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Abstract
Agda is a dependently-typed programming language and a proof assistant, pivotal
in proof formalization and programming language theory. This paper extends the
Agda ecosystem into machine learning territory, and, vice versa, makes Agda-
related resources available to machine learning practitioners. We introduce and
release a novel dataset of Agda program-proofs that is elaborate and extensive
enough to support various machine learning applications – the first of its kind.
Leveraging the dataset’s ultra-high resolution, which details proof states at the
sub-type level, we propose a novel neural architecture targeted at faithfully repre-
senting dependently-typed programs on the basis of structural rather than nominal
principles. We instantiate and evaluate our architecture in a premise selection setup,
where it achieves promising initial results, surpassing strong baselines.

1 Introduction
Automation on theorem proving over arbitrary domains has been a staple task for computer science
and artificial intelligence, and a concept that in fact predates the inception of both fields. Over the
last decade, the success of gradient-based optimization and large-scale neural models has brought
this once elusive goal within reach. Capitalizing on that fact, community efforts have led to a wider
availability of language-specific theorem-proving datasets. This, in turn, has led to a constant stream of
milestones and achievements. Rather than threatening theorists worldwide with premature retirement,
this development empowers mathematicians and computer scientists on the individual scale, and
potentiates an unprecedented acceleration for the formal sciences on the collective level.

Theorem-proving tasks can take on many forms, one of which is premise selection. In a premise
selection setup, the model is presented with a goal statement and a collection of theorems or lemmas,
some of which are potentially relevant for the proof process, whereas others are not. The model
is then tasked with selecting which of those lemmas are relevant. A successful model can relieve
burden from the human operator by dramatically reducing or even trivializing the proof search space.
From an epistemic perspective, premise selection epitomizes the good aspects of neurosymbolic AI.
Human and machine get to interact and collaborate towards a common goal. Meanwhile, the model’s
predictions are made safe by virtue of being confined within (and verified by) a trustworthy white
box: the proof assistant.

Depending on the logic employed by the prover, the line between proof search and program synthesis
may become blurry. Concretely, the Curry-Howard correspondence asserts an equivalence between
intuitionistic logics and constructive type theories; proofs in such logics are indistinguishable from
programs in some corresponding functional programming language, and vice versa. This marvel
has been the foundational core behind the development of type-theoretic proof assistants, such as
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Coq, Lean and Agda, inter alia. On the one hand, these are programming languages, except strict
enough to find use in the formalization of science or the certification of engineering. On the other
hand, these are also theorem provers, except with a less obscure syntax, that offer additional niceties
such as compilation-level reporting, termination checking, and a natural ability to extract executable
programs from the proofs produced.

In the machine learning world, domain-, language- and task-specific representation learning for
theorem proving has gained significant community attention in recent years. Modeling strategies
can be broadly grouped in two general categories. The dominant approach relies on sequence-based
encoder and/or decoder architectures, operating on the user-facing representation of formal objects
(theorems, formulas, lemmas, etc.); this approach has become popular due to its direct compatibility
with generic pretrained large language models. The alternative approach instead seeks to explicate
the relations within and between these formal objects, e.g., with tree or graph architectures.

1.1 Contributions

In this paper, we identify and address two weak points in the existing literature.

Machine Learning for Agda First, we note a disparity in the availability of machine learning
resources and results across proof assistants. A plurality of datasets, models and tools are available
for a handful of languages, the majority of them for Coq, HOL and Lean, whereas none exist for
Agda. We believe that this state of affairs is an effect of historical momentum and methodological
precedence, rather than inherent merit. Agda spearheads developments in constructive type theory
with an array of innovative features, gaining adoption and a rapidly maturing ecosystem. Aiming to
aid Agda with meeting and expanding her potential, we implement an Agda program that extracts
intermediate compilation steps, and produces them in the form of human-readable partial proof states.
Applying the extraction algorithm, AGDA2TRAIN, on established high-quality libraries, we obtain
and release an elaborate and extensive dataset of Agda program-proofs, at a scale and form that can
support various machine learning applications – the first of its kind.

Modeling Type Structure Second, we note a significant gap between the rigor of the structures
modeled and the structural lenience of the architectures employed. Seeking to bridge this gap,
we design and implement a general-purpose scheme for the faithful representation of expressions
involving dependent types. We apply our methodology on the extracted dataset to produce QUILL: a
novel neural guidance tool for Agda. Beyond its current instantiation in Agda, the system is universal,
being equally applicable to any language that uses type theory as its foundational core.

2 Background

2.1 Proof Assistants

The leading proof assistants (Coq, Lean, Agda) all follow the same core principles with respect
to the kinds of objects they define and manipulate. Modulo theoretical flavorings and syntactic
sweeteners, these are always the terms of a typed λ-calculus. Leveraging the propositions-as-types
interpretation [Sørensen and Urzyczyn, 2006, Wadler, 2015], the proof assistant’s duty is chiefly to
check that a program adheres to a specific type, or, equivalently, that a proof attests to a particular
proposition. Typically, proofs are constructed in an incremental fashion: the user can defer some
sub-proof to the future by instead supplying a hole. We provide an illustrative example in Appendix A,
Figure 4. A proof is only complete if it is without holes. The proof assistant may assist the user by
providing a set of hypotheses (or premises), which can be used to fill in a given hole. The problem of
singling out relevant premises is completely specified by (i) the type of the hole itself (henceforth
called the goal), and (ii) the types of premises available. Except for trivial problems, the set of
premises that can be used in any given hole is enormous, and the number of ways in which they can be
combined is even larger. Being able to filter and rank premises thus goes a long way towards efficient
proof search. To aid in the process of proof construction, some assistants additionally implement
tactics. Tactics can range from simple (introducing a single λ−abstraction) to complex (type-guided
combinatorial search, domain specific solvers, etc.). Tactics also get to heavily benefit from a premise
selection pass, given their combinatorial nature; however, they do not (yet) play a major role in the
Agda world, and are not of primary interest to us here.
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2.2 Related Work
Navigating the search space of possible proofs by purely symbolic means is generally infeasible. As
an alternative, several lines of work have explored the application of statistical learning methods as a
way to either truncate the search space, or to guide the theorem prover.

An early step of theorem proving into machine learning territory is HolStep [Kaliszyk et al., 2016].
HolStep provides string representations of intermediate proof states extracted from 11,400 narrow-
domain but non-trivial HOL proofs. The dataset is used to benchmark character- and token-level
encoders in the task of telling whether a statement is relevant in the proof of a conjecture or not.
Another contribution along the same lines is HOList [Bansal et al., 2019]. The dataset encompasses
30,000 HOL proofs, and the task is framed as selecting a tactic and its arguments, given a goal. The
modeling approach rests on DeepHOL: a reinforcement learning loop incorporating convolutional
encoders applied on string-formatted formulas.

On the type-theoretic front, two related and concurrent contributions are GamePad [Huang et al.,
2018] and CoqGym [Yang and Deng, 2019]. Both implement a minimal interactive interface with
Coq, the latter also exposing a dataset of 71,000 human-written proofs. The main task is once
more framed as tactic selection. GamePad uses a sequential recurrence to encode formula terms,
emulating variable binding using a random embedding-association table. CoqGym, on the other hand,
employs a tree-recursive encoder for representing goals and premises, and a semantically constrained
tree-recursive decoder for decoding into the tactic language.

Beginning with the early works of Urban and Jakubův [2020] on Mizar and Polu and Sutskever [2020]
on Metamath, large language models (LLMs) have by now permeated the theorem proving literature.
Interfaces between LLMs include LeanStep [Han et al., 2021], lean-gym [Polu et al., 2023] and
LeanDojo [Yang et al., 2023] for Lean, as well as Lisa [Jiang et al., 2021] and Magnushammer [Mikuła
et al., 2023] for Isabelle. LeanStep and lean-gym export and utilize compiler-level type information
from the intermediate proof steps of about 128,000 proofs; yet these are still formatted as strings
and processed as such by the corresponding LLM. LeanDojo exports similarly-structured data
from 98,734 theorems, additionally providing interactive capabilities, while Lisa exports shallow
states from 183,000 theorems, represented as sequential MDPs. Magnushammer, finally, provides
access to a shallow premise dataset from 570,000 mixed human and synthetic proofs states. The
models underlying the above works all build on the same key idea: an LLM is exposed to a textual
representation of an incomplete proof, and is then tasked with autoregressively continuing.

Evidently, the bulk of the modeling work has so far been outsourced to sequential architectures.
Despite their merits, we argue in Section 4.2 that such models are ill-equipped to capture the structures
being modeled, except superficially and on a data-driven basis. The structural effects of (co-)reference,
variable binding and abstraction, equivalence under substitution etc. are all dismissed in favor of a
uniform and simplified representation format. Other than aforementioned exceptions, works that stand
out in this respect are those of Wang et al. [2017] and Paliwal et al. [2020], who opt for a message-
passing approach on formula trees (using graph-like edges to handle co-referencing and variable
binding). Along the same lines, Li et al. [2020] use a 2-level hierarchical encoder to distinguish
between intra- and inter-formula attention. Contemporary work [Blaauwbroek et al., 2024] further
explores this perspective, fixing a symbol embedding table for a collection of symbols and employing
message-passing networks over formula graphs to encode definitions in Coq. Representations are built
in topological order, such that referring objects can utilize the previously computed representations
of their referents. These representations finally find use in allowing the dynamic prediction of tactic
arguments, given a chosen tactic.

Our contribution follows along and expands upon the structurally-disciplined line of approaches. Our
data-generation process explicates the structure of Agda files at the finest possible resolution: that
of the internal type structure. Like Blaauwbroek et al. [2024], our modeling approach iteratively
builds dynamic object representations that are derived on the basis of structural rather than nominal
principles. Unlike Blaauwbroek et al. [2024], our representations are also: (1) complete, in the sense
of allowing the representation of any item in the object language, and (2) respectful of α-equivalence,
in the sense of being invariant to variable renaming and substitution.

3 Data
Data is extracted from Agda files in a type-mindful manner. We first allow Agda to type-check
program-proofs as usual, and then consult her for their internal representations, which we store mostly
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open import Relation.Binary.PropositionalEquality using ( ≡ ; refl; cong; trans)

data N : Set where
zero : N
suc : N → N

+ : N→ N → N
zero + n = n
suc m + n = suc (m + n)

+-comm : (m n : N) → m + n ≡ n + m
+-comm zero zero = refl
+-comm zero (suc n) = cong suc (+-comm zero n)
+-comm (suc m) zero = cong suc (+-comm m zero)
+-comm (suc m) (suc n) = cong suc (trans (+-suc m n) (+-comm (suc m) n))

where +-suc : ∀ m n → m + suc n ≡ suc (m + n)
+-suc zero n = refl
+-suc (suc m) n = cong suc (+-suc m n)

Figure 1: Agda code formalizing the commutativity of addition.

unchanged. These representations are formally safe and unambiguous, but also more honest than the
surface pretty prints we get to witness as users, as syntactic sugar has been translated away.

Figure 1 presents our running example: a mechanised proof that addition on natural numbers
is commutative. The program first imports the standard library’s propositional equality (≡) and
some of its properties (refl, cong, trans). It then goes on to define Peano natural numbers as an
inductive datatype (N) and arithmetic addition as a recursive function (+) via pattern matching: a
natural is either a 0 (zero) for which 0 + n = n, or the successor (suc) of a number m, for which
(m + 1) + n = (m + n) + 1. With the above in hand, we can inductively prove that addition is
commutative (+-comm), i.e., ∀ m n. m+ n = n+m, following a case-by-case analysis:

1. If m and n are both 0, we can prove our goal using reflexivity: both sides of the equation
are syntactically equal.

2. If m is 0 and n is the successor of some other n′, then we can invoke the proof of the
commutativity of m+ n′.

3. Similar to (2): if n is 0 and m is the successor of some other m′, then we can invoke the
proof of the commutativity of m′ + n.

4. If both m and n are successors of m′ and n′, respectively, then we appeal to a helper lemma
about how the successor function distributes across addition (+-suc), before finally invoking
the proof of the commutativity of m+ n′.

Note how each case above corresponds to a pattern-matching clause in the function definition and
inductive hypotheses manifest as recursive function calls; that is the beauty of dependently-typed
functional programming through the lens of the Curry-Howard correspondence.

3.1 Implementation
We implement a generic dataset extractor for arbitrary Agda programs as a compilation backend,
AGDA2TRAIN, that now “compiles” a source Agda file to a corresponding JSON structure1. A
collection of such structures together make up our extracted dataset.

3.2 Extracted Structure
Each extracted JSON file mirrors Agda’s internal compilation state for a given file. This state is
however neither static nor singular; it changes depending on what the current focal point of the
compilation is. From the user’s perspective, each state corresponds to a different moment in the
coding process, where a subset of the file has been written, another exists only as a hole, and another
is yet to be written altogether. We navigate through all such possible states. Concretely, we iterate
through each of the definitions in a file, pausing not at the possible prefixes of a proof (seen as a textual
object), but rather at all its possible sub-terms (seen as a syntactic tree). This allows us to optimally

1Capitalizing on Agda’s extensible backend infrastructure, we develop AGDA2TRAIN as a standalone Haskell
package, independent of the core Agda compiler. The package is publicly accessible at https://github.com/
omelkonian/agda2train.
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maximize the utilization of each file as a data resource, akin to a preemptive data augmentation
routine (except type-safe, courtesy of Agda). At each step, we record the missing term that fills the
hole, as well as the full typing context available at the time.

Typing Context The typing context of a hole consists of its type (the goal), the collection of
antecedent definitions in scope, plus a context of locally bound variables. For each definition and
variable, we record its name, its type as well as its proof term.

Term Structure Terms, whether type- or proof-level, are structurally explicated to the fullest by
the JSON structure. Since Agda is a dependently typed language, its terms go far beyond typical
λ-expressions that canonically consist of just abstractions, applications and variables. Terms capture
Agda’s internal grammar in its entirety, allowing the specification of many more constructs, such as
datatype declarations, records, function clauses defined via pattern matching, patterns etc.. For the
sake of readability (and to appease practitioners more interested in the sequential format), the dataset
also includes pretty-printed displays of each AST.

For additional details on the extraction, including an example JSON matching the program of Figure 1,
refer to Appendix A. For the reference JSON grammar, refer to Appendix C.

4 Modeling
4.1 Preliminaries
We begin by recalling that a snapshot of an interactive Agda session can be thought of as an incomplete
but type-checked file. The file consists of a collection of definitions (henceforth lemmas), i.e., all
proofs or programs within scope (either imported or locally defined). Of these, zero or more might
contain holes, i.e., remain unfinished. The distinction between lemmas and holes essentially boils
down to the presence or absence of a proof-level term. For the time being, we ignore those, and focus
solely on type declarations. Lemmas and holes are then syntactically indistinguishable, since their
types adhere to the same grammar.2 Capitalizing on this symmetry, we represent both kinds of objects
using a single parameter-sharing encoder. Given a collection of ASTs as input (some being lemmas,
others holes), the encoder will be tasked with returning a vectorial representation for each.

4.2 Desiderata
Conceptual Our primary aim is generalizability, which entails first completeness (i.e., ability to
model any data point in the domain, regardless of distributional shifts), and then appropriate inductive
biases (i.e., ability to effectively extrapolate from the patterns in the training data). The commonly
employed sequential approach attains completeness by tokenizing expressions according to the
co-occurrence frequencies of their constituent substrings, either at the “word” or at the “subword”
level. In doing so, however, it provides the model with the wrong inductive biases, since the
expressions under scrutiny are not formed by just any string grammar, but by precisely constrained
inductions. At first glance, one might think to resolve the problem by simply applying a tree- or
graph-based architecture on Agda ASTs. The challenge lies in the fact that Agda types, being
dependent, are considerably expressive. While simple types are composed of a fixed set of operators
and propositional constants (base types), dependent types may contain quantifications (introducing
variable bindings), and refer both to other lemmas in scope, and to any variables previously introduced.
Case in point, all AST-encoding approaches to date assume a fixed symbol vocabulary. By treating
(even just) the primitive nodes denoting constants and variables as strings, they implicitly concede
that all occurrences of the same string carry the same denotational meaning. Inadvertently, this also
implies that the substitution of such strings with others alters the final representations of the objects
these strings occur within, even if such substitutions are semantically void. Worse yet, it means
that completeness is sacrificed. Shifts in naming conventions, use of libraries that are stylistically
distant or targeted at novel domains, etc., might necessitate the evocation of symbols not present in
the trained embedding tables, collapsing representations into meaningless generics (e.g., multiple
different entries might be made the same due to an excess of [UNK] tokens). A non-nominal resolution
of these complex referencing patterns necessitates an extension of the traditional AST-encoding

2To be precise, a hole is natively specified as a goal type and a context, i.e., a “telescope” structure of
local variable bindings. We use the proof-theoretic equivalence between hypothetical reasoning and dependent
functions to merge context and goal into a single type by folding the assumptions provided in the context to a
nesting of dependent functions. Put simply, if the context is x : A and the goal is B, the folded type of the hole
is
∏

x:A B. This effectively homogenizes the representation format, but at the cost of elongating goal types.
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+-comm

Figure 2: Tokenized view of lemma types from Figure 1; see Appendix B.1 for details.

approaches. Crucially, we need our encoder to generically refer to both locally defined variables
(intra-AST) as well as other scope entries in their entirety (inter-AST); see Figure 2 for a visual
example.

Practical Beyond theoretical concerns, tree- and graph-based approaches are also lacking in several
practical aspects. Tree-like approaches involve a bottom-up reduction of the AST into a single
representation, often times achieved by translating leaves to vectors and operators to neural functions.
Despite offering suitable biases, they struggle to capture long-distance relations, exhibit a temporal
complexity that scales linearly with tree depth, and are challenging to parallelize across and within
ASTs. In comparison, graph-based models are easier to parallelize, but also offer an appealingly
native solution for non-tree edges. Moreover, by fixing the number of message-passing rounds, graph
architectures become invariant to AST depth, thresholding temporal complexity. This, however,
comes at a cost, as the model’s perceptive field becomes significantly limited. Updated node features
are obtained from a fixed-size local neighborhood, and their aggregation has no means to account for
fine structure at larger scales, leading to a coarse and “lossy” (or oversmoothed) representation of
the AST as a whole. As an alternative, Transformer-based encoders implementing full self-attention
allow concurrent pairwise interactions between all nodes, regardless of their relative placements.
This is particularly advantageous, as it equips the model with the means of capturing patterns and
dependencies at arbitrary scales. But while this is true for sequences, a vanilla Transformer lacks
the representational biases to perceive the complex inductive structure of an Agda file. Furthermore,
its memory footprint scales linearly with the batch size, and quadratically with the longest sample’s
length. In a premise selection setup, each premise constitutes an “independent” sample, with the
total of ASTs being processed making up a (subset of a) batch. This mandates operating on a
file-by-file basis, which translates into a requirement for variable-sized batches, during both training
and inference. Worse yet, AST counts and sizes tend have a high variance, and can often be overlong,
e.g., when dealing with complex files or types. In brief, a vanilla Transformer is practically unusable;
we will need to do better.

4.3 Architecture
Having identified a fully self-attentive encoder as an attractive modeling option, we set to amend the
shortcomings of the Transformer with a modified architecture that is better attuned to the task. In the
following paragraphs, we isolate and explicate its building blocks.

Efficient Attention To first address the scaling issue, we adopt the linearized attention mechanism
of Katharopoulos et al. [2020]. By foregoing the softmax normalization around the query-key dot-
product matrix, this variant allows a sub-quadratic formulation of the attention function. Concretely,
given an AST with n input nodes, transformed into queries q : Rn×d, keys k : Rn×d and values
v : Rn×e, we obtain an attention output a : Rn×e given by:

ai =
ϕ(Riqi) ·

(∑n
j=1 ϕ(kjRj)⊗ vj

)
ϕ(Riqi) ·

∑n
j=1 ϕ(kjRj)

(1)
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In the above equation, · and ⊗ denote the inner and outer product, applied here over dimensions d
and (d, e) respectively. Following the empirical insights of Arora et al. [2023], we define the feature
map ϕ : Rd → R1+d+d2

as:

ϕ := x 7→ [1] ; x ;
√
0.5 · vec(x⊗ x) (2)

where ; denotes vector concatenation and vec flattens the (d× d)-sized outer product into a d2-sized
vector. This formulation emulates a softmax-like exponentiation of the vector dot-product via a
second degree Taylor polynomial. Finally, R is a tensor packaging n matrices from the orthogonal
group O(d) that serve to introduce a positional specification– we spell out their functionality in
the next paragraph. In practice, the above operations are broadcasted over multiple ASTs t and
attention heads h, yielding an asymptotic complexity of O

(
tnehd2

)
. By setting d ≪ N , where

N is the maximum AST size encountered, complexity remains tractable throughout training and
inference.

Structured Attention To enhance the model with the tree-inductive biases necessary to process
ASTs, we employ the binary-tree positional encoding scheme of Kogkalidis et al. [2024]. The
scheme alters the attention coefficients by rotating and reflecting query and key vectors with position-
dependent orthogonal matrices. One such matrix is assembled for every unique AST position using a
chain of matrix products made of two primitives. Each primitive, in turn, corresponds to choice of a
tree branch option (i.e., left or right). By applying the appropriate orthogonal matrix on each query
qi and key kj prior to Taylor expansion, we practically modulate the dot-product between by the
norm-preserving bilinear scalar function R⊤

i Rj that represents the relative path between them upon
the tree structure. This setup inductively parameterizes the construction of relative paths, allowing
the representation of ASTs of arbitrary sizes and shapes using just two primitives.

Static Embeddings Initially, we embed AST nodes depending on their content. Primitive symbols
with a static, uniform meaning are handled by a simple embedding table. The table contains a distinct
entry for each of four type operators (dependent function Π, simple function →, λ-abstraction and
function application), three terminal nodes, the content of which we designate as ”don’t-care” (sorts,
levels and literals), and two meta-symbols (the start-of-sequence token [SOS], and an out-of-scope
symbol [OOS], used to denote masked or otherwise unavailable references).

Variable Representations Dependent function types and λ-abstractions introduce and bind vari-
ables to arbitrary names, which can then be referred to by nodes further down within the same AST.
A canonical way to make the representations name-agnostic is de Bruijn indexing [de Bruijn, 1972],
where names are replaced with an integer indicating the relative binder-distance to the variable’s
introduction. For representation learning purposes, substituting variable names with de Bruijn indices
is not much good in itself. Despite the normalized vocabulary, there are still enumerably infinite
indices to learn embeddings for. Furthermore, a single index carries no “meaning” of its own, other
than as an address-referencing instruction. Even so, its meaning is highly contextual and indirect: the
translation from binder-distance to a concrete “address” within the AST depends on the number and
placement of variable binders within the referring node’s depth-first ancestry. In order to facilitate
learning, we take the extra step of actually resolving the indexing instruction, substituting the de
Bruijn index with a pointer to the node introducing the referent. To represent the pointer, we then
use the positional encoding scheme described earlier. We procure and compose the two orthogonal
matrices representing the variable’s and the binder’s absolute positions to represent their relation, and
apply the resulting matrix against a trainable embedding. The final vector enacts a representation of
the variable’s offset relative to its binder. This constitutes a name-free indexing scheme with a clean
and transparent interpretation, abolishing the need for an ad-hoc nominal embedding strategy.

Reference Representations Topologically sorted, the lemmas within a file (and, by proxy, their
ASTs) form a poset. For lemmas a and b, a ≤ b denotes that the transitive closure of lemmas
referenced by b contains a. Based on this ordering, the collection of ASTs can be partitioned into a
strictly ordered collection of mutually exclusive subsets, each subset containing the ASTs of lemmas
of a specific dependency level. We follow along this sequential order, using the encoder to iteratively
populate a dynamic embedding table of AST representations, using each AST’s [SOS] token as an
aggregate summary. Any time we encounter a node referencing another lemma, we can query the
embedding table for the corresponding AST representation. Parallelism is still fully maintained
within each partition, where entries do not depend on one another. From a high-level perspective, this
makes for an adaptive-depth encoding strategy, implemented by a fixed-depth network.
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Figure 3: Empirical distributions of the standardized scores of relevant and irrelevant lemmas from
the stdlib:ID evaluation set.

Putting Things Together Following standard practices, we compose an attention block with a
SwiGLU [Dauphin et al., 2017, Shazeer, 2020], inserting residual connections and prenormalizing
with RMSNorm [Zhang and Sennrich, 2019] to obtain a single layer. We compose multiple such
layers together, sharing and reusing positional encodings across layers and attention heads.3

5 Experiments & Results
To quantitatively assess the model’s capacity for representation learning, we instantiate it composed
with a linear layer on top, and train it in a premise selection setting derived by minimally processing
the dataset of Section 3. We call the composite model QUILL, reflecting on it being a featherweight
tool (n.b., Agda is a hen) intended to assist in the proof writing process4. QUILL takes a collection
of ASTs as input, but produces now a scalar value for each hole-lemma pair, indicating the latter’s
relevance to the former.

5.1 Training & Evaluation
Setup We extensively detail our exact experimental setup in Appendix B. Concisely, we train
using InfoNCE on a size-constrained subset of the Agda standard library. Following some necessary
processing and filtering steps, this amounts to 481 training and 92 evaluation files, counting 15,244
and 4,120 holes respectively. Out of the 92 evaluation files, 5 files are marked outliers with respect to
the distribution of file sizes, containing 25% of the total holes and significantly exceeding the size of
largest training file– we take them apart and treat them as a separate OOD evaluation set. To obtain
more substantiated insights on OOD performance, we further consider two additional evaluation sets,
extracted from portions of the Unimath [Rijke et al.] and TypeTopology [Escardó and contributors]
Agda libraries. These are radically distant to the standard library in terms of content, abstraction
level, proof style, library structure and file size. Both libraries, and especially so TypeTopology, are
infamous for their austere and minimal (affectionately so-called spartan) style, making them ideal
test sets at the furthest ends of the modeling domain. The portions we consider are extracts of 137
and 28 files with 5,247 and 1,983 holes for Unimath and TypeTopology respectively.

5.2 Results
To evaluate performance, we gather the pairwise matching scores for all hole-lemma pairs of the
stdlib:ID evalution set, group them by ground truth label and visualize them in Figure 3. On the
standardized axis, we see negative pairs centered around the sample mean at 0. Even though there is

3The orthogonal matrices are applied per-head, and are thus lower-dimensional than the encoder as a whole.
This makes them superficially incompatible with the input embeddings. We fix the issue by lowering the
embedding dimensionality, and expanding it later via a trainable linear map.

4Source code, configuration files and scripts supporting experiment execution are available at https:
//github.com/konstantinosKokos/quill.
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stdlib:ID stdlib:OOD Unimath TypeTopology

MODEL AVEP R-PREC AVEP R-PREC AVEP R-PREC AVEP R-PREC

QUILL 50.2±0.5 40.3±0.4 38.7±0.7 31.1±0.9 27.0±0.4 17.4±0.3 22.5±0.3 15.4±0.5

no Taylor expansion 47.0±0.4 36.2±0.5 37.1±0.5 29.2±0.6 26.8±0.2 17.0±0.1 21.4±0.5 14.4±0.4

no Tree PE 44.5±1.5 34.1±1.8 30.7±0.4 24.0±0.4 24.8±3.4 15.5±2.9 18.8±1.1 12.3±0.9
no variable resolution 35.8±2.7 25.9±2.7 25.5±2.7 19.1±2.4 19.7±1.8 11.6±1.5 17.7±3.0 11.0±3.1

Transformer 10.9±0.4 3.7±0.2 8.5±0.2 4.5±0.1 9.4±0.3 3.9±0.1 5.8±0.0 0.9±0.0

Table 1: Model performance under different ablations across all evaluation sets.

overlap between the scores of positive and negative lemmas, 80% of the positive pairs are ranked
significantly higher than 80% of negative pairs, with a wide separation between the lowest positive
and highest negative quartile. What this means in practice is that the trained model enacts a relatively
reliable discriminator, capable of discarding “strongly negative” lemmas (or, vice versa, filtering for
“potentially positive” ones).

For a more quantitative evaluation, we compare the ranking of lemmas produced by QUILL with
the set of relevant items defined by the gold standard labels. We borrow metrics from recommender
system literature: average precision (AVEP) and R-precision (R-PREC). Intuitively, AVEP provides
an estimate for precision as one iterates through suggestions until all relevant lemmas have been
retrieved. R-PREC, on the other hand, assesses the model’s effectiveness in placing the set of relevant
lemmas (of any size R) at the top R positions among the ranked candidates. We report results in
Table 1 (means and 95% confidence intervals of 4 training repetitions).

Within the in-distribution evaluation set, we see relevant lemmas interspersed among as many
irrelevant ones at the top of the ranked suggestions. This is particularly compelling when compared
to the average ratio of relevant lemmas to total candidates, which lies below 1.5%. Unsurprisingly,
performance degrades the further away one drifts from the original training distribution. The
stdlib:OOD set contains ASTs and scopes that are approximately two orders of magnitude larger
than the training mean. On top of ASTs being harder to informatively represent, the average ratio of
relevant lemmas to available options is now about 2‰. The other two libraries essentially constitute
zero-shot transfer learning setups, intended to stress test the model’s representations.

Ablations To experimentally validate our design decisions, we conduct an ablation study where
we substitute network components for less exotic alternatives. We consider three ablations, first in
isolation (i.e., keeping the rest of the model intact), and then in combination. First, we completely skip
the Taylor expansion step, opting for an offset-by-one ELU feature map instead. We note a modest
but tangible performance hit, but drastically improved memory complexity. Second, we remove the
tree-structure bias in the attention function, substituting the multiplicative tree-positional encoding
with the additive sequential sinusoids of the vanilla Transformer. The performance effect is notable,
as the model is burdened with the added cognitive load of internally “parsing” the sequentalized
type expressions. Finally, we remove the structural de Bruijn resolution, treating all varables as
syntactically equivalent and mapping them to the same meta-embedding. This is a radical and
destructive simplification, collapsing multiple types into a single representation – nonetheless, the
model is still able to recover a non-trivial percentage of lemmas, retaining about 75% of the original
AVEP. Applied together, the ablations above reduce the model to a standard (linear) Transformer.
The baseline Transformer collapses, utterly and completely failing at capturing the task.

Put together, our experiments assert the robustness and generality of our approach and affirm the
positive effect of each of our design decisions. These findings suggest that our model’s success
stems from a combination of structure-faithful representations, and targeted, deliberate architectural
adjustments that honor them.

6 Conclusion
In the Future Pending community feedback, there is a number of directions we would be eager to
pursue going forward. On the dataset front, we would like to optimize the extraction’s performance
and coverage beyond the standard library. We further acknowledge that while our structured format
is highly elaborate, different levels of abstraction and detail come with their own pros and cons, and
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are inherently biased towards certain tasks and architectures. That said, the optimal setup would
likely be to provide multiple representations and allow the end-user the choice of which one to
use; we plan to extend the array of options provided by the extraction. On the integration front, the
pipeline implemented so far is unidirectional, in the sense of not providing any hooks for feedback or
interaction. Given our strong experimental results, we are currently looking for the best integration
angle that can allow at least one full back-and-forth between the language and the machine learning
backend. In combination’s with Agda’s auto, this should enable an end-to-end evaluation in terms of
proof completion, but also permit the system’s use in real-life scenarios, outside of asynchronous
offline settings. Finally, a plethora of improvements and optimizations are possible on the modeling
front. Among those, we are primarily interested in seeing our approach applied and evaluated on
other languages and especially unifying meta-frameworks such as Dedukti [Assaf et al., 2016] to
maximize interoperability.

In Sum We have presented a method to expose structured representations of program-proofs
extracted from arbitrary Agda libraries and files. Applying the extraction algorithm on the expansive
Agda standard library, we have generated and released a high-quality static resource, intended to
enable the offline (pre-)training of ML-based proof guidance tools. To our knowledge, this resource
is the first of its kind for Agda. Across proof assistants, the resource is also one of the very few that
explicates proof structure at the sub-type level rather than just pretty-printed surface representations.
Noting the particularities of dependently typed programs, and pinpointing weak points of prior
related endeavors, we argued for the difficulty but also the need for structurally faithful models
and representations. Utilizing the ultra-high resolution of our extracted resource, alongside recent
advances in efficient and structurally biased self-attention, we set out to design and implement
such a model. Trained for premise selection, the model achieves remarkably high precision while
relying just on type structure alone, experimentally confirming both the utility of the resource and
the soundness of our approach. Contrary to recent trends in ML in general and ML-guided theorem
proving in particular, our model is tiny, requires no pretraining or server hosting, and makes no use of
autoregressive language modeling. We open-source our code and make the extracted resources and
trained model weights accessible to the community.

Ethical Impact
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Theorem Proving. We do not see any potential risks for misuse or negative social impact.
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A Dataset Extraction
A.1 Extraction Example
Let us clarify the data extraction process by means of an illustrative example: translating the Agda
program of Figure 1 to the corresponding JSON structure of Figure 4.

The resulting JSON in Figure 4 contains the imports about equality in its scope-global field
(i.e., both their types and proof terms), the publicly exported definitions of this example under
scope-local, and the private lemma that allows us to commute suc over addition under the
scope-private fields only.

{ "scope-global":
[ {"name": "Agda.Builtin.Equality._≡_<12>", ...}
, {"name": "Agda.Builtin.Equality._≡_.refl<20>", ...}
, ...],

"scope-local":
[ {"name": "N<2>", ...}
, {"name": "N.zero<4>", ...}
, {"name": "N.suc<6>", ...}
, {"name": "_+_<8>", ...}
, {"name": "+-comm<20>"

,"type": "(m n : N) → (m + n) ≡ (n + m)"
,"definition": ...
,"holes":

[...
, { "ctx": "(n : N)"

, "goal": "(zero + suc n) ≡ (suc n + zero)"
, "term": "cong suc (+-comm zero n)"
}

, ...
]

}
]

"scope-private": [{"name": "+-suc<38>", ...}]}

(a) Subset of extracted JSON fields.

data N : Set where
zero : N
suc : N → N

+ : N → N → N
+ = . . .

+-comm : (m n : N) → m + n ≡ n + m
+-comm zero zero = . . .

+-comm zero (suc n) = {!!}
+-comm (suc m) zero = . . .

+-comm (suc m) (suc n) = . . .

where
+-suc : ∀ m n → m + suc n ≡ suc (m + n)
+-suc = . . .

(b) Interactive Agda session focusing on the
hole of Figure 4a.

Figure 4: JSON extract of the Agda code of Figure 1.

Zooming further into the holes recorded for the commutativity proof, in particular the second case
where m = 0 and n′ = n+1, we can see that the captured context contains a bound variable n arising
from the pattern of the second argument. By virtue of dependent pattern matching, the goal type has
now been refined to a more precise one, namely 0 + (1 + n) = (1 + n) + 0. Finally, we record the
term that successfully fills the hole of the aforementioned type cong suc ( +-comm zero n ), from which
we can extract just the lemmas used (i.e., cong, suc, and +-comm) specifically for the task of premise
selection. Note the numbers attached to each definition’s name, which are immediately drawn from
Agda’s internal name generation process and ensures that references to lemmas are unique.

A.2 Extraction Statistics
The extraction algorithm is developed against version 2.6.3 of Agda5 and applied on version 1.7.2
of the Agda standard library6– an open-source, community-developed collection of definitions and
proofs for general purpose coding and proving with Agda. The library’s contents span subjects
ranging from abstract algebra, common (as well as exotic) data types, functions, relations, inter
alia.

In what follows, we select and present a few statistics pertaining to the extracted data that are
particularly relevant to our experimental setup.

Figure 5a presents the empirical distribution of file sizes in terms of scope entries (global imports or
local definitions) and holes. Global and local scope entries roughly follow a bell-curve with long

5https://agda.readthedocs.io/en/v2.6.3/
6https://github.com/agda/agda-stdlib/releases/tag/v1.7.2
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right tails: a handful of files contain more than 1,000 definitions in total. Holes are more evenly
distributed, except for a high peak at 0 due to files without any holes.

Figure 5b similarly presents the empirical distribution of the AST lengths of the types of lemmas and
(context-merged) holes. Both distributions are bell-shaped, with holes being in general larger. As
before, a handful of ASTs are overlong, counting thousands of tokens.

Figure 5c, finally, presents the empirical distribution of lemma occurrences. We obtain this by
considering the set of fully qualified lemma names as they occur in the extracted files, and associating
each name with two occurrence counts: the number of times the name is encountered across files
as an import (i.e., excluding the single time it is defined), and the number of times this lemma is
actually selected as a relevant premise by a hole. We only count a single occurrence per hole (i.e.,
we increment the counter by just 1, even if that lemma is used multiple times). As expected, the
plot suggests that most lemmas are only ever used locally, with linearly less lemmas being imported
exponentially more times. Analogously, most lemmas rarely ever find their way to a hole, with
linearly less lemmas being useful in the derivation of exponentially more holes. This goes to show
that premise selection is hard: a few lemmas might be relevant “universally”, but the relevance of
most lemmas is sparse and contextually decided.

A.3 Limitations
The dataset is by no means set in stone and is amenable to various generalizations. Since Agda is
a dependently-typed language, terms appear in all kinds of places, e.g., as type-level indices of an
inductive datatype. Currently, only terms appearing in functions (i.e., proofs) are considered, but
there is nothing preventing us in principle from utilizing terms that appear elsewhere.

While the extractor’s performance is sufficient for our studies so far, the current implementation is
in no way the most efficient possible. First, there is a lot of context sharing between adjacent holes
that could be leveraged to drastically reduce disk usage. Second, CPU time and RAM consumption
quickly exhibit exponential behavior due to multiple sub-invocations of Agda’s type checker, making
it impossible to extract data from a handful of complex Agda modules. Finally, the dataset does
not currently contain structured decompositions for literals, sorts (i.e., kinds of types), and universe
levels. We have conciously ignored them for the time being, seeing as they are largely boilerplate for
proof search purposes, but acknowledge that they still might prove useful when reasoning about type
hierarchies.

B Experimental Setup
B.1 Tokenization
We read and tokenize files offline to facilitate training. Figure 2 depicts the structure of the JSON file
of Figure 4 (in turn the extract of the Agda code of Figure 1) as it is perceived post-tokenization by the
neural model. Definitions (proof-level terms) are ignored, and type ASTs are binarized. References
(presented in gray font) are resolved, and treated as pointers to either other ASTs or nodes within the
same AST, depending on whether the referenced object is another lemma or a variable. Type operators
and meta-symbols (presented in normal font) are treated as static elements of a fixed vocabulary. The
presentation is the product of some artistic license: in reality, sets are quantified by universe levels,
and the equivalence operator is a reference to the actual definition of equivalence.

B.2 Data Filtering & Splitting
We fix an 85%-15% training-evaluation split over the 818 files extracted from the Agda standard
library. After tokenization, we reject 18 files (2.2%) containing mutual inductions, i.e., cyclic
reference structures which our model does not yet support. Another 196 files (23.97%) contain no
holes, and are thus of no use in this present setup. Finally, we identify 36 files (4.4%) representing
size anomalies, each accumulating more than 214 tokens. According to our original split, 31 of
those were marked for training and 5 for evaluation. We ignore the former, but use the latter as a
standalone left-out test, intended to stress the model’s generalization. Finally, we inspect the fully
qualified names of scope entries and find that the training sets contains 10,320 unique definitions.
The evaluation set contains 3,495, with 732 of them being “novel” in the sense of never occurring in
the training set (the rest being imported from the training set, or, conversely, having been imported at
least once by the training set). All holes in the evaluation set are by construction novel, seeing as they
stem from locally defined scope entries.
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(a) Histograms and KDE plots of the counts of imports, definitions and holes across files, offset by 1 and
log-transformed.
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(b) Histograms and KDE plots for the AST lengths of the types of lemmas and holes across files, log-transformed.
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(c) Histograms and KDE plots for the occurrence counts of each unique lemma, offset by 1 and log-transformed.

Figure 5: Statistics of the extracted data relevant to our experimental setup.
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PARAMETER VALUE

model dim 256

# layers 6

# heads 8

head dim (queries, keys) 16

head dim (values) 32

feed-forward dim 1024

(a) Model hyperparameters.

PARAMETER VALUE

algorithm AdamW(β1 := 0.9, β2 := 0.99, λ := 1e−2)

schedule linear warmup (3) – cosine decay (97)
lr curve 0 . . . 5e−4 . . . 1e−8

batch size (files) 1

batch size (holes) 32

dropout reference labels, post-attention, post-ffn (0.1)

(b) Optimization hyperparameters.

Table 2: Hyperparameter setup

B.3 Training
We generate training batches by randomly selecting a fixed number of files. From each file, we
extract the entire scope along with a predetermined number of holes. We use the encoder to obtain
vector representations for the types of both the holes and the lemmas within scope. Next, we consider
all pairs in the Cartesian product of lemmas and holes within each file but discard causally illegal
pairs– those with a hole referencing a lemma that has not yet been defined. For each pair, the gold
data provide us with a label indicating whether the indexed lemma actually occurs when filling in
the indexed hole. We use this label as an imperfect proxy for the lemma’s relevance, i.e., whether it
should be used to fill in the indexed hole. Given a hole, we want QUILL to be able to identify all
relevant lemmas; that is, to successfully discriminate between positive and negative pairs. Translating
this requirement to an objective function, we make a minor modification to infoNCE [Oord et al.,
2018] so as to capture the existence of possibly multiple positive matches. Concretely, denoting with
P+
h and P−

h the sets of positive and negative pairs anchored to a common hole h, we compute a
per-hole loss term Lh as:

Lh :=
∑
p∈P+

h

−log
exp (f(p))

exp(f(p)) +
∑

n∈P−
h

exp(f(n))
(3)

where f is simply a weighted dot-product reducing each vector pair to a scalar value. We derive a
per-batch loss by aggregating the loss terms of all the holes considered.

We conduct 5 training iterations using the same model and optimization hyperparameters, reported
in Table 2. We conduct no hyperparameter sweep of any kind, instead opting for efficiency with a
sensibly sized model and otherwise default optimization values that maximize GPU utilization. We
train on a single A100 for 100 epochs, monitoring training and evaluation performance. Keeping at-
home deployment in mind, we opt for a modestly sized model. QUILL enumerates fewer than 6 million
parameters in total– more than 3 orders of magnitude smaller than the LLM-based architectures
currently in use. Once trained and binarized, it takes up a mere 26MB of disk space. Training
completes in about 16 hours, but converges halfway through by epoch 55±7, overfitting slowly
thereafter.

C JSON format
The dataset has a non-trivial JSON structure, so we deem it worthy to document it more precisely here:
Fig. 6 presents the JSON schema in a more readable BNF-grammar form. We slightly simplify things
by embedding definitions, types, patterns, and term expressions, all in a single syntactic category
of “terms” (TERM). While this is not completely accurate (e.g., it does not make sense to have a
datatype declaration appear as a function’s clause pattern), it strikes a good balance between accuracy
and accessibility; the JSON validation that accompanies the JSON schema will make sure that such
conditions are always met.

A JSON file (FILE) contains scope entries and holes for each sub-term appearing in the source
program, where the scope is split into three categories: the global scope of imported definitions; the
local scope of definitions declared earlier in the same file; and the private scope of helper definitions
that is only visible to the current definition (e.g., arising from a where clause). Each scope entry
(SC ITEM) has its type and the actual definition that inhabits this type. Holes (HOLE) are only
included for the local or private scope entries, since the modules imported in the global scope already
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⟨FILE⟩ ::= {name: string

scope-global: ⟨SC ITEM⟩∗

scope-local: (⟨SC ITEM⟩,⟨HOLE⟩)∗

scope-private: (⟨SC ITEM⟩,⟨HOLE⟩)∗ }
⟨SC ITEM⟩ ::= {name: string

type: ⟨TERM+⟩
definition: ⟨P TERM⟩ }

⟨HOLE⟩ ::= {context: ⟨CTX ITEM⟩∗

goal: ⟨TERM+⟩
term: ⟨TERM+⟩
premises: ⟨string⟩∗ }

⟨CTX ITEM⟩ ::= {name: string

pretty: string

type: ⟨TERM+⟩ }
⟨TERM+⟩ ::= {original: ⟨P TERM⟩

simplified: ⟨P TERM⟩?

reduced: ⟨P TERM⟩?

normalised: ⟨P TERM⟩? }
⟨P TERM⟩ ::= {pretty: string

term: ⟨TERM⟩ }
⟨TERM⟩ ::= ⟨REF DB⟩ | ⟨REF SC⟩ |

⟨PI⟩ | ⟨LAM⟩ | ⟨APP⟩ |
⟨ADT⟩ | ⟨CON⟩ | ⟨REC⟩ | ⟨FUN⟩ |
⟨LIT⟩ | ⟨SORT⟩ | ⟨LEVEL⟩

⟨CLAUSE⟩ ::= {ctx: ⟨TERM⟩∗

patterns: ⟨TERM⟩∗

body: ⟨TERM⟩ }

⟨REF DB⟩ ::= {tag: "DeBruijn"

index: number }
⟨REF SC⟩ ::= {tag: "ScopeReference"

name: string }
⟨PI⟩ ::= {tag: "Pi"

name: string

domain: ⟨TERM⟩
codomain: ⟨TERM⟩ }

⟨LAM⟩ ::= {tag: "Lambda"

abstraction: string

body: ⟨TERM⟩ }
⟨APP⟩ ::= {tag: "Application"

head: ⟨TERM⟩
arguments: ⟨TERM⟩∗ }

⟨ADT⟩ ::= {tag: "ADT"

variants: ⟨TERM⟩∗ }
⟨CON⟩ ::= {tag: "Constructor"

reference: string

variant: number }
⟨REC⟩ ::= {tag: "Record"

context: ⟨TERM⟩∗

fields: ⟨TERM⟩∗ }
⟨FUN⟩ ::= {tag: "Function"

clauses: ⟨CLAUSE⟩∗ }
⟨LIT⟩ ::= {tag: . . . string}

⟨SORT⟩ ::= {tag: . . . string}
⟨LEVEL⟩ ::= {tag: . . . string}

Figure 6: JSON schema of datasets extracted via AGDA2TRAIN.

have a corresponding JSON dataset with their corresponding holes. For each hole, we record the
context of (typed) bound variables, its type, and the term that successfully fills the hole (from which
we also compute the set of used lemmas, specifically for the task of premise selection).

Definitions can either declare an algebraic datatype (ADT) consisting of various types of constructors;
a record (REC) with fields of certain type; or a function (FUN) that can be defined via pattern
matching across multiple clauses (CLAUSE).

The rest of the cases correspond to the usual presentation of terms in λ-calculus: variable refer-
ences (REF DB/REF SC); abstractions (PI/LAM); applications (APP); and primitives for liter-
als/sorts/levels (LIT/SORT/LEVEL). We do not retain the structure of literals, sorts, and levels;
there is no real use for it on premise selection, but it can easily be added in the future if the need
arises.

Last, notice how top-level terms are printed to human-readable strings (P TERM), or even captured
at different points of their evaluation (TERM+). Each of these reduction levels are options (marked
with ?), since evaluating an arbitrary term might prove too costly; only those computed within a
reasonable time frame are populated.

17



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We are cautious with our statement of contributions and refrain from making
any claims that we cannot support..

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We explicitly discuss the limitations of our work in Section 6, as well as in
Appendix A.3.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not make any theoretical contributions.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed account of our experimental setup in the Appendix, and
make our code available for review.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes – we open source everything and make it available for review.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, see above.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We repeat experiments multiple times, varying the seeds, and report means as
well as 68% confidence intervals.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: We do report hardware infrastructure, but not memory consumption or clock
times. This is an omission our part, since we did not track these statistics during training.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Fully in line with the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We do hint at positive societal impacts at the introduction. We do not see any
potential of negative social impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We perceive no risks that would require safeguards of any kind.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all software libraries and datasets we use, and comply with their
licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: We do provide assets, but not as part of the submission at the current stage.
Documentation is still pending.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects were involved in this study.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: See above.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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