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ABSTRACT

Despite success on the carefully-annotated benchmarks, the effectiveness of graph
neural networks (GNNs) can be considerably impaired in practice, as the real-world
graph data might be noisily labeled. As a promising way to combat label noise,
curriculum learning has gained significant attention due to its merit in reducing
noise influence via a simple yet effective easy-to-hard training curriculum. Unfortu-
nately, the early studies focus on i.i.d data, and when moving to non-iid graph data
and GNNs, two notable challenges remain: (1) the inherent over-smoothing effect
in GNNs usually induces the under-confident prediction, which exacerbates the
discrimination difficulty between easy and hard samples; (2) there is no available
measure that considers the graph characteristic to promote informative sample
selection in curriculum learning. To address this dilemma, we propose a novel
robust measure called Class-conditional Betweenness Centrality (CBC), designed
to create a curriculum scheme resilient to graph label noise. The CBC incorporates
topological information to alleviate the over-smoothing issue and enhance the iden-
tification of informative samples. On the basis of CBC, we construct a Topological
Curriculum Learning (TCL) framework that guides the model learning towards
clean distribution. We theoretically prove that TCL minimizes an upper bound
of the expected risk under target clean distribution, and experimentally show the
superiority of our method compared with state-of-the-art baselines.

1 INTRODUCTION

Noisy labels ubiquitous in real-world applications (Deng et al., 2020; Mirzasoleiman et al., 2020; Gao
et al., 2022) inevitably impair the learning efficiency and the generalization robustness of deep neural
networks (DNNs) (Rolnick et al., 2017; Nguyen et al., 2019). It becomes exacerbated on the graph
data, as the noise influence can be propagated along the topological edges, unlike the independent
and identically distributed (i.i.d.) data in the forms of image (Mirzasoleiman et al., 2020; Kim et al.,
2021; Chen et al., 2019; Frénay and Verleysen, 2013; Thulasidasan et al., 2019; NT et al., 2019; Wei
et al., 2021; Cheng et al.; Berthon et al., 2021). Combating the degeneration of GNNs on the noisily
labeled graph then emerges as a non-negligible problem, drawing more attention from the research
community (Dai et al., 2021; Li et al., 2021; Du et al., 2021; Yuan et al., 2023a;b; Xia et al., 2023).

Curriculum learning (Bengio et al., 2009) has been demonstrated as a promising way to deal with
label noise on i.i.d. data (Han et al., 2018; Jiang et al., 2018; Zhou et al., 2020), owing to its simple
yet effective easy-to-hard training curriculum. It builds upon the law of memorization effect that
clean simple samples will be learned prior to clean hard samples and noise, which allows to design
strategies of sample selection towards clean data regime (Arpit et al., 2017; Cheng et al., 2020;
Northcutt et al., 2021), thereby mitigating the negative impact posed by corrupted labels. However,
when applying curriculum learning on non-iid data, the over-smoothing (Chen et al., 2020; Keriven,
2022) characteristic of GNNs poses a new challenge in the construction of curriculum. This issue,
characterized by increasing similarity in node features with growing network depth, results in a
narrowed distinctions between easy and hard samples. Notably, this complication persists even
in shallow GNN architectures, leading to under-confident predictions and more difficulty in the
development of an easy-to-hard training curriculum, a concern echoed in previous studies (Wang
et al., 2021a; Hsu et al., 2022). Besides, there is a scarcity of a robust measure that considers the
topological characteristic within a noisily labeled graph to promote informative sample selection.
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Figure 1: Illustration of node difficulty with noisy
labels. v1 is a hard node with corrupted label while
v15 is an easy node with corrupted label.

To address this dilemma, we propose a ro-
bust Class-conditional Betweenness Centrality
(CBC) measure to efficiently distinguish the
easy and hard nodes with topological enhance-
ment for curriculum learning. As illustrated
in Fig. 1, nodes located near topological class
boundaries are much informative compared to
nodes located far from topological class bound-
aries, as they may link nodes from diverse
classes (Brandes, 2001; Barthelemy, 2004; Free-
man, 1977; Zhu et al., 2020). However, those
boundary-near nodes are hard to learn and iden-
tify in noisy labeled graphs due to the aggre-
gation from the heterogeneous neighbours in
GNNs (Bai and Liu, 2021; Wei et al., 2023).
Building on this topological perspective, the
proposed CBC evaluates the topological posi-
tion of nodes by quantifying the heterogeneous
message passing across different classes. This
measurement is inspired by the random-walk
technique on graph structure (Nikolentzos and Vazirgiannis, 2020; Kang et al., 2012) rather than
GNN predictions. Consequently, the CBC is impervious to the under-confident prediction issue
caused by the over-smoothing effect in GNNs and showcases robustness in handling noise-induced
confusion during predictions.

On the basis of CBC, we then propose a Topological Curriculum Learning (TCL) framework, which
dynamically controls the selection of informative samples in the “easy-to-hard” curriculum to promote
the training on noisily labeled graphs. Initially, the CBC measure drives the TCL to select clean
and easy nodes located far from class boundaries. Despite providing less information, these nodes
possess a high probability of being correctly labeled and easier to learn. Subsequently, we exploit
clean nodes located in regions near class boundaries, guided by the CBC measure. These nodes in
proximity to class boundaries with possible noisy labels, are more informative yet pose a learning
challenge. Following this progressive curriculum, TCL emulates learning from an easier and cleaner
pattern, gradually advancing to the harder yet more informative region. This framework smoothly
guides the training of GNNs, mitigating the adverse effects of label noise, while simultaneously
calibrating the model towards the clean and informative data regime (Wang et al., 2021b; Bengio
et al., 2009). Our theoretical analysis further substantiates this claim. In a nutshell, our contributions
can be summarized into the following points:

• We identify the challenge of the previous curriculum learning with the noisily labeled graph
data, and propose a CBC measure to address the dilemma, which considers the topological
characteristic to effectively and robustly select informative nodes for training under label noise.

• Based on the proposed CBC measure, we develop a novel TCL framework. This framework
efficiently leverages the selected samples to progressively reduce the negative impact of label
noise. We provide theoretical proof demonstrating that this framework consistently minimizes an
upper bound of the expected risk under the target clean distribution.

• We conduct extensive experiments on various benchmarks to show the superiority of the proposed
method over the state-of-the-art baselines in learning with noisily labeled graph, and provide
comprehensive verification about the underlying mechanism of our method.

2 METHOD

2.1 NOTATIONS AND PRELIMINARY

Assume that we have an undirected graph G = (V, E), where V = {v1, ...,vn} is the set of n nodes,
E ⊆ V × V is the set of edges, and A ∈ Rn×n is the adjacency matrix of the graph G. If nodes
vi and vj are connected by edges (vi,vj) ∈ E , Aij = 1; otherwise, Aij = 0. Let D ∈ Rn×n be
the diagonal matrix, and Â ∈ Rn×n be the normalized adjacency matrix D−1/2AD−1/2. Denote
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X = {x1, ...,xn} and Y = {y1, ..., yn} as the sets of node attributes and node labels respectively,
with xi being the node attribute of node vi and yi being the true label of node vi. In this study, we
have a dataset D = {D̃tr,Dte}, where D̃tr = {(A,xi, ỹi)}ntr

i=1 is a noisy training set drawn from a
noisy distribution PD̃ = P(A,X , Ỹ) (ỹi is the noisy counterpart of yi), and Dte is a clean test set
drawn from a clean distribution PD = P(A,X ,Y). Our goal is to learn a proper GNN classifier
fG : (A,X )→ Y from the noisy training set D̃tr.

2.2 CLASS-CONDITIONAL BETWEENNESS CENTRALITY

As discussed in the introduction, distinguishing between easy and hard samples on a noisily labeled
graph is challenging due to the over-smoothing effect of GNNs. To combat this issue, we introduce
a Class-conditional Betweenness Centrality (CBC) measure that takes into account the topological
structure of nodes, formulated as follows.

Definition 2.1 (Class-conditional Betweenness Centrality). Given the Personalized PageRank matrix
π = α(I− (1− α)Â)−1 (π ∈ Rn×n), the Class-conditional Betweenness Centrality of the node vi

is defined by counting how often the node vi is traversed by a random walk between pairs of other
nodes that belong to different classes in a graph G:

Cbi :=
1

n(n− 1)

∑
vu ̸=vi ̸=vv,

ỹu ̸=ỹv

πu,iπi,v

πu,v
, (1)

where πu,i with the target node vu and the source node vi denotes the probability that an α-
discounted random walk from node vu terminates at vi. Here an α-discounted random walk
represents a random traversal that, at each step, either terminates at the current node with probability
α, or moves to a random out-neighbour with probability 1− α.

Note that, CBC is inspired by the classical concept in graph theory – Betweenness Centrality (Newman,
2005; Brandes, 2001) that measures the centrality of nodes in a graph 1, but significantly differs from
the class-conditional constraint and the random walk realization instead of the short-path counting.
We kindly refer the readers to the Appendix A for the detailed discussion about their difference.

Figure 2: Robustness of Class-conditional Betweenness Centrality (t-SNE visualization of node
embeddings based on trained GNNs from the CORA dataset). (a) clean labeled nodes with less CBC
(lighter colour) are farther-away from class boundaries than those with high CBC (darker colour).
(b)(c)(d) Compared with other two difficulty measurers (Wei et al., 2023; Li et al., 2023) in graph
curriculum learning under 40% Symmetric label noise, CBC clearly shows superiority in terms of the
differentiation w.r.t. boundary-near nodes.

Robustness of Class-conditional Betweenness Centrality One promising merit of CBC is that
it is robust to the label noise, although by definition it is based on the pair of nodes from different
classes. As shown in Fig. 2 (b), under the high rate of label noise, the CBC of each node still can
be accurately measured and the performance is close to the Fig. 2 (a) under clean labels. We also
compare the performance of CBC with the other two difficulty measurers (Li et al., 2023) in the
Figures 2 (c) and (d) to demonstrate our effectiveness. This is because CBC just requires that the node
pairs belong to different classes instead of their absolutely accurate class labels, which is compatible

1In graph theory, the betweenness of a node vi is defined to be the fraction of shortest paths between pairs of
nodes in a graph that passes through vi. We provide its formal definition and discussion in Appendix.
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with the general noise-agnostic scenarios. For example, if we have a pair of nodes whose latent true
labels (y1 = 1, y2 = 2) corresponding to the obvious noisy labels (ỹ1 = 1, ỹ2 = 3), this node pair
would not hinder the computation of CBC. Besides, even if the node pair actually belongs to the same
underlying true class, CBC then degrades to the Betweenness Centrality and does not heavily hurt
the total measure. Additionally, to demonstrate the consistent robustness of our CBC under varying
levels of label noise, we visualize the superiority of our CBC distribution with numerical results as
Fig. 3. The node dataset exhibits two distinct clusters, and despite a significant extent of label noise,
certain nodes located near topological class boundaries consistently receive higher CBC scores. The
complete and related experiment details have been presented in Appendix A.
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Figure 3: The distributions of the CBC score w.r.t. nodes on WikiCS with 40% and 60% symmetric
noise (symm.) or 40% and 60% instance-based noise (inst.). The nodes are considered “far from
topological class boundaries” (far from boundaries.) when their two-hop neighbours belong to the
same class; conversely, nodes are categorized as “near topological class boundaries” (near boundaries.)
when this condition does not hold. More comprehensive experiments can be seen in the Appendix A.
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Figure 4: Correlation between F-score of ex-
tracting confident nodes and overall CBC of
the noisily labeled subsets in a graph with
30% Symmetric label noise. The Pearson co-
efficient is −0.9276 on 50 randomly selected
subsets with p value smaller than 0.0001.

Effectiveness of Class-conditional Betweenness
Centrality To demonstrate the effectiveness of Eq.
(8), we conduct an empirical verification presented
in Fig. 4. As observed, the ability to extract clean
nodes from the subset of noisily labeled nodes no-
tably diminishes as CBC increases, consistent with
the expected behaviour of CBC. Additionally, nodes
with elevated CBC values tend to be situated closer to
the decision boundary, which is essential to character-
ize the decision boundary for classifier (Bengio et al.,
2009; He et al., 2018; Huang et al., 2010; Vapnik,
1999; Bai and Liu, 2021). Leveraging the CBC mea-
sure allows us to selectively choose more informative
nodes, significantly enhancing GNNs’ performance
during the training process. For further empirical evi-
dence demonstrating the positive correlation between
test accuracy and the overall CBC of the training set,
we kindly refer readers to Appendix A.

2.3 TOPOLOGICAL CURRICULUM LEARNING

In this section, we construct the Topological Curriculum Learning (TCL) framework leveraging
the CBC measure to enhance training efficiency in the presence of label noise. Utilizing the CBC
measure, the TCL process begins by training the model on easy clean nodes that are located far from
class boundaries. Subsequently, the focus shifts to nodes closer to class boundaries that are hard and
noisy labeled, with their identification guided by the CBC measure within the TCL framework. This
process also could be further enhanced through integration with existing clean sample extraction
techniques. It is important to note that the clean node extraction module within the TCL framework
remains versatile and compatible with various clean sample selection technologies (Kim et al., 2021;
Bai and Liu, 2021), and we will delve into the details shortly.

Here, we devise an “easy-to-hard” curriculum within our TCL framework, building upon the CBC.
This curriculum is structured as a sequence of training criteria ⟨Q̃λ⟩with the increasing pace parameter
0 ≤ λ ≤ 1. Each criterion Q̃λ is a reweighting of the noisy training distribution PD̃. The early Q̃λ
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emphasises the easy nodes evaluated by CBC, and as λ increases, more hard nodes are progressively
added into Q̃λ, detailed in the following. Note that, while several methods may involve in curriculum
learning, few of them address noisy labeled graphs by considering the intricate graph structure 2.

Extracting Clean Labeled Nodes The extraction of clean labeled nodes is closely related to the
memorization effect of neural networks (Arpit et al., 2017). Specifically, due to the memorization
effect, the GNN classifier pre-trained at early epochs would fit the clean data well but not the
incorrectly labeled data. We can treat the training nodes whose noisy labels are identical to the
ones predicted by the pre-trained classifier as the confident nodes, indicating a higher likelihood of
having clean labels (Bai and Liu, 2021). Note that, there are other similar rules to extract confident
examples, e.g., those who have a high confidence score or corresponding to a smaller loss value (Han
et al., 2018; Yu et al., 2019; Xia et al., 2021), which will be compared in experiments. Now, we
progressively obtain the extracted confident node set PD̂ from PD̃, which approximates nodes drawn
from a target clean distribution PD. With PD̂, we can construct our robust learning curriculum.

Definition 2.2 (Topological Curriculum Learning). Assume a sequence of confident training criteria
⟨Q̂λ⟩ with the increasing pace parameter λ. Each confident criterion Q̂λ is a reweighting of the
confident distribution PD̂(z), where z is a random variable representing an extracted confident node
for the learner. Let 0 ≤Wλ(z) ≤ 1 be the weight on z at step λ in the curriculum sequence, and

Q̂λ(z) ∝Wλ(z)PD̂(z), (2)

such that
∫
Z Q̂λ(z)dz = 1, where Z denotes the whole set of extracted confident nodes from each

Q̂λ(z). Then, the following two conditions are satisfied:

• (i) The entropy of distributions gradually increases, i.e., H(Q̂λ) is monotonically increasing
with respect to the increasing pace λ.

• (ii) The weight function Wλ(z) for any confident nodes is monotonically increasing with
respect to the increasing pace λ.

In Definition 2.2, Condition (i) means that the diversity and the information of the confident set should
gradually increase, i.e, the reweighting of nodes in later steps increases the probability of sampling
informative nodes evaluated by CBC. Condition (ii) means that as gradually adding more confident
nodes, the size of the confident node set progressively increases. Intuitively, in our TCL, the key is the
proposed CBC measure that works as a difficulty measurer and defines the weight function Wλ(z).
This formalization has been widely used in the related curriculum learning literature (Bengio et al.,
2009; Wang et al., 2021b). With the help of CBC, we can design a robust “easy-to-hard” learning
curriculum that first extracts confident nodes from noisily easy nodes – that we term as high-confident
nodes to train GNNs and then extracts confident nodes from noisily hard nodes – that we term as
low-confident nodes to continually train. We summarize the procedure of TCL in Algorithm 1 of the
Appendix and the utilization of CBC is akin to lines 3-6 of Algorithm 1.

2.4 THEORETICAL GUARANTEE OF TCL

Here, we first investigate the change in deviation between PD̂ and PD during the learning phases of
TCL. Then, we theoretically prove that, with the PD̂, our TCL framework persistently minimizes an
upper bound of the expected risk under target clean distribution.

Taking the binary node classification as an example, after extracting the confident nodes, our goal
is to learn a proper GNN classifier fG : (A,X ) → Y with the input extracted confident nodes
zi = {(A,xi, yi)}ncf

i=1 from the confident distribution PD̂(Z) = PD̂(A,X|Y)PD̂(Y) (Cucker and
Zhou, 2007), such that the following expected risk can be minimized:

R(fG) :=
∫
Z

LfG (z)PD(A,x|y)PD(y)dz, (3)

where PD(Z) = PD(A,X|Y)PD(Y) denotes the target clean distribution on Z , and LfG (z) =

1fG(A,x)̸=y = 1−yfG(A,x)
2 denotes the loss function measuring the difference between the predictions

and labels. Since the deduction for both y = 1 and y = −1 cases are exactly similar, we only consider
2More discussion of related works has been summarized in the Appendix B due to the space limitation.
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one case in the following and denotePD(A,x) = PD(A,x|y = 1) andPD̂(A,x) = PD̂(A,x|y =

1). Let 0 ≤Wλ∗(A,x) ≤ 1, α∗ =
∫
A,X Wλ∗(A,x)PD̂(A,x)dx denote the normalization factor3

and E(A,x) measures the deviation from PD̂(A,x). Combining with Definition 2.2, we can
construct the below curriculum sequence for theoretical evaluation (See proof in the Appendix C):

Q̂λ(A,x) ∝Wλ(A,x)PD̂(A,x), (4)

where

Wλ(A,x) ∝ αλPD(A,x) + (1− αλ)E(A,x)

α∗PD(A,x) + (1− α∗)E(A,x)

with 0 ≤Wλ(A,x) ≤ 1 through normalizing its maximal value as 1 and αλ varies from 1 to α∗ with
increasing pace parameter λ. Note that, the initial stage of TCL sets Wλ(A,x) ∝ PD(A,x)

PD̂(A,x) , which is
of larger weights in the high-confident nodes while much smaller in low-confident nodes. With the
pace λ increasing, the large weights in high-confidence areas become smaller while small ones in
low-confidence areas become larger, leading to more uniform weights with smaller variations.

Here, we introduce a local-dependence assumption for graph-structured data: Given the data related
to the neighbours within a certain number of hops of a node vi, the data in the rest of the graph will
be independent of vi (Wu et al., 2020). This assumption aligns with Markov chain principles (Revuz,
2008), stating that the node is independent of the nodes that are not included in their two-hop neighbors
when utilizing two-layer GNN, which does not means the totally i.i.d w.r.t. each node but means i.i.d
w.r.t. subgroups. The local-dependence assumption is well-established and has been widely adopted
in numerous graph theory studies (Schweinberger and Handcock, 2015; Didelez, 2008). It endows
models with desirable properties which make them amenable to statistical inference (Schweinberger
and Handcock, 2015). Therefore, based on the local-dependence assumption, for a node with the
certain hops of neighbours ZA, after aggregation, we will obtain node representation Zxi that is
approximately independent and identically distributed with nodes outside of ZA. We refer readers
to (Gong et al., 2016) for more details. Finally, with Eq. (10) as the pace distribution, we have the
following theorem and a detailed proof is provided in Appendix C.
Theorem 1. Suppose {(Zxi

, yi)}mi=1 are i.i.d. samples drawn from the pace distribution Qλ

with radius |X| ≤ R. Denote m+/m− be the number of positive/negative samples and m∗ =
min{m−,m+}. Let H = {x → wTx : mins|wTx| = 1 ∩ ||w|| ≤ B}, and ϕ(t) = (1 − t)+ for
t ∈ R be the hinge loss function. For any δ > 0 and g ∈ H, with confidence at least 1− 2δ, have:

R(sgn(g)) ≤ 1

2m+

m+∑
i=1

ϕ(yig(Zxi
)) +

1

2m−

m−∑
i=1

ϕ(yig(Zxi
))

+
RB√
m∗

+ 3

√
ln (1− δ)

m∗

+ (1− αλ)
√
1− exp {−DKL(P

+
D||E+)}

+ (1− αλ)
√
1− exp {−DKL(P

−
D||E−)},

(5)

where E+, E− denote error distributions that capture the deviation from P+
D, P−

D to P+

D̂
, P−

D̂
.

Remark 1 (on the upper bound of the expected riskR(sgn(g)). The error distribution E reflects the
difference between the noisy distribution and the clean distribution. Essentially, this error distribution
serves as a bridge connecting the noisy and clean distributions in our upper bound. Thus, the last two
rows measure the generalization capability of the learned classifier, which is monotonically increasing
with respect to both the KL-divergence between the error distribution E and the clean distribution
PD, and the pace parameter λ. That is, the less deviated is the error E from PD, the more beneficial
is to learn a proper classifier from PD̂ which can generalize well on PD.

Thus, the TCL process with curriculum Q̂λ makes it feasible to approximately learn a graph model
with minimal expected risk on PD through the empirical risk from PD̂, since the ”easy-to-hard”
property of the curriculum Q̂λ intrinsically facilitates the information transfer from PD̂ to PD. In

3The α∗ ≤ 1 since Wλ∗(A,x)PD̂(A,x) ≤ PD̂(A,x)
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specific, we can approach the task of minimizing the expected risk on PD by gradually increasing
the pace λ, generating relatively high-confident nodes from Q̂λ, and minimizing the empirical risk
on those nodes. This complies with the core idea of the proposed TCL. In addition, the first row in
the upper bound of Theorem 1 corresponds to the empirical risk on training nodes generated from
Qλ. The second row reflects that the more training nodes are considered, the better approximation of
expected risk can be achieved (Haussler and Warmuth, 1993; Haussler, 1990).

3 EXPERIMENTS

In this section, we conduct extensive experiments to verify the effectiveness of our method and
provide comprehensive ablation studies about the underlying mechanism of our method.

Datasets We adopted three small datasets including Cora, CiteSeer, and PubMed, with the default
dataset split as did in (Chen et al., 2018), and four large datasets including WikiCS, Facebook, Physics
and DBLP to evaluate our method. Detailed statistics are summarized in Appendix. Following
previous works (Dai et al., 2021; Du et al., 2021; Xia et al., 2020b), we consider three settings of
simulated noisy labels, i.e, Symmetric noise, Pairflip noise and Instance-dependent noise. More
explanation about these noise settings can be found in Appendix D.2.
Baselines We compare TCL with several state-of-the-art curriculum learning with noisy labels
on i.i.d. data: (1) Co-teaching+ (Yu et al., 2019), (2) Me-Momentum (Bai and Liu, 2021) and (3)
MentorNet (Yu et al., 2019). And we also compare the TCL with the graph curriculum learning
method: (1) CLNode (Wei et al., 2023), (2) RCL (Zhang et al., 2023). Besides, some denoising
methods on graph data have been considered (1) LPM (Xia et al., 2020a), (2) CP (Zhang et al., 2020),
(3) NRGNN (Dai et al., 2021), (4) PI-GNN (Du et al., 2023), (5) RT-GNN (Qian et al., 2023) and
(6)RS-GNN (Dai et al., 2022). More details about implementations are provided in the Appendix D.3.

3.1 MAIN RESULTS
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Figure 5: The hyperparameter analysis of TCL. The experiment results are reported over five trials
under the 20% Symmetric noise. (a) The test accuracy of TCL with three different pacing functions
on various datasets. (b) The test accuracy of TCL with increasing λ0 on CORA and PubMed.

Performance comparison on public graph datasets Table 1 shows the experimental results on
three synthetic noisy datasets under various types of noisy labels. For three datasets, as can be seen,
our proposed method produces the best results in all cases. When the noise rate is high, the proposed
method still achieves competitive results through the extraction of confident nodes. Although some
baselines, e.g., NRGNN, can work well in some cases, experimental results show that they cannot
handle various noise types. In contrast, the proposed TCL achieves superior robustness against broad
noise types. Some popular curriculum-learning-based methods that have worked well on learning
with noisy labels on i.i.d. data, e.g., Co-teaching+ and MentorNet do not show superior performance
on graph data. This illustrates that the unique topology consideration in GNNs brings new challenges
to those prior works and proves the necessity of our proposed method.

Performance comparison on large graph datasets We justify that the proposed methods can
effectively alleviate the label noise on large graph datasets. Detailed descriptions of these graph
datasets are provided in the Appendix. As shown in Table 2, our proposed method is consistently
superior to other methods across all settings. Additionally, on certain datasets, labeled nodes are
sparse e.g., WikiCS that contains only 4.96% labeled nodes or Physics that contains only 1.45%. The
results indicate that our method is robust even in the presence of a small number of labeled nodes.

Hyperparameter sensitivity In TCL, the hyperparameter λ affects the performance by controlling
the construction of each curriculum. Correspondingly, the pacing function λ(t) with training epoch
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Table 1: Mean and standard deviations of classification accuracy (percentage) on synthetic noisy
datasets with different noise levels. The results are reported over ten trials and the best are bolded.

Method Symmetric Pairflip Instance-dependent
30% 40 % 50% 20% 30% 40% 30% 40% 50%

C
O

R
A

Cross-Entropy 83.61±1.07 80.86±1.46 75.14±2.44 82.23±0.93 75.87±1.20 62.05±3.59 83.21±0.74 80.32±0.94 74.96±1.82
LPM 82.73±0.64 78.12±1.17 70.23±2.17 83.39±1.22 77.44±1.93 64.02±5.04 82.81±0.87 77.67±2.01 70.55±1.86
CP 82.37±1.38 79.97±1.74 76.19±2.26 80.24±0.96 73.02±1.56 58.04±3.78 82.37±1.09 80.36±1.21 74.17±2.68

NRGNN 81.73±1.80 79.08±3.18 77.36±2.03 81.83±0.93 77.10±1.52 64.13±3.98 81.62±2.08 78.66±2.54 76.31±2.98
PI-GNN 82.48±0.10 80.36±0.10 77.59±0.20 83.10±0.10 77.96±0.20 63.62±0.30 81.83±1.00 80.02±1.07 77.27±1.21
RT-GNN 83.21±1.05 80.46±1.06 75.84±1.43 82.53±0.73 76.87±1.09 61.75±2.29 82.14±0.97 80.13±1.23 74.82±0.94
RS-GNN 83.21±0.29 79.00±0.15 77.21±0.43 81.83±0.37 76.46±0.24 63.09±0.22 82.83±0.73 78.93±0.63 76.52±0.83

Co-teaching+ 82.59±0.96 79.81±1.30 74.59±2.33 81.70±1.45 75.59±2.13 59.03±5.76 81.84±1.10 79.70±1.34 73.36±2.54
Me-momentum 83.76±0.25 81.82±0.72 79.48±0.63 84.09±0.48 78.04±1.03 64.07±1.03 83.14±0.25 82.04±0.57 77.33±0.82

MentorNet 81.84±0.86 78.52±2.01 73.82±2.83 80.83±1.88 72.56±3.42 59.78±4.59 81.59±0.92 78.49±1.63 72.41±3.66
CLNode 80.98±1.50 77.11±2.25 74.39±2.41 83.43±0.89 73.89±1.97 55.38±2.80 81.12±2.43 75.11±2.93 68.44±4.88

RCL 73.20±0.12 76.36±1.09 63.40±0.73 71.06±0.48 65.30±0.80 51.34±0.42 69.20±1.00 59.30±0.13 54.16±2.25
TCL 85.02±0.12 82.58±0.92 81.16±0.80 85.26±0.30 78.50±0.72 65.15±1.53 84.70±0.04 83.31±0.21 80.15±0.36

C
ite

Se
er

Cross-Entropy 75.13±0.70 73.85±0.85 70.74±1.86 76.61±0.53 73.87±1.08 62.92±4.11 74.83±1.04 73.22±0.71 69.42±2.07
LPM 73.19±1.07 69.54±1.37 61.22±2.08 75.08±0.76 69.91±1.31 58.86±4.28 73.55±0.79 69.32±1.76 61.90±1.73
CP 73.26±1.22 70.99±1.88 63.74±2.55 74.36±1.21 68.21±2.56 56.56±6.50 73.45±0.72 69.90±1.64 64.61±2.74

NRGNN 75.41±1.04 73.52±1.46 70.98±2.47 75.72±1.04 74.13±1.38 63.60±4.83 75.33±0.91 74.36±1.45 71.61±1.76
PI-GNN 73.55±0.14 71.05±0.21 68.02±0.20 73.06±0.13 69.91±0.32 60.62±0.41 74.28±0.78 70.66±1.51 67.81±1.99
RT-GNN 74.64±0.72 73.66±0.58 71.36±0.65 73.32±0.68 65.78±1.33 62.38±0.56 73.94±0.52 72.86±0.48 71.02±0.25
RS-GNN 74.93±0.65 73.65±0.45 70.54±1.26 76.31±0.33 73.27±0.38 61.42±2.01 75.03±0.25 72.85±0.15 70.14±1.06

Co-teaching+ 71.01±2.83 68.12±2.38 61.65±4.27 72.09±1.21 68.25±2.91 56.64±5.46 70.80±3.08 67.46±2.55 62.12±2.81
Me-Momentum 75.40±0.26 74.41±0.56 70.51±0.79 76.93±0.47 74.07±1.06 63.96±0.97 75.27±0.25 74.24±0.45 71.18±0.45

MentorNet 69.61±3.42 66.87±3.78 60.21±2.67 71.96±1.81 66.14±4.98 54.20±6.25 70.56±2.55 64.90±4.72 60.95±4.93
CLNode 68.73±2.07 64.26±3.18 56.07±3.61 69.11±3.15 61.62±3.33 53.32±4.29 69.91±1.88 66.22±2.65 60.37±3.10

RCL 60.90±0.12 54.50±2.53 46.58±1.44 65.00±0.13 56.68±0.27 51.14±1.58 63.70±0.53 54.70±1.97 46.62±0.59
TCL 75.86±0.31 74.77±0.79 71.81±0.74 77.25±0.44 74.91±0.90 65.36±1.27 76.61±0.17 75.61±0.29 74.03±0.26

P
ub

M
ed

Cross-Entropy 85.98±0.50 84.80±0.83 82.83±1.55 85.31±0.38 83.31±0.58 76.12±2.04 85.29±0.27 84.10±0.74 82.45±2.96
LPM 85.33±0.70 84.33±0.79 82.31±0.89 85.90±0.57 84.63±0.34 78.94±0.79 85.51±0.52 84.90±0.53 83.12±1.18
CP 86.12±0.63 85.01±0.65 82.33±1.51 86.13±0.36 84.87±0.46 78.81±0.77 85.66±0.60 84.92±0.99 81.18±1.95

NRGNN 86.19±0.44 84.99±1.16 83.02±1.44 86.26±0.81 83.79±1.28 75.83±2.72 85.45±0.52 85.07±1.15 83.47±1.02
PI-GNN 86.16±0.06 85.35±0.11 83.12±0.13 86.01±0.12 84.09±0.21 78.35±0.23 86.13±0.29 85.09±0.40 83.22±0.85
RT-GNN 84.73±0.05 84.70±0.35 79.39±0.25 82.90±0.03 80.80±0.10 79.90±0.12 83.09±0.43 81.60±0.15 80.81±0.32
RS-GNN 85.38±0.42 84.34±0.38 82.37±0.35 85.24±0.24 83.12±0.47 75.24±1.27 85.16±0.32 84.14±0.14 83.07±0.15

Co-teaching+ 86.14±0.58 85.01±0.74 82.74±2.12 85.37±1.90 84.45±0.75 77.31±5.38 85.83±0.54 84.65±1.47 81.42±2.89
Me-Momentum 86.05±0.18 85.66±0.78 82.42±0.41 85.78±0.26 85.43±0.35 80.34±0.41 85.87±0.27 84.37±0.40 83.53±0.14

MentorNet 85.43±0.81 84.55±1.33 82.84±0.92 86.64±0.59 84.83±0.92 74.36±6.01 85.14±1.12 84.13±1.75 80.38±3.99
CLNode 86.03±0.37 85.34±0.45 83.06±0.37 86.27±0.42 85.15±0.38 81.12±0.44 85.23±0.37 84.61±0.39 83.63±0.51

RCL 82.40±0.24 80.30±0.15 76.40±0.14 82.70±0.23 82.66±0.69 81.30±0.20 82.10±0.12 80.30±0.12 74.90±0.19
TCL 86.69±0.32 86.23±0.37 83.53±0.23 87.05±0.28 86.30±0.22 83.18±0.55 86.21±0.03 85.32±0.04 83.94±0.08

Table 2: Mean and standard deviations of classification accuracy (percentage) on large graph datasets
with instance-dependent label noise. The results are the mean over five trials and the best are bolded.

Dataset WikiCS Facebook Physics DBLP
Method 30% 50 % 30% 50% 30% 50% 30% 50%

CP 72.27±0.40 54.41±1.75 74.86±1.19 62.46±3.47 90.64±1.38 81.88±0.96 70.02±3.06 55.54±5.58
NRGNN 73.09±1.63 56.10±2.67 68.00±2.34 58.34±3.69 88.96±2.23 82.04±1.06 72.48±2.61 65.42±9.63
PI-GNN 75.28±0.56 58.51±1.24 75.18±0.26 60.32±0.26 89.16±1.03 82.14±0.94 71.72±3.39 62.31±2.26

Co-teaching+ 72.64±0.81 54.66±2.18 75.19±1.53 60.48±3.22 90.08±1.71 78.07±4.73 66.32±2.12 51.46±4.49
Me-Momentum 75.75±0.28 58.40±1.95 62.86±1.39 46.13±1.67 82.65±0.69 68.22±2.47 59.88±0.60 44.54±2.34

MentorNet 72.17±0.98 51.80±3.30 73.74±2.07 59.04±3.38 88.59±2.51 76.31±4.50 63.73±4.93 47.85±6.47
CLNode 73.98±0.40 58.93±1.12 77.14±2.35 59.08±2.63 90.96±1.14 80.89±2.36 72.32±2.06 61.21±3.07

RCL 64.88±0.72 55.14±0.01 67.20±0.01 52.70±1.04 85.16±1.34 72.14±1.72 63.20±0.81 48.12±1.16
TCL 76.35±0.06 59.33±0.46 77.58±1.81 64.46±1.75 92.64±0.82 86.04±1.03 74.70±1.72 66.30±1.13

number t controls the increasing speed of λ, while λ0 controls the initial number of λ (Wang et al.,
2021b). Thus, we evaluate the sensitivity of TCL to λ(t) and λ0. From Fig. 5 (a), We find that the
performance is relatively similar when applying different pacing functions. Additionally, the results
in Fig. 5 (b) show the performance is relatively good when λ0 is between 0.3 and 0.7.

3.2 ABLATION STUDY

Performance comparison on different GNN architectures We evaluate our proposed TCL
on different GNN architectures, i.e., GCN (Zhang et al., 2019), GAT (Veličković et al., 2017),
ARMA (Bianchi et al., 2021) and APPNP (Gasteiger et al., 2018). The experiments are conducted on
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Figure 6: Illustration the effectiveness of TCL on noisy CORA and CiteSeer. “Vanilla” as a curriculum
learning is based on the straightforward selection with confidence, instead of the CBC measure.

Table 3: Mean and standard deviations of classification accuracy (percentage) on different GNN
architectures. The experimental results are reported over five trials. Bold numbers are superior results.

Dataset CORA CiteSeer

Backbone Symmetric Pairflip Symmetric Pairflip
20% 40 % 20% 40% 20% 40% 20% 40%

GCN 85.96±0.22 82.58±0.92 85.26±0.30 65.15±1.53 76.87±0.37 74.77±0.79 77.25±0.44 65.36±1.27
GAT 86.12±0.50 82.68±0.78 85.86±0.44 66.26±0.79 76.16±0.40 73.72±0.19 76.98±0.30 64.48±1.63
ARMA 85.82±0.40 81.32±0.80 84.20±0.27 65.48±1.11 75.22±0.37 72.80±0.60 75.32±0.78 63.86±1.17
APPNP 86.54±0.45 82.20±0.68 86.20±0.44 66.64±1.00 76.70±0.26 75.66±0.44 76.64±0.45 65.32±1.69

Table 4: Mean and standard deviations of classification accuracy (percentage) on different difficulty
measurer. The experimental results are reported over five trials. Bold numbers are superior results.

Dataset CiteSeer PubMed

Difficulty Measurer Symmetric Instance-dependent Symmetric Instance-dependent
30% 50% 30% 50% 30% 50% 30% 50%

Feature-based 74.35±0.86 68.77±0.59 74.50±0.16 70.30±0.12 84.11±0.76 81.64±0.50 84.10±0.04 81.72±0.06
Neighborhood-based 74.54±0.36 68.93±0.78 74.72±0.10 68.90±0.11 84.15±0.88 81.86±0.43 84.28±0.23 81.76±0.10
CBC-based 75.86±0.31 71.81±0.74 76.61±0.17 74.03±0.26 86.69±0.32 83.53±0.23 86.21±0.03 83.94±0.08

Cora and CiteSeer datasets, which are shown in Table 3. As can be seen, TCL performs similarly on
different GNN architectures, showing the consistent generalization on different architectures.
Performance comparison on different difficulty measurers We compare our proposed CBC
measurement with other two baseline measurements: The feature-based difficulty measurer and the
Neighborhood-based difficulty measurer in Table 4. The results clearly demonstrate the enhanced
performance of the CBC-based difficulty measurer. Notably, the extent of accuracy improvement
presents a consistent upward trend as the noise rate increases. This observation further underscores
the efficacy and value of the CBC-based approach in effectively dealing with label noise.

The underlying mechanism of TCL To evaluate the “easy-to-hard” mechanism of TCL, we design
an vanilla method that extracts the confident nodes once at the beginning of training epochs and trains
a GNN on the totally extracted nodes during all epochs. The initial extraction process is similar to
TCL. From the comparison in the Fig. 6, we can see that the TCL gradually improves the training
efficiency by introducing more confident nodes and reaches better performance than the vanilla
method. This proves the necessity of introducing the “easy-to-hard” learning schedule along with
CBC to alleviate the poor extraction performance from hard nodes during the cold-start stage.

4 CONCLUSION

To handle the challenge of extracting confident nodes on the noisily labeled graph, we propose a
Class-conditional Betweenness Centrality (CBC) measure that exploits the topological information
to characterize the relative difficulty of each node. With the CBC measure, we construct a novel
Topological Curriculum Learning (TCL) framework that first learns high-confident nodes and then
gradually introduces low-confident nodes. This “easy-to-hard” learning schedule improves training
efficiency and alleviates the negative impacts of low-confident noisy nodes. The effectiveness of
this framework has been proved by our theoretical analysis and extensive experiments. In the future,
we will continually explore the robustness of TCL for other imperfect graph data, for example,
imbalanced graph data or out-of-distribution graph data to demonstrate its effectiveness.
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Ralf Schlüter, Markus Nussbaum-Thom, Eugen Beck, Tamer Alkhouli, and Hermann Ney. Novel
tight classification error bounds under mismatch conditions based on f-divergence. In 2013 IEEE
Information Theory Workshop (ITW), pages 1–5. IEEE, 2013.

Michael Schweinberger and Mark S Handcock. Local dependence in random graph models: charac-
terization, properties and statistical inference. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 77(3):647–676, 2015.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
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A A FURTHER DISCUSSION ON CLASS-CONDITIONAL BETWEENNESS
CENTRALITY

A.1 BACKGROUND OF BETWEENNESS CENTRALITY

When shaping classifiers by GNNs in graph-structured data, some nodes situated near topological
class boundaries are important to drive the decision boundaries of the trained classifier (Chen et al.,
2021). However, GNNs find it challenging to discern class characteristics from these nodes due to
their aggregation of characteristics from various classes, causing them to lack the distinctive features
typical of their corresponding classes (Wei et al., 2023). Moreover, this heterogeneous aggregation
makes it difficult to extract clean label nodes from those near the boundaries. Thus, we design a
Class-conditional Betweenness Centrality (CBC) measure that can effectively detect those nodes.

Our Class-conditional Betweenness Centrality measure is inspired by the classical concept in graph
theory – Betweenness Centrality (BC). The formal definition of the Betweenness Centrality is as
follows.
Definition A.1 (Betweenness centrality). The betweenness centrality (BC) of the node vi is defined to
be the fraction of shortest paths between pairs of vertices in a graph G that pass through vi. Formally,
the betweenness centrality of a node vi is defined:

bvi
=

1

n(n− 1)

∑
vu ̸=vi ̸=vv

σvu,vv
(vi)

σvu,vv

(6)

where σvu,vv denotes the number of shortest paths from vu to vv , and σvu,vv (vi) denotes the number
of shortest paths from vu to vv that pass through vi.

A.2 DIFFERENCE OF CLASS-CONDITIONAL BETWEENNESS CENTRALITY

The betweenness centrality measures the centrality of nodes in a connected graph based on the
shortest paths of other pairs of nodes. It provides a quantified measure of a node’s influence in
controlling the flow of information among other nodes. A higher betweenness centrality signifies a
node’s increased significance in regulating the information flow within the network. By incorporating
the class-conditional constraint into Eq. (6), we can effectively identify nodes that play a crucial
role in controlling the flow of information between different classes and are typically located near
topological class boundaries. This is exemplified by the boundary-near nodes v5 and v9 in Fig. 7,
where the shortest paths for nodes in class 1 and class 2 must pass through these nodes, underlining
their pivotal role in managing information flow between the two classes.

𝑣𝑣3
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𝑐𝑐2𝑐𝑐1
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Figure 7: The illustration of boundary-near nodes

Thus, after adding the class-conditional constrain into the Eq.(6), we define the CBC of a node vi as
the fraction of shortest paths between pairs of nodes that belong to different classes in a graph G that
pass through vi:

Cbi =
1

n(n− 1)

∑
vu ̸=vi ̸=vv

yu ̸=yv

σvu,vv
(vi)

σvu,vv

(7)

where σvu,vv
denotes the number of shortest paths from vu to vv , and σvu,vv

(vi) denotes the number
of shortest paths from vu to vv that pass through vi.

Notably, the CBC measure builds upon the BC measure and outperforms it in detecting boundary-near
nodes. This improvement is attributed to the class-conditional constraint, which alleviates the impact
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of information flow among nodes belonging to the same class. Specifically, information flow among
nodes of the same class is more likely to occur through nodes positioned near the centre of the class
rather than at the boundary. For instance, in Fig. 7, the shortest path from node v3 to v6 or from v7 to
v4 traverses the centre-near node v1 rather than the boundary-near node v5.

A.3 OPTIMIZATION FORM OF CLASS-CONDITIONAL BETWEENNESS CENTRALITY

However, it is usually practically limited to directly employ Eq. (7), since in most networks, the
information does not flow only along the shortest paths (Stephenson and Zelen, 1989; Freeman et al.,
1991; Newman, 2005), and it is very time-consuming to find the shortest paths in a large graph (Liu
and Lü, 2010; Zhao et al., 2022). Thus, we relax Eq. (7) with the random walk, which simultaneously
allows the multiple paths to contribute to CBC and avoids the expensive search cost of the shortest
paths (Noh and Rieger, 2004; Liu and Lü, 2010; Zhao et al., 2022). Concretely, we employ the
Personalized PageRank (PPR) method (Bahmani et al., 2010; Haveliwala et al., 2003) to implement
random walk and then arrive at the final form of our CBC in the following definition.
Definition A.2 (Class-conditional Betweenness Centrality). Given the Personalized PageRank matrix
π = α(I− (1− α)Â)−1 (π ∈ Rn×n), the Class-conditional Betweenness Centrality of the node vi

is defined by counting how often the node vi is traversed by a random walk between pairs of other
vertices that belong to different classes in a graph G:

Cbi :=
1

n(n− 1)

∑
vu ̸=vi ̸=vv

ỹu ̸=ỹv

πu,iπi,v

πu,v
, (8)

where πu,i with the target node vu and the source node vi denotes the probability that an α-
discounted random walk from node vu terminates at vi. Here an α-discounted random walk
represents a random traversal that, at each step, either terminates at the current node with probability
α, or moves to a random out-neighbour with probability 1− α.

In the above definition, the CBC is based on the random walks that count how often a node is traversed
by a random walk between pairs of other nodes that belong to different classes. Our proposed CBC
successfully detects the boundary-near nodes by evaluating the flow of messages passing between
different classes. The nodes that possess high CBC are closer to the topological class boundaries.
Consequently, our CBC measure is adept at identifying the topological structure of nodes, and its
exploration of topological information renders it robust against noisy labeled data. Additionally,
the CBC measure can be seamlessly integrated into other related domains. For instance, it can be
employed to identify the structure of nodes in out-of-distribution (OOD) detection tasks, as discussed
in Wu et al. (2022), and to enhance OOD generalization, as demonstrated in studies by Yang et al.
(2022) and Wu et al. (2021).

A.4 IMPORTANCE OF CLASS-CONDITIONAL BETWEENNESS CENTRALITY

In Fig. 8, we present a visual representation highlighting the clear positive correlation between
test accuracy and the aggregate Class-conditional Betweenness Centrality (CBC) of the training
set. Additionally, we carefully structure the training sequence for each node in every training set,
prioritizing nodes based on their CBC scores. This underlines the pivotal role of CBC in shaping the
performance of models. The empirical findings strongly affirm the significance of extracting insights
from informative nodes, a factor that markedly enhances the performace of GNNs throughout the
training process.

A.5 DISTRIBUTION OF CLASS-CONDITIONAL BETWEENNESS CENTRALITY

In our comprehensive empirical analysis, we thoroughly investigate the distributions of Class-
conditional Betweenness Centrality for nodes in WikiCS, considering diverse levels of noise as
presented in Fig. 9. To pre-categorize nodes based on their proximity to topological class boundaries,
we employ the following criteria: Nodes are classified as “far from topological class boundaries” (far
from boundaries) if their two-hop neighbors belong to the same class. Conversely, nodes are labeled as
“near topological class boundaries” (near boundaries) if this condition does not apply. It’s important
to note that the “WikiCS” dataset, chosen for this analysis, is substantial and comprises sparsely
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Figure 8: There is a significant positive correlation between the test accuracy and the overall CBC of
the clean labeled training set (the Pearson correlation coefficient is 0.6999 over 50 randomly selected
class-balanced training sets with the p value smaller than 0.0001).

labeled nodes. As observed in Fig. 9, the node dataset exhibits two distinct clusters. Even in the
presence of considerable label noise, nodes far away from topological class boundaries consistently
demonstrate lower CBC scores across all cases.

Figure 9: Class-conditional Betweenness Centrality distributions of nodes in WikiCS, with varying
levels of symmetric noise (symm.), pairflip noise (pairflip.), and instance-based noise (inst.).
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B RELATED WORK

B.1 CURRICULUM LEARNING WITH LABEL NOISE

We have diligently incorporated curriculum-based approaches into our literature review that align
with our research theme. One widely adopted criterion involves selecting samples with small losses
and treating them as clean data. Several curriculum learning methods utilize this criterion (Jiang
et al., 2014), and in each step, select samples with small losses. For instance, in MentorNet (Jiang
et al., 2018), an additional pre-trained network is employed to select clean instances using loss
values to guide model training. The underlying concept of MentorNet resembles the self-training
approach (Kumar et al., 2010), inheriting the drawback of accumulated error due to sample-selection
bias.

To address this issue, Co-teaching (Han et al., 2018) and Co-teaching+ (Yu et al., 2019) mitigate
the problem by training two DNNs and using the loss computed on one model to guide the other.
CurriculumNet (Guo et al., 2018)presents a curriculum learning approach based on unsupervised
estimation of data complexity through its distribution in a feature space. It benefits from training
with both clean and noisy samples and weights each sample’s loss in training based on the gradient
directions compared to those on validation (i.e, , a clean set). Notably, CurriculumNet relies on a
clean validation set.

It’s worth emphasizing that the discussed curriculum learning methods primarily focus on mitigating
label noise issues within i.i.d. datasets and depend on the prediction of pre-trained neural networks.
However, those methods cannot be employed on graph data due to the “over-smoothing” issue
when training Graph Neural Networks (GNNs). Note that, in GNNs, “over-smoothing” refers to
the phenomenon where, as the network depth increases, node features become increasingly similar.
This similarity poses a challenge when employing curriculum learning with label noise, making
it difficult to distinguish between “easy” and “hard” nodes due to the homogenization of features
caused by over-smoothing. Additionally, even in shallow GNN architectures, over-smoothing can
lead to under-confident predictions, complicating the task of establishing an ’easy-to-hard’ training
curriculum (Wang et al., 2021a; Hsu et al., 2022). Addressing this challenge, our work introduces a
novel method, which proposes a robust CBC measure. This measure effectively distinguishes between
’easy’ and ’hard’ nodes, taking into account the graph structure rather than the prediction of GNNs,
thereby mitigating the over-smoothing problem. Our work stands as a pioneer in the development
of a curriculum learning approach explicitly designed for graph data afflicted by label noise. This
distinction underscores a significant contribution of our research, emphasizing the necessity for
specialized strategies to effectively handle noise within graph-structured data.

B.2 GRAPH NEURAL NETWOEKS

Predicting node labels involves formulating a parameterized hypothesis using the function
fG(A,X ) = ŷA, incorporating a Graph Neural Network (GNN) architecture (Kipf and Welling,
2016) and a message propagation framework (Gilmer et al., 2017). The GNN architecture can
take on various forms such as GCN (Kipf and Welling, 2016), GAT (Veličković et al., 2017), or
GraphSAGE (Hamilton et al., 2017).

In practical terms, the forward inference of an L-layer GNN involves generating node representations
HA ∈ RN×D through L-layer message propagation. Specifically, with ℓ = 1 . . . L denoting the layer
index, hℓ

i is the representation of the node i, MESS(·) being a learnable mapping function to transform
the input feature, AGGREGATE(·) capturing 1-hop information from the neighborhood N (v) in the
graph, and COMBINE(·) signifying the final combination of neighbor features and the node itself, the
L-layer operation of GNNs can be formulated as mℓ

v=AGGREGATEℓ({MESS(hℓ−1
u ,hℓ−1

v , euv) :

u ∈ N (v)}), where hℓ
v = COMBINEℓ(hℓ−1

v ,mℓ
v). After L-layer propagation, the final node

representations hL
e for each e ∈ V are derived. Furthermore, a detailed summary of different GNN

architectures is presented in Table 5.

Subsequently, a subsequent linear layer transforms HA into classification probabilities ŷA ∈ RN×C ,
where C represents the total categories. The primary training objective is to minimize the classification
loss, typically measured by cross-entropy between the predicted ŷA and the ground truth Y .
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Table 5: Detailed architectures of different GNNs.

GNN MESS(·) & AGGREGATE(·) COMBINE(·)
GCN ml

i = W l
∑

j∈N (i)
1√
d̂id̂j

hl−1
j hl

i = σ(ml
i +W l 1

d̂i
hl−1
i )

GAT ml
i =

∑
j∈N (i) αijW

lhl−1
j hl

i = σ(ml
i +W lαiih

l−1
i )

GraphSAGE ml
i = W l 1

|N (i)|
∑

j∈N (i) h
l−1
j hl

i = σ(ml
i +W lhl−1

i )

B.3 DENOISING METHODS ON GRAPH DATA

Prior research has explored diverse strategies to address the challenge of label noise in graph data.
NRGNN (Dai et al., 2021) combats label noise by linking unlabeled nodes with noisily labeled nodes
that share high feature similarity, thus incorporating more reliable label information. Conversely,
PI-GNN (Du et al., 2021) mitigates noise impact by introducing Pairwise Intersection (PI) labels
based on feature similarity among nodes.

In a different approach, the LPM method (Xia et al., 2020a) and GNN-Cleaner (Xia et al., 2023)
address noisy labels by involving a small set of clean nodes for assistance. Additionally, CP (Zhang
et al., 2020) operates with class labels derived from clustering node embeddings, encouraging the
classifier to capture class-cluster information and avoid overfitting to noisy labels.

Furthermore, RS-GNN (Dai et al., 2022) focuses on enhancing GNNs’ robustness to noisy edges. It
achieves this by training a link predictor on noisy graphs, aiming to enable effective learning from
graphs that contain inaccuracies in edge connections.

Lastly, RT-GNN (Qian et al., 2023) leverages the memorization effect of neural networks to select
clean labeled nodes, generating pseudo-labels from these selected nodes to mitigate the influence of
noisy nodes on the training process.

In addition, the efficacy of graph contrastive learning has been harnessed to effectively reduce label
noise during node classification tasks on graph-based data. Based on the homophily assumption,
ALEX (Yuan et al., 2023a) learns robust node representations utilizing graph contrastive learning to
mitigate the overfitting of noisy nodes and CGNN (Yuan et al., 2023b) integrates graph contrastive
learning as a regularization term, thereby bolstering the robustness of trained models against label
noise. Each of these approaches offers unique insights into effectively handling label noise in graph
data.

In this context, our proposed Topological Curriculum Learning (TCL) represents a distinctive per-
spective on employing curriculum learning methods specifically tailored for noisily labeled graphs.
By introducing TCL, we contribute a novel and effective strategy to tackle label noise in the complex
domain of graph-structured data.

B.4 GRAPH CURRICULUM LEARNING

Graph Curriculum Learning (GCL) stands at the intersection of graph machine learning and cur-
riculum learning, gaining increasing prominence due to its potential. At its core, GCL revolves
around customizing a difficulty measure to compute a difficulty score for each data sample, crucial in
defining an effective learning curriculum for the model. The design of this difficulty measure can
follow predefined or automatic approaches.

Predefined approaches often employ heuristic metrics to measure node difficulty based on specific
characteristics even before the training commences. For example, CLNode (Wei et al., 2023) gauges
node difficulty by considering label diversity among a node’s neighbors. Conversely, SMMCL (Gong
et al., 2019) assumes varying difficulty levels among different samples for propagation, advocating
an easy-to-hard sequence in the curriculum for label propagation.

On the other hand, automatic approaches determine difficulty during training using a supervised
learning paradigm rather than predefined heuristic-based metrics. For example, RCL (Zhang et al.,
2023) gradually incorporates the relation between nodes into training based on the relation’s difficulty,
measured using a supervised learning approach. Another instance, MentorGNN (Zhou et al., 2022),
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tailors complex graph signals by deriving a curriculum for pre-training GNNs to learn informative
node representations and enhance generalization performances.

However, a notable gap exists in existing GCL methods concerning their robustness to label noise,
especially in effectively handling graphs with noisy labels. Our proposed Topological Curriculum
Learning (TCL) addresses this limitation by being the pioneer in curriculum learning explicitly
designed for graphs affected by label noise. This underscores the novelty and significance of TCL
within the domain of GCL.

C PROOF TO THEORETICAL GUARANTEE OF TCL

C.1 PROOF FOR THE WEIGHTED EXPRESSION

We first formulate PD(A,x) as the weighted expression of PD̂(A,x):

PD(A,x) =
1

α∗Wλ∗(A,x)PD̂(A,x), (9)

where 0 ≤Wλ∗(A, x) ≤ 1 and α∗ =
∫
A,X Wλ∗(A,x)PD̂(A,x)dx denote the normalization factor.

Based on Eq.(9), PD(A,x) actually corresponding to a curriculum as definied in Eq.(2) under the
weight function Wλ∗(A,x).

Eq.(9) can be equivalently reformulated as

PD̂(A,x) = α∗
PD(A,x) + (1− α∗)E(A,x),

where
E(A,x) =

1

1− α∗ (1−Wλ∗(A,x))PD̂(A,x).

Here, the term E(A,x) measures the deviation fromPD̂(A,x) toPD(A,x). Recalling the previous
empirical analysis of Fig. 4, extracting confident nodes from the early Q̃λ that emphasises the easy
nodes works well. We define this period (corresponding to relatively small λ) as the high-confidence
regions. In these high-confidence areas, PD(A,x) is accordant to the PD̂(A,x) and thus E(A,x)
corresponds to the nearly zero-weighted PD̂(A,x) tending to be small. On the contrary, in later
training criteria, the poor performance of extracting confident nodes causes that the PD̂(A,x) cannot
approximate the PD̂(A,x) well in those low-confident regions. E(A,x) then imposes large weights
on PD̂(A,x), yielding the large deviation values. Combining with Definition 2.2, we construct the
below curriculum sequence for theoretical evaluation:

Q̂λ(A,x) ∝Wλ(A,x)PD̂(A,x), (10)

where

Wλ(A,x) ∝ αλPD(A,x) + (1− αλ)E(A,x)

α∗PD(A,x) + (1− α)∗E(A,x)

with 0 ≤Wλ(A,x) ≤ 1 through normalizing its maximal value as 1 and αλ varies from 1 to α∗ with
increasing pace parameter λ.

C.2 PROOF OF THEOREM 1

Now, we estimate the expected risk by the following surrogate (Donini et al., 2018):

Remp(fG) :=
1

n

ncf∑
i=1

LfG (zi). (11)

Let F be a function family mapping from Zxi
to [a, b], P(Zxi

) a distribution on Zxi
and S =

(Zx1
, . . . , Zxm

) a set of i.i.d. samples drawn from P. The empirical Rademacher complexity of F
with respect to S is defined by

R̂m(F) = Eσ[sup
g∈F

1

m

m∑
i=1

σig(Zxi
)], (12)
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where σi are i.i.d. samples drawn from the uniform distribution in {−1, 1}. The Rademacher
complexity of F is defined by the expectation of R̂m over all samples S:

Rm(F) = ES∼Pm |R̂S(F)|. (13)
Definition C.1. The Kullback-Leibler divergence DKL(p||q) between two densities p(Ω) and q(Ω)
is defined by

DKL(p||q) =
∫
Ω

p(x) log
p(x)

q(x)
dx. (14)

Based on the above definitions, we can estimate the generalization error bound for curriculum learning
under the curriculum Q̂λ. Based on the Bretagnolle-Huber inequality (Schlüter et al., 2013), we have∫

|p(x)− q(x)|dx ≤ 2
√
1− exp{−DKL(p||q)} (15)

LetH be a family of functions taking value in {−1, 1} , for any δ > 0 with confidence at least 1− δ
over a sample set S, the following holds for any fG ∈ H (Gong et al., 2016):

R(fG) ≤ Remp(fG) +Rm(H) +

√
ln( 1δ )

2m
. (16)

In addition, we have

R(fG) ≤ Remp(fG) +Rm(H) + 3

√
ln( 1δ )

2m
. (17)

Suppose S ⊆ {x : ∥x∥ ≤ R} be a sample set of size m, andH = {x→ sgn(wTx) : mins|wTx| =
1 ∩ ||w|| ≤ B} be hypothesis class, where w ∈ Rn,x ∈ Rn, and then we have

R̂m(H) ≤ BR√
m

(18)

Proof.

R̂m(H) = 1

m
Eσ

[
sup

∥w∥≤B

m∑
i=1

σisgn(wxi)

]

≤ 1

m
Eσ

[
sup

∥w∥≤B

m∑
i=1

σi|sgn(wxi)|
]
≤ 1

m
Eσ

[
sup

∥w∥≤B

m∑
i=1

σi|wxi|
]

≤ B

m
Eσ

[ m∑
i=1

σi∥xi∥
]
≤ B

m
Eσ

[
|

m∑
i=1

σi∥xi∥|
]

=
B

m
Eσ

[√√√√(

m∑
i=1

σi∥xi∥)2
]

=
B

m
Eσ

[√√√√ m∑
i,j=1

σiσj∥xi∥∥xj∥
]

≤ B

m

√√√√Eσ

[ m∑
i,j=1

σiσj∥xi∥∥xj∥
]

=
B

m

√√√√ m∑
i=1

∥xi∥2

≤ BR√
m
.

(19)
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Then, suppose {(Zxi
, yi)}mi=1 are i.i.d. samples drawn from the confident pace distribution Q̂λ.

Denote m+/m− be the number of positive/negative samples and m∗ = min{m−,m+}. H is the
function family projecting to {−1, 1}. Then for any δ > 0 and f ∈ H, with confidence at least 1−2δ
we have:

R(fG) ≤
1

2
R+

emp(fG) +
1

2
R−

emp(fG)

+
1

2
R̂m+

(H) + 1

2
R̂m−(H) +

√
ln( 2δ )

m∗

+ (1− αλ)
√
1− exp {−DKL(P

+
D||E+)}

+ (1− αλ)
√
1− exp {−DKL(P

−
D||E−)},

(20)

and

R(fG) ≤
1

2
R+

emp(fG) +
1

2
R−

emp(fG)

+
1

2
R̂m+

(H) + 1

2
R̂m−(H) + 3

√
ln( 2δ )

m∗

+ (1− αλ)
√
1− exp {−DKL(P

+
D||E+)}

+ (1− αλ)
√
1− exp {−DKL(P

−
D||E−)},

(21)

where E+, E− denotes the error distribution corresponding to PD(A, x|y = 1),PD(A, x|y =
−1), and R+

emp(fG),R−
emp(fG) denote the empirical risk on positive nodes and negative nodes,

respectively.

Proof. We first rewrite the expected risk as:

R(fG) =
∫
Z

LfG (z)PD(A,x|y)PD(y)dz,

=
1

2

∫
X+

LfG (x, y)PD(A,x|y = 1)dx+
1

2

∫
X−
LfG (x, y)PD(A,x|y = −1)dx

:=
1

2
(R+(fG) +R−(fG)).

(22)

The empirical risk tends not to approximate the expected risk due to the inconsistency of PD̂(A,x|y)
and PD(A,x|y). However, by introducing the error distribution with the confident pace distribution
and denoting by EQ̂λ

(fG) in the error analysis, we can the following error decomposition:

1

2
(R+(fG) +R−(fG))−

1

2
(R+

emp(fG) +R−
emp(fG))

=
1

2
[R+(fG)− EQ̂+

λ
(fG) + EQ̂+

λ
(fG)−R+

emp(fG)]

+
1

2
[R−(fG)− EQ̂−

λ
(fG) + EQ̂−

λ
(fG)−R−

emp(fG)]

:= S1 + S2.

(23)

Let S1 = A1 +A2 and S2 = B1 +B2, where A1 = 1
2 (R

+(fG))−EQ̂+
λ
(fG)), A2 = 1

2 (EQ̂+
λ
(fG)−

R+
emp(fG)), B1 = 1

2 (R
−(fG))−EQ̂−

λ
(fG)), B2 = 1

2 (EQ̂−
λ
(fG)−R−

emp(fG)). Here, EQ̂+
λ
(fG) and

EQ̂−
λ
(fG) denote the pace risk with respect to positive nodes and negative nodes, respectively.
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By the fact, the 0-1 loss is bounded by 1, we have:

A1 +A2 =
1

2
[R+(fG)− EQ̂+

λ
(fG) + EQ̂+

λ
(fG)−R+

emp(fG)]

≤ 1

2

∫
X+

(PD(A, x|y)− Q̂+
λ (x))dx+

1

2
Rm+

(H) + 1

2

√
ln( 1δ )

2m+

≤ (1− αλ)
√
1− exp {−DKL(P

+
D||E+)}+ 1

2
Rm+(H) +

1

2

√
ln( 1δ )

2m+
.

(24)

In a similar way, we can bound:

B1 +B2 =
1

2
[R−(fG)− EQ̂−

λ
(fG) + EQ̂−

λ
(fG)−R−

emp(fG)]

≤ (1− αλ)
√

1− exp {−DKL(P
−
D||E−)}+ 1

2
Rm−(H) +

1

2

√
ln( 1δ )

2m−
.

(25)

By taking m∗ = min{m−,m+} and combine Eq. (24) and Eq. (25), we can get:

R(fG) ≤
1

2
R+

emp(fG) +
1

2
R−

emp(fG)

+
1

2
R̂m+

(H) + 1

2
R̂m−(H) +

√
ln( 2δ )

m∗

+ (1− αλ)
√
1− exp {−DKL(P

+
D||E+)}

+ (1− αλ)
√
1− exp {−DKL(P

−
D||E−)}.

(26)

In addition, we further get:

Rm(H) ≤ R̂m(H) +

√
ln( 2δ )

2m
. (27)

By replacing Rm, we complete the proof.

The above established error bounds upon 0-1 loss are hard to optimize. We change the bound of
Eq.(21) under the commonly utilized hinge loss ϕ(t) = (1 − t)+ for t ∈ R and finally obtain our
Theorem 1. The above proof is according to (Gong et al., 2016).

D DETAILS OF EMPIRICAL STUDY

D.1 DATASETS

In our experiments, we employ seven common datasets gathered from diverse domains. The datasets
are as follows: (1) Cora, CiteSeer, and Pubmed (Yang et al., 2016), which are citation networks
where nodes represent documents and edges signify citations among them; (2) WikiCS (Mernyei
and Cangea, 2020), comprising nodes corresponding to Computer Science articles. Edges are based
on hyperlinks, and the ten classes represent different branches of the field in the Wikipedia website;
(3) Facebook (Rozemberczki et al., 2021), with nodes representing verified pages on Facebook and
edges indicating mutual likes; (4) Physics (Shchur et al., 2018), a co-authorship graph based on the
Microsoft Academic Graph. In this dataset, nodes represent authors connected by an edge if they
co-authored a paper. Node features represent paper keywords for each author’s papers, and class
labels indicate the most active fields of study for each author; (5) DBLP (Pan et al., 2016), also a
citation network, where each paper may cite or be cited by other papers. The statistical information
for the utilized datasets is presented in Table 6.
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Table 6: Important statistical information of used datasets.

Dataset Edges Classes Features Nodes/Labeled Nodes Labeled Ratio
Cora 5, 429 7 1, 433 2, 708/1208 44.61%
CiteSeer 4, 732 6 3, 703 3, 327/1827 54.91%
PubMed 44, 338 3 500 19, 717/18217 92.39%
WikiCS 215, 603 10 300 11, 701/580 4.96%
Facebook 342, 004 4 128 22, 470/400 1.78%
Physics 495, 924 5 8415 34, 493/500 1.45%
DBLP 105, 734 4 1639 17, 716/800 4.51%

D.2 LABEL NOISE GENERATION SETTING

Following previous works (Dai et al., 2021; Du et al., 2021; Xia et al., 2020b), we consider three
settings of simulated noisy labels:

(1) Symmetric noise: this kind of label noise is generated by flipping labels in each class
uniformly to incorrect labels of other classes.

(2) Pairflip noise: the noise flips each class to its adjacent class. More explanation about this
noise setting can be found in (Yu et al., 2019; Zheng et al., 2020; Lyu and Tsang, 2019).

(3) Instance-dependent noise: the noise is quite realistic, where the probability that an instance
is mislabeled depends on its features. We follow (Xia et al., 2020b) to generate this type of
label noise to validate the effectiveness of the proposed method.

D.3 BASELINE DETAILS

In more detail, we employ baselines:

• Curriculum learning with label noise on i.i.d. data:
(1) Co-teaching+ (Yu et al., 2019): This approach employs a dual-network mechanism to

reciprocally extract confident samples. Specifically, instances with minimal loss and
discordant predictions are identified as reliable, clean samples for subsequent training.

(2) Me-Momentum (Bai and Liu, 2021): The objective of this method is to identify
challenging clean examples from noisy training data. This process involves iteratively
updating the extracted examples while refining the classifier.

(3) MentorNet (Jiang et al., 2018): This approach involves pre-training an additional
network, which is then used to select clean instances and guide the training of the main
network. In cases where clean validation data is unavailable, the self-paced variant of
MentorNet resorts to a predefined curriculum, such as focusing on instances with small
losses.

• Graph Curriculum learning:
(1) CLNode (Wei et al., 2023): CLNode is a curriculum learning framework aimed at

enhancing the performance of backbone GNNs by gradually introducing more chal-
lenging nodes during the training process. The proposed difficulty measure is based on
label information.

(2) RCL (Zhang et al., 2023): RCL utilizes diverse underlying data dependencies to train
improved Graph Neural Networks (GNNs), resulting in enhanced quality of learned
node representations. It gauges the inter-node relationships as a measure of difficulty
for each node.

• Denoising methods on graph data:
(1) LPM (Xia et al., 2020a): The method is specifically tailored to address noisy labels in

node classification, employing a small set of clean nodes for guidance.
(2) CP (Zhang et al., 2020): The method operates on class labels derived from clustering

node embeddings. It encourages the classifier to comprehend class-cluster information,
effectively mitigating overfitting to noisy labels. Prior to clustering, node embeddings
are acquired using the Node2Vec model (Grover and Leskovec, 2016).
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(3) NRGNN (Dai et al., 2021): In this approach, a label noise-resistant GNN establishes
connections between unlabeled nodes and noisily labeled nodes with high feature
similarity. This connection strategy effectively incorporates additional clean label
information into the model.

(4) PI-GNN (Du et al., 2023): This method introduces Pairwise Intersection (PI) labels,
generated based on feature similarity among nodes. These PI labels are then employed
to alleviate the adverse impact of label noise, thereby enhancing the model’s robustness.

(6) RS-GNN (Dai et al., 2022) This method primarily aims to improve the robustness of
Graph Neural Networks (GNNs) in the presence of noisy edges. It achieves this by
training a link predictor on graphs with inaccuracies in edge connections, ultimately
enabling GNNs to effectively learn from such imperfect graph structures.

(5) RT-GNN (Qian et al., 2023): This approach identifies clean labeled nodes by leveraging
the memorization effect of neural networks. Subsequently, it generates pseudo-labels
based on these selected clean nodes to mitigate the impact of noisy nodes during the
training process.

D.4 ALGORITHM FRAMEWORK OF TCL

Algorithm 1 Algorithm flow of TCL.

Input: A pretrained classifier fp
G , the noisy training set D̃tr = {(A, xi, ỹi)}ntr

i=1, the identity matrix
I, the normalized adjacency matrix Â, the hyperparameters α, λ0, T .

Output: The trained GNN classifier fG .
1 Obtain π ← α(I− (1− α)Â)−1 ;
2 Initialize parameters of a GNN classifier fG ;
3 for vi ∈ D̃tr do
4 Calculate Cbi ← 1

ntr(ntr−1)

∑
vu ̸=vi ̸=vv

ỹu ̸=ỹv

πu,iπi,v

πu,v
,

5 end
6 Sort D̃tr according to Cbi in ascending order;
7 Let t = 1;
8 while t < T or not converge do
9 λt ← min(1, λt−1 + (1− λt−1) ∗ t

T );
10 Generate noisy training subset D̃t

tr ← D̃tr[1, . . . , ⌊λt ∗ ntr⌋];
11 Extract confident training subset D̂t

tr from D̃t
tr;

// i.e., the training nodes whose noisy labels are identical to the ones predicted by fp
G

12 Calculate loss L on D̂t
tr;

13 Back-propagation on fG for minimizing L;
14 t← t+ 1;
15 end

D.5 PACING FUNCTION OF TCL

After measuring node difficulty using the CBC measure, we employ the TCL framework to enhance
the training of our GNN model. We incorporate a pacing function λ(t) to govern the proportion λ of
training nodes available at the t-th epoch. In TCL, we utilize three distinct pacing functions: linear,
root, and geometric.

• linear:
λt = min(1, λt−1 + (1− λt−1) ∗

t

T
) (28)

• root:

λt = min(1,

√
λ2
t−1 + (1− λ2

t−1) ∗
t

T
) (29)

• geometric:
λt = min(1, 2log2 λt−log2 λt∗ t

T ) (30)
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Figure 10: Illustration the effectiveness of TCL on noisy CORA and CiteSeer.

The linear function escalates the training node difficulty uniformly over epochs. On the other hand,
the root function introduces a higher proportion of difficult nodes in a smaller number of epochs.
Meanwhile, the geometric function extends the training duration on a subset of easy nodes by
conducting multiple epochs.

D.6 REPRODUCTION ENVIRONMENT

We run all the experiments on a Linux server, some important information is listed:

• CPU: AMD EPYC 7302 16-Core Processor × 64

• GPU: NVIDIA GeForce RTX4090

• RAM: 188GB

• cuda: 11.6

Python Package We implement all deep learning methods based on Python 3.8. The experiment
code is included in the supplementary materials. The versions of some important packages are listed:

• torch: 1.11.0

• torch-geometric: 2.0.4

• numpy:1.21.4

• scipy:1.8.1

D.7 IMPLEMENTATION DETAILS

A two-layer graph convolutional network whose hidden dimension is 16 is deployed as the backbone
for all methods. We apply an Adam optimizer (Kingma and Ba, 2014) with a learning rate of 0.01.
The weight decay is set to 5 × 10−4. The number of pre-training epochs is set to 400. While
the number of retraining epochs is set to 500 for Cora, CiteSeer, and 1000 for Pubmed, WikiCS,
Facebook, Physics and DBLP. All hyper-parameters are tuned based on a noisy validation set built by
leaving 10% noisy training data.

E MORE EXPERIMENT

E.1 COMPLETED EXPERIMENT OF THE UNDERLYING MECHANISM OF TCL

To evaluate the “easy-to-hard” mechanism of TCL, we design an vanilla method that extracts the
confident nodes once at the beginning of training epochs and trains a GNN on the totally extracted
nodes during all epochs. The initial extraction process is similar to TCL. From the comparison in
the Fig. 10, we can see that the TCL gradually improves the training efficiency by introducing more
confident nodes and reaches better performance than the vanilla method. Additionally, the utilization
of two baseline curriculum learning methods further demonstrates the effectiveness of our approach.
This proves the necessity of introducing the “easy-to-hard” learning schedule along with CBC to
alleviate the poor extraction performance from hard nodes during the cold-start stage.
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Table 7: Mean and standard deviations of classification accuracy (percentage) on heterphily graph
datasets with 30% instance-dependent label noise. The results are the mean over five trials and the
best are bolded.

Method Chameleon Squirrel DBLP
CP 55.08±2.18 43.42±2.46 70.02±3.06

NRGNN 49.02±2.35 41.35±1.98 72.48±2.61
PI-GNN 52.85±2.16 43.31±2.97 71.72±3.39

Co-teaching+ 53.07±1.98 39.48±2.54 66.32±2.12
Me-Momentum 55.01±1.69 44.38±1.78 59.88±0.60

MentorNet 53.73±3.75 39.63±3.43 63.73±4.93
CLNode 52.85±2.91 35.92±1.84 72.32±2.06

RCL 52.96±0.96 40.59±1.23 63.20±0.81
TCL 56.17±0.28 48.03±1.03 74.70±1.72

E.2 CBC DISTRIBUTIONS OF NODES WITH VARYING HOMOPHILY RATIO

In this section, we assess the effectiveness of our CBC measure in relation to varying homophily ratios
within the noisy labeled graph. We modify the graph structure by introducing synthetic, cross-label
(heterophilous) edges that connect nodes with differing labels. The methodology for adding these
heterophilous edges, as well as the calculation for the homophily ratio, are both referred to (Ma et al.,
2021). As illustrated in Fig. 11, a decrease in the homophily ratio results in an increased number
of nodes near class boundaries, which consequently exhibit higher CBC scores. Notably, our CBC
measure effectively reflects the topology of nodes even as the complexity of the graph increases.
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Figure 11: The distributions of the CBC score w.r.t. nodes on CORA with different homophily ratios
in the presence of 30% instance-dependent label noise. The nodes are considered “far from topological
class boundaries” (far from boundaries.) when their two-hop neighbours belong to the same class;
conversely, nodes are categorized as “near topological class boundaries” (near boundaries.) when this
condition does not hold.

E.3 PERFORMANCE COMPARISON ON HETERPHILY DATASETS

We evaluate the effectiveness of our method on three commonly used heterogeneous datasets, i.e.,
DBLP (Fu et al., 2020), Chameleon (Rozemberczki et al., 2021), Squirrel (Rozemberczki et al., 2021)
under 30% instance-dependent label noise. The summary of experimental results is in the Table 7.
As can be seen, our method still shows superior performance over a range of baselines.

F LIMITATIONS

Indeed, our TCL method has demonstrated effectiveness across various scenarios. However, it’s
important to acknowledge certain inherent limitations due to the intricacies of dealing with noisily
labeled graphs.

Firstly, the TCL method is specifically tailored for homogeneously-connected graphs, where linked
nodes are anticipated to share similarities. This is evident in the diverse datasets utilized in our
experiments. Adapting TCL to heterogeneously connected graphs, such as protein networks, requires
a nuanced refinement of our approach to suit the distinct network characteristics.
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Secondly, a notable challenge for TCL arises when the labeling ratio is exceptionally low. In such
instances, the extraction of clean nodes might inadvertently overlook crucial features of mislabeled
nodes. This oversight could potentially impact the learning process of models. Addressing this
limitation mandates thoughtful adjustments in our approach, aiming to accommodate scenarios with
scantily labeled data better.

G BROADER IMPACTS

Noisy labels have become prevalent in the era of big data, posing significant reliability challenges for
traditional supervised learning algorithms. The impact of label noise is even more pronounced in
graph data, where the noise can propagate through topological edges. Effectively addressing noisy
labels on graph data is a critical issue that significantly impacts the practical applications of graph
data, garnering increasing attention from both the research and industry communities.

In this study, we introduce a Topological Curriculum Learning (TCL) framework to mitigate the
adverse effects of label noise by selectively extracting nodes with clean labels. The effectiveness
of TCL is supported by substantial evidence detailed in the paper. The outcomes of this research
will advance our understanding of handling label noise in graph data and substantially enhance the
robustness of graph models, making strides toward more reliable and accurate graph-based learning.
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