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ABSTRACT

Recent advances in speech synthesis have enabled highly natural and speaker-
adaptive speech generation by leveraging large-scale transcribed datasets. How-
ever, requiring tens of thousands of hours of annotated speech is impractical in
low-resource settings. Existing pre-trained speech models often utilize masked
speech inpainting for pre-training and show strong performance on various speech
generation tasks using limited task-specific data. Nonetheless, these models still
require external alignment mechanisms or extensive additional training to learn
alignment for alignment-aware tasks, such as text-to-speech (TTS). In this paper,
we propose A2-Flow, an alignment-aware pre-training method for flow match-
ing models in speech synthesis. A2-Flow integrates alignment learning directly
into the pre-training process using discrete speech units, enabling the model to
efficiently adapt to alignment-aware tasks without the need for separate align-
ment mechanisms. By embedding alignment learning into pre-training, A2-Flow
facilitates alignment-free voice conversion (VC) and allows for faster convergence
during TTS fine-tuning, even with limited transcribed data, making it highly suit-
able for low-resource scenarios. Experimental results show that A2-Flow superior
zero-shot VC performance compared to existing models and matches state-of-the-
art TTS performance using only a small amount of transcribed data. Moreover,
we demonstrate that A2-Flow can be more efficiently applied to alignment-aware
speech synthesis tasks than existing pre-training methods, providing a practical
and scalable solution for high-quality speech synthesis across diverse settings.

1 INTRODUCTION

Large-scale speech synthesis models have shown exceptional performance in generating highly nat-
ural and expressive speech across a wide range of emotions and voice styles, achieving impres-
sive zero-shot text-to-speech (TTS) capabilities even with minimal reference audio (Wang et al.,
2023; Kim et al., 2024; Le et al., 2023; Kharitonov et al., 2023; Eskimez et al., 2024). Many non-
autoregressive zero-shot TTS models (Shen et al., 2024; Kim et al., 2023b; Le et al., 2023) follow
the approach of early non-autoregressive models (Ren et al., 2019; Kim et al., 2020) by using a
phoneme duration predictor to align phonemes with speech. This approach simplifies the training
of generative decoders by allowing them to focus solely on speech generation rather than align-
ment modeling. However, the naturalness of the generated speech becomes highly dependent on the
performance of the duration predictor, and this approach limits the generative decoder’s ability to
capture richer information beyond alignment.

Recent non-autoregressive TTS approaches have aimed to eliminate the need for external alignment
models by learning alignment jointly with speech generation (Lee et al., 2024; Lovelace et al., 2024;
Gao et al., 2023; Eskimez et al., 2024). Among these, E2TTS (Eskimez et al., 2024) uses a flow
matching decoder to jointly model text-speech alignment and speech generation, resulting in highly
natural prosody and improved generalization to new speakers. However, similar to other zero-shot
TTS models, E2TTS relies on a large amount of transcribed data, which is often unavailable in low-
resource settings. SpeechFlow (Liu et al., 2024) mitigates the need for large transcribed datasets by
using untranscribed speech data during pre-training and generalizes well across tasks such as TTS
with minimal fine-tuning. However, it does not learn alignment during pre-training, making it less
effective for alignment-aware TTS models like E2TTS, as shown in our experiments.
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In this work, we introduce A2-Flow, an alignment-aware pre-training method that integrates discrete
HuBERT (Hsu et al., 2021) units into E2TTS’s training framework to learn alignment between unit
sequences and speech frames. By using de-duplicated units that retain only phonetic content, A2-
Flow effectively learns alignment without relying on external duration models. This allows for direct
application to zero-shot voice conversion, where phonetic content can be transferred to the target
speaker’s voice without additional fine-tuning. For TTS tasks, we fine-tune A2-Flow with transcribed
data to jointly learn text-speech alignment, eliminating the need for separate alignment modules. To
further enhance pronunciation accuracy, we introduce a simple timestep shifting strategy, improving
text alignment early in the sampling process and enhancing overall pronunciation accuracy.

Our experimental results demonstrate that our pre-training model successfully captures the align-
ment between unit sequences and speech frames. By leveraging this pre-training approach, A2-Flow
efficiently learns text-speech alignment with 500 hours of data and a few fine-tuning iterations,
achieving high pronunciation accuracy. Even with a limited amount of transcribed data, A2-Flow
outperforms many existing zero-shot TTS models and achieves comparable results to E2TTS. More-
over, we show that A2-Flow can effectively learn text-speech alignment also for other languages,
demonstrating its capability as a multilingual pre-training method. This highlights the flexibility and
scalability of A2-Flow, making it a robust foundation for multilingual TTS systems in low-resource
settings. Additionally, without any fine-tuning, the pre-trained model itself outperforms existing
zero-shot voice conversion models by a large margin, further validating the effectiveness of our
pre-training approach.

2 METHOD

In this section, we explain the masked speech modeling approach using flow matching as described
in Section 2.1. We discuss how this framework is utilized by 3 different models (Voicebox, Speech-
Flow, and E2TTS), and outline the motivation for our proposed method. In Section 2.2, we present
the pre-training method of A2-Flow and describe its application to voice conversion and TTS.

2.1 BACKGROUND: FLOW MATCHING-BASED MASKED SPEECH MODELING

The proposed framework leverages flow matching to model the distribution of mel-spectrograms
for various speech synthesis tasks. The core idea is to transform a sample x0 from a simple prior
distribution p0(x) into a data distribution q(x) through a time-dependent vector field vt.

2.1.1 PROBLEM FORMULATION: FLOW MATCHING

Given a mel-spectrogram x ∈ RD×T , we define a flow ϕt(x) parameterized by vt, which describes
how x0 evolves into x over time t ∈ [0, 1] as follows:

dϕt(x)

dt
= vt(ϕt(x); θ, c), ϕ0(x) = x0, (1)

where vt is the vector field estimated by the model, θ represents the model parameters, and c is an
optional conditioning input that varies based on the task. The model is optimized by minimizing the
optimal transport conditional flow matching (OT-CFM) loss:

LCFM(θ) = Et∼U [0,1],q(x1),p0(x0) ∥ut(ϕt,x1
(x0)|x1)− vt(ϕt,x1

(x0); θ, c)∥2 , (2)

where ϕt,x1
(x) is the optimal transport conditional flow path, and ut(x|x1) is the conditional vector

field for each data sample x1 ∼ q(x). The optimal transport conditional flow path can be defined as:

ϕt,x1
(x) ∼ N (tx1, (1− (1− σmin)t)

2I), (3)

where σmin is a small constant. The target conditional vector field ut(x|x1) can then be written as:

ut(x|x1) =
x1 − (1− σmin)x

1− (1− σmin)t
. (4)

By incorporating the conditional probability path and target vector field into the OT-CFM loss in
Eq. 2, we can reformulate the objective as:

LCFM(θ) = Et,x1,x0 ∥vt(ϕt,x1(x0); θ, c)− ut(ϕt,x1(x0)|x1)∥2 , (5)
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which encourages the estimated vector field vt to match the ground truth vector field ut.

The OT-CFM objective allows the model to estimate the marginal vector field ut(x), which inter-
polates between the prior distribution p0(x) and the data distribution q(x). As a result, the model
learns to generate data samples by solving the ordinary differential equation in Eq. 1 using the
learned vector field.

2.1.2 MASKED SPEECH MODELING FRAMEWORK

To apply flow matching to masked speech modeling, we first randomly mask regions of the mel-
spectrogram x, using a binary mask m ∈ {0, 1}D×T , and define the masked input as xmask =
(1−m)⊙x. Our masking strategy follows Voicebox (Le et al., 2023), where between 70% to 100%
of the mel-spectrogram is randomly masked, with a 10% probability of fully masking the entire
input.

During training, the masked mel-spectrogram xmask is concatenated with a noisy mel-spectrogram
ϕt,x1

(x0) along the channel dimension for each timestep t. The model is then trained to inpaint the
masked regions using the surrounding context based on the following modified CFM loss:

Lmasked-CFM(θ) = Et∼U [0,1],q(x1),p0(x0) ∥m⊙ (ut(ϕt,x1(x0)|x1)− vt(ϕt,x1(x0); θ, c))∥2 , (6)

where c represents all conditioning inputs, including xmask.

During inference, given a reference speech xref, we concatenate xref with a masked region along
the temporal axis to form xref

mask, which serves as the conditioning input. The model then fills in
the masked region of the mel-spectrogram using the estimated vector field, taking into account the
speaker information from the reference speech. This enables the model to perform zero-shot speaker
adaptation based on the reference speech.

2.1.3 CONDITIONING INPUT FOR DIFFERENT MODELS

The conditioning input c plays a crucial role in guiding the generative model during training and
inference. Below, we outline the different conditioning inputs used in Voicebox (Le et al., 2023),
SpeechFlow (Liu et al., 2024), and E2TTS (Eskimez et al., 2024).

Voicebox Voicebox is a zero-shot TTS model that uses the masked mel-spectrogram xmask along
with a sequence of aligned phoneme transcripts as the conditioning input c. During training, ground
truth alignments are used, while during inference, estimated phoneme durations from a separate
phoneme duration predictor are used to perform alignment and enable zero-shot TTS.

SpeechFlow SpeechFlow is a pre-training method that uses only the masked mel-spectrogram
xmask as the conditioning input c during pre-training and does not employ any additional condi-
tioning. During fine-tuning, task-specific conditioning inputs can be added, such as using aligned
phoneme transcripts for zero-shot TTS, similar to Voicebox.

E2TTS E2TTS is a zero-shot TTS model that uses xmask and an unaligned text input y as condi-
tioning inputs c. To match the length of y to the speech input, filler tokens are padded at the end
of y. E2TTS learns the alignment between the unaligned text input and speech without requiring a
separate duration modeling module, distinguishing itself from Voicebox’s approach.

By using unaligned text input as a conditioning input, E2TTS jointly models text-speech alignment
without explicitly learning phoneme alignment, allowing it to generate more natural speech with a
simpler architecture compared to Voicebox. However, E2TTS still requires a large amount of paired
text-speech data for effective training. Although E2TTS uses 200,000 hours of untranscribed data
for pre-training (Wang et al., 2024), it still requires tens of thousands of hours of paired text-speech
data and additional training iterations to learn alignment.

Similarly, while SpeechFlow is pre-trained using only masked speech modeling without any con-
ditioning, it can serve as a good initialization point for tasks that do not require explicit alignment
learning, such as Voicebox. However, it remains unclear whether SpeechFlow can effectively per-
form joint alignment and masked speech modeling with limited data under the E2TTS framework.

3
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In Fig. 2, we experimentally demonstrate that SpeechFlow struggles to learn alignment when trained
with limited transcribed data under the E2TTS training framework.

These limitations of existing methods highlight the need for a pre-training approach that not only
leverages untranscribed data effectively but also facilitates alignment-aware learning. In the next
section, we introduce A2-Flow, an alignment-aware pre-training method that specifically addresses
these challenges.

2.2 A2-FLOW

HuBERT

Waveform

50Hz unit

De-duplication

7 7 3 3 3 8 1 1 1

7 3 8 1

Flow Matching

Decoder

Mask

MaskMask

𝑢𝑃𝐴𝐷

𝑥𝑚𝑎𝑠𝑘
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Figure 1: An overview of A2-Flow. During pre-training, A2-Flow utilizes discrete speech unit se-
quences extracted from HuBERT, allowing the model to learn unit-speech alignment. In the fine-
tuning stage, the unit sequences are replaced with text sequences from transcribed data.

We introduce A2-Flow, an alignment-aware pre-training method that utilizes discrete HuBERT
units (Hsu et al., 2021). This approach integrates masked speech modeling and alignment learn-
ing, thereby making untranscribed speech data useful for downstream tasks like TTS. By jointly
learning masked speech and alignment, A2-Flow facilitates the alignment process during fine-tuning
and enables more efficient text-speech alignment learning, even with a small amount of transcribed
data. This results in TTS systems that can synthesize highly natural and intelligible speech without
the need for external alignment mechanisms.

To achieve alignment learning during the pre-training stage, we incorporate discrete HuBERT
units—self-supervised speech representations obtained from untranscribed data—into the training
process. These units primarily capture phonetic content, enabling the model to learn alignment be-
tween the units and the corresponding speech frames. For joint learning of alignment and masked
speech modeling, we directly adopt the E2TTS training approach, where text inputs are replaced
with discrete unit representations during pre-training, as depicted in Fig. 1.

Alignment-Aware Pre-Training Our strategy for alignment-aware pre-training involves remov-
ing alignment information from discrete speech units, allowing the model to relearn unit alignment
directly during pre-training. To begin, we extract continuous speech representations from 16kHz
speech waveforms using the HuBERT model and generate a 50Hz discrete unit sequence u50Hz
using HuBERT’s k-means quantizer. This 50Hz unit sequence represents speech as a sequence of
indices ranging from 0 to K − 1, where K is the number of clusters in the k-means quantizer. As
shown in Fig. 1, these 50Hz unit sequences often contain repeated indices for continuous speech
segments. Since u50Hz is already aligned with the speech, we remove these repetitions to eliminate
duration information, resulting in a de-duplicated unit sequence u = [u1, ..., uL].

In A2-Flow, we adopt a similar strategy to E2TTS by padding the de-duplicated unit sequence u
with filler tokens F to match the length of the corresponding mel-spectrogram x, creating a padded
sequence uPAD = [u1, ..., uL, F, ..., F ]. This padded sequence is concatenated with xmask and used
as part of the conditioning input c to predict the masked regions by optimizing the training objective
defined in Eq. 6. During pre-training, A2-Flow uses the de-duplicated units as additional context to
guide the inpainting of the masked regions. This approach helps the model learn to extract speaker-
specific and acoustic characteristics from the surrounding regions while aligning the de-duplicated
units with the corresponding speech.
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For multilingual pre-training, we include language IDs as an additional input to the decoder to
distinguish between languages within the shared discrete unit space. This allows A2-Flow to better
capture language-specific characteristics and more effectively model each language independently.

Voice Conversion Unlike pre-training methods (Liu et al., 2024; Wang et al., 2024), A2-Flow
can be directly used for voice conversion tasks without requiring any additional fine-tuning. By
leveraging discrete HuBERT units that capture detailed phonetic content, A2-Flow can effectively
convert the source speaker’s speech into the target speaker’s voice, achieving high-quality outputs
with minimal adjustment.

For voice conversion, we extract de-duplicated unit sequences usrc and uref from the source and
target speech, respectively, and concatenate the mel-spectrogram of the target reference speech xref

with a mask of the source length. Next, we concatenate the extracted de-duplicated sequences u =
[uref;usrc] and pad them with filler tokens to match the combined length of xref and the masked
source region. Feeding this sequence into the pre-trained flow matching model, the model generates
speech for the masked region by combining the content of usrc (source speech) with the speaker
characteristics of xref (target reference speech). This results in voice-converted speech that aligns
the source content with the target speaker’s voice.

Through alignment-aware pre-training, A2-Flow can generate speech samples from the de-
duplicated unit sequence, where duration information has been removed, rather than relying on
the original 50Hz unit representation. This flexibility allows A2-Flow to perform voice conversion
with varied alignments, providing more diverse and natural outputs compared to conventional voice
conversion methods that depend solely on the original unit sequence.

Fine-tuning For Text-to-Speech To perform TTS using the pre-trained A2-Flow, we initialize
text embeddings for TTS and fine-tune the pre-trained model using transcribed data with the same
objective as in E2TTS. As shown in Fig. 1, we condition the flow matching decoder on the padded
text sequence yPAD, where the text sequence y is padded with the filler tokens to match the length
of the speech. We also train a transformer-based total length predictor to estimate the overall speech
duration based on the reference mel-spectrogram and input text. The predictor takes the text se-
quence y and a short random chunk of the mel-spectrogram xcut as inputs and is trained to estimate
the log-scale of the speech length d divided by a scaling factor s using an L2 regression loss.

For zero-shot TTS, given a target reference audio xref and the transcript y to generate, we first use the
total length predictor to estimate the total length of speech corresponding to y. We then concatenate
xref with a mask of the predicted length to obtain xref

mask = [xref;Mask]. After concatenating the
target reference transcript yref with the transcript y, we pad it to match the length of xref

mask. The flow
matching decoder then generates samples for the masked regions by solving Eq. 1.

Sampling During the sampling process, we apply classifier-free guidance (CFG) (Ho & Salimans,
2021) by adjusting the vector field estimated through flow matching according to the CFG scale
γ. Additionally, we modify the sampling process to employ a timestep shifting technique inspired
by Esser et al. (2024) to sample more values of t closer to 0. This approach ensures that the noisy
mel-spectrogram xt for smaller values of t remains better aligned with the text, resulting in higher
pronunciation accuracy.

If the ODE is traditionally solved using uniformly spaced timesteps tn = n
N , n = 0, ..., N − 1, we

modify it by non-linearly shifting tn as defined in Eq. 7, where t̂n is computed as follows:
t̂n = tn/(1 + (α− 1) ∗ (1− tn)), (7)

for a given α ≥ 1. When α = 1 this corresponds to uniform sampling, while larger values of α
result in more frequent sampling of t near 0. In our experiments, we set α = 3 as the default value.
The process of sampling using timestep shifting is explained in more detail in Section A.2.2

3 EXPERIMENTS

In this section, we describe the experimental setup, including model architecture, data, training de-
tails, and the baselines used for evaluation. We also provide a detailed explanation of the evaluation
metrics and methods for both voice conversion and text-to-speech (TTS) tasks.

5
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Model Architecture We employ a modified Diffusion Transformer (DiT) (Peebles & Xie, 2023)
architecture by removing the 2D patchify layers. Our model configuration is identical to the DiT-L
variant, using a decoder with a hidden size of 1024, 16 attention heads, and a total of 24 trans-
former layers, resulting in 450M parameters. The model integrates Adaptive LayerNorm (AdaLN)
to incorporate embeddings of both the flow matching timestep t and the language ID used during
multi-lingual pre-training, allowing for effective conditioning on these factors.

During the pre-training phase, we extract discrete unit sequences using the HuBERT-Large
model (Hsu et al., 2021), trained on 220K hours of multilingual data. The unit sequences are obtained
using a k-means quantizer trained on the Expresso dataset (Nguyen et al., 2023) with K = 2000
clusters. We utilize pre-trained checkpoints made available through the textlesslib library1.

Data For pre-training, we use a total of 40K hours of speech data, which includes 37K hours
of English data from LibriTTS (Zen et al., 2019), LibriVox (Kearns, 2014) and Multilingual Lib-
riSpeech (MLS) (Pratap et al., 2020) datasets, combined with 3K hours of multi-lingual data from
the CML dataset, covering seven different languages. To fine-tune the pre-trained model for TTS,
we use the transcribed data from the LibriTTS dataset for English, and transcribed data from three
other languages (German, French, and Spanish) in the CML dataset to build separate TTS models
for each language. The CML transcribed data includes 1500 hours of German, 440 hours of Spanish,
and 280 hours of French speech. All speech data is resampled to 22kHz. We convert each 22kHz
waveform into an 80-bin log-scale mel-spectrogram using a window length of 1024, hop length of
256, and frequency range of fmin = 0 to fmax = 11025. These mel-spectrograms serve as the data x
used for flow matching in our experiments.

Training and Fine-tuning During pre-training, we use AdamW optimizer with a learning rate of
1e−4. We train the model for a total of 700K iterations on 32 A100 GPUs, with a batch size of 4
per GPU. For fine-tuning on the TTS task, we initialize the model with the pre-trained weights, and
the optimizer is re-initialized. We fine-tune the pre-trained model separately on the transcribed data
from LibriTTS and CML-German, CML-French, and CML-Spanish datasets. For all fine-tuning
processes, we lower the learning rate to a peak value of 2e−5, which is reached over 5000 iterations
using a warm-up schedule. We fine-tune the pre-trained model for 150K iterations on 8 A100 GPUs,
with a batch size of 4 per GPU. After reaching the peak learning rate, it is linearly decayed to zero
over the remaining iterations.

Inference During inference, we solve the ordinary differential equation using the Euler method,
with 32 sampling steps and a default classifier-free guidance scale of γ = 2. For voice conversion, we
set the default timestep shifting parameter to α = 1 to perform uniform timestep sampling, while for
TTS, we use α = 3 to improve pronunciation accuracy. Once the mel-spectrograms are generated
by the flow matching decoder, we convert them into 22kHz waveforms using a BigVGAN-based
vocoder (Lee et al.)

Baselines for Voice Conversion We compare the performance of A2-Flow against three voice
conversion baselines: Any-to-Any VC (Kovela et al., 2023), UnitSpeech (Kim et al., 2023a), and
SelfVC (Neekhara et al., 2024) on the LibriSpeech test-clean dataset. The Any-to-Any VC model is
trained on speakers from the test-clean dataset, making it a suitable many-to-many voice conversion
baseline that has already learned from reference speakers. UnitSpeech performs speaker adaptation
by fine-tuning for 500 iterations on a given reference audio, which makes it a fine-tuning-based
voice conversion baseline. Lastly, SelfVC, a recently proposed zero-shot voice conversion model,
has been shown to outperform several voice conversion models in zero-shot settings, making it a
strong benchmark for comparison.

Baselines for Text-to-Speech We use several models as baselines for zero-shot TTS, including
Voicebox, CLaM-TTS, DiTTO-TTS, E2TTS, and SpeechFlow fine-tuned specifically for the TTS
task. The results of each model are reported using the evaluation metrics provided in their respec-
tive papers for direct comparison in zero-shot TTS scenarios. Additionally, we re-implement E2TTS
and SpeechFlow, training both using the same amount of data and identical model architecture as
A2-Flow with 32 GPUs over 700K iterations. Note that, unlike the pre-training of SpeechFlow and

1https://github.com/facebookresearch/textlesslib
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A2-Flow, E2TTS is trained with transcripts for the entire 40K hours of data. To evaluate the per-
formance of E2TTS under limited data conditions, we train E2TTS on 500 hours of LibriTTS data
using 8 GPUs. We refer to this model as E2TTS-LT. For the re-implemented versions of E2TTS,
E2TTS-LT, and SpeechFlow, we apply our timestep shifting scale to α = 3, ensuring that com-
parisons exclude improvements due to differences in the sampling method. This setup allows us
to systematically compare the alignment learning and performance of A2-Flow, SpeechFlow, and
E2TTS under various training configurations.

Evaluation and Metrics We evaluate zero-shot TTS performance using two evaluation tasks fol-
lowing the approach described in (Wang et al., 2023; Le et al., 2023). The first task is the continuation
task, where for all test samples between 4 to 10 seconds long, we provide the first 3 seconds of audio
along with the entire transcript and generate speech beyond the initial 3 seconds. The second task
is the cross-reference synthesis task, where for each test sample between 4 to 10 seconds long, we
use the transcript of the sample and a randomly selected 3-second segment from another sample of
the same speaker as the reference audio for zero-shot TTS. For each task, the generated samples
are evaluated by measuring speaker similarity to the 3-second reference audio using a speaker sim-
ilarity metric, and pronunciation accuracy is measured using the word error rate (WER) between
the ground truth transcript and the transcript obtained from an ASR model applied to the generated
audio.

To evaluate voice conversion performance, we use all samples between 4 to 10 seconds long in the
test set. Each sample is used as the source audio, and a 3-second segment is randomly extracted
from a different speaker’s sample to serve as the reference audio. The model then generates speech
that matches the content of the source audio while adopting the voice characteristics of the reference
speaker. We evaluate the pronunciation accuracy and speaker similarity of the generated speech
compared to the reference audio. Performance is reported as the average WER and SECS values
across 1130 pairs from the LibriSpeech test-clean set.

For the speaker similarity metric, we follow (Wang et al., 2023) and use a WavLM-based speaker
verification model (Chen et al., 2022) to map both samples to speaker embeddings and measure
the cosine similarity between them. We measure speaker similarity between the reference ground
truth audio and the generated audio, as defined as SECS-O in the Voicebox (Le et al., 2023). For
pronunciation accuracy, we also follow (Wang et al., 2023) and use the same HuBERT-L-based ASR
model (Hsu et al., 2021) to measure the WER of English-generated speech, and for other languages,
we use the Whisper-large v2 (Radford et al., 2022) model to measure WER.

For subjective evaluation, we generate zero-shot TTS samples using A2-Flow and compare them
against samples downloaded from the demo pages of SpeechFlow and E2TTS. We conduct A/B
tests with 100 human evaluators, asking them to choose the sample that more closely matches the
reference audio in terms of prosody, emotion, and timbre. Each evaluator performs 9 A/B tests when
comparing with SpeechFlow and 19 A/B tests when comparing with E2TTS.

4 RESULTS

4.1 ALIGNMENT-AWARE PRE-TRAINING DYNAMICS

In this section, we analyze the training dynamics of A2-Flow during pre-training and its impact on
text-speech alignment during TTS fine-tuning. We compare A2-Flow with E2TTS and SpeechFlow,
highlighting differences in alignment performance across training iterations.

For pre-training evaluation, we measure the model’s ability to reconstruct masked regions using
the unit sequence of the full utterance. We mask speech segments except for the first 3 seconds
of each sample in the LibriTTS test-clean set and measure the pronunciation accuracy (WER) and
speaker similarity (SECS-O) of generated samples. Fig. 3 in Appendix demonstrates that A2-Flow
achieves a WER of 3% after 100K iterations, effectively learning text-speech alignment during pre-
training. As training progresses, the model maintains its alignment ability and further enhances
speaker similarity.

To show the effectiveness of our alignment-aware pre-training approach in the context of TTS tasks
that require joint modeling of text and speech alignment, we compare A2-Flow with SpeechFlow

7
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Figure 2: Comparison of WER and SECS-O across training iterations for various models

pre-training followed by fine-tuning on the LibriTTS dataset, E2TTS-LT trained on LibriTTS, and
E2TTS trained on 40K hours of transcribed data. Fig. 2 illustrates the pronunciation accuracy (WER)
and speaker similarity (SECS-O) during zero-shot TTS for each model across different training
iterations.

While E2TTS efficiently learns text-speech alignment with a large amount of transcribed data, it
struggles under low-resource conditions, requiring over 400K iterations to achieve acceptable perfor-
mance with limited data. In contrast, A2-Flow, with its pre-trained alignment capabilities, achieves
comparable results with significantly fewer fine-tuning iterations.

On the other hand, when SpeechFlow is pre-trained using only masked speech modeling and then
fine-tuned on the LibriTTS dataset, it struggles to learn text-speech alignment. Although Speech-
Flow achieves high speaker similarity when fine-tuned with learning rate of 2e−5, it fails to learn
text-speech alignment, resulting in WER values exceeding 100%. Increasing the learning rate to
1e−4 leads to a drop in speaker similarity without effectively improving alignment.

The performance curve of E2TTS-LT further highlights the challenges of learning text-speech align-
ment from scratch using only a small amount of data, as it requires many iterations to converge.
This demonstrates that SpeechFlow, when trained solely with masked speech modeling, is not an
effective initialization for TTS models requiring joint text-speech alignment. In contrast, A2-Flow’s
alignment-aware pre-training with discrete speech units makes it highly efficient for learning text-
speech alignment during TTS fine-tuning, even with limited data.

4.2 MODEL COMPARISONS

Table 1: Objective metric results on the TTS Cross Reference Synthesis task using the LibriSpeech
test-clean dataset. † indicates results directly reported by each model, while ∗ represents results
obtained from re-implemented experiments. “SpeechFlow-E2∗” refers to the SpeechFlow model
fine-tuned using the E2TTS approach. “PT” indicates whether pre-training was used.

MODEL PT UNLABELED DATA (H) LABELED DATA (H) WER↓ SECS-O↑
CLAM-TTS† ✗ 0 55,000 5.11 0.495
DITTO-TTS† ✗ 0 55,000 2.56 0.627
VOICEBOX† ✗ 0 60,000 1.9 0.662
SPEECHFLOW† ✓ 60,000 960 2.1 0.700
E2TTS† ✗ 0 50,000 2.0 0.675
E2TTS † ✓ 200,000 50,000 1.9 0.708
E2TTS∗ ✗ 0 40,000 1.9 0.696
E2TTS-LT∗ ✗ 0 500 4.0 0.590
SPEECHFLOW-E2∗ ✓ 40,000 500 107.7 0.690
A2-FLOW ✓ 40,000 500 2.2 0.704
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Zero-shot Text-to-Speech We compare the performance of A2-Flow, fine-tuned solely on the Lib-
riTTS dataset, with other zero-shot TTS models. Table 1 shows that A2-Flow achieves comparable
pronunciation accuracy (WER) and higher speaker similarity (SECS-O) than most baselines, in-
cluding Voicebox. A2-Flow also performs on par with E2TTS while using as little as 1% of the
transcribed data required by most zero-shot TTS models.

Compared to E2TTS (Eskimez et al., 2024), which required 200K hours of unlabeled data and
800K fine-tuning iterations with 50K hours of labeled data to achieve a WER of 1.9 and SECS-O
of 0.708, A2-Flow achieves similar performance with significantly fewer fine-tuning iterations, far
less labeled data, and reduced computational resources. In contrast, SpeechFlow, when fine-tuned
using the E2TTS framework (referred to as SpeechFlow-E2), achieves a high SECS-O score but
fails to achieve reasonable WER values, highlighting the difficulty of adapting SpeechFlow to tasks
requiring text-speech alignment.

These results demonstrate that A2-Flow provides an efficient alternative to existing pre-training
methods, effectively modeling alignment while minimizing reliance on transcribed data and compu-
tational resources. By leveraging alignment-aware pre-training, A2-Flow delivers robust zero-shot
TTS performance, requiring only a fraction of the resources used by the previous approaches like
E2TTS.

Table 2: A/B test results comparing A2-Flow against SpeechFlow and E2TTS, respectively. “Win”
indicates cases where A2-Flow was preferred.

MODEL WIN-TIE-LOSE
A2-FLOW VS SPEECHFLOW 41.6%− 24.4%− 34.0%
A2-FLOW VS E2TTS 34.8%− 30.2%− 35.0%

To further validate our model, we conducted a subjective A/B test to compare the samples generated
by A2-Flow against those from E2TTS and SpeechFlow. Evaluators were asked to select the sample
that better matched the reference audio in terms of prosody, emotion, and timbre. The results of the
A/B test, presented in Table 2, show that A2-Flow is almost comparable to E2TTS, with a slight
preference towards E2TTS, and outperforms SpeechFlow (Liu et al., 2024). The results show that
A2-Flow performs comparably to E2TTS and outperforms SpeechFlow in subjective evaluations,
highlighting its ability to efficiently model text-speech alignment without relying on an external
alignment mechanism. We have uploaded the samples used in the subjective evaluation to the demo
page link in Section A.1, and we encourage readers to listen to the samples on the demo page.

Table 3: TTS Continuation results for non-English languages. Non-English models are trained on
respective CML datasets and evaluated on their corresponding test sets.

MODEL LANGUAGE FINE-TUNING DATASET LABELED DATA (H) WER↓ SECS-O↑
GT GERMAN

– – 7.5 0.628
A2-FLOW CML-GERMAN 1400 7.6 0.609
GT SPANISH

– – 5.1 0.674
A2-FLOW CML-SPANISH 440 6.2 0.634
GT FRENCH

– – 6.0 0.619
A2-FLOW CML-FRENCH 280 7.7 0.564

To show that A2-Flow can achieve high zero-shot TTS performance across languages, we fine-tune
the model on three languages from the CML-Dataset—German, Spanish, and French—using 150K
iterations for each. We evaluate the models on the test sets of each language and perform the TTS
continuation task for samples between 4 and 10 seconds, as done on LibriSpeech. As shown in
Table 3, A2-Flow effectively learns text-speech alignment for each language, demonstrating pronun-
ciation accuracy (WER) and speaker similarity (SECS-O) that are not significantly worse compared
to the ground truth, despite differences in language. These results indicate that A2-Flow can lever-
age untranscribed data to build strong zero-shot TTS models for multiple languages, even when
large-scale transcribed data is unavailable.

Zero-shot Voice Conversion We compare our model with three voice conversion baselines—Any-
to-Any VC (Kovela et al., 2023), UnitSpeech (Kim et al., 2023a), and SelfVC (Neekhara et al.,
2024)—using the LibriSpeech test-clean dataset. Among these, Any-to-Any VC is a VC baseline
directly trained on the test-clean dataset, while UnitSpeech is a fine-tuning-based VC baseline that

9
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Table 4: Objective metric results for the Voice Conversion Cross Reference Synthesis task.
MODEL ZERO-SHOT WER↓ SECS-O↑
ANY-TO-ANY VC ✗ 3.0 0.648
UNITSPEECH ✗ 2.9 0.674
SELFVC ✓ 3.2 0.375
A2-FLOW ✓ 3.6 0.67

adapts to the reference speech with 500 iterations of fine-tuning. SelfVC serves as a zero-shot VC
baseline. The results of cross-reference synthesis for each model are presented in Table 4. Although
A2-Flow shows a slightly higher WER compared to other baselines, it achieves significantly higher
speaker similarity than the zero-shot baseline SelfVC. Additionally, it demonstrates performance
comparable to or exceeding that of baselines directly trained or fine-tuned on the test set’s reference
audio, highlighting the effectiveness of large-scale unit-based alignment-aware pre-training for voice
conversion.

4.3 ABLATION STUDY

We perform an ablation study on the pre-trained A2-Flow model for TTS tasks, exploring the impact
of different sampling steps, classifier-free guidance scales (γ), and timestep shifting scales (α) on
cross-reference synthesis performance. Table 5 shows that setting classifier-free guidance scale γ =
1 results in significantly worse WER and SECS-O, confirming γ = 2 as the optimal value. A key
finding of this work is that, for a flow matching model trained to jointly model alignment in TTS,
using timestep shifting with α = 3, which samples more frequently from the noisier t regions, results
in improved pronunciation accuracy and better speaker similarity compared to uniform timestep
sampling (α = 1) at the same number of sampling iterations. Therefore, we use α = 3 as the default
value. For Euler sampling steps, performance does not improve beyond 32 steps, while reducing
steps to 16 leads to a drop in performance. Thus, we use 32 steps as the default setting.

Table 5: Ablation study results of A2-Flow on zero-shot TTS with variations in Euler sampling steps,
classifier-free guidance scale γ, and timestep shifting scale α.

MODEL NFE CFG SCALE α WER↓ SECS-O↑

A2-FLOW

32 2
1 2.7 0.695
2 2.3 0.703
3 2.2 0.704

32
1

3
3.3 0.679

2 2.2 0.704
3 2.3 0.706

16
2 3

2.7 0.698
32 2.2 0.704
64 2.3 0.701

5 CONCLUSION

In this work, we proposed A2-Flow, an alignment-aware pre-training approach tailored for speech
synthesis tasks that involve generating natural phonetic content, such as voice conversion and text-to-
speech (TTS). By incorporating de-duplicated unit sequences instead of text into the E2TTS frame-
work, our method enables the model to learn the alignment between input units and speech during
the pre-training phase. This alignment-aware pre-training can be directly applied to zero-shot voice
conversion tasks or used to build a TTS model that jointly models text-speech alignment with min-
imal fine-tuning. As a result, A2-Flow achieves comparable performance to state-of-the-art models
like E2TTS using only 1% of the transcribed data. Moreover, our method consistently outperforms
existing zero-shot TTS and zero-shot VC models by a significant margin. We further demonstrated
that A2-Flow can model text-speech alignment for multiple languages, making it adaptable to mul-
tilingual TTS scenarios. Our findings highlight that A2-Flow is better suited for alignment-aware
tasks compared to pre-training methods like SpeechFlow, which do not incorporate any condition-
ing. Since our approach can learn effectively with only speech data and language IDs, A2-Flow
offers a viable solution for scenarios where large-scale transcribed datasets are not available, and
provides significant advantages for alignment-aware speech synthesis tasks.
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A APPENDIX

A.1 DEMO PAGE

The demo page link is https://anonymous.4open.science/r/demo-page-B24F/index.md. The demo
page provides the comparison samples used for subjective evaluation as well as the samples gener-
ated by the models used for voice conversion.
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Figure 3: Reconstruction performance of A2-Flow during pre-training across different training iter-
ations.

A.2 MODEL DETAILS

A.2.1 TOTAL LENGTH PREDICTOR

A2-Flow utilizes a total length predictor to estimate the duration of the speech corresponding to the
input text sequence. The total length predictor is composed of a convolution-based pre-network for
projecting the reference audio and a transformer network for predicting the total length from the
reference audio and the text input. Specifically, the total length predictor takes the reference audio
xref and the text input sequence y as inputs. The reference audio xref is first processed through the
convolutional pre-network, which consists of three convolutional layers, each with a kernel size of 5,
to project xref into an intermediate representation href. Then, a special token [SPC] is prepended to
the text input sequence y to provide a placeholder for predicting the total length. The representations
href, the special token [SPC], and the text input sequence y are concatenated along the time axis
and input into the transformer network.

The transformer network employs Rotary Positional Embedding (RoPE) to capture positional infor-
mation, with separate rotary embeddings applied to the reference audio and text input sequence. The
network is configured with a hidden size of 512, 8 layers, and 8 heads in the multi-head attention
mechanism, resulting in a total of 30 million parameters. The output from the transformer network is
taken from the position of the special token [SPC], which is then projected into a scalar value. This
scalar represents the logarithmic value of the speech length d, scaled by a scaling factor s, i.e., log d

s .
This design enables the total length predictor to effectively estimate the duration of the generated
speech while leveraging both reference audio and text input.

A.2.2 ADDITIONAL EXPLANATION ON TIMESTEP SHIFTING

A2-Flow utilizes the timestep shifting function in Eq. 7 for sampling during the inference process.
Fig. 4 illustrates the timestep shifting function depending on the value of the timestep shifting scale
α. When α = 1, the function performs uniform sampling, similar to the standard Euler method. As
the shifting scale α increases, more timesteps are sampled near the noise-dominated region (t = 0).
This allows for finding more accurate alignment between the input and the speech during smaller
timesteps.

The sampling process is shown in Alg. 1. During sampling, as described in Section 2, the uniformly
sampled timesteps ti = i

N are mapped to t̂i using the timestep shifting function. The ODE is
then solved iteratively at these shifted timesteps to generate samples. At each timestep of the ODE
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Figure 4: Visualization of the timestep shifting function according to the value of α.

solution, the algorithm performs repetitive computations for the vector field value, depending on
whether classifier-free guidance is applied.

Algorithm 1 Skewed Sampling for Solving ODE

1: Initialize x0 ∼ N(O, I)T

2: Set the following parameters:
3: c = all conditioning inputs
4: N = number of sampling steps
5: α = timestep shifting scale
6: γ = classifier-free guidance scale
7: Define f(t) = t

1+(α−1)(1−t) // Timestep shifting function
8: for i = 0 to N − 1 do
9: ti ← i

N , ti+1 ← i+1
N

10: t̂i ← f(ti), t̂i+1 ← f(ti+1)
11: vc ← v(xt̂i

, c, t̂i; θ) // Conditional vector field
12: vu ← v(xt̂i

, ϕ, t̂i; θ) // Unconditional vector field
13: vt̂i ← vc + γ · (vc − vu)

14: xt̂i+1
← xt̂i

+ vt̂i · (t̂i+1 − t̂i)
15: end for
16: return x1

A.3 ADDITIONAL RESULTS

Table 6: Objective metric and UTMOS results on the TTS Cross Reference Synthesis task using
the LibriSpeech test-clean dataset. ∗ represents results obtained from re-implemented experiments.
“SpeechFlow-E2∗” refers to the SpeechFlow model fine-tuned using the E2TTS approach. “PT”
indicates whether pre-training was used.

MODEL PT UNLABELED (H) LABELED (H) WER↓ SECS-O↑ UTMOS↑
E2TTS∗ ✗ 0 40,000 1.9 0.696 4.01
E2TTS-LT∗ ✗ 0 500 4.0 0.590 4.01
SPEECHFLOW-E2∗ ✓ 40,000 500 107.7 0.690 3.68
A2-FLOW ✓ 40,000 500 2.2 0.704 4.03

Speech Naturalness We present the naturalness evaluation results for samples generated by the
reproduced baselines E2TTS, E2TTS-LT, SpeechFlow-E2, and A2-Flow on the LibriSpeech test-
clean dataset in Table 1. To assess the naturalness of the samples, we use UTMOS (Saeki et al.,
2022), a model trained to predict the Mean Opinion Score (MOS) for audio naturalness, and report
the average predicted MOS as a proxy for naturalness. Table 6 shows the UTMOS scores for each
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model, with the ground truth audio of all evaluation samples achieving an average UTMOS score
of 4.10. In comparison, both the reproduced E2TTS and our A2-Flow demonstrate the ability to
generate highly natural audio.

Performance Comparison of E2TTS and A2-Flow We compare the performance of E2TTS and
A2-Flow across different training iterations. For E2TTS, we evaluate both the original model trained
for the total number of iterations used in previous comparisons and an extended version trained
for an additional 150K iterations, resulting in a total of 850K iterations. For A2-Flow, we present
results fine-tuned solely on LibriTTS for 150K and 300K iterations. Additionally, we evaluate the
performance of “A2-Flow-T,” which was fine-tuned on the entire 40K hours of labeled data, similar
to E2TTS.

In Table 1, we compared the reproduced results of A2-Flow and E2TTS using only the proposed
sampling method, timestep shifting, during inference. Here, we also provide performance results
without timestep shifting, where the timestep shifting scale is set to α = 1.

Table 7 summarizes the results of E2TTS and A2-Flow across different training setups, using α = 3
as the timestep shifting scale during inference. All E2TTS models were trained using 32 GPUs,
while A2-Flow utilized 32 GPUs for the full pre-training phase and fine-tuning on the same amount
of transcribed data as E2TTS. Fine-tuning on LibriTTS alone was performed with 8 GPUs.

The experimental results show that E2TTS exhibits minimal improvement in objective metrics even
after 150K additional iterations beyond the initial 700K. In contrast, A2-Flow achieves a higher
SECS-O score with just 150K iterations of fine-tuning. When fine-tuned on LibriTTS for 300K
iterations, A2-Flow slightly sacrifices SECS-O for improved WER, achieving results comparable to
E2TTS. Furthermore, A2-Flow-T, fine-tuned on 40K hours of transcribed data like E2TTS, maintains
a similar WER while pushing SECS-O to 0.711, demonstrating the effectiveness of alignment-aware
pre-training even with the same amount of transcribed data.

For E2TTS without timestep shifting (α = 1), the results show a slight degradation in WER com-
pared to its counterpart using timestep shifting (α = 3). Overall, these results highlight that the
proposed timestep shifting method improves alignment accuracy for both A2-Flow and E2TTS, fur-
ther validating its utility.

Table 7: Objective metric results of E2TTS and A2-Flow across different training iterations and
timestep shifting scales on the LibriSpeech test-clean dataset. ∗ represents results obtained from re-
implemented experiments. Training details specify the number of iterations and GPU configurations
used.

MODEL TRAINING DETAILS α WER↓ SECS-O↑ UTMOS↑
E2TTS∗ 700K (32GPU) 3 1.9 0.696 4.01
E2TTS∗ 850K (32GPU) 3 2.0 0.695 4.02
E2TTS∗ 700K (32GPU) 1 2.1 0.697 3.98
E2TTS∗ 850K (32GPU) 1 2.2 0.690 4.01
A2-FLOW 700K (32GPU) / 150K (8GPU) 3 2.2 0.704 4.03
A2-FLOW 700K (32GPU) / 300K (8GPU) 3 1.9 0.695 4.06
A2-FLOW-T 700K (32GPU) / 150K (32GPU) 3 2.0 0.711 4.01
A2-FLOW 700K (32GPU) / 150K (8GPU) 1 2.6 0.699 4.00
A2-FLOW 700K (32GPU) / 300K (8GPU) 1 2.1 0.690 4.04
A2-FLOW-T 700K (32GPU) / 150K (32GPU) 1 2.2 0.710 3.99

Pre-training with Different Units In our experiments, we utilized the HuBERT expresso model 2,
pre-trained on 220K hours of data, for alignment-aware pre-training. To investigate the impact of
different HuBERT unit representations on TTS performance, we provide results using an alternative
HuBERT model. Specifically, we use the HuBERT-base model trained on 960 hours of LibriSpeech,
employing units with a clustering size of K = 200. We pre-train the model on the same 40K hours
of unlabeled data and fine-tune it on 500 hours of the LibriTTS dataset to compare results.

Table 8 presents the TTS downstream performance with different unit representations used dur-
ing pre-training. Our results demonstrate that the proposed alignment-aware pre-training method

2https://github.com/facebookresearch/textlesslib/tree/main/examples/expresso
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achieves comparable performance even when using HuBERT units trained with minimal data and
only 200 clusters. This highlights the robustness of our pre-training approach with respect to the
choice of unit representation.

Table 8: Objective metric results for A2-Flow on the TTS Cross Reference Synthesis task using
the LibriSpeech test-clean dataset with different HuBERT unit representations during pre-training.
HuBERT-Expresso (K=2000) refers to the model pre-trained on 220K hours of data, while HuBERT-
LS960 (K=200) refers to the model trained on 960 hours of LibriSpeech.

MODEL HUBERT UNITS WER↓ SECS-O↑ UTMOS↑
A2-FLOW HUBERT-EXPRESSO (K=2000) 2.2 0.704 4.03
A2-FLOW HUBERT-LS960 (K=200) 2.2 0.703 4.02

A.4 LIMITATION

A limitation of A2-Flow is that it relies on self-supervised speech units for pre-training, making it
less generalizable to non-speech audio domains compared to methods like SpeechFlow, which do
not use any specific conditioning. Another limitation arises from the E2TTS framework itself, which
necessitates a separate total length predictor to estimate the overall speech duration, preventing
joint modeling of the total duration of generated speech. Investigating pre-training methods that
can jointly model all aspects of speech generation including total length of the audio could be a
promising direction for future research.

A.5 HUMAN EVALUATION METHOD

To compare the performance of A2-Flow with other models, we used the Defined AI 3 platform to
conduct human evaluations. Each evaluation judgment was compensated at a rate of $0.15, and the
evaluations were performed by 100 human evaluators, all located in the United States. Evaluators
were selected based on the platform’s internal agreement score filtering criteria to ensure reliability.

Each evaluator assessed all provided samples, with payments calculated based on the number of
judgments completed. Specifically, evaluators were compensated for 19 judgments for comparisons
with E2TTS and 9 judgments for comparisons with SpeechFlow. During the evaluation, each evalu-
ator was presented with a 3-second reference audio clip alongside two audio samples generated by
the models in a randomized order. The following instruction was provided:

“Between the two samples, which one sounds closer to the reference in terms of prosody, emotion,
and timbre? If the two samples sound equally similar to the reference, choose ‘Neither.’”

This setup encouraged evaluators to consider the overall quality of the generated audio in relation
to the reference audio, encompassing aspects such as prosody, emotion, and timbre, to determine
which sample was better.

3https://defined.ai/crowd-as-a-service
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