7 93.8 ± 0.50 100

MAD_GAN 74.2 ± 40.4 85.0 51.5 ± 0.80 65.9 99.4 ± 1.30 99.9 61.3 ± 41.3 100 39.9 ± 19.1 72.3 83.3 ± 15.1 100 96.0 ± 5.60 100 46.4 ± 17.5 50.0 95.7 ± 7.10 100
MSCRED 32.6 ± 37.9 96.0 28.9 ± 2.70 45.9 94.2 ± 3.60 99.9 57.0 ± 44.2 97.9 40.8 ± 19.1 61.7 77.0 ± 28.2 100 63.0 ± 37.0 92.2 39.5 ± 16.3 51.8 73.2 ± 16.1 98.1

MTAD_GAT 14.8 ± 13.2 36.6 34.2 ± 4.80 38.9 84.6 ± 7.60 94.4 78.3 ± 37.7 100 40.2 ± 22.9 58.0 77.0 ± 12.3 100 90.6 ± 27.7 100 49.2 ± 9.70 67.8 81.2 ± 21.9 100
OmniAnomaly 34.5 ± 32.7 95.7 26.0 ± 0.30 45.9 85.6 ± 10.3 99.9 57.1 ± 39.9 100 43.6 ± 20.5 63.2 77.5 ± 24.8 100 71.4 ± 36.5 100 40.0 ± 17.2 74.9 85.0 ± 18.7 99.9

USAD 57.6 ± 35.6 100 33.1 ±0.40 50.0 97.1 ± 4.20 99.9 72.8 ± 35.8 100 43.6 ± 22.5 63.2 93.9 ± 9.10 100 91.6 ± 26.2 99.9 42.6 ± 9.90 60.8 94.2 ± 0.70 100
TimesNet 32.8 ± 8.30 45.8 15.4 ± 5.20 23.5 98.4 ± 1.10 99.4 97.7 ± 3.50 100 51.4 ± 2.80 90.3 99.8 ± 0.09 100 97.4 ± 4.70 100 52.9 ± 8.10 79.7 99.8 ± 0.50 100

SIGLLM (GPT-4o) 23.1 ± 19.7 44.6 7.40 ± 6.70 15.5 93.5 ± 16.9 96.5 69.0 ± 34.4 97.8 29.1 ± 28.4 49.2 95.5 ± 3.60 99.8 70.7 ± 44.8 97.9 72.4 ± 28.6 100 90.0 ± 15.3 100

TAMA 92.5 ± 17.9 97.6 93.0 ± 12.1 97.7 99.8 ± 0.10 99.9 94.5 ± 7.20 100 95.5 ± 9.30 100 98.4 ± 4.60 100 97.5 ± 2.10 100 99.4 ± 17.8 100 99.8 ± 0.20 100
TAMA* 92.5 ± 17.9 97.6 93.0 ± 12.1 97.7 99.8 ± 0.10 99.9 87.8 ± 31.3 100 89.2 ± 16.6 100 97.0 ± 4.10 100 96.1± 4.30 100 97.7 ± 18.2 100 99.0 ± 0.20 100

Dataset SMD ECG Dodgers

Metric F1% AUC-PR% AUC-ROC% F1% AUC-PR% AUC-ROC% F1% AUC-PR% AUC-ROC%

IF 83.9 ± 13.2 100 73.8 ± 17.3 97.0 99.5 ± 0.50 100 80.8 ± 20.5 99.0 73.4 ± 18.8 92.2 97.2 ± 4.70 100 48.4 ± 0.00 48.4 52.2 ± 0.00 52.2 89.4 ± 0.00 89.4
LOF 27.8 ± 6.60 75.2 39.9 ± 1.90 64.6 52.9 ± 2.60 59.3 21.8 ± 12.0 39.8 41.4 ± 4.40 60.7 56.3 ± 10.8 84.2 45.3 ± 0.00 45.3 40.8 ± 0.00 40.8 63.0 ± 0.00 63.0

TranAD 77.0 ± 33.0 99.6 70.9 ± 31.9 91.0 96.8 ± 13.3 100 69.1 ± 23.2 98.9 74.7 ± 22.9 97.7 94.9 ± 6.30 100 38.2 ± 0.00 38.2 33.9 ± 0.00 33.9 74.6 ± 0.00 74.6
GDN 76.9 ± 0.90 99.7 55.0 ± 35.5 88.6 77.0 ± 1.60 100 75.2 ± 17.6 96.2 76.6 ± 17.5 97.4 96.9 ± 3.70 99.9 37.0 ± 0.00 37.0 31.3 ± 0.00 31.3 74.2 ± 0.00 74.2

MAD_GAN 67.1 ± 1.30 92.6 61.7 ± 37.2 87.5 91.7 ± 1.60 100 79.1 ± 19.5 99.3 79.2 ± 19.4 97.6 96.9 ± 3.80 100 32.2 ± 0.00 32.2 28.6 ± 0.00 28.6 74.7 ± 0.00 74.7
MSCRED 69.4 ± 30.2 95.7 55.8 ± 36.7 96.2 95.0 ± 14.5 100 66.4 ± 26.3 99.0 73.8 ± 22.6 97.2 88.7 ± 13.5 100 37.8 ± 0.00 37.8 30.6 ± 0.00 30.6 74.6 ± 0.00 74.6

MTAD_GAT 69.7 ± 18.5 95.3 59.5 ± 33.8 90.4 90.6 ± 6.00 99.7 67.5 ± 29.2 100 73.5 ± 23.8 98.8 82.5 ± 17.1 100 39.1 ± 0.00 39.1 36.0 ± 0.00 36.0 74.9 ± 0.00 74.9
OmniAnomaly 66.0 ± 6.80 96.4 61.6 ± 34.2 91.8 87.7 ± 2.60 100 76.8 ± 21.3 98.6 76.4 ± 24.0 97.5 93.5 ± 8.80 100 33.6 ± 0.00 33.6 35.4 ± 0.00 35.4 60.3 ± 0.00 60.3

USAD 72.2 ± 0.30 99.7 67.8 ± 35.6 93.5 94.4 ± 1.60 100 71.5 ± 20.8 96.9 75.2 ± 18.9 98.3 94.9 ± 5.90 100 37.8 ± 0.00 37.8 33.1 ± 0.00 33.1 74.6 ± 0.00 74.6
TimesNet 82.8 ± 25.3 100 57.3 ± 21.2 99.9 95.4 ± 11.3 100 92.4 ± 3.70 96.6 90.0 ± 5.60 97.6 99.4 ± 0.40 100 48.1 ± 0.00 48.1 73.0 ± 0.00 73.0 83.7 ± 0.00 83.7

SIGLLM (GPT-4o) 42.9 ± 27.9 59.8 30.4 ± 21.0 53.1 68.8 ± 12.8 77.8 19.2 ± 13.7 50.4 71.0 ± 25.3 87.6 94.2 ± 3.20 96.9 48.1 ± 0.00 48.1 60.7 ± 0.00 60.7 83.2 ± 0.00 83.2

TAMA 77.8 ± 17.1 100 87.9 ± 10.4 100 98.9 ± 1.40 100 81.3 ± 19.1 87.5 84.5 ± 15.4 90.0 95.4 ± 2.30 99.4 65.6 ± 0.00 65.6 74.0 ± 0.00 74.0 85.2 ± 0.00 85.2
TAMA* 62.8 ± 24.5 93.0 78.6 ± 14.1 97.2 99.7 ± 1.50 99.7 78.1 ± 19.8 88.0 83.4 ± 14.6 91.1 94.7 ± 2.50 99.1 64.5 ± 0.00 64.5 73.6 ± 0.00 73.6 85.3 ± 0.00 85.3

Dataset NormA

Metric F1% AUC-PR% AUC-ROC%

IF 56.8 ± 19.2 86.3 52.3 ± 21.9 81.2 57.9 ± 1.00 68.7
LOF 54.5 ± 17.8 77.9 68.8 ± 9.30 92.4 95.1 ± 2.90 97.9

TranAD 38.0 ± 15.8 76.0 49.7 ± 21.3 78.9 53.6 ± 2.00 83.6
GDN 38.5 ± 14.8 74.7 50.9 ± 20.2 78.3 54.2 ± 2.10 82.2

MAD_GAN 38.5 ± 14.3 74.7 51.1 ± 19.8 77.8 54.1 ± 2.90 81.9
MSCRED 38.4 ± 16.1 74.6 49.7 ± 20.9 77.7 53.8 ± 2.00 81.8

MTAD_GAT 49.7 ± 13.7 93.8 50.1 ± 21.3 95.6 66.6 ± 3.30 94.2
OminiAnomaly 43.2 ± 17.9 74.8 53.5 ± 20.3 79.1 49.8 ± 1.70 89.9

USAD 38.6 ± 15.9 75.6 53.3 ± 20.9 78.5 54.1 ± 1.70 82.9
SIGLLM (GPT-4o) 82.8 ± 30.0 94.6 93.8 ± 21.4 98.9 97.9 ± 2.50 99.1

TAMA 80.7 ± 4.70 89.2 95.0 ± 7.60 98.5 98.1 ± 0.70 99.2
TAMA* 83.9 ± 10.0 85.5 93.9 ± 10.8 98.7 97.4 ± 1.00 98.6
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Figure 6: The full AUC-PR results of all models across all datasets at various point-adjustment threshold α (PAT,
see Section 3.1).
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Table 11: Quantitative results on each specific anomaly category across five datasets using F1-score% without
point-adjustment. Best and second-best results are in bold and underlined, respectively. TAMA represents our
framework (Some datasets include more than one series. To present the true performance of each method as much
as possible, each unit in the table contains two values: maxima / mean. The maxima represents the best result among
all sub-series, while the mean refers to the average of all sub-series.).

Dataset NASA-MSL NASA-SMAP UCR
Category Point Shapelet Trend Shapelet Seasonal Trend Point Shapelet

TranAD 23.2 / 10.4 14.9 / 13.5 33.7 / 33.7 1.00 / 0.60 1.40 / 1.40 0.30 / 0.30 0.30 / 0.30 10.5 / 3.60
GDN 3.80 / 2.30 17.6 / 8.60 1.20 / 1.20 6.30 / 2.10 1.20 / 1.20 0.30 / 0.30 22.2 / 22.2 53.0 / 20.6

MAD_GAN 3.90 / 2.00 17.6 / 8.50 1.60 / 1.60 10.2 / 3.00 1.20 / 1.20 0.65 / 0.65 14.0 / 14.0 36.8 / 15.0
MSCRED 61.9 / 23.0 16.6 / 8.00 23.4 / 23.4 1.00 / 0.60 0.70 / 0.70 0.30 / 0.30 0.45 / 0.45 2.40 / 0.80

MTAD_GAT 69.8 / 46.3 16.6 / 8.00 73.9 / 73.9 52.0 / 24.0 2.10 / 2.10 0.95 / 0.95 0.80 / 0.80 2.70 / 1.45
OmniAnomaly 5.40 / 1.80 3.70 / 1.80 2.80 / 2.80 1.00 / 0.40 0.65 / 0.65 0.45 / 0.45 0.55 / 0.55 3.00 / 1.00

USAD 13.0 / 7.50 16.6 / 8.10 4.30 / 4.30 0.60 / 0.30 1.20 / 1.20 1.25 / 1.25 5.30 / 5.30 11.9 / 4.50
IF 35.0 / 24.2 30.0 / 22.9 31.6 / 31.6 30.2 / 17.1 1.10 / 1.10 1.45 / 1.45 0.55 / 0.55 2.70 / 1.85

LoF 22.9 / 10.1 33.4 / 22.4 33.3 / 33.3 14.0 / 7.80 0.60 / 0.60 4.60 / 4.60 0.45 / 0.45 2.05 / 1.35
TimesNet 23.2 / 10.9 12.5 / 8.30 22.4 / 10.8 20.4 / 8.95 1.35 / 1.35 25.6 / 25.6 0.40 / 0.40 1.80 / 1.20
SIGLLM 10.8 / 5.70 1.60 / 0.80 23.9 / 23.9 30.3 / 12.6 20.2 / 20.2 2.65 / 2.65 0.85 / 0.85 11.2 / 4.80

TAMA 70.2 / 31.9 26.2 / 11.4 22.4 / 13.5 77.4 / 47.9 0.10 / 0.10 84.5 / 84.5 20.0 / 20.0 92.3 / 81.0

Dataset NormA Synthetic
Category Shapelet Seasonal Trend Point Seasonal Trend

TranAD 4.00 / 2.30 3.30 / 2.20 3.90 / 2.50 0.55 / 0.35 8.90 / 1.90 13.5 / 7.90
GDN 4.10 / 2.30 3.30 / 2.20 3.90 / 2.50 0.50 / 0.35 13.6 / 2.10 12.4 / 6.50

MAD_GAN 4.10 / 2.30 3.30 / 2.20 3.90 / 2.50 0.55 / 0.35 8.50 / 1.60 13.9 / 8.00
MSCRED 4.10 / 2.30 3.30 / 2.20 3.90 / 2.50 0.55 / 0.35 8.50 / 1.60 10.5 / 5.20

MTAD_GAT 4.90 / 1.40 1.30 / 0.90 1.70 / 1.10 0.55 / 0.40 6.30 / 1.80 13.3 / 6.25
OmniAnomaly 12.6 / 5.70 11.5 / 7.50 11.4 / 7.30 30.3 / 19.8 9.30 / 1.70 11.2 / 7.80

USAD 4.10 / 2.40 3.30 / 2.20 3.90 / 2.50 0.55 / 0.35 8.90 / 1.70 12.6 / 7.30
IF 21.4 / 13.2 17.0 / 12.9 13.9 / 11.9 36.2 / 21.6 10.4 / 9.05 10.9 / 7.20

LoF 30.7 / 16.8 25.7 / 18.6 21.5 / 16.9 0.50 / 0.50 10.9 / 9.10 5.35 / 5.25
TimesNet 10.2 / 9.05 5.25 / 5.20 1.79 / 1.60 37.5 / 25.5 11.9 / 9.50 10.6 / 5.70
SIGLLM 6.50 / 3.10 3.70 / 2.50 0.90 / 0.60 0.60 / 0.35 10.9 / 7.95 14.0 / 6.50

TAMA 56.8 / 37.1 38.8 / 28.1 45.2 / 34.3 3.90 / 1.80 27.1 / 18.4 14.1 / 8.20

observed in normal data. Furthermore, based on1939

contextual analysis, TAMA suggests two potential1940

underlying causes: cardiac ischemia or arrhythmia.1941

3. SMD dataset: The Server Machine Dataset1942

(SMD) is a comprehensive multivariate time series1943

dataset collected from 28 different servers at a large1944

Internet company over a continuous five-week pe-1945

riod. Each server records 38-dimensional metrics1946

at one-minute intervals, making it particularly valu-1947

able for anomaly detection research. As the (c)1948

in Figure 8 shown, TAMA detects correctly two1949

anomaly intervals from three. The description sec-1950

tion explains the reason of this detection. TAMA1951

frist reads the values of time series data. Compared1952

with the normal data, the peaks in invertals (900,1953

1100) and (3500, 3700) are significantly higher1954

than others, which are considered as the global1955

anomaly.1956

TAMA, however, failed to detect one anomaly1957

in the 1600-2000 interval, which can be attributed1958

to two primary factors. First, the pronounced cycli-1959

cal patterns in the data diminish the distinction1960

between normal and abnormal patterns. Second, 1961

despite the data containing approximately three 1962

cycles, each cycle is compromised by anomalies, 1963

resulting in imprecise estimation of the baseline 1964

pattern. Based on background information analy- 1965

sis, three key factors potentially contribute to these 1966

anomalies. First, there is an abrupt surge in server 1967

activity and resource utilization. Second, system 1968

malfunction appears to be a significant contributing 1969

factor. Third, the anomalies may be attributed to 1970

external security breaches or cyber attacks. 1971

4. Dodgers dataset: This data was collected for 1972

the Glendale on ramp for the 101 North freeway in 1973

Los Angeles. It is close enough to the stadium to 1974

see unusual traffic after a Dodgers game, but not so 1975

close and heavily used by game traffic so that the 1976

signal for the extra traffic is overly obvious. The 1977

observations were taken over 25 weeks, 288 time 1978

slices per day (5 minute count aggregates). The 1979

result is shown in (d) of Figure 8. TAMA marks 1980

two contextual anomalies in this case. TAMA can 1981

recognise the ’contextual’ anomaly between 570 1982
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Point Shapelet Seasonal Trend

Figure 7: Visualization of anomalies. Each row displays sequences from different datasets that contain the same
type of anomaly.

and 600 correctly. Based on the background infor-1983

mation, TAMA thinks the first sharp spike anomaly1984

could represent a sudden increase in traffic as peo-1985

ple leave the stadium. The second anomaly, a sud-1986

den drop to a flat line, possibly due to sensor mal-1987

function or maintenance activities.1988

The whole inference of TAMA reveals that the1989

MLLM has the ability of understanding anomaly1990

and make a reasonable detection. Moreover,1991

TAMA can try to inference the possible causes1992

based on the background information given in the1993

prompt.1994

A.4.6 Ablation Study for Other Factors1995

We also conduct some ablation experiments to eval-1996

uate the impact of each factor.1997

Window Size. In TAMA, as it shown before (in1998

Section 3.1), we use sliding window in the data1999

pre-processing stage. To accommodate different2000

time series data with varying periods, we report the2001

window size in multiples of the data period.2002

The results presented in Figure 9 reveal that the2003

performance of our method is positively correlated2004

with the window size. This is because the MLLMs2005

struggles to identify periodic patterns when given2006

only single-period images, resulting in incorrectly2007

classifying periodic features and truncated features2008

as anomalies. Therefore, we ultimately set the win-2009

dow size to approximately 3T for the experiments2010

detailed in Section 4.1.2011

Additional Information in Images. The trans- 2012

formation of raw data into visual formats, such as 2013

images, adds crucial information, including plot 2014

orientation and auxiliary lines. This study investi- 2015

gates how these elements influence TAMA’s per- 2016

formance in identifying abnormal intervals based 2017

on plot scales. We conducted two experiments: the 2018

first involved rotating images by 90 degrees before 2019

inputting them into TAMA, while the second ex- 2020

amined the impact of auxiliary lines, which are 2021

perpendicular to the x-axis and align with the scale 2022

to aid in locating data points. 2023

Both experiments are performed on the UCR 2024

and NASA-SMAP datasets. Results are presented 2025

in Table 12, where TAMA represents the original 2026

model, TAMA-R indicates performance with ro- 2027

tated images, and TAMA-A reflects performance 2028

without auxiliary lines. We evaluated using the 2029

AUC-PR without point adjustment. The findings 2030

demonstrate a notable decline in TAMA-R’s per- 2031

formance with rotated images, suggesting that the 2032

MLLMs are sensitive to image orientation. De- 2033

spite the rotation of axis is disturbed in prompts, 2034

the MLLM struggles to interpret rotated images 2035

accurately, leading to reduced anomaly detection. 2036

In contrast, TAMA-A experiences only a slight per- 2037

formance decrease across both datasets, indicating 2038

that MLLMs can better identify abnormal intervals 2039

when auxiliary lines are present. 2040

These experiments reveal that MLLMs perceive 2041
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Detection : 
• Anomaly interval: (130, 160), (570, 600)
• Anomaly type: contextual, contextual

Anomaly Description: 
The first abnormality, occurring between indices 570 and 600, is classified as 

a 'contextual' outlier. This is because the sudden drop and subsequent recovery 
in the data values deviate significantly from the surrounding context, which is 
characterized by relatively stable fluctuations. The abrupt nature of this drop and 
recovery is not consistent with the smooth transitions observed in the normal 
reference data, making it a clear contextual anomaly. The second abnormality, 
observed between indices 130 and 160, is also classified as a 'contextual' outlier. 
The unusual spike in the data values during this interval deviates from the 
expected pattern of smooth transitions between peaks and troughs. This spike is 
abrupt and significantly higher than the typical peaks in the normal reference 
data, indicating a contextual anomaly. Both abnormalities are identified based on 
their deviation from the expected periodic and stable pattern observed in the 
normal reference data slices. 

The abnormalities in the time series data likely correspond to traffic patterns 
influenced by events at Dodgers Stadium. The first abnormality, a sharp spike 
between indices 130 and 170, could represent a sudden increase in traffic as 
people leave the stadium after a game. This aligns with the note that event traffic 
begins at or near the end of the event time. The second abnormality, a sudden 
drop to a flat line between indices 580 and 620, might indicate a temporary 
disruption or error in data collection, possibly due to sensor malfunction or 
maintenance activities. These patterns suggest that the observed anomalies are 
related to the impact of baseball games on local traffic flow.

Detection : 
• Anomaly interval: (670. 720)
• Anomaly type: frequency

Anomaly Description: 
The abnormality detected in the time series data slice is classified as a 

'frequency' anomaly. Frequency outliers refer to changes in the regularity or 
periodicity of the data. In the normal reference data, the peaks occur at regular 
intervals of approximately 120 time units. However, in this data slice, the interval 
between the peaks around indices 670 and 720 is significantly shorter than the 
expected interval. This change in the frequency of the peaks disrupts the regular 
periodic pattern observed in the normal data. 

The abnormality observed in the ECG data, characterized by a shift in the 
pattern and a lack of return to the baseline, could be indicative of a physiological 
change or issue. One possible cause could be a cardiac event such as ischemia, 
where the heart muscle receives insufficient blood flow, leading to changes in the 
ECG pattern. Another possibility is an arrhythmia, where the heart beats 
irregularly, disrupting the normal periodic pattern. Additionally, external factors 
such as electrode displacement or interference from other electronic devices 
could also cause such abnormalities in the ECG data. It is important to consult a 
medical professional for an accurate diagnosis.

Detection : 
• Anomaly interval: (900, 1100), (3500, 3700)
• Anomaly type: global, global

Anomaly Description: 
The interval (900, 1100) shows a significant deviation from the normal 

pattern, with an unusually high peak reaching approximately 8, which is much 
higher than the typical peaks observed in the normal reference data slices. This 
peak is sharp and prominent, standing out clearly from the surrounding data 
points, making it a global outlier. I also identified another abnormality between 
indices 3500 and 3700. This interval also shows a significant deviation from the 
normal pattern, with an unusually high peak reaching approximately 7, which is 
much higher than the typical peaks observed in the normal reference data slices. 
This peak is sharp and prominent, standing out clearly from the surrounding data 
points, making it another global outlier. 

The abnormalities observed in the time series data, characterized by sharp 
and unusually high peaks, could be attributed to sudden spikes in server activity 
or resource usage. These spikes might be caused by unexpected workload 
increases, such as a surge in user requests or data processing tasks. Other 
potential causes could include system malfunctions, such as hardware failures or 
software bugs, leading to erratic behavior in the server's performance metrics. 
Additionally, external factors like network issues or security breaches could also 
result in such anomalies. Given the context of server monitoring, these anomalies 
likely indicate periods where the server's performance deviated significantly from 
its normal operating conditions, warranting further investigation to identify and 
address the underlying issues.

Detection : 
• Anomaly range: (180, 210)
• Anomaly type: shapelet

Anomaly Description: 
The abnormality observed between indices 180 and 210 is best classified as 

a 'shapelet' outlier. Shapelet outliers refer to subsequences with dissimilar basic 
shapelets compared to the normal shapelet. In this case, the normal shapelet is a 
smooth and regular oscillation with consistent peaks and troughs. The abnormal 
section, however, shows a series of rapid and sharp fluctuations that deviate from 
this smooth pattern.

The abnormality in the time series data, characterized by rapid oscillations 
and fluctuations, could potentially be indicative of an internal bleeding event. In 
medical monitoring, such irregular patterns might reflect sudden changes in 
physiological parameters, such as blood pressure or heart rate, which can occur 
during episodes of internal bleeding. The disruption in the otherwise stable 
pattern suggests an acute event that requires further investigation to confirm the 
presence and cause of internal bleeding.

(a) UCR (b) ECG

(c) SMD (d) Dodgers

Figure 8: Case studies of abnormal descriptions.
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Figure 9: Results of window size ablation experi-
ments. For the period of two datasets, TUCR ≈ 200,
TNASA−SMAP ≈ 100

time series images similarly to humans— uxil-2042

iary lines enhance anomaly localization accuracy,2043

while image rotation negatively affects perfor-2044

mance. This sensitivity may result from the to-2045

kenizer’s responsiveness to orientation or insuffi-2046

cient training data and guidance.

Table 12: The average AUC-PR% performance of
TAMA with different additional information in images.

Datasets TAMA TAMA-R TAMA-A

UCR 83.0 32.9 (-50.1) 75.6 (-7.60)
NASA-SMAP 72.9 28.6 (-44.3) 66.4 (-6.50)

2047

A.4.7 PCA Dimensionality Reduction 2048

Visualization 2049

The visualization of SMD data after dimension- 2050

ality reduction using PCA is shown in Figure 10. 2051

Since PCA retains the components with the highest 2052

variance, shapelet anomalies are often preserved ef- 2053

fectively. However, for certain seasonal anomalies, 2054

their characteristics may become less pronounced, 2055

which reflects some of the information loss associ- 2056

ated with PCA. 2057

(a) Service-7

(b) Service-0

Figure 10: The visualization of SMD data after dimen-
sionality reduction using PCA. (a) and (b) are collected
from Service-7 and Service-0 in the SMD dataset re-
spectively.

A.5 License 2058

Table 13: MLLMs Involved in Experiments and Their
Corresponding Licenses

Model Name License Type

GPT-4o (-mini) Terms of Use
Gemini-1.5 (-pro/-flash) Apache License 2.0
Qwen-VL-Max-0809 Apache License 2.0
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Prompt 1: Multimodal Reference Learning Prompt

<Background>: I have a long time series data with some abnormalities. I have converted the data into plots and I need
your help to find the abnormality in the time series data. This task contains two parts:

- "Task1": I will give you some "normal reference" time series data slices without any abnormality. And you need
to extract some valuable information from them to help me find the abnormality in the following time series data
slices.

- "Task2": I will give you some time series data slices with some abnormalities. You need to find the abnormality
in them and provide some structured information.

besides, I will offer you some background information about the data plots:

- The horizontal axis represents the time series index.

- The vertical axis represents the value of the time series.

- all normal reference data slices are from the same data channel but in different strides. Therefore, some patterns
based on the position, for example, the position of peaks and the end of the plot, may cause some confusion.

- all normal references are slices of the time series data with a fixed length and the same data channel. Therefore
the beginning and the end of the plot may be different but the pattern should be similar.

<Task>: Now we are in the "Task1" part: I will give you some "normal reference" time series data slices without any
abnormality. And you need to extract some valuable information from them to help me find the abnormality in the
following time series data slices.
<Target>: Please help me extract some valuable information from them to help me find the abnormality in the following
time series data slices. The output should include some structured information, please output in JSON format:

- normal_pattern (a 300-400 words paragraph): Try to describe the pattern of all "normal references" . All normal
reference data slices are from the same data channel but in different strides. The abnormal pattern caused by
truncation might be found at the beginning and end of the sequence, do not pay too much attention to them. The
description should cover at least the following aspects: period, stability, trend, peak, trough, and other important
features.
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Prompt 2: Multi-scaled Self-reflection

<Background>: I have a long time series data with some abnormalities. I have converted the data into plots and I need
your help to find the abnormality in the time series data. There has been a response from another assistant, but I am not
sure about the prediction. I need your help to double check the prediction. Besides, I will offer you some background
information about the data plots:

- The horizontal axis represents the time series index.

- The vertical axis represents the value of the time series.

- all normal reference data slices are from the same data channel but in different strides. Therefore, some patterns
based on the position, for example, the position of peaks and the end of the plot, may cause some confusion.

- all normal references are slices of the time series data with a fixed length and the same data channel. Therefore,
the beginning and the end of the plot may be different, but the pattern should be similar.

<Task>: Now, I will give you some "normal reference" and you are expected to double check the prediction of the
abnormality in the given data.
<Target>: The prediction of another assistant contains some information as follows:

- abnormal_index: The abnormality index of the time series. The output format should be like
"[ (start1, end1)/confidence_1/abnormal_type_1, (start2, end2)/confidence_2/abnormal_type_2, ...]", if
there are some single outliers, the output should be "[ (index1)/confidence_1/abnormal_type_1, (in-
dex2)/confidence_2/abnormal_type_2, ...]",if there is no abnormality, you can say "[]".

- abnormal_description: Make a brief description of the abnormality, why do you think it is abnormal?

Based on the "nomral reference" I gave you, please read the prediction above and double check the prediction. If you
find any mistakes, please correct them. The output should include some structured information, please output in JSON
format:

- corrected_abnormal_index (string, the output format should be like "[ (start1,
end1)/confidence_1/abnormal_type_1, (start2, end2)/confidence_2/abnormal_type_2, ...]", if there
are some single outliers, the output should be "[ (index1)/confidence_1/abnormal_type_1, (in-
dex2)/confidence_2/abnormal_type_2, ...]",if there is no abnormality, you can say "[]". The final
output should be mixed with these three formats.): The abnormality index of the time series. There are some
requirements:

+ 1. you should check each prediction of the abnormal_type and make sure it is correct based on the
abnormality index. If there is a incorrect prediction, you should remove it.

+ 2. you should check each prediction of the abnormal_index according to the image I gave to you. If there is
an abnormality in image but not in the prediction, you should add it. The format should keep the same as
the original prediction.

- The reason why you think the prediction is correct or incorrect. (a 200-300 words paragraph): Make a brief
description of your double check, why do you think the prediction is correct or incorrect?
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Prompt 3: Multimodal Analyzing Prompt

<Background>: I have a long time series data with some abnormalities. I have converted the data into plots and I need
your help to find the abnormality in the time series data. This task contains two parts:

- "Task1": I will give you some "normal reference" time series data slices without any abnormality. And you need
to extrace some valuable information from them to help me find the abnormality in the following time series data
slices.

- "Task2": I will give you some time series data slices with some abnormalities. You need to find the abnormality
in them and provide some structured information.

Besides, I will offer you some background information about the data plots:

- The horizontal axis represents the time series index.

- The vertical axis represents the value of the time series.

- all normal reference data slices are from the same data channel but in different strides. Therefore, some patterns
based on the position, for example, the position of peaks and the end of the plot, may cause some confusion.

- all normal references are slices of the time series data with a fixed length and the same data channel. Therefore
the beginning and the end of the plot may be different but the pattern should be similar.

<Task>: In "Task1" part, you have already extracted some valuable information from the "normal reference" time series
data slices. You can use them to help you find the abnormality in the following time series data slices. Now we are in
"Task2", you are expected to detect the abnormality in the given data.
<Target>: Please help me find the abnormality in this time series data slice and provide some structured information.
The output should include some structured information, please output in JSON format:

- abnormal_index (the output format should be like "[ (start1, end1)/confidence_1/abnormal_type_1, (start2,
end2)/confidence_2/abnormal_type_2, ...]", if there is no abnormality, you can say "[]". The final output should
be mixed with these three formats.): The abnormality index of the time series. There are some requirements:

+ There may be multiple abnormalities in one stride. Please try to find all of them. Pay attention to the range
of each abnormality, the range should cover each whole abnormality in a suitable range.

+ Since the x-axis in the image only provides a limited number of tick marks, in order to improve the accuracy
of your prediction, please try to estimate the coordinates of any anomaly locations based on the tick marks
shown in the image as best as possible.

+ all normal reference data slices are from the same data channel but in different strides. Therefore, some
patterns based on the position, for example, the position of peaks and the end of the plot, may cause some
confusion.

+ abnormal_type (answer from "global", "contextual", "frequency", "trend", "shapelet"): The abnormality
type of the time series, choose from [global, contextual, frequency, trend, shapelet]. The detailed explanation
is as follows:

+ global: Global outliers refer to the points that significantly deviate from the rest of the points. Try to
position the outliers at the center of the interval.

+ contextual: Contextual outliers are the points that deviate from its corresponding context, which is
defined as the neighboring time points within certain ranges. Try to position the outliers at the center
of the interval.

+ frequency: Frequency outliers refer to changes in frequency, the basic shape of series remains the same.
Please focuse on the horizontal axis to find the frequency anomalies.

+ trend: Trend outliers indicate the subsequences that significantly alter the trend of the time series,
leading to a permanent shift on the mean of the data. Mark the intervals where the mean of the data
significantly changes.

+ shapelet: Shapelet outliers refer to the subsequences with totally different shapes compared to the rest
of the time series.

- confidence (integer, from 1 to 4): The confidence of your prediction. The value should be an integer between 1
and 4, which represents the confidence level of your prediction. Each level of confidence is explained as follows:

+ 1: No confidence: I am not sure about my prediction
+ 2: Low confidence: Weak evidence supports my prediction
+ 3: medium confidence: strong evidence supports my prediction
+ 4: high confidence: more than 95
+ based on the provided abnormal_type, you should double check the abnormal_index.

- abnormal_description (a 200-300 words paragraph): Make a brief description of the abnormality, why do you
think it is abnormal?

- abnormal_type_description (a 200-300 words paragraph): Make a brief description of the abnormality type for
each prediction, why do you think this type is suitable for the abnormality?

Last, please double check before you submit your answer.
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