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ABSTRACT

Large Reasoning Models (LRMs) like o3 and DeepSeek-R1 have achieved re-
markable progress in natural language reasoning with long chain-of-thought.
However, they remain computationally inefficient and struggle with accuracy
when solving problems requiring complex mathematical operations. In this work,
we present AgentMath, an agent framework that seamlessly integrates language
models’ reasoning capabilities with code interpreters’ computational precision to
efficiently tackle complex mathematical problems. Our approach introduces three
key innovations: (1) An automated method that converts natural language chain-
of-thought into structured tool-augmented trajectories, generating high-quality
supervised fine-tuning (SFT) data to alleviate data scarcity; (2) A novel agen-
tic reinforcement learning (RL) paradigm that dynamically interleaves natural
language generation with real-time code execution. This enables models to au-
tonomously learn optimal tool-use strategies through multi-round interactive feed-
back, while fostering emergent capabilities in code refinement and error correc-
tion; (3) An efficient training system incorporating innovative techniques, in-
cluding request-level asynchronous rollout scheduling, agentic partial rollout, and
prefix-aware weighted load balancing, achieving 4-5× speedup and making effi-
cient RL training feasible on ultra-long sequences with scenarios with massive tool
calls. Extensive evaluations show that AgentMath achieves state-of-the-art perfor-
mance on challenging mathematical competition benchmarks including AIME24,
AIME25, and HMMT25, substantially outperforming frontier open-source mod-
els of comparable size. Specifically, AgentMath-30B-A3B attains 90.6%, 86.4%,
and 73.8% accuracy respectively, surpassing OpenAI-o3-mini and Claude-Opus-
4.0-Thinking while remaining competitive with OpenAI-o3, Gemini-2.5-Pro, and
DeepSeek-R1-671B-0528. These results validate the effectiveness of our ap-
proach and pave the way for building more sophisticated and scalable mathemati-
cal reasoning agents.

1 INTRODUCTION

Large Reasoning Models (LRMs) such as o3 and DeepSeek-R1 have made remarkable progress in
natural language reasoning with long chain-of-thought (CoT)(OpenAI et al., 2024; Team et al., 2025;
DeepSeek-AI et al., 2025; xAI, 2023; Claude, 2025; Team et al., 2023; Wei et al., 2022). However,
when tackling mathematical problems that demand precise computation or intricate symbolic ma-
nipulation, including large-number arithmetic, complex equation solving, and geometric reasoning,
pure text-based reasoning still has limitations: frequent computational errors necessitate redundant
corrections, which in turn leads to inefficiency and erroneous results.

To enhance computational efficiency and accuracy, recent work has explored incorporating external
tools (i.e., code interpreters), delegating complex and error-prone computational steps to external
environments(Li et al., 2025e; Zhou et al., 2025; Lin & Xu, 2025; Zhang et al., 2025b; Chen et al.,
2023; Gao et al., 2023; Gou et al., 2023b). For instance, models like o3 and o4-mini have signif-
icantly improved mathematical reasoning accuracy through tool invocation. Nevertheless, existing
approaches still face three critical challenges. First, high-quality tool-use data remains extremely
scarce. While methods like START(Li et al., 2025b) generate tool-augmented trajectories via prompt

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

engineering, they suffer from delayed code computation and code result distrust; CoRT(Li et al.,
2025a) employs manual annotation which is effective but lacks scalability; under supervised learn-
ing, models struggle to learn autonomous debugging from code execution failures. Second, the po-
tential for continuous performance improvement and tool-use strategy optimization through agentic
RL remains unexplored. Third, competition-level mathematical problems typically involve ultra-
long reasoning chains with extensive tool invocations (i.e., 96k tokens, 96 tool calls), making tradi-
tional batch-synchronous RL training frameworks inadequate for large-scale agent learning, while
the rollout time for ultra-long sequences causes severe long-tail effects.

To address these challenges, we propose AgentMath, a tool-augmented agentic framework that
seamlessly integrates model reasoning with code execution for efficient and reliable mathematical
problem-solving. AgentMath comprises three core components:

First, we propose an automated tool-augmented trajectory synthesis method that transforms pure-
text long chain-of-thought data into structured training samples containing code execution and au-
thentic feedback. Through code injection, execution verification, and multi-dimensional refinement,
this effectively alleviates data scarcity.

Second, we design a novel agentic reinforcement learning paradigm that supports dynamic interleav-
ing of natural language generation and code execution during reasoning. Through multi-turn inter-
active feedback, models autonomously learn optimal tool invocation strategies. Experiments reveal
that model accuracy continuously improves with increasing tool invocations, exhibiting emergent
code self-correction capabilities.

Third, to support large-scale agentic RL training(Schulman et al., 2017; Li et al., 2025e; Feng et al.,
2025a; Mai et al., 2025), we develop an efficient training system incorporating key techniques such
as request-level asynchronous rollout scheduling, agentic partial rollout, and prefix-aware weighted
load balancing. These innovations improve training efficiency by 4–5×, effectively supporting rein-
forcement learning in scenarios with ultra-long sequences and extensive tool invocations.

Experimental results demonstrate that AgentMath achieves state-of-the-art performance
on challenging mathematical competition benchmarks including AIME24, AIME25, and
HMMT25(Balunović et al., 2025), significantly outperforming frontier open-source tool-augmented
models and pure-text reasoning models of comparable scale. Specifically, AgentMath-30B-A3B
achieves accuracies of 90.6%, 86.4%, and 73.8% respectively, surpassing OpenAI-o3-mini(OpenAI,
2025) and Claude-Opus-4.0-Thinking(Claude, 2025), while remaining competitive with Gemini-
2.5-Pro(Team et al., 2023) and DeepSeek-R1(DeepSeek-AI et al., 2025). These results consistently
validate the effectiveness of AgentMath in mathematical reasoning tasks.

Our main contributions include: (1) We propose an efficient automated tool-augmented data syn-
thesis pipeline that effectively alleviates data scarcity issues. (2) We design a novel agentic rein-
forcement learning paradigm achieving dynamic integration of natural language reasoning and code
execution, enabling models to autonomously learn tool-use strategies through multi-turn interactive
feedback. (3) We develop an efficient asynchronous training system that provides a scalable solu-
tion for ultra-long sequences, multi-turn interaction agent reinforcement learning. (4) We achieve
state-of-the-art performance on multiple challenging mathematical competition benchmarks, paving
the way for building more complex and scalable mathematical reasoning agents.

Due to space constraints, we will defer the related work to Appendix A.1.

2 METHOD

2.1 OVERVIEW

This section presents AgentMath, a tool-augmented agent framework designed to enhance complex
mathematical reasoning by tightly integrating the emergent reasoning capabilities of Large Lan-
guage Models (LLMs) with the precise arithmetic and symbolic computation facilitated by an exter-
nal code execution environment. The architecture operates in two stages: (i) supervised fine-tuning
(SFT) on curated, synthetic tool-invocation trajectories to establish initial competence in invoking
tools appropriately, and (ii) large-scale reinforcement learning (RL) driven by outcome feedback to
incentivize exploration and mastery of optimal, self-corrective tool-use strategies.
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Figure 1: This diagram outlines a three-stage pipeline for creating a high-quality tool-augmented
trajectories for training agents, including Agentic Trajectory Generation via Code Injection, Multi-
Faceted Quality Refinement and Self-Correction Capability Injection. This automated process trans-
forms pure-text reasoning into verified, executable agentic trajectories.

Problem Formulation and Interaction Protocol: We formulate tool-augmented mathematical rea-
soning as a Markov Decision Process (MDP). The LLM-based policy generates interleaved reason-
ing segments and executable code blocks through interaction with a sandboxed execution environ-
ment. Each trajectory consists of action-observation pairs, where state transitions result from the
policy’s conditional generation and deterministic code execution. We define a structured markup
protocol for agent-environment communication: <think> denotes natural language reasoning,
<code> delimits executable code blocks, and <interpreter> encapsulates execution feedback.
This bidirectional exchange mechanism incorporates execution results into the generation context,
enabling adaptive strategy refinement and planning. See Appendix A.2 for more details.

2.2 TOOL-DRIVEN DATA SYNTHESIS

The scarcity of high-quality training data that captures both complex reasoning patterns and strate-
gic tool utilization remains a fundamental bottleneck in developing code-enabled agents. This work
introduces a three-stage automated synthesis-and-refinement pipeline that transforms pure-text long
CoT into agent-style demonstrations with executable code invocations and authentic interpreter feed-
back, yielding a compact and efficient instruction dataset for SFT, as shown in Figure 1.

Stage 1: Agentic Trajectory Generation via Code Injection. We assemble a large-scale cor-
pus from public mathematical reasoning sources (i.e., AM-Thinking, Open-Thoughts(Ji et al., 2025;
Guha et al., 2025)), which distill responses from DeepSeek-R1-0528. To prevent evaluation contam-
ination, we apply n-gram overlap filtering against benchmark datasets (i.e, AIME24/25, HMMT25),
yielding a high-quality pure-text reasoning dataset Dtext.

Direct Manual annotation of agent trajectories is both costly and susceptible to noise. To address
this, we propose an efficient code-injection strategy that leverages a powerful teacher model (i.e.,
DeepSeek-V3(DeepSeek-AI et al., 2025)), guided by carefully crafted prompts presented in Ap-
pendix A.6.2. Each extensive Chain-of-Thought (CoT) sequence τtext ∈ Dtext is systematically
partitioned into multiple segments. Subsequently, each segment undergoes transformation via the
injection function Finject, which substitutes computationally intensive reasoning steps scalc with ex-
ecutable code blocks and their corresponding execution outputs:

τ ′agent = Finject(τtext), where Finject : τtext 7→
(
τtext with scalc ⇒ (c, osim)

)
.

where c denotes the injected code segment, scalc represents the replaced computational step, and osim
is the teacher-simulated execution result. This injection targets complex operations (exponential
computations, matrix manipulations, equation solving) while preserving elementary calculations in
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textual form to maintain the model’s understanding of tool invocation rationale and prevent over-
dependence. Code blocks are delimited by <code> </code> tags, with execution results enclosed
in <interpreter> </interpreter> tags referring to (Feng et al., 2025a).

Stage 2: Multi-Faceted Quality Refinement. Automatically synthesized trajectories can contain
formatting issues, code defects, and logical inconsistencies. We apply four complementary proce-
dures to ensure high quality and effectiveness:

(i) Format consistency correction: We employ regular-expression normalization and teacher model
regeneration for complex cases to enforce strict adherence to the <code>–<interpreter> structural
compliance.

(ii) Code executability verification: Each embedded code snippet is executed within a controlled
sandbox environment. For any failures, we initiate a bounded resampling loop to generate equivalent
but executable alternatives. If execution remains unsuccessful within a predefined compute budget,
the block is reverted to its original textual step scalc to preserve logical soundness.

(iii) Environmental feedback alignment: Simulated outputs osim from the teacher are systemati-
cally replaced with ground-truth execution results oreal = E(c), where E denotes the interpreter
environment. A dedicated verifier model (i.e., Qwen3-32B) is employed to perform this judgment,
guided by a specific judge-prompt detailed in Appendix A.6.3, then assesses contextual consistency.
Incoherent samples are removed or downgraded to text-only variants to maintain narrative integrity.

(iv) Tool-usage rationality assessment: Heuristic constraints on code complexity metrics (i.e., line
count, abstract syntax tree depth) are enforced to eliminate instances of unnecessary code invocation,
thereby reinforcing necessity-aware tool utilization patterns.

Self-Correction Capability Injection. Beyond correct tool invocation, a robust agent need also
recover from erroneous tool feedback. We sample trajectories that were excluded during refinement
due to execution failures, and for each failed program cfail with error output oerror = E(cfail), we
prompt the teacher model to generate a structured self-correction trace (diagnose the error → repair
the code → re-execute → continue reasoning). The detailed prompt can be found in Appendix A.6.1.
A small fraction of these negative-to-positive corrections is injected to strengthen debugging robust-
ness. The final instruction set DSFT combines validated, tool-augmented trajectories with diagnostic
correction traces and serves as the foundation for SFT.

2.3 AGENTIC REINFORCEMENT LEARNING

We present an agentic reinforcement learning (RL) framework that advances code-integrated rea-
soning capabilities beyond supervised fine-tuning (SFT). This stage pursues two objectives: (i) to
quantify the incremental gains of RL over an SFT baseline, and (ii) to elucidate how RL reshapes
tool-usage strategies under interleaved natural language generation and program execution. Addi-
tionally, the detailed construction of the RL data is described in Appendix A.5.2.

2.3.1 AGENT-SPECIFIC REINFORCEMENT LEARNING

Our framework employs Group Relative Policy Optimization (GRPO)(Shao et al., 2024) as the core
optimization algorithm, which obviates critic models while enhancing training efficiency through
group-wise trajectory sampling and reward normalization described in Appendix A.3. We em-
ployed multi-stage RL training, as detailed in Section 3.5. Following DAPO (Yu et al., 2025),
we incorporate dynamic sampling, asymmetric gradient clipping, token-level loss computation, and
KL divergence removal. We introduce three system innovations tailored for code-integrated agents:

Agentic trajectories with interleaved code execution. During rollout, trajectories are constructed
through a generate–pause–execute–resume loop (See Appendix A.2), yielding hybrid traces com-
posed of chain-of-thought reasoning, inline code snippets, and real-time interpreter feedback.
Tool invocations are bounded by a per-instance cap T , enabling fine-grained control over agent-
environment interactions and promoting sample efficiency.

Loss Masking for Policy Gradient Updates. To focus learning on the agent’s decision-making
process, the advantage signal is applied exclusively to tokens within <think> and <code> seg-
ments. Tokens generated by the environment, specifically within <interpreter>, are masked during
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Figure 2: The diagram of agentic reinforcement learning. It depicts the structure and workflow
of our agentic reinforcement learning system with core functions including Agent Loop, Asyn-
chronous Scheduler, and Partial Rollout, along with key performance improvement. Based on the
Asynchronous Scheduler, the Agent Loop continues running by default. It will stop early only when
conditions are met: either the content length exceeds the max length (i.e., 32k) or the number of tool
calls exceeds the maximum constraint.

optimization, ensuring that gradient updates are driven by the agent’s own actions rather than deter-
ministic environmental responses.

Adaptive Batch Construction with Filtering and Backfilling. For each problem instance, we
sample G trajectories. Batches are filtered to exclude problems where all trajectories yield either
uniformly correct or uniformly incorrect answers, which offer limited learning signal. To maintain
consistent batch sizes, we backfill by randomly sampling additional filtered instances from the same
pool, thus avoiding inefficient resampling loops while preserving distributional diversity.

2.3.2 REWARD DESIGN

Our reward function integrates answer correctness with tool-usage efficiency. The accuracy
component Racc provides binary feedback based on mathematical equivalence, validated via the
math verify library:

Racc =

{
1, if is equivalent(â, a),

0, otherwise,

where â denotes the predicted answer and a represents ground truth. Conditioned on correctness,
the tool-usage reward Rtool incentivizes efficient computational resource utilization:

Rtool = min
(
Rmax, α+ β ·Ncode

)
if Ncode > 0,

where α represents the base tool-usage reward, β scales with invocation count, and Rmax caps the
maximum tool-usage reward. The composite reward function becomes:

Rtotal = Racc + I(Racc = 1) ·Rtool.

2.4 SCALABLE AGENTIC RL INFRASTRUCTURE

Agentic Reinforcement Learning for complex mathematical reasoning poses significant infrastruc-
tural challenges. Empirical analysis reveals that, during RL training with the temperature set to
1.0, complex problems yield trajectories averaging 24k tokens and involve approximately 27 tool
invocations. This combination of long-context generation and high-frequency external interactions
produces heterogeneous computational workloads. Traditional synchronous batch rollouts exhibit
substantial inefficiencies due to synchronization overhead and resource underutilization.
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To address these challenges, we design a high-performance, scalable training system tailored to
Agentic RL. Through an asynchronous decoupled architecture, an Agentic Partial Rollout algorithm,
and prefix-aware load balancing, the system mitigates performance bottlenecks induced by long-
tail effects and concurrent tool invocations, achieving 4 ∼ 5× improvement in end-to-end training
throughput, as shown in Figure 2.

2.4.1 DECOUPLED AND ASYNCHRONOUS SYSTEM ARCHITECTURE

The architecture is founded on the principle of decoupling GPU-intensive model inference from
CPU/IO-intensive agent logic and environment interactions.

Distributed code execution sandbox cluster. We deploy a distributed cluster of isolated worker
pods to serve concurrent tool invocations at scale. This design offloads CPU-bound code execution
from the training loop while enabling dynamic load distribution. Parallelization reduces tool-call
latency from 175 s to 1.2 s and removes inference blocking, substantially improving GPU utilization.

Request-Level Asynchronous Rollout Scheduling. Static batch-synchronous processing is re-
placed with a coroutine-driven, request-level asynchronous scheduler. Each trajectory rollout is
treated as an independent long-running request, with the inference engine (server) and agents
(clients) fully decoupled via asynchronous communication. When requests suspend for tool invoca-
tions, the inference engine immediately processes other ready requests. This fine-grained scheduling
eliminates head-of-line blocking and maximizes GPU parallelism across heterogeneous workloads.

2.4.2 AGENTIC PARTIAL ROLLOUT

Agentic RL suffers long-tail latency from both sequence length and tool-invocation counts. We
introduce an Agentic Partial Rollout mechanism that decomposes each trajectory τ into budget-
limited segments:

τ = τ (1) ⊕ τ (2) ⊕ . . .⊕ τ (N),

where ⊕ denotes sequence concatenation. Each segment is constrained by a maximum generation
length Lseg and a maximum number of tool invocations Tseg.

At each training iteration, the scheduler samples from an unfinished pool U and a set of new tasks
P , generating one segment per task. Segment generation terminates when: (i) an EOS token is pro-
duced; (ii) segment length reaches Lseg; (iii) tool invocations reach Tseg; or (iv) cumulative trajectory
metrics reach global limits Lglobal or Tglobal. This segmentation prevents individual trajectories from
monopolizing resources and smooths computational load, yielding a 2.2–2.5x speedup. Algorithm 1
outlines the procedure.

2.4.3 PREFIX-AWARE WEIGHTED LOAD BALANCING

Partial rollouts alleviate long-tail latency but introduce requests with long prefixes, increasing KV-
cache memory and prefill cost. Therefore, We design a Prefix-Aware Weighted Load Balancing
strategy that assigns dynamic weights based on prefix length and routes requests to the least-loaded
inference engine.

Each request Rj with prefix length Lj receives a weight

wj =

⌊
Lj

Lbase

⌋
+ wbase,

where Lbase (i.e., 16k tokens) normalizes length and wbase quantifies prefill overhead. For M engines
S1, . . . , SM with loads Wk, a new request Rj is routed to

k∗ = arg min
k∈{1,...,M}

Wk, and Wk∗ ←Wk∗ + wj .

To maximize KV-cache reuse, we implement sticky sessions via a LRU(Least-Recently-Used)
caching, ensuring consecutive segments from the same trajectory preferentially route to the same
engine, thereby avoiding redundant context transfer and recomputation. This combination of dy-
namic weighting and cache-affinity scheduling maintains load balance under heterogeneous traffic
patterns while maximizing system throughput.
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3 EXPERIMENTS

3.1 SUPERVISED FINE-TUNING (SFT) DATA CONSTRUCTION

Stage 1: Foundational Data Curation and Filtering. We aggregate a raw corpus from multi-
ple public math reasoning datasets (i.e., AM-Thinking, OpenThoughts, and AceReason). After
problem-level deduplication, we apply N-gram (N = 4) and MinHash LSH algorithms to eliminate
overlaps with all evaluation sets, including AIME24, AIME25 and HMMT25 with 0.6 similarity
threshold. To further prevent data leakage, we compute semantic similarities between training data
and evaluation sets using gte-large model(Zhang et al., 2024a) , filtering out the top-5 most similar
samples. We then annotate each problem with difficulty scores from 0 to 10 using Qwen3-30B,
retaining data with scores above 5, which yields 392k samples. Finally, using DeepSeek-R1-0528
to generate solutions and removing instances with incorrect answers, we obtain 346k data.

Stage 2: Tool-Augmented Data Synthesis.We first decompose the problem-solving process into
discrete reasoning segments, each with a fixed length of 3k tokens and perform tool-augmented
synthesis for each segment using the Prompt presented in Appendix A.6.2 via DeepSeek-V3-0324.
During synthesis, we filter out samples with synthesis format error, tool execution failures, or incor-
rect final answer, yielding 302k high-fidelity, tool-augmented solution trajectories.

Stage 3: Self-Correction Data Generation.To incorporate self-correction mechanisms, we sample
30k instances from trajectories with unsuccessful code execution and leverage the Self-correction
Prompt presented in Appendix A.6.1 to guide DeepSeek-V3-0324 in generating correction pro-
cesses, producing 14k valid self-correction trajectories.

Through this comprehensive pipeline, we construct a 316k tool-augmented synthetic training set
with an average of 8.3 tool calls and an average sequence length of 16.9K tokens per sample.

3.2 REINFORCEMENT LEARNING (RL) DATA CONSTRUCTION

For RL, we collect problems from multiple public high-quality RL datasets (i.e., DeepScaler,
Skywork-OR1, Retool, POLARIS). We apply the same deduplication strategy as for SFT data, en-
suring no overlap with evaluation sets through N-gram (N=4), MinHash LSH, and semantic similar-
ity computation with 0.6 similarity threshold. To identify challenging problems, we use AgentMath-
8B-SFT to perform 8 inference attempts on all data, filtering out problems that are solved correctly
8 times, culminating in a final set of 42k high-difficulty RL training data. This focuses training on
hard instances that push the model’s strategic capabilities and maximize potential gains from RL.

3.3 TRAINING SETTINGS

Base Models.Our experiments utilize four base models from the Qwen3 series: Qwen3-1.7B-
Base and Qwen3-8B-Base are pre-trained models without post-training; Qwen3-30B-A3B-Instruct-
2507 (Non-Thinking mode, 30B total parameters, 3B activated) and Qwen3-235B-A22B-Instruct-
2507 (Non-Thinking mode, 235B total parameters, 22B activated) are instruction-tuned Mixture-of-
Experts (MoE) models without long chain-of-thought training.

SFT Training.We employ the Llama-Factory framework, training for 6 epochs with learning rates
of 6 × 10−5 (1.7B, 8B, A3B models) and 2 × 10−5 (A22B model), using cosine decay with 10%
warmup, batch size of 512, and maximum sequence length of 32k tokens.

RL Training.Our RL training is built on the verl 0.5.0.dev0 framework(Sheng et al., 2024), initial-
izing from the best SFT checkpoint and using VLLM(Kwon et al., 2023) as the inference engine,
with a 128-node Sandbox cluster for large-scale code execution. We use a constant learning rate of
1× 10−6, a batch size of 64, and a temperature of 1.0, performing 8 rollouts per problem. Training
progresses through three stages, dynamically adjusted to maintain length truncation and tool-call
excess rates below 10%: maximum response length increases from 48k to 72k to 96k tokens, with
corresponding tool invocation limits of 48, 72, and 96 calls, and partial rollout counts of 2, 3, and 4,
ensuring each segment rollout remains within 24k tokens and 24 tool invocations. Due to computa-
tional constraints, AgentMath-235B-A22B is trained solely via supervised fine-tuning (SFT). More
details for data synthesis, SFT, RL, and evaluation are provided in Appendix A.5
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3.4 MAIN RESULTS Table 1: Performance of AgentMath on AIME24/25,
and HMMT25. Our model (highlighted in blue) is
compared against other leading models, with accu-
racy (avg@32) as the evaluation metric. Due to space
limitations, we use DS, QW2.5, and QM2.5 to de-
note DeepSeek-R1, Qwen2.5, and Qwen-2.5-Math,
respectively. For a more detailed and comprehensive
performance table, refer to Table 4 in the Appendix.

Models Base Model Tool Use AIME24 AIME25 HMMT25

Proprietary models

OpenAI-o4-mini-w/tools - ✓ 98.7 99.5 -
OpenAI-o3-w/tools - ✓ 95.2 98.4 -
OpenAI-o4-mini - ✗ 93.4 92.7 83.0
Gemini-2.5-Pro - ✗ 92.0 88.0 82.5
OpenAI-o3 - ✗ 91.6 88.9 77.5
OpenAI-o3-mini - ✗ 87.3 86.3 53.0
Claude-Opus-
4.0-Thinking - ✗ 83.0 72.0 58.3

Frontier Models (1B ∼ 2B)

ToRL-1.5B QM2.5-1.5B-Base ✓ 26.7 26.7 -
DS-Distill-Qwen-1.5B QM2.5-1.5B-Base ✗ 28.8 21.8 15.3
CoRT-1.5B DS-Distill-Qwen-1.5B ✓ 43.1 30.2 20.1
Qwen3-1.7B Thinking Qwen3-1.7B-Base ✗ 52.0 35.3 23.3
OpenThinker3-1.5B QW2.5-1.5B-Instruct ✗ 52.0 41.7 27.3
OpenReasoning-1.5B QW2.5-1.5B-Instruct ✗ 55.5 45.6 31.5
AgentMath-1.7B Qwen3-1.7B-Base ✓ 59.6 48.1 40.2

Frontier Models (7B ∼ 8B)

ToRL-7B QM2.5-7B-Base ✓ 43.3 30.0 -
ZeroTIR-7B QW2.5-7B-Base ✓ 46.7 30.0 22.5
SimpleTIR-7B QW2.5-7B-Base ✓ 50.5 30.9 29.7
AFM-7B QW2.5-7B-Instruct ✓ 51.9 37.8 -
rStar-Math-Qwen-7B QM2.5-7B-Base ✓ 53.3 - -
DS-Distill-Qwen-7B QM2.5-7B-Base ✗ 55.0 39.7 -
CIR-Qwen3-NT8-8B Qwen3-8B ✓ 61.5 46.3 -
AReal-boba-7B DS-Distill-Qwen-7B ✗ 61.9 48.3 29.4
Skywork-OR1-7B DS-Distill-Qwen-7B ✗ 70.2 54.6 35.7
POLARIS-7B-Preview DS-Distill-Qwen-7B ✗ 72.6 52.6 -
Qwen3-8B-Thinking Qwen3-8B-Base ✗ 76.0 67.3 44.7
OpenReasoning-7B QW2.5-7B-Instruct ✗ 84.7 78.2 63.5
DS-0528-Qwen3-8B Qwen3-8B-Base ✗ 86.0 76.3 61.5
AgentMath-8B Qwen3-8B-Base ✓ 89.8 84.7 71.3

Frontier Models (30B ∼ 32B)

ZeroTIR-32B Q2.5-32B-Base ✓ 56.7 33.3 20.0
START-32B QwQ-32B ✓ 66.7 47.1 -
AFM-32B QW2.5-32B-Instruct ✓ 66.7 59.8 -
ReTool-32B QW2.5-32B-Instruct ✓ 67.0 49.3
rStar2-Agent-32B QW2.5-32B-instruct ✓ 69.4 57.3 -
ReTool-R1-32B-distill DS-Distill-Qwen-32B ✓ 72.5 54.3 -
DS-Distill-Qwen-32B QW2.5-32B-Base ✗ 72.9 59.0 33.0
Qwen3-30B-
A3B-Instruct-2507

Qwen3-30B-
A3B-Base ✗ 72.9 61.3 43.0

CoRT-32B DS-Distill-Qwen-32B ✓ 76.7 67.1 -
QwQ-32B - ✗ 79.5 65.3 48.0
STILL-3-TOOL-32B DS-Distill-Qwen-32B ✓ 81.7 64.2 45.4
Skywork-OR1-32B DS-Distill-Qwen-32B ✗ 82.2 73.3 -
AM-Thinking-v1-32B Qwen 2.5-32B-Base ✗ 85.3 74.4 -
Qwen3-30B-
A3B-Thinking-2507

Qwen3-30B-
A3B-Base ✗ 87.7 85.0 71.4

AgentMath-30B-A3B Qwen3-30B-
A3B-Instruct-2507

✓ 90.6 86.4 73.8

Frontier Models (>32B)

Qwen3-235B-
A22B-Instruct-2507

Qwen3-235B-
A22B-Base ✗ 79.2 70.3 55.4

DS-671B DeepSeek-V3-Base ✗ 79.8 70.0 44.4

Qwen3-235B-A22B-Thinking Qwen3-235B-
A22B-Base ✗ 85.7 81.5 62.5

DS-671B-0528 DeepSeek-V3-Base ✗ 91.4 87.5 77.0
Qwen3-235B-
A22B-Thinking-2507

Qwen3-235B-
A22B-Base ✗ 94.2 92.3 83.9

AgentMath-235B-A22B-SFT Qwen3-235B-
A22B-Instruct-2507

✓ 93.4 90.8 81.7

In this section, we comprehensively eval-
uate AgentMath by comparing it against
the advanced reasoning models on three
challenging math competition benchmarks:
AIME24, AIME25, and HMMT25. Results
are presented in Table 1 with more extensive
model comparisons available in Appendix
Table 4. To ensure robust evaluation, we
perform 32 independent inference runs per
test sample, using avg@32 as the pass@1
metric. We use a consistent configuration:
96K maximum sequence length, 96 maxi-
mum tool calls, and code interpreter output
is limited 1024 tokens, and we set 0.6 tem-
perature, and 0.95 top-p.

The results show that AgentMath signifi-
cantly outperforms existing tool-augmented
and text-only frontier reasoning models
across all three benchmarks at comparable
parameter scales. Among small-scale
models (1B ∼ 2B), AgentMath-1.7B attains
59.6%, 48.1%, and 40.2% accuracy on
AIME24, AIME25, and HMMT25 respec-
tively, substantially surpassing both the
tool-augmented CoRT-1.5B (43.1%, 30.2%,
20.1%) and the text-only OpenReasoning-
1.5B (55.5%, 45.6%, 31.5%). At the
medium scale (7B ∼ 8B), AgentMath-8B
achieves 89.8%, 84.7%, and 71.3%, signif-
icantly outperforming the tool-augmented
CIR-Qwen3-NT8-8B and text-only DS-
0528-Qwen3-8B (86.0%, 76.3%, 61.5%).
For larger-scale models (30B ∼ 32B),
AgentMath-30B-A3B reaches 90.6%,
86.4%, and 73.8%, exceeding the tool-
augmented STILL-3-TOOL-32B (81.7%,
64.2%, 45.4%) and text-only Qwen3-
30B-A3B-Thinking-2507 (87.7%, 85.0%,
74.3%).

Notably, the Mixture-of-Experts model
AgentMath-30B-A3B with 3B active param-
eters and 30B total parameters outperforms most dense 30B models on AIME24 and AIME25, ap-
proaching the performance of DS-671B-0528. This demonstrates that our approach achieves com-
petitive performance with substantially larger models while maintaining computational efficiency.

At ultra-large scale (>32B), AgentMath-235B-A22B-SFT achieves 93.4%, 90.8%, and 81.7%
across the three benchmarks, surpassing DS-671B-0528 (91.4%, 87.5%, 77.0%) and achieving
performance on par with Qwen3-235B-A22B-Thinking-2507. Compared to proprietary models,
AgentMath-30B-A3B outperforms OpenAI-o3-mini and Claude-Opus-4.0-Thinking on three bench-
marks and is competitive with OpenAI-o3 and Gemini-2.5-Pro. Furthermore, AgentMath-235B-
A22B-SFT exceeds OpenAI-o3, approaching OpenAI-o4-mini and Gemini-2.5-Pro. Notably, due
to computational constraints, AgentMath-235B-A22B is trained solely via SFT.

These results validate the effectiveness of our tool-augmented data synthesis method and large-
scale reinforcement learning training strategy, yielding consistent improvements in math reasoning
capabilities across diverse model scales. We provide the case study of AgentMath in Appendix A.8.
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Figure 3: Evolution of key metrics during multi-stage RL training: (a-c) accuracy on AIME24 and
AIME25, response length, length clip ratio; (d-f) code ratio, tool call counts, code clip ratio.

3.5 COGNITION ANALYSIS Table 2: Performance comparison between
AgentMath and Text-Based Model in SFT and RL
stages.

Models AIME24 AIME25
Text-Based-SFT-20k 57.1% 49.2%
AgentMath-SFT-20k 60.5% 53.3%

Text-Based-RL 68.7% 57.5%
AgentMath-RL 76.2% 67.5%

Tool-Augmented Synthetic Data vs. Text-
Based Data. To assess the effectiveness of tool-
augmented synthetic data method, we conduct
experiments addressing two core questions: the
comparative advantage of tool-augmented syn-
thetic data over text-based data in SFT, and the
impact of tool augmentation on performance
and efficiency during RL. We employ Qwen3-
8B-Base as the backbone model and an identi-
cal 20k data. As shown in Table 2, in SFT stage, AgentMath-SFT achieves accuracies of 60.5%
on AIME24 and 53.3% on AIME25, surpassing the text-based baseline by 3.4% and 4.1%, validat-
ing our method of converting computation-intensive steps into executable code. The benefits are
further amplified in RL: as detailed in Figure 4 and Table 2, AgentMath-RL requires only ∼400
steps to reach 76.2% (AIME24) and 67.5% (AIME25), a 4.0× efficiency improvement over the
∼1600 steps needed by the Text-Based-SFT model to achieve inferior results (68.7% and 57.5%).
Notably, it matches the Text-Based model’s final performance in just 100–200 steps. Additionally,
inference efficiency improves substantially, as indicated in Figure 5, with sequence lengths reduced
by ∼4k tokens (∼14%) and slower length growth, attributable to precise code execution replacing
verbose manual calculations. Collectively, AgentMath demonstrates superior accuracy, training ef-
ficiency, and inference scalability, confirming the power of interleaving natural language reasoning
with computational tools. See Appendix A.7.1 for more details.

Multi Stage RL Training. Following the supervised fine-tuning phase, we observed that the model
frequently generated responses exceeding 32k tokens for complex mathematical problems, with the
most challenging instances surpassing 64k tokens. To effectively balance training efficiency with
model capacity, we developed an adaptive, multi-stage RL strategy that progressively unlocks the
model’s potential by dynamically expanding the sequence length and tool-call budget. This process
is triggered automatically when truncation rates for either response length or tool usage exceed 10%,
incrementally increasing the context length from 48k to 72k (at step 120) and finally to 96k (at step
280), while the tool-call limit expands from 48 to 72 (step 140) and then to 96 (step 320), as illus-
trated in Figure 3c and 3f. The training progression, detailed in Figure 3, reveals significant trends:
generated trajectory average lengths increased from 24k to 30k (Figure 3b), tool average invocation
frequency rose from 27 to 31 calls per problem (Figure 3e), and code utilization improved markedly
from 70% to 95% (Figure 3d), indicating enhanced proficiency in multi-step reasoning. Conse-
quently, accuracy on the AIME24 benchmark rose from 78.4% to 89.8% (+11.4%) and on AIME25
from 72.2% to 84.7% (+12.5%) (Figure 3a), with consistent improvements following each capac-
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Figure 4: Performance Comparison of AgentMath vs. Text-Based Model in the RL phase on
AIME24/25. Both models were initialized from their best SFT checkpoint trained on 20k data.

ity expansion. Notably, the model exhibited emergent code self-correction capabilities as shown in
Appendix A.8.2 Figure 9. These results, along with the performance of AgentMath with differ-
ent backbones detailed in Table 5, confirm the efficacy of our strategy. The experiments establish
three key insights: (1) expanded capacity is crucial for facilitating deeper reasoning chains; (2) The
composite reward effectively guides the model’s tool-call decisions; and (3) the stable training un-
der extreme configurations (96k tokens, 96 tool calls) underscores the robustness of the AgentMath
framework and its asynchronous training infrastructure. See Appendix A.7.2 for more details.

Table 3: Performance improvements on AIME24/25
through progressive refinement steps.

Models / Refinement Steps AIME24 AIME25

Initial Unrefined CI-Synthetic Data (20k) 35.3% 25.7%
+ Format consistency correction 47.4% 40.1%
+ Code executability verification 52.8% 44.8%
+ Environmental feedback alignment 56.3% 48.3%
+ Self-correction capability injection 58.6% 50.8%
+ SFT with selective feedback masking 60.5% 53.3%

Synthetic Data Refinement and Scaling
Law. As detailed in Table 3, we conduct a
systematic evaluation of AgentMath’s data
synthesis pipeline, revealing that progres-
sive multi-dimensional refinement is criti-
cal for performance. The initial unrefined
synthetic data yielded suboptimal results
(AIME24: 35.3%; AIME25: 25.7%), pri-
marily due to formatting inconsistencies and
non-executable code. By systematically ap-
plying refinements,including format consistency, code executability verification, and environment
feedback alignment, performance substantially improved to 58.6% on AIME24 and 50.8% on
AIME25. The subsequent integration of a self-correction mechanism, combined with supervised
fine-tuning using selective feedback masking guided by code execution results, culminated in final
accuracies of 60.5% on AIME24 and 53.3% on AIME25, underscoring the necessity of each refine-
ment stage. Furthermore, scaling the tool-augmented dataset from 2k to 300k (Figure 7) yielded sig-
nificant performance gains, improving accuracy from 27.2% to 78.4% on AIME24 and from 21.1%
to 72.2% on AIME25. This combination of rigorous quality control and effective data scaling ef-
fectively mitigates data scarcity in tool-augmented mathematical reasoning, establishing a robust
foundation for high-performance reasoning agents. Further details are provided in Appendix A.7.3.

Owing to space constraints, a comprehensive analysis of the AgentMath framework’s training effi-
ciency and the impact of the partial rollout segment count is deferred to Appendix A.7.4.

4 CONCLUSION

This paper introduces AgentMath, a tool-augmented agent framework that seamlessly integrates lan-
guage model reasoning with the precision of code interpreters to tackle complex mathematical prob-
lems. Extensive evaluations show that AgentMath achieves state-of-the-art performance on chal-
lenging mathematical competition benchmarks, including AIME24, AIME25, and HMMT25. Re-
markably, AgentMath-30B-A3B with only 3B active parameters achieves 90.6%, 86.4%, and 78.9%
accuracy, outperforming OpenAI-o3-mini and Claude-Opus-4.0-Thinking while remaining compet-
itive with OpenAI-o3, Gemini-2.5-Pro, and DeepSeek-R1-671B. Furthermore, our work highlights
the essential role of automated tool-augmented data synthesis and a scalable asynchronous training
infrastructure in enabling effective and efficient agentic learning for mathematical reasoning.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of AgentMath, we provide comprehensive details on algorithms, data
synthesis procedures, Agent RL training, and experimental configurations throughout the main pa-
per and appendices. The data synthesis pipeline, multi-dimensional quality refinement mechanisms,
and the design of synthesis and judge prompts are detailed in Sections 2.1 and 2.2, and Appendices
A.2 and A.6. The RL training framework and implementation details are presented in Section 2.3
and Appendix A.3. Optimization strategies for RL training efficiency and the design of Algorithm 1
are described in Section 2.4 and Appendix A.4. We systematically evaluate the individual contribu-
tions of tool-augmented data synthesis, multi-stage RL training, scaling laws of synthetic data, and
multi-dimensional quality refinement through ablation experiments in Section 3.5 and Appendix
A.7. Case analyses are provided in Appendix A.8. Detailed experimental settings, including SFT
and RL training data, training strategies, evaluation settings and main results, are documented in
Sections 3.1 , 3.2, 3.3, 3.4 and Appendix A.5. To further facilitate community reproducibility and
future research, we have made available our anonymous source code, data synthesis pipeline, and
training/eval scripts in the supplementary materials. We believe these materials will help researchers
better understand and reproduce our work.
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A APPENDIX

A.1 RELATED WORK

Mathematical Reasoning in LLMs. Large Language Models (LLMs) have made remarkable
progress in mathematical reasoning(Wei et al., 2022; Yao et al., 2023; Luong et al., 2024; Ope-
nAI et al., 2024; Team et al., 2025; DeepSeek-AI et al., 2025; xAI, 2023; Claude, 2025; Team et al.,
2023; Yang et al., 2024a;b; He et al., 2025b; Fang et al., 2025; Zhang et al., 2025a; Wu, 2025b;a).
The introduction of Chain-of-Thought (CoT)(Wei et al., 2022; Yao et al., 2023) prompting enabled
models to decompose complex problems into intermediate reasoning steps, substantially enhanc-
ing their problem-solving capabilities. Subsequently, research has shifted from a singular focus on
model scaling towards optimizing the reasoning process itself(Snell et al., 2024). This paradigm
shift has spurred the development of Large Reasoning Models (LRMs) trained with advanced meth-
ods like Reinforcement Learning(Schulman et al., 2017; Li et al., 2024; Shao et al., 2024), Direct
Preference Optimization(Rafailov et al., 2023; Lai et al., 2024; Pang et al., 2024), and Monte Carlo
Tree Search(Xie et al., 2024; Wang et al., 2023b). State-of-the-art models such as OpenAI’s o1
and DeepSeek-R1(OpenAI et al., 2024; DeepSeek-AI et al., 2025; Team, 2025d; Team et al., 2023;
2025) exhibit human-like cognitive planning on long-chain reasoning tasks, pushing the frontiers
of mathematical performance. Despite these advances, reasoning purely within natural language
is constrained by inherent limitations: complex arithmetic and symbolic manipulations are prone to
error, and self-correction is often inefficient. These shortcomings fundamentally limit their accuracy
and efficiency on competition-level mathematical problems.

Tool-Augmented LLM Reasoning. Tool-augmented reasoning has emerged as a promising solu-
tion to the limitations of text-based approaches(Li et al., 2025e; Zhou et al., 2025; Lin & Xu, 2025;
Zhang et al., 2025b; Jin et al., 2025b; Liu et al., 2025b; Luo et al., 2023; Azerbayev et al., 2023; Yu
et al., 2023). Program-of-Thought (PoT)Chen et al. (2023); Gao et al. (2023); Yue et al. (2023); Jin
et al. (2025a); Wang et al. (2024; 2023a); Cobbe et al. (2021); Hendrycks et al. (2021); Lightman
et al. (2023); Shao et al. (2024); OpenAI (2024; 2025); Wang et al. (2025b); Gou et al. (2023a);
Liu et al. (2024); Qu et al. (2025); Song et al. (2025); Li et al. (2025d); Schick et al. (2023); Zhang
et al. (2024b;c) pioneered delegating computational steps to external code interpreters, enhancing
numerical accuracy. ToRA(Gou et al., 2023b) subsequently developed code-integrated reasoning
frameworks tailored for mathematical problems, demonstrating the efficacy of specialized tools in
complex computations. START(Li et al., 2025b) generates tool-augmented trajectories via prompt
engineering, though random code insertion often yields inefficient utilization. STILL3(Chen et al.,
2025b) relies on prompt-based data construction, and CoRT(Li et al., 2025a) employs high-quality
human annotations but faces scalability constraints. These approaches predominantly depend on
supervised fine-tuning, preventing models from learning debugging strategies from execution fail-
ures or adaptively mastering tool invocation timing and methods. While Retool(Feng et al., 2025a)
combines data rewriting with reinforcement learning for optimization, improvements over exist-
ing LRMs (i.e, DeepSeek-R1-Distill-Qwen-32B(DeepSeek-AI et al., 2025)) remain marginal. Cur-
rent tool-augmented methods thus face three critical challenges: scarcity of high-quality data, in-
adequate policy learning, and inefficient training on long sequences. AgentMath mitigates these
limitations by automating tool-augmented data synthesis and employing reinforcement learning to
enable autonomous exploration of optimal tool-use strategies, including tool invocation and code
self-correction.

Agentic Reinforcement Learning. Reinforcement learning (RL) offers a powerful framework for
cultivating autonomous, decision-making agents from LLMs (Dong et al., 2025; Zhang et al., 2025c;
Xue et al., 2025; Li et al., 2025c; Singh et al., 2025; Shang et al., 2025; Nguyen et al., 2025; Wei
et al., 2025; Luo et al., 2025b; Hao et al., 2025; Agarwal et al., 2025; Lu et al., 2025b; Zeng et al.,
2025a; Liu et al., 2025d; Du et al., 2025b; Chang et al., 2025; Feng et al., 2025b; Li et al., 2025d;
Song et al., 2025; Nakano et al., 2022; Mai et al., 2025; Wang et al., 2025a; Du et al., 2025a; Gao
et al., 2025a; Mei et al., 2025; Wang et al., 2025c; Liu et al., 2025a; Li et al., 2025f; Lu et al.,
2025a; Gao et al., 2025b; Liu et al., 2025e; Hu et al., 2024; Shen et al., 2024; Wang et al., 2025d;
Zhu et al., 2025; Mei et al., 2024; Fan et al., 2025). In information retrieval, models like Search-R1
and R1-Searcher (Li et al., 2025d; Song et al., 2025; Nakano et al., 2022) have demonstrated how
outcome-based rewards can successfully guide agents to query search engines. In mathematical
reasoning, recent work has explored RL for emergent tool use. ToRL (Li et al., 2025e) utilizes RL
to train an agent to operate a code interpreter without predefined patterns, while concurrent work on
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the scaling laws of agentic RL has revealed that simple, outcome-based rewards often foster greater
exploration and policy innovation than complex process-based rewards(Lightman et al., 2023; Wang
et al., 2023b). Similarly, ReTool(Feng et al., 2025a) leverages RL to teach models strategic tool
call, significantly outperforming SFT baselines and uncovering cognitive patterns in code-invocation
decisions. Nevertheless, existing RL methods face a critical bottleneck when applied to competition-
level mathematics. These problems can generate exceptionally long reasoning chains (i.e., 64k
tokens) with dense tool interactions (e.g., 64 calls), a scale that overwhelms conventional batch-
synchronous training architectures. AgentMath alleviates this scalability challenge through a suite
of technical innovations, including request-level asynchronous rollout scheduling, agentic partial
rollouts, and prefix-aware weighted load balancing. These techniques enable efficient RL training
on ultra-long sequences with massive tool usage, boosting training throughput by 4–5x and paving
the way for developing more sophisticated and scalable mathematical reasoning agents.

A.2 PROBLEM FORMULATION AND INTERACTION PROTOCOL

A.2.1 PROBLEM FORMULATION

Tool-augmented mathematical reasoning is formalized as a Markov Decision Process (MDP),
wherein the LLM-based policy agent iteratively interacts with a sandboxed execution environment.
Given a problem statement P , the policy πθ generates trajectories comprising interleaved reasoning
segments and executable code blocks, while the environment E deterministically executes submitted
code and returns corresponding outputs.

The objective is to construct an optimal trajectory τ∗ = {(z1, o1), . . . , (zT , oT )}, where (zt, ot)
denotes the action-observation pair at timestep t. The state transition dynamics are characterized by:

zt ∼ πθ(· | st), st = (P, τt−1)

ot =

{
E(ct), if zt = ct ∈ C
∅, if zt ∈ T

τt = τt−1 ∪ {(zt, ot)}

(1)

where st represents the current state comprising the problem and interaction history, C and T denote
the code and thought action spaces respectively, and E(ct) returns the execution result of code block
ct. The interaction terminates upon generation of a terminal token or exhaustion of the computa-
tional budget.

A.2.2 STRUCTURED INTERACTION PROTOCOL

The implementation employs a structured markup protocol to delineate reasoning and tool invoca-
tion boundaries. Natural language reasoning is encapsulated within <think> ...</think> tags, ex-
ecutable code is delimited by <code> ...</code> tags, and execution feedback is injected through
<interpreter> ...</interpreter> tags.

The generation-execution cycle operates through bidirectional information exchange: upon comple-
tion of a <code> segment, generation is suspended while the extracted code undergoes execution
in the sandboxed environment. The resulting output, whether successful execution, error message,
or timeout notification, is subsequently incorporated into the context as an <interpreter> segment.
This feedback mechanism enables adaptive strategy refinement, wherein the model conditions its
subsequent generation on execution outcomes to perform error correction, strategy adjustment, or
continued reasoning. Such fine-grained interaction traces provide rich supervision signals amenable
to reinforcement learning optimization.

A.2.3 SUPERVISED FINE-TUNING WITH SELECTIVE FEEDBACK MASKING

During supervised fine-tuning on DSFT, the model must learn to generate reasoning and code while
avoiding memorization of deterministic interpreter outputs. Consequently, tool outputs are masked
during loss computation. For a training sample τ = (z1, o1, . . . , zT , oT ), where zt represents model-
generated segments and ot denotes external feedback, the standard autoregressive loss is expressed
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Algorithm 1 Agentic Reinforcement Learning with Partial Rollouts

1: Initialize: Unfinished pool U ← ∅; Experience buffer B ← ∅; Global limits Lglobal, Tglobal;
Segment limits Lseg, Tseg.

2: for each training iteration k = 1, 2, . . . do
3: tasks to process← Sample(P ∪ U)
4: new segments← Rollout(tasks to process, Lseg, Tseg) ▷ Asynchronous generation
5: finished trajectories← ∅, next unfinished pool← ∅
6: for each trajectory τ in new segments do
7: if τ ends with EOS or length(τ) ≥ Lglobal or tools(τ) ≥ Tglobal then
8: Add τ to finished trajectories
9: else

10: Add τ to next unfinished pool
11: U ← next unfinished pool
12: Add finished trajectories to B; UpdatePolicy(B)

as:

LSFT(θ) = −
T∑

t=1

log πθ(zt | P, τ<t) .

A masking function I(·) is introduced to identify tokens originating from <interpreter> segments,
yielding the modified loss:

LSFT-masked(θ) = −
T∑

t=1

|zt|∑
k=1

(
1− I(zt,k)

)
log πθ(zt,k | P, τ<t, zt,<k) ,

where zt,k denotes the k-th token of segment zt, and I(zt,k) = 1 if and only if zt,k resides within
<interpreter> tags. This selective masking ensures that gradient updates originate exclusively from
model-generated reasoning and code, thereby shaping intrinsic reasoning capabilities and decision-
making processes while treating external feedback as non-trainable contextual information.

A.3 GROUP RELATIVE POLICY OPTIMIZATION

We employs Group Relative Policy Optimization (GRPO) as the core optimization algorithm. GRPO
eliminates the requirement for value function approximation, thereby reducing computational com-
plexity through group-wise trajectory sampling and intra-group reward normalization. The opti-
mization objective is formulated as:

JGRPO(θ) = E P∼D,

{Ti}G
i=1∼πθold (·|P )

 1

G

G∑
i=1

1

|Ti|

|Ti|∑
t=1

min
(
ri,t(θ) Âi, clip(ri,t(θ), 1− ε, 1 + ε) Âi

) ,

where ri,t(θ) denotes the importance sampling ratio. The advantage estimate Âi is computed
through within-group normalization:

Âi =
R(Ti)− µR

σR + δ
,

with µR and σR representing the group mean and standard deviation, respectively, and δ serving
as a numerical stability constant. Following recent advances in DAPO, the KL divergence penalty
is omitted to facilitate exploration, while the Clip-Higher strategy is adopted to enhance learning of
high-entropy, low-probability tokens critical for complex reasoning tasks.

A.4 AGENTIC PARTIAL ROLLOUT ALGORITHM

A.5 EXPERIMENTAL DETAILS

This section describes the training data construction, model training, and evaluation settings.
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A.5.1 SUPERVISED FINE-TUNING (SFT) DATA CONSTRUCTION

The supervised fine-tuning (SFT) data construction pipeline consists of three phases.

Stage 1: Foundational Data Curation and Filtering. We aggregate a raw corpus from mul-
tiple public math reasoning datasets (i.e., AM-Thinking, OpenThoughts, and AceReason). After
problem-level deduplication, we apply N-gram (N = 4) and MinHash LSH algorithms to eliminate
overlaps with all evaluation sets, including AIME24, AIME25 and HMMT25 with 0.6 similarity
threshold. To further prevent data leakage, we compute semantic similarities between training data
and evaluation sets using gte-large model(Zhang et al., 2024a) , filtering out the top-5 most similar
samples. We then annotate each problem with difficulty scores from 0 to 10 using Qwen3-30B,
retaining data with scores above 5, which yields 392k samples. Finally, using DeepSeek-R1-0528
to generate solutions and removing instances with incorrect answers, we obtain 346k high-quality
data.

Stage 2: Tool-Augmented Data Synthesis. We firstly decompose the problem-solving process
into discrete reasoning segments and perform tool-augmented synthesis for each segment using
the Prompt presented in Appendix A.6.2 via DeepSeek-V3-0324. During synthesis, we filter out
samples with synthesis format error, tool execution failures, or incorrect final answer, yielding 302k
high-fidelity, tool-augmented solution trajectories.

Stage 3: Self-Correction Data Generation. To incorporate self-correction mechanisms, we sam-
ple 30k instances from trajectories with unsuccessful code execution and leverage the Self-correction
Prompt presented in Appendix A.6.1 to guide DeepSeek-V3-0324 in generating correction pro-
cesses, producing 14k valid self-correction trajectories.

Through this comprehensive pipeline, we construct a 316k tool-augmented synthetic training set
with an average of 8.3 tool calls and an average sequence length of 16.9K tokens per sample.

A.5.2 REINFORCEMENT LEARNING (RL) DATA CONSTRUCTION

For RL, we collect problems from multiple public high-quality RL datasets (i.e., DeepScaler,
Skywork-OR1, Retool, POLARIS). We apply the same deduplication strategy as for SFT data, en-
suring no overlap with evaluation sets through N-gram (N=4), MinHash LSH, and semantic similar-
ity computation with 0.6 similarity threshold. To identify challenging problems, we use AgentMath-
8B-SFT to perform 8 inference attempts on all data, filtering out problems that are solved correctly
8 times, culminating in a final set of 42k high-difficulty RL training data. This focuses training on
hard instances that push the model’s strategic capabilities and maximize potential gains from RL.

A.5.3 TRAINING SETTINGS

Base Models. Our experiments utilize four base models from the Qwen3 series: Qwen3-1.7B-
Base and Qwen3-8B-Base are pre-trained models without post-training; Qwen3-30B-A3B-Instruct-
2507 (Non-Thinking mode, 30B total parameters, 3B activated) and Qwen3-235B-A22B-Instruct-
2507 (Non-Thinking mode, 235B total parameters, 22B activated) are instruction-tuned Mixture-of-
Experts (MoE) models without long chain-of-thought training.

SFT Training. We employ the Llama-Factory framework, training for 6 epochs with learning rates
of 6 × 10−5 (1.7B, 8B, A3B models) and 2 × 10−5 (A22B model), using cosine decay with 10%
warmup, batch size of 512, and maximum sequence length of 32k tokens.

RL Training. Our RL training is built on the verl 0.5.0.dev0 framework(Sheng et al., 2024), ini-
tializing from the best SFT checkpoint and using VLLM(Kwon et al., 2023) as the inference engine,
with a 128-node Sandbox cluster for large-scale code execution. We use a constant learning rate of
1× 10−6, a batch size of 64, and a temperature of 1.0, performing 8 rollouts per problem. Training
progresses through three stages, dynamically adjusted to maintain length truncation and tool-call
excess rates below 10%: maximum response length increases from 48k to 72k to 96k tokens, with
corresponding tool invocation limits of 48, 72, and 96 calls, and partial rollout counts of 2, 3, and 4,
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ensuring each segment rollout remains within 24k tokens and 24 tool invocations. Due to computa-
tional constraints, AgentMath-235B-A22B is trained solely via supervised fine-tuning (SFT).

A.5.4 EVALUATION SETTINGS

Benchmarks. We primarily evaluate on AIME24, AIME25, and HMMT25. These challenging
U.S. high school math competitions feature problems in algebra, number theory, combinatorics, and
geometry, providing a robust test of advanced mathematical modeling, multi-step logical reasoning,
and strategic problem-solving.

Evaluation Metrics. To ensure robust evaluation, we perform 32 independent inference runs per
test sample, using avg@32 as the pass@1 metric.

Inference Parameters. We use a consistent configuration: maximum sequence length = 96K
tokens, maximum tool calls = 96, code interpreter output limit = 1024 tokens, temperature = 0.6,
and top-p = 0.95.

Answer Extraction and Validation. We extract final answers from \boxed{} markers in model
responses and employ Math-Verify library for exact comparison with ground truth answer, determin-
ing correctness only when verification returns True.

A.5.5 DETAIL RESULTS
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Table 4: Performance comparison (avg@32 accuracy) of AgentMath against state-of-the-art models
on AIME24, AIME25, and HMMT25 benchmarks. Evaluation follows DeepSeek-R1 framework
(temperature=0.6, topp=0.95). AgentMath models (highlighted in blue) achieve superior results
across all scales, with the 30B variant competitive against 671B models.

Models Base Model Tool Use AIME24 AIME25 HMMT25

Proprietary models

OpenAI-o4-mini-w/tools(OpenAI, 2025) - ✓ 98.7 99.5 -
Grok-4-w/tools(xAI, 2023) - ✓ - 98.8 -
OpenAI-o3-w/tools(OpenAI, 2025) - ✓ 95.2 98.4 -
OpenAI-o4-mini(OpenAI, 2025) - ✗ 93.4 92.7 83.0
Gemini-2.5-Pro(Team et al., 2023) - ✗ 92.0 88.0 82.5
OpenAI-o3(OpenAI, 2025) - ✗ 91.6 88.9 77.5
Seed-1.6-thinking(Seed et al., 2025) - ✗ 90.3 86.0 -
OpenAI-o3-mini(OpenAI, 2025) - ✗ 87.3 86.3 53.0
Claude-Opus-4.0-Thinking(Claude, 2025) - ✗ 83.0 72.0 58.3
Grok-3-Beta Thining(xAI, 2023) - ✗ 83.9 77.3 -
Kimi-k1.5(Team et al., 2025) - ✗ 77.5 - -

Frontier Models (1B ∼ 2B)

ToRL-1.5B(Li et al., 2025e) Qwen2.5-Math-1.5B-Base ✓ 26.7 26.7 -
DeepSeek-R1-Distill-Qwen-1.5B(DeepSeek-AI et al., 2025) Qwen2.5-Math-1.5B-Base ✗ 28.8 21.8 15.3
DeepScaleR-1.5B-Preview(Luo et al., 2025a) DeepSeek-R1-Distill-Qwen-1.5B ✗ 40.0 30.0 -
CoRT-1.5B(Li et al., 2025a) DeepSeek-R1-Distill-Qwen-1.5B ✓ 43.1 30.2 20.1
Nemontron-Research-Reasoning-Qwen-1.5B(Liu et al., 2025c) DeepSeek-R1-Distill-Qwen-1.5B ✗ 49.6 36.0 21.7
Qwen3-1.7B Thinking(Team, 2025c) Qwen3-1.7B-Base ✗ 52.0 35.3 23.3
OpenThinker3-1.5B(Guha et al., 2025) Qwen2.5-1.5B-Instruct ✗ 52.0 41.7 27.3
OpenReasoning-Nemotron-1.5B(Ahmad et al., 2025) Qwen2.5-1.5B-Instruct ✗ 55.5 45.6 31.5
AgentMath-1.7B Qwen3-1.7B-Base ✓ 59.6 48.1 40.2

Frontier Models (7B ∼ 8B)

Qwen2.5-7B-Math-Instruct-TIR(Yang et al., 2024b) Qwen2.5-Math-7B-Base ✓ 20.0 26.7 -
Eurus-2-PRIME-7B(Cui et al., 2025) Qwen-2.5-Math-7B-Base ✗ 26.7 13.3 -
SimpleRL-Zero-7B(Zeng et al., 2025b) Qwen-2.5-Math-7B-Base ✗ 33.3 6.7 -
ToRL-7B(Li et al., 2025e) Qwen2.5-Math-7B-Base ✓ 43.3 30.0 -
ZeroTIR-7B(Mai et al., 2025) Qwen-2.5-7B-Base ✓ 46.7 30.0 22.5
SimpleTIR-7B(Xue et al., 2025) Qwen2.5-7B-Base ✓ 50.5 30.9 29.7
AFM-7B(Li et al., 2025c) Qwen2.5-7B-Instruct ✓ 51.9 37.8 -
rStar-Math-Qwen-7B(Zhang et al., 2024b) Qwen2.5-Math-7B-Base ✓ 53.3 - -
DeepSeek-R1-Distill-Qwen-7B(DeepSeek-AI et al., 2025) Qwen2.5-Math-7B-Base ✗ 55.0 39.7 -
OpenR1-Distill-7B(Face, 2025) Qwen2.5-Math-7B-Base ✗ 57.7 39.7 25.7
Light-R1-7B-DS(Wen et al., 2025) DeepSeek-R1-Distill-Qwen-7B ✗ 59.1 44.3 27.6
CIR-Qwen3-NT8-8B(Bai et al., 2025) Qwen3-8B ✓ 61.5 46.3 -
AReal-boba-7B(Fu et al., 2025) DeepSeek-R1-Distill-Qwen-7B ✗ 61.9 48.3 29.4
Skywork-OR1-7B(He et al., 2025a) DeepSeek-R1-Distilled-Qwen-7B ✗ 70.2 54.6 35.7
POLARIS-7B-Preview(An et al.) DeepSeek-R1-Distill-Qwen-7B ✗ 72.6 52.6 -
AceReason-Nemotron-1.1-7B(Chen et al., 2025a) DeepSeek-R1-Distill-Qwen-7B ✗ 72.6 64.8 42.9
OpenMath-Nemotron-7B(Moshkov et al., 2025) Qwen2.5-Math-7B ✗ 74.8 61.2 -
Qwen3-8B Thinking(Team, 2025c) Qwen3-8B-Base ✗ 76.0 67.3 44.7
MiMo-7B(Xiaomi, 2025) MiMo-7B-Base ✗ 80.1 70.2 35.7
OpenReasoning-Nemotron-7B(Ahmad et al., 2025) Qwen2.5-7B-Instruct ✗ 84.7 78.2 63.5
DeepSeek-R1-0528-Qwen3-8B(DeepSeek-AI et al., 2025) Qwen3-8B-Base ✗ 86.0 76.3 61.5
AgentMath-8B Qwen3-8B-Base ✓ 89.8 84.7 71.3

Frontier Models (30B ∼ 32B)

Sky-T1-32B-Preview(Team, 2025b) Qwen2.5-32B-Instruct ✗ 43.3 - -
Open-Reasoner-Zero-Qwen-32B(Hu et al., 2025) Qwen2.5-32B-Base ✗ 48.1 36.0 -
DAPO-Qwen-32B(Yu et al., 2025) Qwen2.5-32B-Base ✗ 50.0 32.1 -
s1-32B(Muennighoff et al., 2025) Qwen2.5-32B-Instruct ✗ 56.7 50.0 37.0
ZeroTIR-32B(Mai et al., 2025) Qwen-2.5-32B-Base ✓ 56.7 33.3 20.0
START-32B(Li et al., 2025b) QwQ-32B ✓ 66.7 47.1 -
AFM-32B(Li et al., 2025c) Qwen2.5-32B-Instruct ✓ 66.7 59.8 -
ReTool-32B(Feng et al., 2025a) Qwen2.5-32B-Instruct ✓ 67.0 49.3 -
rStar2-Agent-Qwen2.5-32B(Shang et al., 2025) Qwen2.5-32B-instruct ✓ 69.4 57.3 -
ReTool-R1-32B-distill(Feng et al., 2025a) DeepSeek-R1-Distill-Qwen-32B ✓ 72.5 54.3 -
DeepSeek-R1-Distill-Qwen-32B(DeepSeek-AI et al., 2025) Qwen2.5-32B-Base ✗ 72.9 59.0 33.0
Qwen3-30B-A3B-Instruct-2507(Team, 2025c) (Non-Thinking) Qwen3-30B-A3B-Base ✗ 72.9 61.3 43.0
Light-R1-32B(Wen et al., 2025) Qwen2.5-32B-Instruct ✗ 76.6 64.6 -
CoRT-32B(Li et al., 2025a) DeepSeek-R1-Distill-Qwen-32B ✓ 76.7 67.1 -
TinyR1-32B-Preview(Team, 2025e) DeepSeek-R1-Distill-Qwen-32B ✗ 78.1 65.3 -
QwQ-32B(Team, 2025d) - ✗ 79.5 65.3 48.0
Qwen3-30B-A3B-Thinking(Team, 2025c) Qwen3-30B-A3B-Base ✗ 80.4 70.9 51.0
Qwen3-32B-Thinking(Team, 2025c) Qwen3-32B-Base ✗ 81.4 72.9 -
STILL-3-TOOL-32B(Chen et al., 2025c) DeepSeek-R1-Distill-Qwen-32B ✓ 81.7 64.2 45.4
Skywork-OR1-32B(He et al., 2025a) DeepSeek-R1-Distill-Qwen-32B ✗ 82.2 73.3 -
AM-Thinking-v1-32B(Ji et al., 2025) Qwen 2.5-32B-Base ✗ 85.3 74.4 -
AM-DeepSeek-R1-0528-Distill-32B(a-m team, 2025) Qwen 2.5-32B-Base ✗ 87.1 - -
Qwen3-30B-A3B-Thinking-2507(Team, 2025c) Qwen3-30B-A3B-Base ✗ 87.7 85.0 71.4
OpenReasoning-Nemotron-32B(Ahmad et al., 2025) Qwen2.5-32B-Instruct ✗ 89.2 84.0 73.8
AgentMath-30B-A3B Qwen3-30B-A3B-Instruct-2507 ✓ 90.6 86.4 73.8

Frontier Models (>32B)

Qwen3-235B-A22B-Instruct-2507(Non-Thinking)(Team, 2025c) Qwen3-235B-A22B-Base ✗ 79.2 70.3 55.4
DeepSeek-R1-671B(DeepSeek-AI et al., 2025) DeepSeek-V3-Base ✗ 79.8 70.0 44.4
Qwen3-235B-A22B-Thinking(Team, 2025c) Qwen3-235B-A22B-Base ✗ 85.7 81.5 62.5
DeepSeek-R1-671B-0528(DeepSeek-AI et al., 2025) DeepSeek-V3-Base ✗ 91.4 87.5 77.0
Seed-Oss-36B-Instruct(Team, 2025a) Seed-OSS-36B-Base ✗ 91.7 84.7 -
Qwen3-235B-A22B-Thininking-2507(Team, 2025c) Qwen3-235B-A22B-Base ✗ 94.2 92.3 83.9
AgentMath-235B-A22B-SFT Qwen3-235B-A22B-Instruct-2507 ✓ 93.4 90.8 81.7
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A.6 PROMPT

A.6.1 DATA SYNTHESIS FOR CODE SELF-CORRECTION PROMPT

Prompt 1: Data Synthesis For Code Self-correction Prompt

The following is Your Response based on User Instruction. But there was a code interpreter execution error
during the process. Please do the following:
Please:

1. Based on the interpreter’s failed execution output, identify the exact code segment that caused the
error and explain the reason for the failure.

2. Immediately after the interpreter’s failed output, add a transition sentence , such as: “Oops, the
code above appears to be throwing an error. I need to fix this to ensure it runs successfully.”

3. Correct the erroneous code to ensure it runs successfully.

4. Continue the process from where you left off in your response, completing the remaining steps as
planned.

5. Wrap the final output in <output></output>tags.

User Instruction: {Input}
Your Response: <revised thinking process>{output} </revised thinking process>

A.6.2 TOOL-AUGMENTED DATA SYNTHESIS PROMPT
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Prompt 2: Tool-Augmented Data Synthesis Prompt

You are a professional assistant with expertise in mathematics and Python programming, and a multiple
gold medalist in mathematics olympiads and programming competitions. You have the capability to write
code and use a code interpreter for calculation. The code will be executed in a sandbox environment, and
the results will enhance the reasoning process.
Task Objective
Enhance the provided mathematical problem-solving process by replacing complex manual calculations
with Python code and their execution results, while preserving the original reasoning logic and structure.
Instructions
1. Identify Computational Steps for Code Replacement
Identify steps that would benefit from code execution, including:

• Complex symbolic algebra: polynomial expansion, factorization, solving equations

• Advanced calculus: differentiation, integration, evaluating definite integrals

• Probability and combinatorics: complex counting, probability distributions

• Linear algebra: matrix operations, inversion, eigenvalue decomposition

• Numerical computations: approximations, large number calculations, geometric calculations

• Any error-prone or computationally intensive calculations

Important: Simple calculations (basic arithmetic like 2× 3 = 6) should remain as text. Only use code for
complex computations that require at least 5 lines of implementation.
2. Code Implementation Requirements
Each code snippet must:

• Be complete and executable, including all necessary imports

• Use appropriate libraries (sympy, numpy, scipy, etc.)

• Include clear variable definitions and comments

• Explicitly use print() for all outputs

• Demonstrate the computation process, not just final results

• Contain at least 5 lines of code

3. Integration Guidelines
• Preserve the original reasoning flow: Keep all logical steps, explanations, and even failed attempts

unchanged

• Seamless integration: Code and results should naturally fit within the surrounding text

• Context preservation: Maintain semantic coherence and logical consistency

• No unnecessary changes: Do not modify, delete, or polish unrelated content

4. Formatting Requirements
Wrap each code snippet as follows:

<code>\n‘‘‘python\n‘‘‘\n</code>

Follow immediately with execution results:

<interpreter>\n</interpreter>

5. Input Format
User Question:

{question}\n<original_thinking_process>\n</original_thinking_process>

6. Output Format
Provide the enhanced thinking process wrapped in:

<revised_thinking_process>\n</revised_thinking_process>

7. Key Principles
1. Code Necessity: Use code only for complex calculations that warrant automation.

2. Minimal Changes: Modify only the computational steps, preserving all other text.

3. Complete Scripts: Each code block must be self-contained and executable.

4. Accuracy: Execution results must match exactly what the code produces.
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A.6.3 CONSISTENCY JUDGMENT PROMPT

Prompt 3: Consistency Judgment Prompt

Role and Objective
You are a meticulous scientific analyst. Your mission is to determine if Text A and Text B are substantively
equivalent in their core results.
Focus strictly on numerical values, mathematical expressions, and final conclusions. Ignore all differ-
ences in wording, formatting, and sentence structure.
Core Principles

1. Content Over Form: Prioritize the core message and data. Completely ignore stylistic choices
like wording, formatting (bolding, spacing), and sentence construction.

2. Standardize Before Comparing: Before comparison, you must normalize all values to a common
standard. Convert percentages to decimals (50%→ 0.5), unify units (1m→ 100cm), and resolve
scientific notation.

3. Compare Overlapping Information Only: If one text contains data information absent in the
other, ignore the missing parts. Base your comparison solely on the data and claims present in
both texts. Asymmetry is not a basis for inequivalence.

Evaluation Criteria
1. Numerical Equivalence

• Rule: Two numbers, A and B, are equivalent if their absolute difference is less than or equal
to 1.0 after normalization.

• Formula: |A−B| ≤ 1.0

• Examples:
– Equivalent: |1.453125− 1.390625| = 0.0625 (≤ 1.0)
– Equivalent: | − 32.015744− (−32.515744)| = 0.5 (≤ 1.0)
– Inequivalent: |12.91829− 11.78172| = 1.136 (> 1.0)

• Clarifications:
– Differences in significant figures or decimal places are acceptable as long as the absolute

difference rule is met.
– Numerical signs must match (e.g., 5 and -5 are not equivalent).

2. Mathematical Expression Equivalence
• Rule: Assess if expressions are mathematically equivalent, not just if they are written iden-

tically.
• Examples of Equivalence:

– Commutativity/Associativity: a + b is equivalent to b + a
– Alternative Forms: x/2 is equivalent to 0.5x
– Factoring/Expansion: x2 − 1 is equivalent to (x− 1)(x+ 1)
– Variable Renaming: f(x) = x2 is equivalent to g(y) = y2

• Important Caveat: If a transformation alters the domain in a way that impacts the conclu-
sion (e.g., introduces division by zero), the expressions are not equivalent.

3. Conclusion Equivalence
• Rule: The final answers or main conclusions must align.

– Numerical Conclusions: Must meet the numerical equivalence standard defined above.
– Categorical Conclusions: Must be identical (e.g., ”Positive” vs. ”Positive”; ”Category

A” vs. ”Category A”).

Strict Output Format
1. Reasons: Provide a concise, objective, bulleted list explaining your rationale.

2. Verdict: State the final decision: True (for equivalent) or False (for inequivalent).

3. Boxed: Wrap the final boolean value in \\boxed{}, for example \\boxed{True} or
\\boxed{False}.

Texts to Evaluate:
[Text A] {Text A}
[Text B] {Text B}
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(b) AIME24 response length

0 200 400 600 800 1000 1200 1400 1600
Train_steps

26000

27000

28000

29000

30000

31000

32000

33000

34000

A
IM

E
25

 A
ve

ra
ge

 L
en

gt
h 

(#
To

ke
ns

)

AgentMath
Text-Based RL

(c) AIME25 response length

Figure 5: The evolution of sequence lengths for AgentMath and Text-Based model during RL train-
ing and on the AIME24 and AIME25. Both models started from their best SFT checkpoints trained
on 20k data.

Table 5: Performance of different backbone models in SFT and RL stage on AIME24/25

Models AIME24 AIME25
Qwen3-1.7B-SFT-30w 44.5% 34.8%
Qwen3-1.7B-RL 59.6% 48.1%
Qwen3-8B-SFT-30w 78.4% 72.2%
Qwen3-8B-RL 89.8% 84.7%
Qwen3-30B-A3B-SFT-30w 83.9% 80.5%
Qwen3-30B-A3B-RL 90.6% 86.4%

A.7 DETAILED ANALYSIS

A.7.1 TOOL-AUGMENTED SYNTHETIC DATA VS. TEXT-BASED DATA

To assess the effectiveness of AgentMath, our proposed tool-augmented agent framework for com-
plex mathematical reasoning, we conduct experiments addressing two key questions: (1) What per-
formance advantages do tool-augmented synthetic data provide over text-only data in SFT phase?
(2) Can tool augmentation enhance both model performance and training efficiency in RL phase?
All experiments employ Qwen3-8B-Base as the backbone model with a maximum sequence length
of 64k and a limit of 64 tool invocations in RL.

Supervised Fine-Tuning Performance. As shown in Table 2, when trained on an identical 20k SFT
data, the tool-augmented model achieved accuracies of 60.5% on AIME24 and 53.3% on AIME25,
surpassing the plain-text baseline (57.1% and 49.2%) by margins of 3.4% and 4.1%, respectively.
This result confirms the effectiveness of our data synthesis method, which transforms computation-
intensive reasoning steps into executable code.

Agent RL Efficiency. The benefits of tool augmentation are further amplified during RL. As de-
tailed in Figure 4 and Table 2, the tool-augmented model required only approximately 400 training
steps to improve from 60.5% to 76.2% on AIME24 and from 53.3% to 67.5% on AIME25. In
contrast, the text-based model needed around 1,600 steps to reach 68.7% and 57.5%. This repre-
sents a 4.0× improvement in training efficiency. Notably, the tool-augmented model matched the
final performance of the text-based model within just 100–200 steps, underscoring the advantage
of dynamically interleaving natural language reasoning with code execution for accelerated policy
optimization.

Improved Inference Efficiency and Scalability. As indicated in Figure 5, the tool-augmented
model also demonstrated superior inference efficiency. During RL training and inference, its se-
quence length ranged from 24k to 29k tokens, compared to 28k–34k for the text-based model, with
a reduction of roughly 4k tokens (∼14%). Furthermore, the growth in sequence length was sig-
nificantly slower for the tool-augmented model as training progressed. These efficiency gains stem
from precise tool-based computations replacing verbose and error-prone manual calculation steps.

In conclusion, AgentMath, by seamlessly integrating natural language reasoning with precise com-
putational tools, demonstrates substantial improvements across all critical metrics (accuracy, train-
ing efficiency, and inference cost). These findings validate the effectiveness of both our tool-
augmented data synthesis method and the agent-based RL framework.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 6: Efficiency evaluation of AgentMath RL training framework

Method Time per step (s) Speedup
Static Batch Synchronous Rollout 3600–4000 –
+ Request-Level Asynchronous Rollout 2100–2500 1.5–1.8×
+ Agentic Partial Rollout 1100–1300 3.0–3.3×
+ Prefix-Aware Weighted Load Balancing 750–900 4.0–5.0×

Table 7: Impact of the number of partial rollout segments (N ) on training efficiency and model
performance.

Partial Rollout (N ) Time (100 steps) AIME24 AIME25
Partial Rollout N = 1 62h 70.5% 60.5%
Partial Rollout N = 2 28h 70.1% 60.7%
Partial Rollout N = 4 22h 70.8% 60.7%
Partial Rollout N = 6 22h 69.8% 60.1%
Partial Rollout N = 8 23h 69.5% 60.5%

A.7.2 MULTI STAGE RL TRAINING

Following SFT, the model frequently produced responses exceeding 32k tokens on complex mathe-
matical problems, with particularly challenging instances surpassing the 64k tokens. To balance
training efficiency with model capacity, we developed an adaptive, multi-stage reinforcement
learning strategy. This method progressively unlocks the model’s potential by dynamically ex-
panding the sequence length and tool-call budget. A truncation rate exceeding 10% for either re-
sponse length or tool usage triggers an automatic budget increase: context length increases from 48k
to 72k (step 120) and finally to 96k (step 280), while the tool-call limit expands from 48 to 72 (step
140) and then to 96 (step 320) as shown in Figure 3cand 3f.

As illustrated in Figure 3, the training progression reveals significant trends: As training progresses,
generated trajectory lengths increase from 24k to 30k (Figure 3b), tool invocation frequency rises
from 27 to 31 calls per problem (Figure 3e), and code utilization improved markedly from 70%
to 95% (Figure 3d). These metrics indicate the model’s growing proficiency in complex, multi-
step reasoning and sophisticated tool use. Correspondingly, accuracy on the AIME24 benchmark
rose from 78.4% to 89.8% (+11.4%), and on AIME25 from 72.2% to 84.7% (+12.5%), as shown
in Figure 3a. Accuracy consistently improves following each capacity expansion. Crucially, the
model exhibited emergent capabilities in self-correcting its generated code (Figure 9). These results
confirm the efficacy of our multi-stage reinforcement learning strategy, which strikes an optimal
balance between computational efficiency and model capability. Additionally, Table 5 details the
performance of AgentMath with different backbones on AIME24 and AIME25. It shows that our
approach brings significant enhancement in both SFT and RL stages, demonstrating the robustness
and effectiveness of the data synthesis method and the multi-stage RL training strategy.

Key Findings. The experiments establish three critical insights: (1.) Expanded capacity is cru-
cial: Increasing the sequence length and tool-call budget is essential for facilitating deeper reasoning
chains. (2.) Effective reward shaping: The sustained growth in tool usage confirms that our compos-
ite reward function successfully guides the model’s tool-call decisions. (3.) Framework robustness:
Stable training under the extreme configuration of 96k tokens and 96 tool calls underscores the
robustness of both the AgentMath framework and its asynchronous training infrastructure.

A.7.3 SYNTHETIC DATA REFINEMENT AND SCALING LAW

Table 3 presents a comprehensive evaluation of AgentMath’s data synthesis pipeline. The initial,
unrefined synthetic data yielded suboptimal results (AIME24: 35.3%; AIME25: 25.7%), primar-
ily due to formatting inconsistencies and non-executable code. By progressively applying multi-
dimensional quality refinement, including format consistency, code executability verification, and
environment feedback alignment, model performance improved substantially, achieving accuracies
of 58.6% on AIME24 and 50.8% on AIME25. The subsequent integration of self-correction ca-
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Figure 6: Exploring the performance impact of agent partial rollout segment count on AIME24/25,
we adopt the Qwen3-8B-2w-SFT model as the RL initial point.
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pabilities, combined with supervised fine-tuning using selective feedback masking based on code
execution results, yielded final performance of 60.5% on AIME24 and 53.3% on AIME25. These
results underscore the critical contribution of each refinement operation.

Building upon this validated data synthesis pipline, we further explored the impact of scaling the
tool-augmented dataset, as shown in Figure 7. Scaling the dataset from 2k to 300k led to a perfor-
mance increase from 27.2% to 78.4% on AIME24 and from 21.1% to 72.2% on AIME25, demon-
strating the effective scalability of our approach. By combining rigorous quality control with ef-
fective scaling, AgentMath effectively alleviates the data scarcity in tool-augmented mathematical
reasoning, laying a robust foundation for developing high-performance reasoning agents.

A.7.4 EFFICIENCY OF AGENTMATH RL TRAINING FRAMEWORK

To alleviate the computational bottlenecks in agent reinforcement learning caused by ultra-long se-
quences and frequent tool use, we evaluated the efficiency of our AgentMath training framework.
As shown in Table 6, a conventional static, batch-synchronous rollout approach required 3600–
4000 s per training step. By introducing request-level asynchronous rollout scheduling, we cut this
latency to 2100–2500 s (a 1.5–1.8× speedup), mitigating head-of-line blocking from tool invoca-
tions. Incorporating agentic partial rollouts further reduced latency to 1100–1300 s (a 3.0–3.3×
speedup). Finally, adding prefix-aware weighted load balancing brought the per-step latency down
to just 750–900 s, achieving a total 4.0–5.0× speedup and demonstrating AgentMath’s advantages
for long-sequence, tool-interactive tasks.

We also investigated how the number of partial rollout segments (N) affects training efficiency. As
shown in Table 7 and Figure 6, training 100 steps took 62 hours with N = 1, but this was reduced
to 28 hours with N = 2 and 22 hours with N = 4. However, the benefits plateaued for N ≥ 6
due to the scheduling overhead from excessive segmentation. Critically, these optimizations did not
harm performance; the model maintained consistent accuracy of approximately 70% on AIME24
and 60% on AIME25 across all segmentation strategies. These results confirm that AgentMath
effectively resolves the efficiency challenges of long-sequence agent RL, offering a scalable solution
for scenarios that require extended sequences and intensive tool use.

A.8 CASE STUDY

The following example illustrates the dynamic interaction between text reasoning and tool use in
AgentMath’s problem-solving process. Notably, the model also exhibits an emergent capability for
code self-correction. Code blocks highlighted in red indicate an execution error.

A.8.1 AGENTMATH CASE 1

A.8.2 AGENTMATH CASE 2

A.9 LLM USAGE STATEMENT:

LLM is employed solely for grammar checking and expression polishing to enhance the readability
of the text.
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(AIME24-22) Question: Let $ABC$ be a triangle inscribed in circle $\\omega$. Let the 
tangents to $\\omega$ at $B$ and $C$ intersect at point $D$, and let 
$\\overline{AD}$ intersect $\\omega$ at $P$. If $AB=5$, $BC=9$, and $AC=10$, 
$AP$ can be written as the form $\\frac{m}{n}$, where $m$ and $n$ are relatively prime 
integers. Find $m + n$.  Ground Truth Answer: 113 
AgentMath Response: I need to solve this geometry problem. We have a triangle ABC 
inscribed in a circle ω. Tangents to ω at points B and C intersect at point D. Line AD 
intersects the circle again at point P. Given the sides AB = 5, BC = 9, AC = 10, I need to 
find AP as a fraction m/n in simplest terms and then find m + n.\n\nFirst, ... So 
equations:\n\n1) 252x + 33 s y = 0\n\n2) 252x - 33 s y = 2268\n\nNow, add them together: 
(252x + 33s y) + (252x - 33s y) = 0 + 2268 => 504x = 2268 => x = 2268 / 504. Let\'s use 
code to simplify this fraction.\n \n <code> \n```python\nfrom fractions import 
Fraction\n\n# We need to solve for x from the equation: 504x = 2268\n # The initial 
fraction for x is 2268/504.\n x_fraction = Fraction(2268, 504)\n \n print(f"The simplified 
value for x is: {x_fraction}")\n ```\n </code> \n \n <interpreter> \n The simplified value 
for x is: 9/2 \n\ n </interpreter>n \n So x = 9/2 = 4.5. Now from equation 1: 252x + 33 s 
y =0, so 33 s y = -252 x, y = -252 x / (33 s). Let\'s calculate this with code.\n \n <code> \n 
```python \n from fractions import Fraction \n \n# We substitute x = 9/2 into the 
equation y = -252x / (33*s)\n# where s = sqrt(14).\n# We calculate the coefficient of 1/s. 
\n coefficient = Fraction(-252) * Fraction(9, 2) / 33 \n \n print(f"The coefficient for 1/s 
is: {coefficient}")\n```\n</code>\n\n<interpreter>\nThe coefficient for 1/s is: -
378/11\n\n</interpreter>\\n\nSo y = -378 / (11 sqrt(14)). Rationalize: multiply 
numerator and denominator by sqrt(14): [-378 sqrt(14)] / (11 * 14) = -378 sqrt(14) / 154. 
Let\'s use code to simplify this fraction.\n\n <code> \n ```python \n from fractions 
import Fraction \n \n # We need to simplify the fraction -378/154. \n # The full 
expression for y is -378 * sqrt(14) / 154. \n simplified_fraction = Fraction(-378, 154) \n 
\n print(f"The simplified fraction is: {simplified_fraction}") \n ``` \n </code> \n \n \n 
<interpreter> \n The simplified fraction is: -27/11\n\n</interpreter>\n …Now, we can 
compute the squares and the denominator.\n\n<code>\n```python\nimport math\n\n# 
Numerator parts\nval1 = 264**2\nval2 = 225**2\n\n# Denominator parts\nval3 = 
22**2\nval4 = 157\nval5 = 107\n\n# Calculate the full numerator and 
denominator\nnumerator = val1 * val2\ndenominator = val3 * val4 * 
val5\n\nprint(f"264^2 = {val1}")\nprint(f"225^2 = {val2}")\nprint(f"22^2 = 
{val3}")\nprint(f"Numerator (264^2 * 225^2) = {numerator}")\nprint(f"Denominator 
(22^2 * 157 * 107) = {denominator}")\n```\n</code>\n\n<interpreter>\n264^2 = 
69696\n225^2 = 50625\n22^2 = 484\nNumerator (264^2 * 225^2) = 
3528360000\nDenominator (22^2 * 157 * 107) = 8130716\n\n</interpreter>.... 100 and 
13 coprime, yes.\n\nSo m/n = 100/13, m+n=113.\n\nBut let me confirm.\n\nIn the 
problem, sides are 5,9,10, which is almost isosceles, but not, and AP=100/13≈7.692, 
which is plausible.\n\nNow, to box the answer.\n\nSo m+n=100+13=113.\n\nBut let me 
make sure.\n\nSince we have AP, and it\'s rational, and matches.\n\nAnother way to 
confirm: using the formula.\n\nI recall that in some geometries, the length can be found 
using formulas, but I think it\'s correct.\n\nSo the answer is 113.  
 

Figure 8: AgentMath Case study
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(AIME24-29) Question: Let $\\omega\ \n eq 1$ be a 13th root of unity. Find the remainder 
when \\[\\prod_{k=0}^{12}(2-2\\omega^k+\\omega^{2k})\\] is divided by 1000.  
Ground Truth Answer: 321 
AgentMath Response: The problem states: Let ω ≠ 1 be a 13th root of unity. I need to 
find the remainder when the product from k=0 to 12 of (2 - 2ω^k + ω^{2k}) is divided 
by 1000. Since it\'s a product over all 13th roots of unity except 1, but k goes from 0 to 
12, which includes all roots. ω is a primitive 13th root of unity, I assume, since it\'s 
specified ≠1, but k=0 gives ω^0=1, so it includes k=0. \n  \n Let me denote the 
expression inside as f(k) = 2 - 2ω^k + ω^{2k}. ......  \n  Now, let me compute the 
product numerically to check. \n \n  <code>  \n  ```python  \n  import cmath  \n  
import math  \n   \n  # Let omega be the primitive 5th root of unity, omega = 
exp(2*pi*i / 5) \n omega = cmath.exp(2 * cmath.pi * 1j / 5) \n  \n # Calculate the five 
terms g(omega^k) \n g_0 = (omega**0)**2 - 2 * (omega**0) + 2 \n g_1 = omega**2 - 2 
* omega + 2 \n g_2 = omega**4 - 2 * omega**2 + 2 \n g_3 = omega**6 - 2 * omega**3 
+ 2 \n g_4 = omega**8 - 2 * omega**4 + 2 \n  \n # Calculate the product of the five 
terms \n total_product = g_0 * g_1 * g_2 * g_3 * g_4 \n  \n # Print the individual terms 
and the final product \n # Using round to get cleaner numbers as the imaginary parts 
might be very small \n print(f"g(1) = {round(g_0, 5)}") \n print(f"g(omega) = 
{round(g_1, 5)}") \n print(f"g(omega^2) = {round(g_2, 5)}") \n print(f"g(omega^3) = 
{round(g_3, 5)}") \n print(f"g(omega^4) = {round(g_4, 5)}") \n print(f"Total product 
= {round(total_product, 5)}") \n ``` \n </code> \n\n <interpreter> \n Traceback (most 
recent call last): \n  File "/tmp/tmpwjpzt94l/tmp2mcwv09t.py", line 19, in <module> \n  
print(f"g(1) = {round(g_0, 5)}") \n  ^^^^^^^^^^^^^ \n TypeError: type complex doesn\'t 
define __round__ method \n  \n </interpreter> \n \n Oops, the code above appears to be 
throwing an error. I need to fix this to ensure it runs successfully.< The error occurs because 
the `round()` function cannot handle complex numbers directly. I will modify the code to 
handle complex numbers correctly. \n \n <code> \n ̀ ``python \n import cmath \n import math 
\n  \n # Let omega be the primitive 5th root of unity, omega = exp(2*pi*i / 5) \n omega = 
cmath.exp(2 * cmath.pi * 1j / 5) \n  \n # Calculate the five terms g(omega^k) \n g_0 = 
(omega**0)**2 - 2 * (omega**0) + 2 \n g_1 = omega**2 - 2 * omega + 2 \n g_2 = omega**4 
- 2 * omega**2 + 2 \n g_3 = omega**6 - 2 * omega**3 + 2 \n g_4 = omega**8 - 2 * 
omega**4 + 2 \n  \n # Calculate the product of the five terms \n total_product = g_0 * g_1 
* g_2 * g_3 * g_4 \n  \n # Print the individual terms and the final product \n print(f"g(1) = 
{g_0.real:.5f}{g_0.imag:+.5f}j") \n print(f"g(omega) = {g_1.real:.5f}{g_1.imag:+.5f}j") \n 
print(f"g(omega^2) = {g_2.real:.5f}{g_2.imag:+.5f}j") \n print(f"g(omega^3) = 
{g_3.real:.5f}{g_3.imag:+.5f}j") \n print(f"g(omega^4) = {g_4.real:.5f} {g_4.imag:+.5f}j") 
\n print(f"Total product = {total_product.real:.5f} {total_product.imag:+.5f}j") \n ``` \n 
</code> \n <interpreter>\ng(1) = 1.00000+0.00000j \n g(omega) = 0.57295 - 1.31433j \n 
g(omega^2) = 3.92705 - 2.12663j \n g(omega^3) = 3.92705+2.12663j \n g(omega^4) = 
0.57295+1.31433j \n Total product = 41.00000-0.00000j \n  \n </interpreter> \n\n The 
numerical calculation shows the total product is 41. The small imaginary part is due to 
floating-point inaccuracies… So here f=g(x), so f2=1, f1=-2, f0=2 \n\n g=r(x), so g1=-64, 
g0=-1 \n\n ......Thus P=8321. \n\n Now, 8321 mod 1000 is 321. \n\n So the remainder is 
321. 

Figure 9: AgentMath Case study For code self-correction
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A.10 THE PAPER’S CONTRIBUTION IS MOSTLY ON THE DEVELOPMENT OF THE ENTIRE
PIPELINE FROM MY PERSPECTIVE. AS MANY TECHNICAL INNOVATIONS CLAIMED IN
THE PAPER ARE EITHER STANDARD OR MOSTLY FROM ENGINEERING ASPECTS, AS
AGENTIC RL TRAINING IS NOT A FRESH CONCEPT NOWADAYS (INCLUDING
CODING-ASSISTED MATH REASONING). I VALUE A LOT OF THE PAPER’S EFFORTS ON
DEVELOPING SUCH A COMPREHENSIVE PIPELINE (SFT DATA COLLECTION AND
LARGE-SCALE RL SYSTEM BUILDING), WHICH I UNDERSTAND IS VERY
CHALLENGING AND HELPFUL FOR THE OPEN-SOURCE COMMUNITY; HOWEVER, THE
LACK OF TECHNICAL CONTRIBUTION IS THE MAJOR FACTOR PREVENTING ME
PROVIDING A HIGHER SCORE.

We agree that agentic RL training is not a fresh concept nowadays (including coding-assisted math
reasoning), as prior works such as Retool and ToRL tried to explore this direction. However, we
believe the field currently faces two critical challenges that remain inadequately addressed:

1. Lack of efficient tool-augmented data synthesis methods and scaling law studies for long-
chain reasoning scenarios

Existing approaches face substantial limitations when synthesizing tool-augmented data in long-
chain reasoning scenarios. For instance, CoRT relies on manual annotation, making it costly and
difficult to scale. While Retool employs LLM-based synthesis, it produces only 2k samples and pro-
vides insufficient details about the synthesis process. Moreover, existing research lacks systematic
investigation of scaling laws for agent synthesized data. In code-assisted mathematical reasoning,
what is the relationship between data scale and performance? Can superior performance be achieved
through data scaling law? These fundamental questions have rarely been systematically studied in
the open-source community.

2. Agent RL training encounters severe efficiency bottlenecks in ultra-long sequence and large-
scale tool invocation scenarios

When models perform well on code-assisted mathematical reasoning, can performance be continu-
ously improved through large-scale Agent RL to achieve adaptive tool invocation? However, under
conditions involving ultra-long reasoning chains and large-scale tool invocations (e.g., 96k token
length, 96 tool calls), training efficiency becomes a critical bottleneck. Frequent environment inter-
actions and ultra-long trajectory generation cause traditional batch synchronous rollout training on
Qwen3-8B to require 3600-4000 seconds per training step, with rollout generation accounting for
70%-80% of total training time. This inefficiency severely constrains researchers’ exploration of
Agent RL training in long-horizon and large-scale tool-calling scenarios.

We note that training efficiency is crucial for RL training. The ability to train for thousands of steps
and break through performance plateaus directly impacts final results. For instance, DeepSeek-R1-
Zero requires 4000-8000 training steps to observe the model’s “Aha moment” phenomenon and
continuous performance improvements. To address this core bottleneck, our work introduces inno-
vative optimization that reduce per-step training time from 3600-4000 seconds to 700-900 seconds,
achieving a 4–5× speedup. This provides critical support for advancing large-scale Agent RL in
LLMs.

Furthermore, while leading proprietary models (GPT-5, Gemini 3.0, Claude 4.5, etc.) demonstrate
exceptional performance on agent tasks such as code-assisted mathematical reasoning, the lack of
technical details and training methods hinders the open-source community’s ability to reproduce and
advance this research. By providing a clear, transparent, and complete pipeline for data synthesis and
large-scale agent RL training that achieve competitive performance with proprietary models (e.g.,
Gemini 2.5-Pro, OpenAI-o3), our work aims to offer the open-source community a reproducible
technical roadmap, thereby advancing the development of the Agent LLM field.

Therefore, we highlight our core technical contributions across four key dimensions: (1) an efficient
tool-augmented data synthesis method, (2) exploration of scaling laws for tool-augmented synthetic
data, (3) efficient agent RL training techniques for ultra-long sequences and large-scale tool invoca-
tion scenarios, and (4) state-of-the-art performance.

1. Efficient Tool-Augmented Data Synthesis Method
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1.1. Compared to existing work (e.g., Retool), AgentMath achieves significant improvements in
data synthesis. We observe that previous methods (e.g., Retool) suffer from tool overuse issues,
including invoking tools for simple calculations and performing redundant verification of already-
verified correct results, which leads to an increase in ineffective tokens. To address this issue,
AgentMath focuses on applying tool invocations to genuinely necessary complex computational
scenarios (e.g., solving complex equations, performing complex large-number arithmetic, and han-
dling advanced linear algebra and calculus operations). We propose a segmented synthesis strategy
that partitions DeepSeek-R1’s long chain-of-thought process into fixed-length segments (e.g., 3K
tokens) and transforms them into tool-augmented chains-of-thought, and incorporates automated
multi-dimensional quality refinement to ensure high data quality.

Under identical training settings, we use the same 2k synthetic data problems from Retool’s of-
ficial open-source release, the same DeepSeek-R1 teacher model responses, the same base model
(Qwen2.5-32B-Instruct), and the same number of RL training steps (400 steps). The only differ-
ence lies in the data synthesis strategy: AgentMath employs our paper’s proposed tool-augmented
synthesis method (Appendix A.6.2, lines 1404–1456), while Retool uses its original synthesis
prompts. As shown in the table 8, AgentMath-32B-SFT-2k achieves 44.1% on AIME24 and 37.3%
on AIME25, outperforming Retool-32B-SFT-2k (40.9%, 34.5%); meanwhile, AgentMath-32B-
RL achieves 74.8% on AIME24 and 56.6% on AIME25, similarly outperforming Retool-32B-RL
(67.0%, 49.3%). These experimental results demonstrate that AgentMath significantly outperforms
Retool in both SFT and RL performance on AIME24 and AIME25, validating the effectiveness of
our data synthesis method and the superior quality of the synthesized data.

Table 8: Performance comparison between AgentMath and Retool on AIME24 and AIME25 bench-
marks under identical training configurations, demonstrating the superiority of AgentMath’s tool-
augmented data synthesis method over Retool’s approach in both SFT and RL stages.

Model AIME24 Acc AIME25 Acc

Retool-32B-SFT-2k 40.9% 34.5%
AgentMath-32B-SFT-2k 44.1% 37.3%

Retool-32B-RL 67.0% 49.3%
AgentMath-32B-RL 74.8% 56.6%

1.2. Furthermore, we emphasize the multi-dimensional quality refinement pipeline in our data syn-
thesis process, which includes correcting format inconsistencies, excluding samples with failed code
execution, performing Environmental Feedback Alignment, filtering low-complexity code (e.g., ≤5
lines of code), and injecting self-correction capabilities. As shown in the table 9, through our multi-
dimensional quality refinement pipeline, accuracy on AIME24 improves from 35.3% with initially
unrefined synthetic data to 60.5%, and on AIME25 from 25.7% to 53.3%, substantially demon-
strating the critical role and effectiveness of each refinement module in optimizing data quality.
We therefore consider the multi-dimensional quality refinement pipeline in data synthesis to be of
paramount importance, which constitutes one of our key contributions. We are committed to main-
taining transparency and clarity in our synthesis and refinement procedures, whereas some recent
works provide limited details on this crucial aspect, thereby posing challenges for research repro-
ducibility.

2. Scaling Laws for Tool-Augmented Synthetic Data

We systematically validate the scaling laws associated with tool-augmented synthetic data. Through
AgentMath’s segmented data synthesis strategy and multi-dimensional quality refinement, we pro-
gressively scale the dataset from 2k to 300k samples, as shown in the table 10. Fine-tuning the
Qwen3-8B-Base model, we observe consistent performance improvements: accuracy on AIME24
increases from 27.2% to 78.4%, and on AIME25 from 21.1% to 72.2%. Performance continues to
improve with data scale, ultimately achieving excellent results. These findings robustly demonstrate
that scaling laws remain effective for tool-augmented synthetic data. In contrast, some recent studies
(e.g., Retool) utilize only limited data (e.g., 2k samples) and do not sufficiently explore the potential
benefits of data scaling.
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Table 9: Progressive improvement in model accuracy on AIME24 and AIME25 benchmarks
through multi-dimensional quality refinement pipeline. Each refinement step is applied cumula-
tively, demonstrating substantial accuracy gains from 35.3% to 60.5% on AIME24 and from 25.7%
to 53.3% on AIME25.

Models / Refinement Steps AIME24 AIME25

Initial Unrefined CI-Synthetic Data (20k) 35.3% 25.7%
+ Format consistency correction 47.4% 40.1%
+ Code executability verification 52.8% 44.8%
+ Environmental feedback alignment 56.3% 48.3%
+ Tool-usage rationality assessment 57.2% 48.9%
+ Self-correction capability injection 58.6% 50.8%
+ SFT with selective feedback masking 60.5% 53.3%

Table 10: Performance data scaling law of AgentMath-8B models across different benchmarks as
a function of supervised fine-tuning (SFT) training data volume, demonstrating consistent improve-
ments from 2k to 300k samples on AIME24, AIME25, and Google-IMO-AnswerBench datasets.

SFT Training Data Volume AIME24 AIME25 Google-IMO-AnswerBench Avg Score

AgentMath-8B-SFT-2k 27.2 21.1 5.3 17.9
AgentMath-8B-SFT-20k 60.5 53.3 12.8 42.2
AgentMath-8B-SFT-40k 66.8 57.9 17.6 47.4
AgentMath-8B-SFT-80k 69.2 61.8 21.4 50.8
AgentMath-8B-SFT-160k 73.8 66.4 25.6 55.3
AgentMath-8B-SFT-300k 78.4 72.2 28.8 59.8

3. Efficient Agent RL Training for Ultra-Long Sequences and Large-Scale Tool Calling Sce-
narios

In Agent RL, the combination of long-context generation and frequent external tool interactions cre-
ates heterogeneous computational workloads, posing significant challenges to training efficiency. To
address this, we have designed targeted optimization strategies comprising three core improvements:

1. Request-Level Asynchronous Rollout Scheduling: We replace the conventional static
batch synchronous processing with a coroutine-driven, request-level asynchronous sched-
uler. Each trajectory rollout is treated as an independent long-running request, where the
inference engine (server) and the agent (client) are fully decoupled through asynchronous
communication. This effectively mitigates the efficiency bottleneck caused by synchronous
waiting.

2. Agentic Partial Rollout: To alleviate the long-tail latency issues arising from ultra-long
sequences and large-scale tool calls, we propose an agentic partial rollout mechanism, in-
cluding Length Partial Rollout and Tool Partial Rollout. This mechanism decomposes each
trajectory τ into budget-constrained segments, where each segment is limited to a fixed
maximum sequence length (e.g., 32k tokens) and a fixed maximum number of tool calls
(e.g., 32). Incomplete sequences or tool calls are carried over to subsequent batches for con-
tinued execution, while completed trajectories immediately participate in training, thereby
significantly improving training efficiency.

3. Prefix-Aware Weighted Load Balancing: Since Partial Rollout introduces ultra-long se-
quences, leading to a substantial increase in KV cache memory consumption and prefill
computational overhead, we design a prefix-aware weighted load balancing strategy. This
strategy dynamically assigns weights based on the prefix length of requests and intelligently
routes them to the least-loaded inference engine instances, effectively alleviating memory
and computational pressure.

We systematically evaluate the efficiency improvements of the AgentMath training framework. As
shown in Table 11, the traditional static batch synchronous rollout method requires 3600–4000 sec-
onds per training step. With the introduction of request-level asynchronous rollout scheduling, la-
tency is reduced to 2100–2500 seconds (a 1.5–1.8× speedup), effectively mitigating head-of-line
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blocking caused by tool calls. Further incorporating the Agentic Partial Rollout mechanism reduces
latency to 1100–1300 seconds (a 3.0–3.3× speedup). Finally, with the incorporation of prefix-aware
weighted load balancing, the per-step latency is only 750–900 seconds, achieving an overall training
speedup of 4.0–5.0×.

This framework enables efficient Agent RL training in extreme scenarios (e.g., 96k sequence length,
96 tool calls), for which training with such ultra-long sequences and large-scale tool calls has few
precedents in the open-source community. We believe this work provides an important technical
reference for training complex agent systems.

Table 11: Progressive training efficiency improvements in the AgentMath framework through cu-
mulative optimization strategies, demonstrating up to 5.0× speedup over baseline static batch syn-
chronous rollout.

Method Time per step (s) Speedup
Static Batch Synchronous Rollout 3600–4000 —
+ Request-Level Asynchronous Rollout 2100–2500 1.5–1.8×
+ Agentic Partial Rollout 1100–1300 3.0–3.3×
+ Prefix-Aware Weighted Load Balancing 750–900 4.0–5.0×

4. Large-Scale Agent RL Training Achieving State-of-the-Art Performance

AgentMath undergoes a three-stage curriculum learning process, with sequence lengths progres-
sively increasing from 48k to 72k to 96k tokens and tool invocations scaling from 48 to 72 to 96.
Across diverse model backbones spanning 1.5B to 32B parameters, we successfully conduct sta-
ble Agent RL training on ultra-long sequences with large-scale tool invocations, achieving con-
sistent performance improvements. As detailed in Table 12, we achieve state-of-the-art perfor-
mance on challenging mathematical competition benchmarks including AIME24, AIME25, and
HMMT25, significantly outperforming leading open-source models of comparable size. Specifi-
cally, AgentMath-30B-A3B achieves accuracies of 90.6%, 86.4%, and 73.8% on AIME24, AIME25,
and HMMT25 respectively, surpassing OpenAI-o3-mini and Claude-Opus-4.0-Thinking while re-
maining competitive with OpenAI-o3, Gemini-2.5-Pro, and DeepSeek-R1-671B-0528. These re-
sults validate the effectiveness and scalability of our data synthesis method and Agent RL training
strategy, paving the way for building more sophisticated and scalable mathematical reasoning agents.

In summary, we highlight our core contributions as follows:

1. We propose an efficient tool-augmented data synthesis method that focuses on applying
tool invocation to genuinely demanding complex computational scenarios (e.g., solving
complex equations, large-number arithmetic, advanced linear algebra, and calculus). By
combining a segmented synthesis strategy with a multi-dimensional quality refinement
mechanism, AgentMath significantly outperforms Retool in both SFT and RL stages on
AIME24 and AIME25 under identical training configurations.

2. We systematically validate the scaling laws associated with tool-augmented synthetic data,
scaling the dataset from 2K to 300K samples. Building on the Qwen3-8B-Base model,
accuracy on AIME24 improves from 27.2% to 78.4%, and on AIME25 from 21.1% to
72.2%, demonstrating consistent performance gains with increased data scale.

3. To alleviate the training efficiency bottleneck in Agent RL under ultra-long sequences
and large-scale tool invocation scenarios, we introduce request-level asynchronous rollout
scheduling, propose Agent Partial Rollout, and design prefix-aware weighted load balanc-
ing. Through these technical innovations, our overall framework achieves a 4-5× speedup
in training efficiency, reducing the time per training step from 3600-4000 seconds to 750-
900 seconds, thereby enabling efficient agent RL training in extreme scenarios (e.g., 96K
sequence length with 96 tool invocations). To the best of our knowledge, such exploration
of large-scale Agent RL training with extremely long sequences and massive tool invoca-
tions is rarely conducted in the open-source community.

4. Through three-stage curriculum Agent RL training, AgentMath achieves state-of-the-art
performance on challenging mathematical competition benchmarks including AIME24,
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Table 12: Performance comparison of AgentMath against proprietary and frontier open-source mod-
els on AIME24, AIME25, and HMMT25 benchmarks. Our model AgentMath is highlighted in blue.

Models AIME24 AIME25 HMMT25
Proprietary models

OpenAI-o4-mini-w/tools 98.7 99.5 -
Gemini-2.5-Pro 92.0 88.0 82.5
OpenAI-o3 91.6 88.9 77.5
OpenAI-o3-mini 87.3 86.3 53.0
Claude-Opus-4.0-Thinking 83.0 72.0 58.3

Frontier Models (1B ∼ 2B)
DeepSeek-R1-Distill-Qwen-1.5B 28.8 21.8 15.3
Qwen3-1.7B Thinking 52.0 35.3 23.3
OpenReasoning-Nemotron-1.5B 55.5 45.6 31.5
AgentMath-1.7B 59.6 48.1 40.2

Frontier Models (7B ∼ 8B)
DeepSeek-R1-Distill-Qwen-7B 55.0 39.7 -
Qwen3-8B Thinking 76.0 67.3 44.7
OpenReasoning-Nemotron-7B 84.7 78.2 63.5
DeepSeek-R1-0528-Qwen3-8B 86.0 76.3 61.5
AgentMath-8B 89.8 84.7 71.3

Frontier Models (30B ∼ 32B)
ReTool-32B 67.0 49.3 -
DeepSeek-R1-Distill-Qwen-32B 72.9 59.0 33.0
Qwen3-30B-A3B-Thinking-2507 87.7 85.0 71.4
OpenReasoning-Nemotron-32B 89.2 84.0 73.8
AgentMath-30B-A3B 90.6 86.4 73.8

Frontier Models (>32B)
DeepSeek-R1-671B-0528 91.4 87.5 77.0
Qwen3-235B-A22B-Thinking-2507 94.2 92.3 83.9
AgentMath-235B-A22B-SFT 93.4 90.8 81.7

AIME25, and HMMT25 across various model backbones ranging from 1.5B to 32B pa-
rameters, significantly outperforming leading open-source models of comparable size. No-
tably, AgentMath-30B-A3B surpasses OpenAI-o3-mini while remaining competitive with
Gemini-2.5-Pro and DeepSeek-R1-671B-0528. We are committed to open-sourcing our
code, data synthesis pipeline, and model training workflow to advance the LLM reasoning
community.

A.11 CONCERN ABOUT BENCHMARK: THE MATH BENCHMARKS (AIME24, AIME25,
HMMT) EACH CONTAIN ONLY ABOUT 30 QUESTIONS. PRIOR WORK HAS SHOWN
THAT THESE DATASETS MAY HAVE LEAKED INTO OPEN-SOURCE MODEL TRAINING
CORPORA. THUS, IT IS UNCLEAR WHETHER THE REPORTED RESULTS ARE ENTIRELY
RELIABLE. THE AUTHORS ARE ENCOURAGED TO PROVIDE MORE EVIDENCE ON THE
INDEPENDENT CONTRIBUTION OF THE PROPOSED APPROACH.

To systematically validate the reliability of our results and mitigate potential evaluation benchmark
leakage concerns, we conducted supplementary experiments and analyses from three complemen-
tary perspectives.

(1) IMO-AnswerBench: A latest High-Difficulty Benchmark

Considering that datasets such as AIME24, AIME25, and HMMT25 may have partially appeared in
the pre-training corpora of open-source models, we evaluate AgentMath on IMO-AnswerBench, a
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recent mathematics olympiad benchmark released by Google DeepMind in November 2025. This
benchmark comprises 400 carefully curated problems spanning four domains about algebra, combi-
natorics, geometry, and number theory, with 100 problems per category, all sourced from national,
regional, and international olympiad competitions.

To mitigate data memorization and leakage, IMO-AnswerBench systematically rewrites original
competition problems through several strategies: renaming points or lines in geometry problems,
rephrasing problem statements, modifying numerical values and or introducing distractors, and re-
formulating problems using entirely different yet semantically equivalent expressions. This design
substantially reduces the probability of verbatim matches in pre-training corpora and minimizes the
potential for memorization-based advantages, thereby enhancing evaluation robustness and fairness.

The performance of current frontier models on this benchmark: DeepSeek-V3 at 37.0%, Qwen3-
235B at 53.8%, and DeepSeek-R1 at 60.8%, indicates that the benchmark possesses sufficient dis-
criminative power and challenge. Moreover, the benchmark’s release date (November 2025) is no-
tably later than the public release of Qwen3-series models (May 2025), further minimizing the
likelihood of contamination in their training corpora.

Following the experimental setup specified in the IMO-AnswerBench paper, we report results aver-
aged over 8 independent runs. At comparable parameter scales, AgentMath achieves the following
performance across the four categories (as detailed in the table 13):

At the 1.5B–1.7B scale: AgentMath-Qwen3-1.7B achieves 20.3%, outperforming OpenReasoning-
Nemotron-1.5B (17.8%);

At the 7B–8B scale: AgentMath-Qwen2.5-7B achieves 35.1% and AgentMath-Qwen3-8B achieves
37.9%, both substantially outperforming OpenReasoning-Nemotron-7B (33.0%);

At the 30B–32B scale: AgentMath-30B-A3B achieves 51.2%, surpassing Qwen3-30B-A3B-
Thinking-2507 (41.4%), Claude Sonnet 4, DeepSeek-V3, and Kimi-K2-Instruct, while approaching
the performance of Qwen3-235B;

At scales larger than 32B: AgentMath-235B-A22B-SFT achieves 55.4%, surpassing Qwen3-235B
and approaching DeepSeek-R1.

These results demonstrate that AgentMath maintains strong performance and robustness across dif-
ferent parameter scales on a challenging evaluation set that is demonstrably free from data leakage
concerns.

(2) Validation Using Base Models Released Prior to Evaluation Benchmark Publication

To further mitigate concerns regarding potential evaluation data leakage into the pretraining corpus,
we employ open-source base models released before the publication of evaluation benchmarks for
our SFT and RL training. The timeline is as follows:

• Qwen2.5-7B-Base release: September 2024
• Llama3.1-8B-Base release: July 2024
• AIME25 publication: February 2025
• HMMT25 publication: February 2025
• Google-IMO-AnswerBench publication: November 2025

All benchmarks were thus published after model pretraining was completed, thereby precluding any
possibility of data contamination.

As shown in the table 14 and table 15, AgentMath trained on these earlier base models achieves
superior performance across multiple benchmarks:

• Building on Llama3.1-8B-Base, AgentMath-Llama-8B achieves 66.2% and 53.1% on
AIME25 and HMMT25, respectively, significantly outperforming Llama3.1-Nemotron-
Nano-8B-v1 (48.0% and 26.7%);

• Building on Qwen2.5-7B-Base, AgentMath-Qwen2.5-7B attains 79.8% and 65.9% on
AIME25 and HMMT25, respectively, surpassing OpenReasoning-Nemotron-7B (78.2%
and 63.5%);
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Table 13: Performance of AgentMath on Google-IMO-AnswerBench, a recent mathematics
olympiad benchmark released by Google DeepMind in November 2025. Our model (highlighted
in blue) is compared against other leading models, with accuracy (avg@8) as the evaluation metric
according to the IMO-AnswerBench.

Model (Google-IMO-AnswerBench) Algebra Combinatorics Geometry Number Theory Avg score

Proprietary models

Gemini Deep Think (IMO Gold) 85.0% 69.0% 88.0% 78.0% 80.0%
Grok 4 75.5% 55.9% 80.1% 80.9% 73.1%
Gemini 2.5 Deep Think 78.0% 49.0% 83.0% 77.0% 71.8%
Gemini 2.5 Pro 73.4% 48.0% 74.3% 77.1% 68.2%
o4-mini (high reasoning) 71.3% 46.6% 78.4% 75.3% 67.9%
GPT-5 69.9% 46.4% 74.8% 71.2% 65.6%
o3 62.8% 43.0% 70.6% 68.0% 61.1%
Claude Sonnet 4 20.6% 17.8% 26.0% 27.6% 23.0%
Claude Opus4 19.4% 20.0% 23.3% 26.6% 22.3%

Frontier Models (1B–2B)

DeepSeek-R1-Distill-Qwen-1.5B 5.5% 9.9% 14.5% 8.7% 9.7%
Qwen3-1.7B Thinking 11.4% 12.5% 21.5% 17.5% 15.7%
OpenReasoning-Nemotron-1.5B 16.3% 14.0% 22.6% 18.4% 17.8%
AgentMath-Qwen3-1.7B 18.6% 16.2% 24.4% 21.8% 20.3%

Frontier Models (7B–8B)

DeepSeek-R1-Distill-Llama3.1-8B 10.2% 17.4% 21.6% 17.0% 16.6%
DeepSeek-R1-Distill-Qwen-7B 12.8% 20.6% 22.8% 18.0% 18.5%
Qwen3-8B-Thining 17.0% 26.8% 38.0% 25.8% 26.9%
DeepSeek-R1-0528-Distill-Qwen3-8B 21.2% 31.7% 43.3% 27.3% 30.9%
OpenReasoning-Nemotron-7B 23.6% 35.2% 43.2% 29.9% 33.0%
AgentMath-Qwen2.5-7B 24.9% 37.4% 45.6% 32.5% 35.1%
AgentMath-Qwen3-8B 28.3% 39.8% 49.5% 33.8% 37.9%

Frontier Models (30B–32B)

DeepSeek-R1-Distill-Qwen-32B 17.2% 25.1% 33.0% 22.5% 24.4%
Qwen3-30B-A3B-Instruct-2507 27.8% 29.9% 36.2% 27.4% 30.3%
AM-Thinking-v1-32B 27.9% 36.2% 50.1% 29.2% 35.8%
Qwen3-30B-A3B-Thinking-2507 34.7% 44.3% 53.2% 33.3% 41.4%
AgentMath-30B-A3B 43.4% 40.0% 69.6% 51.9% 51.2%

Frontier Models (¿32B)

DeepSeek V3 39.0% 26.0% 35.0% 48.0% 37.0%
Kimi-K2-Instruct 45.6% 31.1% 49.3% 56.9% 45.8%
Qwen3-235B 57.6% 37.5% 57.6% 62.3% 53.8%
AgentMath-235B-A22B-SFT 49.4% 43.2% 73.5% 55.3% 55.4%
DeepSeek R1 65.0% 40.0% 73.0% 65.0% 60.8%

• On the more challenging Google-IMO-AnswerBench, AgentMath-Llama-8B achieves
25.2%, outperforming DeepSeek-R1-Distill-Llama3.1-8B (16.6%), while AgentMath-
Qwen2.5-7B (35.1%) also exceeds OpenReasoning-Nemotron-7B (33.0%).

Therefore, by leveraging base models released in 2024 (Qwen2.5-7B-Base and Llama3.1-8B-Base),
AgentMath demonstrates consistent and leading performance across multiple mathematical reason-
ing benchmarks released in 2025 (AIME25, HMMT25, and IMO-AnswerBench). These results not
only eliminate data contamination risks but also establish the robustness and reliability of our model.

(3) Systematic Comparison of SFT and RL Improvements on Non-Contaminated Evaluation
Benchmarks

To rigorously evaluate the independent contributions of SFT and RL in AgentMath while mitigating
potential data contamination, we conduct systematic comparisons exclusively on benchmarks con-
firmed to be released after the pre-training cutoff date of their corresponding backbone models, as
shown in the table 16 and table 17:

• For Llama3.1-8B-Base and Qwen2.5-7B-Base, we report results on AIME25, HMMT25,
and Google-IMO-AnswerBench;

• For Qwen3-1.7B-Base, Qwen3-8B-Base, and Qwen3-30B-A3B-Instruct-2507, we report
results on Google-IMO-AnswerBench only.

The results reveal consistent improvements across all base models. Based on Llama3.1-8B-
Base, AgentMath-Llama-8b-SFT achieves an average score of 39.2% across the three bench-
marks (AIME25, HMMT25, and Google-IMO-AnswerBench), while AgentMath-Llama-8b-RL
reaches 48.2%. Based on Qwen2.5-7B-Base, AgentMath-Qwen2.5-7B-SFT attains 49.6%, with
AgentMath-Qwen2.5-7B-RL achieving 60.3%.
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Table 14: Performance of AgentMath on AIME24/25, and HMMT25 based on Llama3.1-8B-Base
and Qwen2.5-7B-Base. Our model (highlighted in blue) is compared against other leading models,
with accuracy (avg@32) as the evaluation metric.

Models Base Model Tool Use AIME25 HMMT25

Based on Llama3.1-8B-Base/Instruct

DeepSeek-R1-Distill-Llama-8B Llama-3.1-8B-Base ✗ 28.7 13.8
Llama3.1-Nemotron-Nano-8B-v1 Llama-3.1-8B-Instruct ✗ 48.0 26.7
AgentMath-Llama-8B Llama-3.1-8B-Base ✓ 66.2 53.1

Based on Qwen2.5-7B-Base/Instruct

ZeroTIR-7B Qwen-2.5-7B-Base ✓ 30.0 22.5
SimpleTIR-7B Qwen2.5-7B-Base ✓ 30.9 29.7
DeepSeek-R1-Distill-Qwen-7B Qwen2.5-Math-7B-Base ✗ 39.7 16.3
OpenR1-Distill-7B Qwen2.5-Math-7B-Base ✗ 39.7 25.7
Light-R1-7B-DS DeepSeek-R1-Distill-Qwen-7B ✗ 44.3 27.6
AReal-boba-7B DeepSeek-R1-Distill-Qwen-7B ✗ 48.3 29.4
Skywork-OR1-7B DeepSeek-R1-Distilled-Qwen-7B ✗ 54.6 35.7
AceReason-Nemotron-1.1-7B DeepSeek-R1-Distill-Qwen-7B ✗ 64.8 42.9
OpenReasoning-Nemotron-7B Qwen2.5-7B-Instruct ✗ 78.2 63.5
AgentMath-Qwen2.5-7B Qwen2.5-7B-Base ✓ 79.8 65.9

Table 15: Performance of AgentMath on Google-IMO-AnswerBench based on Llama3.1-8B-Base
and Qwen2.5-7B-Base. Our model (highlighted in blue) is compared against other leading models,
with accuracy (avg@8) as the evaluation metric.

Model (Google-IMO-AnswerBench) Base Model Algebra Combinatorics Geometry Number Theory Avg Score

Based on Llama3.1-8B-Base

DeepSeek-R1-Distill-Llama3.1-8B Llama3.1-8B-Base 10.2% 17.4% 21.6% 17.0% 16.6%
AgentMath-Llama-8b Llama3.1-8B-Base 18.8% 24.6% 33.7% 23.7% 25.2%

Based on Qwen2.5-7B Base/Instruct

OpenReasoning-Nemotron-7B Qwen2.5-7B -Instruct 23.6% 35.2% 43.2% 29.9% 33.0%
AgentMath-Qwen2.5-7B Qwen2.5-7B -Base 24.9% 37.4% 45.6% 32.5% 35.1%

Based on Qwen3-series, we observe similar trends on Google-IMO-AnswerBench: Based on
Qwen3-1.7B-Base, AgentMath-Qwen3-1.7B-SFT scores 11.7% while AgentMath-Qwen3-1.7B-
RL scores 20.3%; Based on Qwen3-8B-Base, AgentMath-Qwen3-8B-SFT scores 28.8% while
AgentMath-Qwen3-8B-RL scores 37.9%; Based on Qwen3-30B-A3B-Instruct-2507, AgentMath-
Qwen3-30B-A3B-SFT scores 43.5% while AgentMath-Qwen3-30B-A3B-RL scores 51.2%.

These results demonstrate that tool-augmented SFT substantially enhances mathematical reasoning
capabilities across all base models, while RL consistently delivers an additional 7%–10% perfor-
mance gain over SFT.

Table 16: The SFT and RL performance of AgentMath on AIME25, HMMT25, Google-IMO-
AnswerBench based on Llama3.1-8B-Base and Qwen2.5-7B-Base.

Model Base Model AIME25 HMMT25 Google-IMO-AnswerBench Avg Score

Based on Llama3.1-8B-Base

AgentMath-Llama-8b-SFT Llama3.1-8B-Base 53.5% 45.8% 18.3% 39.2%
AgentMath-Llama-8b-RL AgentMath-Llama-8b-SFT 66.2% 53.1% 25.2% 48.2%

Based on Qwen2.5-7B Base

AgentMath-Qwen2.5-7B-SFT Qwen2.5-7B -Base 66.4% 55.1% 27.3% 49.6%
AgentMath-Qwen2.5-7B-RL AgentMath-Qwen2.5-7B-SFT 79.8% 65.9% 35.1% 60.3%

In summary, we mitigate potential benchmark contamination through both temporal controls, uti-
lizing a latest high-difficulty benchmark (Google IMO-AnswerBench, November 2025) with earlier
pre-trained base models (Llama3.1-8B-Base and Qwen2.5-7B-Base, 2024) and model diversity, val-
idating across architectures spanning 1.7B to 30B parameters. The consistent and substantial per-
formance improvements across all configurations validate the effectiveness of our tool-augmented
data synthesis method and large-scale reinforcement learning on ultra-long sequences with massive
tool-calls, while confirming the reliability and robustness of our model.
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Table 17: The SFT and RL performance of AgentMath on AIME25, HMMT25, Google-IMO-
AnswerBench based on Qwen3-series base model (1.7B, 8B, 30B).

Model Base Model Google-IMO-AnswerBench

Based on Qwen3-1.7B-Base

AgentMath-Qwen3-1.7B-SFT Qwen3-1.7B-Base 11.7%
AgentMath-Qwen3-1.7B-RL AgentMath-Qwen3-1.7B-SFT 20.3%

Based on Qwen3-8B-Base

AgentMath-Qwen3-8B-SFT Qwen3-8B-Base 28.8%
AgentMath-Qwen3-8B-RL AgentMath-Qwen3-8B-SFT 37.9%

Based on Qwen3-30B-A3B-Instruct-2507

Qwen3-30B-A3B-Instruct-2507 Qwen3-30B-A3B-Base 30.3%
AgentMath-Qwen3-30B-A3B-SFT Qwen3-30B-A3B-Instruct-2507 43.5%
AgentMath-Qwen3-30B-A3B-RL AgentMath-Qwen3-30B-A3B-SFT 51.2%

A.12 TRAINING-TESTING OVERLAP: THE AUTHORS REPORT 346K TRAINING QUESTIONS
FOR SFT AND 42K FOR RL, WHILE THE TOTAL NUMBER OF TESTING QUESTIONS IS
UNDER 100. IT IS QUESTIONABLE WHETHER THE TRAINING DATA ALREADY
CONTAINS COMPONENTS OR SIMILAR STRUCTURES TO THE TEST QUESTIONS.
ALTHOUGH AN N-GRAM FILTERING ALGORITHM IS MENTIONED, THE SPECIFIC
IMPLEMENTATION DETAILS ARE MISSING. HAVE THE AUTHORS PERFORMED
ABLATION STUDIES TO EVALUATE THE EFFECT OF TRAINING DATA VOLUME ON TEST
PERFORMANCE?

Q1: It is questionable whether the training data already contains components or similar structures to
the test questions. Although an n-gram filtering algorithm is mentioned, the specific implementation
details are missing.

To rigorously prevent data contamination, we employed a three-stage progressive deduplication
pipeline as follows:

Stage 1: Problem-level Exact Deduplication

We remove all training samples whose problem statements are exact matches with those in the test
sets by string matching.

Stage 2: 4-gram + MinHash LSH Similarity-based Deduplication

To further eliminate problems with highly similar surface forms, we employ a combination of 4-
gram analysis and MinHash LSH:

• 4-gram construction: For each problem, we construct a n-gram (n=4) set by first tok-
enizing the text (word-level tokenization for English; Jieba tokenizer for Chinese) and then
extracting all consecutive 4-token sequences.

• Similarity measurement: For any test problem A and training problem B, we compute
the Jaccard similarity of their 4-gram sets:

J(A,B) =
|A ∩B|
|A ∪B|

where J(A,B) ∈ [0, 1], with higher values indicating greater n-gram-level similarity.
• Filtering criterion: We set the Jaccard similarity threshold at 0.6. Training samples with

Jaccard similarity exceeding 0.6 relative to any test problem are removed from the training
set.

• Computational optimization: To efficiently handle large-scale deduplication, we employ
MinHash LSH, which uses hash functions to map MinHash signatures into buckets. This
enables similar texts to be clustered together, transforming the problem from global pair-
wise comparisons into localized bucket-wise searches and substantially reducing computa-
tional complexity.

• Implementation: This procedure is implemented using NLTK and the MinHashLSH mod-
ule from the datasketch library.

Stage 3: Semantic Embedding-based Deduplication
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To account for problems that exhibit substantial lexical differences yet remain semantically similar,
we perform an additional semantic deduplication step:

• We generate embeddings for all problem texts in both training and test sets using the gte-
large model.

• We compute semantic similarity (cosine similarity) between each test problem and all train-
ing problems using the sentence transformers library.

• For each test problem, we rank all training problems by descending similarity and remove
the top 5 most semantically similar training samples.

Through this comprehensive three-stage pipeline (exact matching + n-gram/LSH-based filtering +
semantic embedding-based filtering), we removed approximately 8.3K samples from the training
set. This rigorous deduplication ensures that AgentMath’s SFT and RL training data contain no
overlapping or highly similar samples with respect to any evaluation benchmark (AIME24, AIME25,
HMMT25), thereby effectively preventing data contamination and guaranteeing the reliability and
integrity of our evaluation results.

Q2: Have the authors performed ablation studies to evaluate the effect of training data volume on
test performance?

Regarding the scaling law of SFT training data, we conducted systematic scalability experiments
using the Qwen3-8B-Base model. As shown in the table 18, when the training data scales from 2k
to 300k, the model exhibits significant and consistent performance gains across all benchmarks:

• AIME24: Accuracy increases from 27.2% to 78.4%

• AIME25: Accuracy increases from 21.1% to 72.2%

• Google-IMO-AnswerBench: Accuracy increases from 5.3% to 28.8%

• Overall Average: Performance improves from 17.9% to 59.8% (+41.9%)

These results demonstrate that our proposed tool-augmented data synthesis approach exhibits strong
scalability and effectiveness.

Table 18: Performance across benchmarks about the scaling law of SFT training data.

SFT Training Data Volume AIME24 AIME25 Google-IMO-AnswerBench Avg Score

AgentMath-8B-SFT-2k 27.2 21.1 5.3 17.9
AgentMath-8B-SFT-20k 60.5 53.3 12.8 42.2
AgentMath-8B-SFT-40k 66.8 57.9 17.6 47.4
AgentMath-8B-SFT-80k 69.2 61.8 21.4 50.8
AgentMath-8B-SFT-160k 73.8 66.4 25.6 55.3
AgentMath-8B-SFT-300k 78.4 72.2 28.8 59.8

(2) Regarding the scaling law of RL training data, we conducted systematic scalability experiments
based on the best-performing AgentMath-8B-SFT-300k model. To ensure fair comparison, all ex-
periments were conducted using the same number of training steps (200 steps) and hyperparameter
configurations, varying only the RL training data size (10k, 20k, 30k, 42k).

As shown in the table 19, when the RL training data scales from 10k to 42k, the model demonstrates
consistent improvements across all benchmarks:

• AIME24: Accuracy increases from 80.8% to 85.3%

• AIME25: Accuracy increases from 75.5% to 80.4%

• Google-IMO-AnswerBench: Accuracy increases from 30.9% to 34.7%

• Overall Average: Performance improves from 62.4% to 66.8%

These results demonstrate the effectiveness and scalability of our RL training data.
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Table 19: Performance across benchmarks about the scaling law of RL training data.

RL Training Data Volume AIME24 AIME25 Google-IMO-AnswerBench Avg Score

AgentMath-8B-SFT-300k 78.4 72.2 28.8 59.8

AgentMath-8B-RL-10k 80.8 75.5 30.9 62.4
AgentMath-8B-RL-20k 82.7 77.8 32.4 64.3
AgentMath-8B-RL-30k 84.2 79.0 33.7 65.6
AgentMath-8B-RL-42k 85.3 80.4 34.7 66.8

In summary, combining the scaling law experiments from both the SFT and RL stages, we demon-
strate that as the tool-augmented training data size increases, AgentMath exhibits sustained and con-
sistent performance improvements across all evaluation benchmarks, further validating the strong
scalability of AgentMath.

A.13 UNCLEAR HEURISTIC DATA SYNTHESIS: THE DATA SYNTHESIS PROCESS INVOLVES
MULTIPLE HUMAN HEURISTICS (E.G., COMPUTATIONAL COMPONENT SEGMENTATION,
CODE COMPLEXITY FILTERING), AND SEVERAL COMPONENTS APPEAR TO REQUIRE
ITERATIVE MANUAL ADJUSTMENT. THESE STEPS MAY LIMIT SCALABILITY TO NEW
BENCHMARKS OR DOMAINS. MOREOVER, THE DATA SYNTHESIS AND CLEANING
COSTS SEEM HIGH GIVEN THE REPEATED USE OF LLMS.

Q1: Unclear heuristic data synthesis: The data synthesis process involves multiple human heuristics
(e.g., computational component segmentation, code complexity filtering), and several components
appear to require iterative manual adjustment.

1. Computational Component Segmentation. This strategy segments each long chain-of-thought
response generated by DeepSeek-R1 into fixed-length chunks (e.g., 3k tokens), yielding N segments
(S1, S2, S3, . . . , SN ). We then use DeepSeek-V3-0324 to independently perform tool-augmented
rewriting on each segment. In our 346k-example synthetic SFT dataset, responses have an average
length of 18.3k tokens; thus, each response is on average split into 6 segments.

Motivation. In early experiments, we attempted to rewrite the full DeepSeek-R1 response without
segmentation. This led to several issues:

• DeepSeek-R1 responses are excessively long.

• The instruction-following ability of DeepSeek-V3-0324 degrades markedly under ultra-
long inputs, and the model becomes more prone to hallucinations.

• Consequently, the rewritten data exhibits a low frequency of tool usage, a high code execu-
tion failure rate, and extensive abbreviation or omission of intermediate natural language
reasoning steps (which we refer to as the “textual reasoning omission rate”).

To quantitatively assess the effect of segment length on data quality and downstream performance,
we conducted controlled experiments on 20k synthetic examples and performed SFT on Qwen3-8B-
Base. As shown in the table 20, the results are summarized below:

• No segmentation (AgentMath-SFT-20k-No-Segment): The average number of tool calls
is 1.6; the code execution failure rate is 31.8%; the textual reasoning omission rate (the
proportion of intermediate reasoning steps omitted) is 78.5%; and AIME24/AIME25 accu-
racies are 40.3%/35.6%.

• Segmentation with 9k tokens (AgentMath-SFT-Segment-with-9k-token): This setting
improves over no segmentation, but segments remain relatively long, so tool usage and
evaluation performance are still limited.

• Segmentation with 3k tokens (AgentMath-SFT-Segment-with-3k-token): The average
number of tool calls increases to 7.8; the code execution failure rate drops to 6.2%; the
textual reasoning omission rate decreases to 2.3%; and AIME24/AIME25 accuracies reach
60.5%/53.3%.
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• Segmentation with 2k tokens (AgentMath-SFT-Segment-with-2k-token): Although the
number of tool calls further increases, downstream performance does not improve signifi-
cantly and appears to saturate.

Based on this analysis, we adopt a 3k-token segment length as the default configuration for computa-
tional component segmentation, as it strikes a favorable balance: it effectively controls data-quality
metrics while maximizing downstream task performance.

Table 20: Results on 20k AgentMath synthetic data about Computational Component Segmentation.

20k AgentMath synthetic data Mean Tool Calls Code Execution Failure Rate Textual Reasoning Omission Rate AIME24 Acc AIME25 Acc

AgentMath-SFT-20k-No-Segment 1.6 31.8% 78.5% 40.3% 35.6%
AgentMath-SFT-Segment-with-9k-token 2.1 28.4% 67.9% 44.8% 38.7%
AgentMath-SFT-Segment-with-6k-token 3.2 23.3% 38.6% 49.2% 44.3%
AgentMath-SFT-Segment-with-4k-token 5.7 12.5% 8.8% 57.3% 51.6%
AgentMath-SFT-Segment-with-3k-token 8.3 6.2% 2.3% 60.5% 53.3%
AgentMath-SFT-Segment-with-2k-token 10.1 5.9% 2.1% 59.4% 51.9%

2. Code Complexity Filtering: At an early stage, we conducted a statistical analysis of code-
length distributions over 20k synthetic instances. The results showed that samples with fewer than
5 lines of code constituted 5% of the dataset, with exactly 5 lines representing 7%, 6 lines 13%,
7 lines 24%, 8 lines 29%, 9 lines 13%, and 10 or more lines comprising 10%. To investigate
the relationship between code complexity and line count, we performed stratified uniform sampling,
drawing 40 samples from each line-count category (280 samples total). Three authors independently
annotated each sample’s complexity as “Easy,” “Medium,” or “Hard” based on whether it involved
computationally demanding operations (e.g., large-number arithmetic, complex equation solving,
advanced linear algebra, combinatorial computations, or calculus). The annotation statistics are
presented in the table 21.

Our analysis shows that among samples with ≤ 5 lines of code, over 65% were labeled “Easy”
while fewer than 10% were labeled “Hard.” To prevent the model from learning to overuse tool
invocations during training, we conservatively filtered out all samples containing 5 or fewer lines
of code. In future work, we plan to employ LLMs such as Qwen3-30B for automated complexity
assessment, replacing manual annotation to improve both objectivity and scalability of our filtering
pipeline.

Table 21: the statistics of code complexity by lines of code.

Lines of Code Easy (%) Medium (%) Hard (%)

< 5 lines 87% 9% 4%
= 5 lines 66% 27% 7%
= 6 lines 43% 38% 19%
= 7 lines 24% 49% 27%
= 8 lines 13% 56% 31%
= 9 lines 7% 51% 42%
≥ 10 lines 4% 43% 53%

Q2: These steps may limit scalability to new benchmarks or domains.

In response, we have extended AgentMath’s automated data synthesis and cleaning pipeline to non-
mathematical domains, including physics, chemistry, and biology, and evaluated the resulting model
on the GPQA Diamond benchmark. GPQA Diamond assesses large language models’ ability to
solve graduate-level problems across biology, physics, and chemistry—a highly challenging bench-
mark where even PhD-level domain experts achieve only 65% accuracy.

We randomly sampled 40K examples from the open-source Science 220K dataset released by AM-
Thinking and applied AgentMath’s data synthesis method. Specifically, we segmented DeepSeek-
R1’s reasoning response into 3K-token chunks and transformed them into tool-augmented reasoning
chains by replacing complex, error-prone computational steps with executable code. We then applied
our automated cleaning pipeline, which includes: (1) filtering examples with ≤ 5 lines of code, (2)
correcting formatting errors, (3) removing samples with failed code execution, and (4) performing
environmental feedback alignment to ensure consistency.
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Using Qwen3-8B-Base as the foundation model, we conducted SFT and evaluated performance
on GPQA across 8 independent runs, reporting the average accuracy (Avg@8). As shown in the
table 22, AgentMath-8B-SFT-40k achieves 58.9% accuracy on GPQA, substantially outperform-
ing DeepSeek-R1-Distill-Qwen-7B (49.1%). These results demonstrate that AgentMath’s tool-
augmented synthesis approach and automated cleaning pipeline generalize effectively beyond math-
ematics to scientific domains (physics, chemistry, and biology), highlighting the scalability and
broad applicability of our method.

Table 22: The GPQA accuracy of different models and AgentMath-8B models at the 7B-8B scale.

Model Base Model GPQA Acc

OpenThinker-7B Qwen2.5-7B-Instruct 42.4%
AReaL-boba-RL-7B DeepSeek-R1-Distill-Qwen-7B 47.6%
DeepSeek-R1-Distill-Qwen-7B Qwen2.5-Math-7B 49.1%
Light-R1-7B DeepSeek-R1-Distill-Qwen-7B 49.4%
AgentMath-8B-SFT-40k Qwen3-8B-Base 58.9%

Q3: Moreover, the data synthesis and cleaning costs seem high given the repeated use of LLMs.

We build upon the open-source AM-Thinking dataset, leveraging their existing responses generated
by DeepSeek-R1-0528 to obtain 346K data samples. We employ DeepSeek-V3 for data synthesis,
completing this process on 128 GPUs (each with 96GB memory) in approximately 62 hours. We
then utilize Qwen3-30B as a judge model to verify consistency between actual code execution results
and model-simulated outputs, requiring approximately 3 hours.

Subsequently, we perform SFT on the 316K synthetic samples using Qwen3-8B-Base as the base
model, which takes approximately 44 hours. In total, the complete pipeline—encompassing data
synthesis, cleaning, verification, and SFT training, requires approximately 62+3+44 = 109 hours.

Notably, we also explore a more cost-effective alternative to address computational overhead. As il-
lustrated in Figure 4, we apply SFT to only 20K samples starting from Qwen3-8B-Base, followed by
400 steps of large-scale reinforcement learning. This streamlined approach enables our AgentMath
model to achieve the leading performance: 76.2% on AIME24 and 67.5% on AIME25, surpassing
both OpenMath-Nemotron-7B (74.8% and 61.2%, respectively) and Qwen3-8B-Thinking (76.0%
and 67.3%, respectively). This entire workflow, including data synthesis, cleaning, SFT, and RL
training, requires only 76 hours total, providing a substantially more efficient solution.

A.14 THE PAPER DOES NOT CLARIFY HOW TEXTUAL ANSWERS ARE SEGMENTED INTO
COMPUTATIONAL PARTS OR HOW THE MODEL DETERMINES WHEN CODE USAGE IS
BENEFICIAL. DIFFERENT MODELS MAY PREFER DISTINCT CODE-USAGE PATTERNS
EVEN FOR THE SAME QUESTION.

Q1: The paper does not clarify how textual answers are segmented into computational parts

We utilized the long chain-of-thought responses generated by DeepSeek-R1 from the open-source
AM-Thinking dataset. Each response is segmented into fixed-length 3k-token chunks, yielding N
segments (S1, S2, S3, . . . , Sn). Across the 316k SFT synthetic data, the responses have an average
length of 16.9k tokens, corresponding to roughly six segments per response.

Subsequently, for each segment, we applied the Tool-Augmented Data Synthesis Prompt detailed in
Appendix A.6.2. We employed DeepSeek-V3-0324 to independently transform each segment by
replacing complex and error-prone computational processes with executable code.

To accelerate the synthesis process, we initially instructed DeepSeek-V3-0324 to simulate code
execution results based on the textual reasoning context. During post-processing, we replaced these
simulated results with actual code execution outputs and employed Qwen3-30B as a judge model to
assess their consistency. Samples exhibiting inconsistencies were filtered out to ensure data quality.

Q2: how the model determines when code usage is beneficial.

We present the design of the Tool-Augmented Data Synthesis Prompt in Appendix A.6.2. This
prompt guides DeepSeek-V3-0324 to first identify complex and error-prone computational pro-
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cesses, and then replace these manual calculations with code. Specifically, it covers the following
types of computational tasks:

• Complex Symbolic Algebra: polynomial expansion, factorization, equation solving

• Advanced Calculus: differentiation, integration, definite integral computation

• Probability and Combinatorics: complex counting problems, probability distribution cal-
culations

• Linear Algebra: matrix operations, matrix inversion, eigenvalue decomposition

• Numerical Computation: approximation calculations, large number arithmetic, geometric
calculations

• Other Error-Prone or Computation-Intensive Problems

To control code complexity and ensure the reliability of the synthesized data, we further filter out
low-complexity samples with ≤ 5 lines of code. Furthermore, we randomly sampled 100 instances
from the synthesized data and manually annotated whether DeepSeek-V3 effectively replaced com-
plex textual computational processes with code. Results show that code replacement is benefi-
cial and reasonable in 84% of the samples, thereby confirming the reliability of our proposed tool-
augmented data synthesis approach.

Q2: What criteria or metrics determine whether using code is more effective for a given part of the
reasoning chain?

Below, we demonstrate the effectiveness of code-augmented methods in replacing manual complex
computations from two perspectives.

We randomly sampled 100 instances from the synthetic data and annotated whether DeepSeek-V3
effectively employs code to replace manual complex computations based on the following criteria.
The evaluation reveals that code-based computation proves more effective in 84% of cases. The
evaluation criteria encompass the following mathematical domains:

• Complex symbolic algebra: polynomial expansion, factorization, equation solving

• Advanced calculus: differentiation, integration, definite integral computation

• Complex probability and combinatorics: complex counting, probability distributions

• Complex linear algebra: matrix operations, matrix inversion, eigenvalue decomposition

• Complex numerical computation: approximation, large number arithmetic, geometric cal-
culations

• Any error-prone or computationally intensive operations

As shown in the table 23, we systematically compare code-based and pure text-based reasoning
along two dimensions: inference efficiency (measured by average token count) and performance
metricx.

• Token Analysis on Synthetic Data: The SFT training dataset comprises 316k instances
in total. Pure text-based reasoning averages 18.3k tokens per sample, while tool augmen-
tation reduces this to 16.9k tokens. This demonstrates that substituting code for lengthy
computational processes effectively reduces overall token consumption.

• SFT stage: We comprehensively compare the efficiency and performance of code aug-
mentation against pure text-based reasoning. Specifically, when trained on identical 20k
SFT data, AgentMath-SFT-20k achieves accuracies of 60.5% and 53.3% on AIME24
and AIME25, respectively, significantly outperforming Text-based-SFT-20k (57.1% and
49.2%). Additionally, AgentMath-SFT-20k reduces the average token count by approxi-
mately 1.3k–3k compared to Text-based-SFT-20k.

• RL stage: In tool-augmented RL training, using only 440 steps, AgentMath-RL-440-
steps improves accuracy from 60.5% to 76.2% on AIME24 and from 53.3% to 67.5%
on AIME25. In contrast, pure text-based RL training requires 1600 steps (Text-based-RL-
1600-steps) to achieve improvements from 57.1% to 68.7% on AIME24 and from 49.2% to
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57.5% on AIME25. These results demonstrate that the code-augmented approach achieves
approximately 4× higher training efficiency while reducing the overall token count by
2.5k–5k compared to Text-based-RL-1600-steps.

In summary, introducing code augmentation in both SFT and RL stages yields substantial improve-
ments in performance and efficiency over pure text-based reasoning, thereby validating that using
code is more effective for a given part of the reasoning chain.

Table 23: Accuracy and average inference token usage on AIME24 and AIME25 for pure text-based
models and code-augmented AgentMath at both SFT and RL stages.

Model Base Model AIME24 Acc AIME24 Avg Tokens AIME25 Acc AIME25 Avg Tokens

Text-based-SFT-20k Qwen3-8B-Base 57.1% 29k 49.2% 28k
AgentMath-SFT-20k Qwen3-8B-Base 60.5% 26k 53.3% 26.7k

Text-based-RL-1600-steps Text-based-SFT-20k 68.7% 32.3k 57.5% 31.2k
AgentMath-RL-440-steps AgentMath-SFT-20k 76.2% 27.2k 67.5% 28.6k

Q3: Different models may prefer distinct code-usage patterns even for the same question.

We agree that different models can prefer different code usage patterns for the same question, in-
cluding variations in code injection positions, line counts, and code implementation details.

In our early experiments, we conducted a comparative study between two candidate teacher mod-
els: DeepSeek-V3-0324 and Qwen3-235B-Instruct-2507. Specifically, we synthesized training data
using each model on the 20k training set and performed supervised fine-tuning on Qwen3-8B-Base.
As shown in Table 24, the experimental results are as follows:

• Data synthesized by DeepSeek-V3-0324 averaged 6.5 tool calls per sample, compared to
5.3 tool calls per sample for Qwen3-235B-Instruct-2507.

• On the AIME24 and AIME25 benchmarks, the model trained on DeepSeek-V3-0324-
synthesized data (AgentMath-20k-SFT-DeepSeek-V3) achieved accuracies of 60.5% and
53.3%, respectively, marginally outperforming the model trained on Qwen3-235B-Instruct-
2507-synthesized data (59.3% and 51.7%). Notably, the former also demonstrated a higher
average tool call frequency.

Based on these comprehensive performance results, we selected DeepSeek-V3-0324 as the teacher
model for our data synthesis pipeline.

A.15 THE DATASET SYNTHESIS EMPLOYS LARGER TEACHER MODELS (DEEPSEEK R1 AND
V3, QWEN-30B). THIS MAY IMPLY KNOWLEDGE DISTILLATION FROM MORE
POWERFUL TEACHER MODELS. COMPARING SUCH DISTILLED MODELS WITH THOSE
TRAINED WITHOUT TEACHER GUIDANCE MAY BE UNFAIR.

Q1: The dataset synthesis employs larger teacher models (DeepSeek R1 and V3, Qwen-30B). This
may imply knowledge distillation from more powerful teacher models. Comparing such distilled
models with those trained without teacher guidance may be unfair.

To ensure a rigorous and fair comparison, we strictly followed the experimental setup of Retool,
controlling for all key factors: the same 2k synthetic dataset, identical teacher model responses
from DeepSeek-R1, the same base model (Qwen2.5-32B-Instruct), and 400 training steps during
the RL phase. The sole difference lies in the data synthesis strategy: AgentMath leverages our
proposed tool-augmented data synthesis method in Appendix A.6.2, whereas Retool employs its
original synthesis prompt. Both approaches undergo identical two-stage training comprising SFT
and RL. As shown in the table 25, the experimental results are summarized as follows:

• AgentMath-32B-SFT-2k achieves 44.1% on AIME24 and 37.3% on AIME25, surpassing
Retool-32B-SFT-2k (40.9% and 34.5%, respectively), thereby demonstrating the effective-
ness of our tool-augmented data synthesis approach;

• AgentMath-32B-RL attains 74.8% on AIME24 and 56.6% on AIME25, consistently out-
performing Retool-32B-RL (67.0% and 49.3%, respectively), further validating the superi-
ority of our reinforcement learning training strategy.
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Table 24: Comparison of Qwen3-8B-Base models fine-tuned on the 20k AgentMath SFT dataset
synthesized by DeepSeek-V3-0324 and Qwen3-235B-Instruct-2507. We report AIME24 and
AIME25 accuracies (%) and the average number of tool calls per problem on each benchmark.

Model AIME24 AIME24 Tool Calls Avg AIME25 AIME25 Tool Calls Avg

AgentMath-20k-SFT-DeepSeek-V3 60.5% 5.1 53.3% 5.7
AgentMath-20k-SFT-Qwen3-235B-Instruct-2507 59.3% 4.4 51.7% 5.0

In summary, AgentMath exhibits consistent and substantial performance gains across both training
stages, confirming the efficacy and robustness of our proposed method.

Table 25: Comparison of AgentMath and Retool performance under the same experimental setup in
both the SFT and RL stages.

Model AIME24 Acc AIME25 Acc

Retool-32B-SFT-2k 40.9% 34.5%
AgentMath-32B-SFT-2k 44.1% 37.3%

Retool-32B-RL 67.0% 49.3%
AgentMath-32B-RL 74.8% 56.6%

Q2: Would the performance gap shrink if competing models were also allowed to distill from com-
parable teacher models?

We adopted the open-source dataset from AM-Thinking, using the same 316k prompts and responses
generated by DeepSeek-R1. We conducted supervised fine-tuning (SFT) on the Qwen3-8B-Base
model for 6 epochs with a learning rate of 6e-5. To ensure experimental rigor, all configurations
were kept identical except for the core difference in reasoning chain types: AM-Thinking uses
pure textual reasoning chains, while AgentMath employs tool-augmented reasoning chains. We
conducted 8 independent training runs and report pass@1 results from the checkpoint with the best
validation performance.

As shown in Table 26, AgentMath-8B-SFT achieves 78.4% accuracy on AIME24 and 72.2% ac-
curacy on AIME25, outperforming AM-Thinking-8B-SFT (74.9% and 67.4%, respectively), with
an overall average performance gap of 4.1%. These results confirm that the performance gap will
shrink if competing models were also allowed to distill from comparable teacher models.

Table 26: Comparison of pass@1 accuracy on AIME24 and AIME25 for AM-Thinking-8B-SFT
and AgentMath-8B-SFT under the same training settings.

Model AIME24 Acc AIME25 Acc Avg Score

AM-Thinking-8B-SFT 74.9% 67.4% 71.2%
AgentMath-8B-SFT 78.4% 72.2% 75.3%

A.16 REWARD DESIGN IN RL

Our reward function consists of two components: an answer correctness reward Racc and a tool
usage efficiency reward Rtool. The correctness reward Racc provides binary (0,1) feedback based on
mathematical equivalence (verified using the math verify library):

Racc =

{
1, if is equivalent(â, a),

0, otherwise,

where â denotes the predicted answer and a the ground truth answer. Conditioned on answer cor-
rectness, the tool usage reward Rtool incentivizes efficient utilization of computational resources:

Rtool = min
(
Rmax, α+ β ·Ncode

)
if Ncode > 0,
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where α is the base tool usage reward, β is the scaling factor for the number of invocations, and
Rmax is the reward upper bound. The total reward function is defined as:

Rtotal = Racc + I(Racc = 1) ·Rtool.

In our work, we set α = 0.1 and β = 0.01, and constrain the maximum tool reward to Rmax =
1, which encourages tool usage while preventing over-reliance. This design is motivated by the
following considerations: applying Rtool only to correct answers encourages the model to use tools
appropriately to arrive at accurate solutions, avoiding rewarding erroneous tool invocations; α = 0.1
differentiates between cases with and without tool usage, while the smaller β = 0.01 accommodates
high-frequency tool calls during RL training (some exceeding 64 invocations), preventing reward
inflation.

In early experiments, to validate the effectiveness of the reward design, we conducted controlled
experiments using the SFT model trained on 20k synthetic data (AgentMath-SFT-20k), with a fixed
100 training steps, as shown in the table 27. Our experiments demonstrate:

• Effectiveness of tool rewards: Introducing tool rewards (all answers) outperforms the no-
tool-reward baseline in both average accuracy (61.4% vs. 60.2%) and average tool calls
(6.2 vs. 5.7), indicating that tool rewards effectively incentivize the model to leverage com-
putational tools and improve performance.

• Advantage of tool rewards (correct answers only): Furthermore, compared to tool re-
wards (all answers), applying tool rewards exclusively to correct answers (α = 0.1, β =
0.01) achieves the best performance in both average accuracy (62.6% vs. 61.4%) and aver-
age tool calls (6.3 vs. 6.2).

• Optimal hyperparameter configuration: In a grid search over α ∈ {0.1, 0.2} and β ∈
{0.01, 0.02}, α = 0.1, β = 0.01 achieves the best accuracy-efficiency trade-off (62.6%
average accuracy, 6.3 average tool calls).

Therefore, based on performance and tool call metrics, we ultimately adopt the correctness-
conditioned tool reward design with parameters α = 0.1 and β = 0.01 for RL training.

Table 27: Ablation study results on reinforcement learning reward design.

Reward Configuration AIME24 AIME24 AIME25 AIME25 Avg. Avg.
Accuracy Tool Calls Accuracy Tool Calls Accuracy Tool Calls

AgentMath-SFT-20k (Baseline) 60.5% 5.1 53.3% 5.7 56.9% 5.4

RL with No tool reward 65.2% 5.5 55.1% 5.9 60.2% 5.7
RL with Tool reward (all answers), α = 0.1, β = 0.01 66.4% 6.1 56.3% 6.3 61.4% 6.2
RL with Tool reward (correct answers only), α = 0.1, β = 0.01 67.4% 6.0 57.7% 6.5 62.6% 6.3
RL with Tool reward (correct answers only), α = 0.1, β = 0.02 66.7% 6.4 56.8% 6.7 61.8% 6.6
RL with Tool reward (correct answers only), α = 0.2, β = 0.01 66.9% 5.9 56.5% 6.2 61.7% 6.1
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